

Interactive BASIC Compiler

by

Andrew R. Gariepy,
Scott Terry. David Overton.

Greg Branche and Halbert Uang

Documentation by
Michael A. Gariepy

©Copyright1985. 1986. 1987

fA M .m.) ,j
All Rights Reserved

ZBasic'" is a Trademark of Zedcor. Inc.

Fourth Edition: 4/87
First edition: 8/85

Seoond edition: 10185
Third edition: 5/86

TECHNICAL SUPPORT: 1-(602) 795-3996
Support hours: Monday-Friday, Noon to 5PM, Mountain Standard Time

Zedcor provides free phone support. Be sure to have your invoice number and license agreement number ready. You
may need them to get support. Also be sure you understand the problem dearly and describe ~ is simply as possible.
H is usually a good idea to test the problem a few times before calling. Sometimes it's just a syntax problem. Collect
or toll free calls will not be accepted for technical support.

In addition, you may contact us on the GEnie Information Service by sending electronic mail (EMAIL) to;
ZBASIC. We check our mailbox semi-regularly and will respond to you via electronic mail. We also have topics set up
on the various Round-Table Bulletin Boards for general information.

Notes on the Fourth Edition

This ed~ion of the ZBasic'" manual contains all the computer appendices. This includes the appendix for MS-DOS"',
APPLE'" lie, IIc (DOS 3.3 and ProDOS), MACINTOSH"', CP/M'" and TRS-80'" Model 1 , 3 and TRS-80 Model 4.

The appendices are at the back of the manual and the new index includes entries for both the reference section and
the appendices. H is important to study the appendix for the computer you are using since there are usually
enhancements and variations that are important to note.

Acknowledgements

Special thanks to John Kemeny and Thomas Kurtz for creating BASIC, the easiest and most powerful of all the
general purpose languages. To Joanne Gariepy for many late hours of ed~ing. An extra special thanks to the
programming teams that have meant so much to the success of the product; Scott Terry, Dave Overton, Greg
Branche and Hal Liang and to Thomas Dim~ri and David Cooper for their help with the MSDOS version. Special
thanks to Karen Moesh and Leyla Blisard for making sure ZBasic gets mailed as fast as it does and to Apple
Computer, Inc. for the Macintosh"', Laserwr~er"', MacDraw, and MacPaint graphic software and to Microsoft for
Word"'; on which this entire manual was composed and printed (both text and graphics).

Many thanks to the multitudes of ZBasic'" users who provided helpful suggestions for this fourth edition.

Copyright Notice

The ZBasic software and manual are © Copyright 1985,1986,1987, Zedcor Inc., All Rights Reserved. It is against
the law to copy the ZBasic software or Documentation on cassette, diskette, tape, listing or any other medium for
any purpose other than the purchaser's archival use without the express written permission of Zedcor Inc.

Trademarks

Because ZBasic™ runs on so many different products, this manual makes reference to many manufacturers and products that are trademarks of their
respective owners. We acknowledge these companies and thank those that have been so helpful In making ZBasicTM a success: ZBasic™ is a
trademark of Zedcor Inc. Apple, IIGS, lie, 11+, lie, Macintosh Plus, MAC XL, LISA and Macintosh'" are registered or licensed trademarks of Apple
Computer. IBM PC, IBM PC jr., IBM PC-XT, PC·AT and PC-OOS are registered tredemarks of International Business Machines Corporation.
MSBASIC, MS, Xeni. and M5-DOS are registered trademarks of Microsoft Corporation. CP/M is a registered trademark of Digital Research. Turbo
Pascal is a registered trademark of Borland International. TR5-80, Radio Shack, Tandy 2000. Tandy and Tandy 1000, 1200, 3000 are registered
trademarks of Tandy Corporation. Kaypro II, 4, 10, 16 and 286i are registered trademarks of Kay pro Corporation. Amiga, Commodore 64 and 128 are
trademarks of Commodore Intemational. Franklin Ace 1000 Is a trademark of Franklin Corporatio=Osborne is a trademark of Osborne Corporation.
Compaq and Deskpro are trademarks of Compaq Computers. Panasonic Senior and Executive rtners are trademarks of Panasonic Industrial
Corporation. Data General One Is a trademark of Data General Corporation. Quadram is a tradem of Quadram Corporation. V AX is a trademark of
Digital Equipment Corporation. Unix is a trademark of AT&T Corporation. We apologize for any unintentional omissions.

Zedcor Incorporated reserves the right to make changes to the specifications of Z8asic'Rl and to the ZBasic"" documentation without obligation to notify
any persons or organization of such changes.

ZEDCOR, INC.
4500 East Speedway Blvd., Suite 22

Tucson, Arizona 85712-5305
(602) 795-3996
(602) 881-8101

Orders: 800· 482·4567

TABLE OF CONTENTS

Introduction 5

Getting Started 7

Configuration 11

Standard Line Editor 14
Adding, Inserting and Deleting Lines 14
The Line Editor 15
Renumber, Calculator, SAVE, LOAD, DIRectory 18

Running ZBaslc Programs 22
RUN, RUN+, RUN" 23
Breaking Out of Executing Programs 24

Chaining Programs 26

Compile and Runtime Errors 28

Terms and Definitions 32

Math
Operators
Expression Evaluation types
Other Math Functions
Derived Math Functions
Order of Precedence
Conditional and Logical Operators

Numeric Conversions

Constants

Variables
Integer Variables
Floating Point Variables (REAL)
Configuring Accuracy
String Variables
Defining String Lengths with DIM and DEFLEN

INDEX$
Arrays

Shell and Quick Sort examples

Graphics

36
36
37
40
41
42
44

46

48

50
53
54
57
61
64
67
72
76

110

Table of Contents 2

TABLE OF CONTENTS

3 Table of Contents

Flies
Terms
File Structure
Sequential Method
Random Method
Mixing File Methods
Disk Errors

Screen and Printer

Keyboard Input

Loops FOR-NEXT, WHILE-WEND, DO-UNTIL

Functions and Subroutines
DEFFN
LONGFN

Machine Language

program Structure

Debugging Tools

Porting Programs

Converting Old Programs

Keywords

98
100
106
108
115
120
122

126

130

135

140
140
141

143

147

153

156

161

168

Glossary 170
The reference section contains a complete alphabetical list of all
Standard ZBasic commands, statements, functions and operators
with cross reference to other commands and sections of the
manual.

Also see the appropriate appendix for special commands or
enhancements for a particular computer model.

TABLE OF CONTENTS

Computer Appendices
VERSION NOTES
Throughout this manual are notes to different versions of ZBasic.
An Icon representing the various computer type is used.

Remember the icon for your computer type. If you see the icon
in the standard reference manual, a note will follow it describing
something of importance for that version.

I ___ IB_M_®_~:_·_: ~_Ia_D_O_S_TM_"P_C_-_D_O_S_TM_a_n_d_co_m_pa_ti_b_le_S __ A

I ja'!l
= ______ Z_8_0™ __ ;T_R_S_-_8_0TM __ M_O_d_e_I_1,_3_a_n_d_4_a_n_d_C_P_/M_TM __ -8_0 _____ B

I II
Apple® lie, IIc, Laser 128™ and IIGS: DOS 3.3
Apple® 11+, lie, IIc, Laser 128™ and IIGS, ProDOS

C
D

!b
Macintosh™, Macintosh Plus™, MAC XLTM,
Macintosh SETM, Macintosh IITM and
LlSATM with Macworks™ E

INDEX End

Table of Contents 4

INTRODUCTION

5 Introduction

As the orginal developer of ZBasic and the head of the programming
team I want to thank you for your support.

I've been involved in writing ZBasic for eigth years now and am very
proud of what we've accomplished. It hasn't been easy but it's sure
been fun. How many times does a complex product like ZBasic ever
make it to market?

Over the years I have received thousands of suggestions from
programmers. I've tried to implement as many of these suggestions as I
could. I still need your feedback and comments so I can make ZBasic
the most powerful programming tool available. Send your suggestions
to the "ZBasic Wish-List Department" or to my attention.

Special thanks to my wife Janis for putting up with my programming late
into the night and to the many ZBasic users that have taken the time to
send letters of encouragement.

Andrew R. Gariepy
April, 1987

INTRODUCTION

ZBasic has come a long way since it was introduced in 1985. Many
thousands of copies, on many different computers, have been distributed
all over the planet.

We have accomplished what we set out out to do; to provide a powerful,
fast, interactive, simple-to-use, inexpensive BASIC compiler that works
the same way on many different computers so you only have to learn a
language once.

I've worked hard to make the manual simple to follow and easy to
understand.

I highly recommend that you subscribe to the ZBasic newsletter; "Z". It
covers all sorts of topics about ZBasic and has listings for public domain
ZBasic subroutines on diskette you can get cheap. It's jammed with hints
and tricks from other ZBasic users all over the world and from the ZBasic
programmers themselves. Call 800-482-4567 to order.

Thank you for your support of ZBasic. Please let us know if you have any
ideas of how to improve the product.

Michael A. Gariepy
April,1987

Introduction 6

GETTING STARTED

7 Getting Started

GETTING STARTED

ASIC
GETTING STARTED

ZBasic is provided on a diskette for your computer. Before loading ZBasic do the following:

1. Read, sign and return the License agreement in the front of this manual.
Keep track of your serial number, you may need it for support.

2. Read the Appendix for your computer. It will explain any variations or
enhancements for your version of ZBasic and also has important
information about hardware requirements or limitations.

3. MAKE A BACKUP COPY OF THE ORIGINAL ZBasic™ DISKETTE. Never
use the original diskette. If you do not know how to make backups,
refer to your DOS or User Manual.

4. Using the BACKUP, load ZBasic™ according to the instructions for your
computer below:

MS-DOS
CP/M-SO
TRS-80
Apple DOS 3.3
Apple ProDOS
Macintosh

From A> :
From A> :
From DOS READY:
From FP prompt:
From FP prompt:
Using the mouse:

ZBASIC
ZBASIC
ZBASIC
BRUN ZBASIC
-/ZBASIC/ZBASIC.SYSTEM
Double Click ZBasic Icon

HOW TO BE A ZBASIC EXPERT IN TEN MINUTES OR LESS

The following is a quick-and-dirty course that teaches you how to TYPE, RUN, SAVE, QUIT
and LOAD a program using ZBasic.

First LOAD ZBasic according to the instructions for your computer above or in your
computer appendix. Some versions require that you press <E> to enter the editor. If a
prompt appears asking for input, press <E>. See CONFIGURE for more information about
the options being offered.

!l
Macintosh users note that the following lessons are done in the COMMAND window.

Getting Started 8

GETTING STARTED

LESSON ONE: TYPING IN A SIMPLE PROGRAM

When you see the message; ZBasic Ready, you may begin entering programs. So
we may demonstrate the simplicity of Z8asic, please type in the following program exactly as
shown. Always type COMMANDS in UPPERCASE and remember to press <ENTER> or
<RETURN> at the end of each line.

10 FOR Count = 1 TO 10
20 PRINT "Hi, I'm ZBasic! ---"
30 NEXT Count

Congratulations, you've just entered your first ZBasic program. To see a listing of the
program type: LIST<ENTER>. To find out more about entering and editing programs,
see: STANDARD LINE EDITOR. Also see your computer appendix for information about
using a full screen editor (if your version has one).

LESSON TWO: RUNNING THE PROGRAM

To run the program you just entered type:

RUN

The program will print the message; Hi, I'm ZBasic! --- ten times. ZBasic
actually compiles the program but does it so fast that you'll barely notice. When the program
is finished you're back in the editor. That's the beauty of interactive compiling.

LESSON THREE: SAVING THE PROGRAM

To SAVE your program, make sure you have an unprotected diskette in the drive and type:

SAVE MYPROG

The program will be saved to disk for future use.

LESSON FOUR: EXITING ZBASIC

To exit ZBasic type:

QUIT

You will now be back in the operating system. It's a good idea to save your programs before
doing this.

LESSON FIVE: HOW TO LOAD EXISTING PROGRAMS

To load the previously saved program, first re-Ioad Z8asic then type:

LOAD MYPROG

The program you saved is now back in memory. To see it, type LIST:

10 FOR Count = 1 TO 10
20 PRINT "Hi, lim ZBasic!--_n
30 NEXT Count

9 Getting Started

GETTING STARTED

A NOTE TO EXPERIENCED BASIC PROGRAMMERS:

Since the ZBasic Compiler is very similar to the BASIC interpreters found on most
microcomputers (except for graphic commands and file I/O), use the Reference Section
and your Computer Appendix to check syntax differences from other BASIC's. Use the
Index to find more in-depth answers. The appendices in the back of this manual contain the
commands and enhancements for specific computers. These appendices are also very
useful for converting programs from one machine to another.

If you have been frustrated with incredibly slow interpreters and awkward, complicated
compilers, you will be pleased with the power and ease of ZBasic.

A NOTE TO INEXPERIENCED BASIC PROGRAMMERS

This manual is llQ1 intended to teach you BASIC programming from scratch. If you lack
programming experience we suggest picking up some of the BASIC tutorials for the IBM
PC, CP/M systems or the TRS-SO, available from most major bookstores and libraries.
Once you leam the beginning concepts of BASIC programming, like GOSUB, FOR/NEXT
and that type of thing, this manual should be all you need.

ZBasic is very similar to the IBM PC, TRS-SO, MSBASIC and GW BASIC interpreters;
however, most Graphic commands and Random File commands are different (sequential file
commands are very similar).

For those with some experience, this section and the section "Standard Line Editor" are
written in a tutorial format.

Be sure to examine the appendix in the back of this manual for your computer. It will tell you
about any differences and enhancements that are important to know ~ you start.

Getting Started 10

CONFIGURATION

11 Configuration

CONFIGURATION

TM

ASIC
CONFIGURATION OPTIONS

<E>dit

Since no two programmers are alike, we allow you to configure your version of ZBasic. Most
versions start with a screen something like this:

As you can see below, configuring your version of ZBasic is simple. Simply set the
parameters the way you want, then save the reconfigured ZBasic:

Type "E" to enter the Standard Line Editor. Once in the editor, you may
LOAD, TYPE, RUN, EDIT, SAVE or DEBUG your programs.

<C>onfigure Typing "e" allows you to configure certain parts of ZBasic. Note that in most
cases you will not have to change parameters. See next page for options.

<S>ave

<P>atch

Typing "S" allows you to save ZBasic with the configuration defaults set to your
options. This way you don't have to reconfigure ZBasic every time you load it.

Typing "P" allows you to make patches to ZBasic. If we make minor changes you
won1 have to return you disk to us for an upgrade. Not available on all versions.

Configuration 12

CONFIGURATION

CHANGING CONFIGURATION

It is simple to change configurations. If the defauH value is not to your liking simply type in
the value you want. Press <ENTER> to skip inputs, Press <BREAK> or <CNTR C> to go
back to the main menu.

STANDARD CONFIGURE QUESTIONS HEX Decimal INPUT
1. Double Precision Accuracy 6-54 000E 00014 ?
2. Single Precision Accuracy 2-52 0006 00006 ?
3. Scientific Precision 2-Double Prec. 0006 00006 ?
4. Maximum File Buffers Open 0 - 99 0002 00002 ? -5. Array Base o or 1 0000 00000 ?
6. Rounding Number o - 99 0031 00049 ?
7. Default Variable Type:

<S>ingle, <D>oub1e, <I>nteger I ?
8. Test Array Bounds <yiN> N
9. Convert to uppercase <yiN> N ?
10. *Optimize expressions as Integer? yiN Y ?
11. *Space required after Keywords? yiN N ?

• Not all versions.

DEFINITIONS
1.
2.
3.
4.
5.
6.
7.

S.

9.

10.

11.

OF THE STANDARD CONFIGURE QUESTIONS
Set from six to 54 digits of precision for Double Precision math. Defaults to 14.
Set from four up to two digits less than Double Precision. Defaults to 6.
Digits of math precision for Scientific functions (ATN, COS etc.)
Set the number of files you want OPEN at one time. Up to 99. Two is the default.
Array Base 0 or 1. Set zero or one as ARRAY start. Zero is default.
Rounding Factor. Sets rounding for PRINT USING and other things.
Set variable default to Integer, Single or Double precision.
Press I, S or D key. Same as DEFDBL, DEFSNG, DEFINT A-Z.
Check the runtime program (object code) for array values going out of DIM bounds.
(Slows the program down but is very good for debugging purposes)
Tells ZBasic to convert all lowercase entries to UPPERCASE.
The variable "FRED" is the same as the variable "Fred" if this is done.
Two ways to evaluate expressions. Integer or Floating Point.
Defaults to integer for speed and size. Set to NO if you want defaults as real.
Forcing a space after keywords allows you to embed keywords in variables.

IMPORTANT NOTE: If you change configuration, make sure all CHAINED programs have
EXACTLY THE SAME CONFIGURATION. Otherwise unpredictable results may occur.

13 Configuration

Macintosh: Select the "Configure" menu item to change or save configuration options.
MSDOS and ProDOS versions of ZBasic have a CON FIG command that allows resetting
the options from the Standard line editor. 'CP/M, Apple DOS 3.3 and TRS-SO versions
may not have the last two options offered. Check the appropriate appendix for specifics.

STANDARD LINE EDITOR

ASIC
STANDARD EDITOR

ZBasic comes with a Standard Editor that works the same way on all computers. While most
versions of ZBasic now come with a full screen editor which is easier and faster to use, the
Standard Editor allows you to do quick-and-dirty editing and direct commands like an
interpreter.

Learning the Standard Editor will allow you to jump from one version of ZBasic to another
without having to re-Iearn the full screen editor for that particular machine.

ENTERING THE EDITOR

Load ZBasic. When the screen says: ZBasic Ready you have entered the ZBasic
Interactive Programming Environment (a fancy name for the Standard Editor) and may enter
programs and type direct commands.

The Standard Line Editor requires each line of a program to have a line number for editing
and reference purposes (labels are available too.) Line numbers may range from 0-65534.
Each line can be up to 250 characters long. To add a line, type a line number and the text,
or use the AUTO command to have ZBasic assign line numbers automatically (some
versions of ZBasic will allow you to enter programs without using line numbers. Check your
appendix). If you are loading a program without line numbers, they will be added
automatically. Line numbers are used for editing in the Standard Line Editor only.

Important Note: Always type keywords and commands in uppercase. Select "Convert to
Uppercase" under Configure if you don't want to worry about it.

Important Note: This entire section deals with commands that are to be executed from
the Standard Line Editor. If you are in the full screen editor you will need to switch to the
Standard Editor. See your computer appendix for Specifics.

l!b
This section of the manual refers to the COMMAND window. Switching between the
COMMAND and EDIT windows is accomplished with COMMAND E.

Interactive Programming Environment 14

STANDARD LINE EDITOR

ENTERING AND DELETING LINES
Type in the following example. Enter it exactly as shown, as we will use this text to illustrate
the use of the line editor. Remember to use <ENTER> at the end of each line. This is how
ZBasic recognizes a line and stores it in memory:

10 THIS IS AN EXAMPLE OF ADDING A LINE
20 THIS IS THE SECOND LINE
30 THIS IS THE THIRD LINE

If you make a mistake, use <BACKSP> or to delete it. If you <ENTER> a line
incorrectly just type it over again. To see the complete program type LIST:

LISTING A PROGRAM

To list a line, or range of lines, use LIST or just L:

you TYPE
LIST or L
LIST "SUBROUTINE"
LIST "FRED"-
LIST 100-200
LLIST-100
LIST 100- or L100-
<period>
<UP ARROW>
<DOWN ARROW>
L+
LLIST+
L+-100
<SPACE>
<I>
LIST'

DELETING LINES

ZBASIC RESPONDS
Lists complete program to the screen
Lists the line with that label
List all lines after and including the line with the label "FRED"
Lists lines from 100-200
Lists lines up to 100 to printer
Lists lines from 100 on
Lists the last line listed or edited
Lists previous line (or plus <+> key)
Lists next line (or minus <-> key)
Lists program without line numbers
Lists to printer without line numbers
Lists up to line 100 without showing line numbers
Single steps long listings. <ENTER> continues listing
Lists PAGE of lines (10 lines) to screen
Some systems: Highlights keywords on screen while listing.

Deleting lines is accomplished in a number of ways. Examples:

YOU TYPE
1000 <ENTER>
DEL 1000
DEL 10-50
DELETE 50
DELETE 50-
NEW

ZBASIC RESPONDS
Deletes line 1 000
Delete line 1000
Delete lines 10 through 50
Delete line 50
Delete line 50 and all lines after
Delete the entire program Careful!

NOTE: Labels may be used in place of line numbers (except first example).

ADDING OR INSERTING A NEW PROGRAM LINE

Add or insert a line by typing in a new line number followed by text (be careful not to use the
number of a line already being used unless you want to replace it). To insert a line between
line 10 and line 20, assign a number such as 15 to the new line (or another number
between 10 and 20). To add a line at the end of the program, assign the line a number
greater than the largest line in the program.

15 Interactive Programming Environment

STANDARD LINE EDITOR

HOW TO EDIT TEXT ON A LINE

The Standard Line editor is used to edit lines in a program and to give commands directly to
the compiler. Deleting, inserting, changing or adding new text is easy and fast.

EDIT ANYTHING ON A LlNE. .. EVEN LINE NUMBERS!

Unlike most BASICs, ZBasic allows you to edit anything on a line, even the line number.
When a line number is edited, ZBasic creates a new line with that line number. The old line
will not be deleted or changed. Very handy for avoiding redundant typing.

The ZBasic line edttorfunctions the same way on all versions of ZBasic. Here are & the
line edit keys you need to remember:

STANDARD LINE EDITOR KEYS

CURSOR MOVEMENT
<SPACE> Move RIGHT
<BACKSP> Move LEFT
<S>earch for <letter>
<l>ist the line you are editing

OTHER
<A>bort changes
<ENTER> Keep changes

DELETE TEXT
<D>elete one character
<K>ill, Delete upto <letter>
<H>ack to end of line
<Esc>ape Kill and Hack

INSERT TEXT
<I>nsert characters
e<X>tend line
<Esc>ape Insert mode

<C>hange character under the cursor
<BREAK> Abort changes (CTRL C on some systems)

CURSOR ARROW keys are often used instead of <SPACE> and <BACKSP> .

.. J-"l _ ...
Macintosh: <ESC>=<TAB>, <COMMAND Period>=<BREAI<>. MSDOS and Apple II: Cursor
keys=<SPACE> and <BACKSP>. Delete key also works as <BACKSP>. <CNTRL C>=<BREAK>.
MSDOS: Insert key = <I>. CP/M: <CNTRL C>=<BREAK>. TRS·SO: <SHIFT up-arrow>=<ESC>.

USING THE LINE EDITOR

The command to edit a line is "EDIT" (or just "E") followed by a line number (or label). If no
line number is used, the last line LlST(ed) or EDIT(ed) will be assumed «COMMA> without
<ENTER> will also edit the current line).

"EDIT 20" and "E20" do the same thing.

The following page describes the simple commands used to edit the characters on the line.

Interactive Programming Environment 16

STANDARD LINE EDITOR

LEARNING THE COMPLETE STANDARD LINE EDITOR
IN 10 MINUTES OR LESS

LISTING THE LINE YOU ARE EDITING <L>
To see the complete line you are editing, and put the cursor at the beginning of the line, press the <l>
key. Remember: Line editor commands do not require <ENTER>.

MOVING THE CURSOR ON THE LINE n <SPACE> <BACKSPACE>
To move the cursor back and forth on a line, use <SPACE> or <BACKSP> «DEl> some systems)
(don1 use <ENTER». To move the cursor mu~iple positions, use a number firs!.

SEARCH FOR CHARACTER n <S>
To move the cursor to a specific character on a line quickly, use the <S> key, (SEARCH), followed by
the character to find. To move the cursor from the "1" in "THIS" to the "L" in "EXAMPLE", just type <S>
and <l>.

00010 THIS IS AN EXAMPLE OF ADDING A LINE
00010 THIS IS AN EXAMP_

CHANGE CHARACTER UNDER CURSOR
To change the character under the cursor, press <C> followed by the new character. To change five
characters, press the <5> key first, the <C> key, then the five keys to replace the old characters.

ABORT (UNDO) CHANGES <A>
To undo changes press the <A> key. All changes, additions and deletions will be aborted.

DELETE CHARACTERS
To delete characters in a line use the <D> key. Pressing <D> will delete the character under the
cursor. To delete five characters press <D> 5 times or press the <5> key and the <D> key.

ESCAPE PRESENT MODE <ESC>
To escape from INSERT, SEARCH, CHANGE, EXTEND or KILL modes, press <ESC>.

DELETE UP TO A SPECIFIC CHARACTER n <K>
To delete, or KILL, a range of characters from the cursor to a specified character, use the <K> key.

INSERT CHARACTERS
To insert text in a line, position the cursor where insertion is desired. Press the d> key. Type in text
or <BACKSP> to erase tex!. Almost any key may be typed except <ESC>, <ENTER> or <BREAK>.

<ESC>ape exits the INSERT mode.

DELETE TO END OF LINE <H>
To delete all the characters from the cursor position to the end of the line, press the <H> key (Hacks
off the remainder of the line).

MOVE TO END OF LINE AND ADD
To move the Cursor to the end of the line and enter the INSERT MODE, press the "X" key (For
eXtend). <ESC> will return to the regular line editor mode.

EXIT THE LINE EDITOR
<ENTER> :
<BREAK>:

<ENTER> or <BREAK>
Exit the line edit mode and ACCEPT all changes and additions,
To exit the line edit mode and IGNORE all changes and additions

• n is a number. If you type 4D, four characters are deleted. n=nth occurrence or n times.

17 Interactive Programming Environment

STANDARD LINE EDITOR

USING OTHER EDITORS OR WORD PROCESSORS

Most versions of ZBasic now come with a Full Screen Editor. Check your computer
appendix to see if you have one for your version. If you choose, you may also edit ZBasic
programs with a word processor or some other editor. You will need to save the ZBasic
program in ASCII using the SAVE" or SAVE+ commands before editing.

In order for ZBasic to load a text file it requires that:

Line lengths must be less than 250 characters
Every line must be followed by a Carriage Return

If the text file does not contain line numbers, ZBasic will assign line numbers to the program
starting with one, in increments of one. Use RENUM to renumber a program. ASCII text
takes longer to LOAD and SAVE.

RENUMBER PROGRAM LINES

ZBASIC renumbers lines in a program using the RENUM command.
Formal:

RENUM [[NEW LINE NUMBER][[. OLD START,][INCREMEN7]]]

YOU TYPE
RENUM
RENUM 100,,5
RENUM 100,20,5
RENUM,,100

ZBASIC RESPONDS
Lines start with 10, Increments of 10
Lines start with 100, Increments of 5
Renumber From line 20, Start with 100, Increments of 5
Renumbers all lines by 100

THE CALCULATOR (DIRECT MODE)

ZBasic has a built in calculator. Use "?" or "PRINT" in front of a calculation to see the results.
You may also convert number bases like HEX, Binary, Octal and Unsigned Integer. (See
BASE CONVERSIONS) Examples:

you TYPE
PRINT 123.2*51.3
?SQR(92.1)
PRINT 3/2*6
?3./2*6
?320/.0001

ZBASIC RESPONPS
6320.16
9.5968745
6 (Calculated in INTEGER)
9 (Calculated in FLOATING POINT)
3200000

NOTE: Unless you have configured ZBasic to default to floating pOint, integer is
assumed. If configured for "Optimize expressions as Integer", use a decimal pOint in an
expression to force the result of a calculation to be floating pOint (see CONFIGURE).

Interactive Programming Environment 18

STANDARD LINE EDITOR

SAVE, LOAD, APPEND and MERGE

ZBASIC uses the LOAD and SAVE commands to load and save programs. Subroutines
saved in ASCII without line numbers may be inserted in your program with APPEND. To
SAVE in ASCII use To SAVE in ASCII without line numbers use "+". Examples:

SAVE MYPROG
SAVE CHECKERS 2
SAVE* MYPROG
SAVE+ TEST
LOAD CHECKERS
LOAD* CHECKERS
MERGE MYPROG
MERGE* MYPROG
APPEND 2000 MYSUB
APPEND* 50 SORT

Saves in tokenized format.
Saves tokenized to TRS-aO drive 2.
Saves MYPROG in ASCII.
Saves TEST without line#'s in ASCII.
Loads Checkers.
Loads Checkers but strips REMarks and Spaces.
Merges program MYPROG.
Merges ASCII program, strips REM's and Spaces.
Loads non-line# ASCII subroutine, MYSUB, to line 2000.
Loads SORT to line 50 in increments of 1, strips all
REM's and Spaces from the routine.

NOTE: Only non-line numbered ASCII programs may be APPENDED (SAVE+). Only line
numbered programs may be merged (SAVE or SAVE").

When LOAD(ing) programs without line numbers, ZBasic assumes the end-of-line is
terminated with <CR>, <CRLF> or 250 characters, whichever comes first. Lines are
assigned line numbers starting with one, in increments of one.

FILE DIRECTORY or CATALOG

To see the names of files on the current storage device type DIR. Examples:

MS-DOS (also see PATH and CHOIR)
Apple DOS 3.3 and CP/M:
DIR Lists all the files on the present drive
D IR B: Lists the files on drive B
DIR A: Lists all the files on drive A
DIR C: Lists all the files on drive C

NOTE: The Apple DOS 3.3 version of ZBasie uses A, B, C ... for drive
spees instead of D 1, D2 ...

APPLE ProDOS: (also see PATH)
DIR Lists all files in current directory
DIR FRED Lists all files in subdirectory FRED
DIR FRED/TOM Lists all files in subdirectory TOM

TRSDOS:
DIR 0
DIR 2
DIR 1

Lists the files on drive zero
Lists the files on drive two
Lists the files on drive one

MaCintosh: (also see FILES$)
DIR HD30: Fred Lists files in folder called "Fred" on root directory called HD30
LDIR HD30: Fred Lists all files to the printer

Be sure to see your COMPUTER APPENDIX for variations.

1 9 Interactive Programming Environment

STANDARD LINE EDITOR

THE MINI-COMPILER (Direct mode similar to an Interpreter)

The Mini-compiler permits compilation of one line programs while in the standard editor. This
is very convenient for testing logic or math without having to run the entire program. You
are limited to one line but may use a colon ":" to divide a line into muHiple statements.

Remember to use? or PRINT to see the resuHs. Examples:

YOU TYPE
PRINT LEFT$("HELLO",2)
PRINT CHR$ (65)
PRINT ASC("A")
FOR X=l TO 500:? X;:NEXT
? ABS(TAN(l)* EXP(2)+ LOG(9))
: LPRINT "HELLO"
PLOT 0,0 TO 1024, 767
? &AB

ZBASIC RESPONDS
HE
A
65
1 2 3 4 5 ... 500
13.704997622614
Prints "HELLO" to the printer
Plots a line across the screen
171 (HEX to decimal)

"Note: A Mini-Compiler line may not start with an "E" or "L" since these are used for
abbreviations for EDIT and LIST. To do a command that starts with "E" or "L". use a colon ":"
first; : LPRINT

THE FIND COMMAND

ZBASIC will FIND variables. quoted strings. labels. line numbers and commands within a
program quickly and easily. In most cases simply type FIND followed by the text you want to
find. The only two exceptions are:

1. To find quoted strings. use one leading quote; FIND "HELLO
Note 1: First characters in quoted string are signtlicant.
Note 2: "A" and "a" are considered different characters.

2. Use "#" in front of a line number reference; FIND #1000

YOU TYPE
FIND "HELLO
FIND A$

FIND 99
or." "

FIND #12345 (line number)
. FIND 100 (not a line number)

FIND X(C)
or." "

FIND PRINT
FIND "SUBS

or." "
FIND OPEN
FIND X=X+2
FIND <ENTER>
<;> (semi-colon key)

ZBASIC FINDS
01010 A=20:PRINT"HELLO THERE"
01022 Z=l:A$=B$:PRINTA$+B$
01333 ABA$="goodbye"
05122 F=2:X=X+2+F/999
08000 GOTO 12345
02000 X=100
03050 A=1:T=ABS(X(C)/9-293+F)
03044 ZX(C)=4
00230 A=92:PRINTA
00345 "SUBSOO": CLS
03744 GOSUB "SUB500"
034000PEN"R",l,"FILE54",23
09922 F=2:X=X+2+F/999
Finds next occurrence
Finds next occurrence

To FIND data in remarKs or DATA statements use FIND REM ...• FIND DATA ...

Note: If your version of ZBasic comes with a full screen editor. you may have other FIND or
REPLACE options. See your computer appendix for specifics.

Interactive Programming Environment 20

STANDARD LINE EDITOR

SETTING CHARACTER WIDTH AND MARGINS FOR PROGRAM LISTINGS

ZBasic has powerful formatting commands for making program listings to the screen or
printer easier to read.

WIDTH, WIDTH LPRINT and PAGE

Since screen and printer widths vary depending on the hardware, the user may set the
width of listing to either the printer or the screen.

COMMAND
WIDTH=O THROUGH 255
WIDTH LPRINT=O THROUGH 255

PAGE 0-255 (1), 0-255 (2), 0-255 (3)

RESULT
Sets Screen width for listings.
Sets the printer width for listings.

Formats LINES PER PAGE for printer.
(1) Desired lines printed per page
(2) Actual lines per page
(3) Top Margin

An example of using these commands for printer listings: To set the top and bottom
margins to 3 tines each (to skip perforations) and the printer width to 132, type.

WIDTH LPRINT=132: PAGE 60,66,3

NOTE: WIDTH, WIDTH LPRINT and PAGE may also be used from wHhin a program. Check
the reference section for specifics. (In a program, the PAGE function returns the last line
printed. The PAGE statement will send a form feed to the printer. A ZERO value disables all
the functions above.

AUTOMATIC LOOP AND STRUCTURE INDENTING

For readabilHy, loops are automatically indented two spaces. When WIDTH is set, lines that
wrap around will be aligned for readability as in line 10. Completed loops on the same line
will show an asterisk at the beginning of the line as in line 120:

lJ1il±...(without line numbers)
CLS: REM THIS IS A LONG
STATEMENT THAT CONTINUES ...
FOR X~ 1 TO 10

GOSUB "Graphics"
UNTIL G~3

NEXT
"MENU n

CLS
END
"Graphics": X=O
DO X~X+16

PLOT X, 0 TO X, 767
UNTIL X>1023
*FOR X~ 1 TO 100: NEXT
RETURN

~

IJSL (with tine numbers)
00010 CLS: REM THIS IS A LONG

STATEMENT THAT CONTINUES ...
00020 FOR X~ 1 TO 10
00025 DO G~G+l
00030 GOSUB "Graphics"
00035 UNTIL G~3
00040 NEXT
00050 "MENU"
00060 CLS
00070 END
00080 "Graphics": X=O
00090 DO X~X+l6
00100 PLOT X, 0 TO X, 767
00115 UNTIL X>1023
00120*FOR X~ 1 TO 100: NEXT
00125 RETURN

Note: LLlST*+ may also be used to do program listings to the Imagewriter or Laserwriter
without linenumbers and with keywords highlighted as above.

21 Interactive Programming Environment

TM

~,.,....~ .. -
ASIC

RUNNING ZBASIC PROGRAMS

There are a number 01 ways to compile your programs with ZBasic. The most commonly
used is a simple RUN. This lets you compile and debug interactively. Definitions:

RUN COMPILE PROGRAM IN MEMORY AND EXECUTE

The interactive mode is the easiest and fastest way to write and debug your programs. In
many ways it is similar to a BASIC interpreter since you may:

1. RUN a program to check for errors
2. "BREAK out of a running program by pressing <BREAK>.
3. Return to ZBaslc to re-edlt the program.

Interactive compiling is limited to available memory. II a program gets too large you will have
to use one of the methods below. ZBasic will tell you when this is necessary with an "Out of
Memory" message.

"Most computers require TRON, TRONS, TRONB or TRONX to enable the
<BREAK> key. Otherwise pressing <BREAK> may have no affect.

RUN filename COMPILE PROGRAM FROM DISK AND RUN

If a program gets too large for interactive compiling using just RUN, the program text may be
saved (not in ASCII), compiled, and executed. This is possible because the text to be
compiled is no longer resident and frees up memory for the compiled program.

RUN" COMPILE PROGRAM IN MEMORY AND SAVE TO DISK
RUN" filename COMPILE FROM DISK AND SAVE TO DISK

Compiles the program Irom memory (RUN*) or disk (RUN'''filename'') and saves it to disk. A
few moments later ZBasic will request the filename of the resulting compiled program to be
saved (For IBM or CP/M use a .COM suffix. For TRS-80 use a /CMD suffix).

This method frees up the most memory for the final program because the source code and
ZBasic are no longer resident in memory. Compiled programs saved to disk are machine
language programs and should be executed from the operating system like any other
machine language program. See column three of the COMPILE MEMORY CHART.

RUN+ COMPILE PROGRAM IN MEMORY AND SAVE AS CHAIN PROGRAM
RUN+ filename COMPILE FROM DISK AND SAVE AS CHAIN

See CHAINING PROGRAMS lor details.

Running ZBasic Programs 22

RUNNING ZBASIC PROGRAMS

DETERMINING MEMORY REQUIRMENTS

MEM returns the available memory. (The table may vary on some versions).

TYPE MEM:
00123 Text
49021 Memory
00000 Object
00000 Variable

MEANING
Program text memory used (source code).
Free memory.
Compiled program size of object code:
Memory required for variables:

"Type MEM immediately after compiling to get the correct totals. At other
times the results of "Object and Variable" may be invalid.

TYPICAL MEMORY USAGE BY "RUN" TYPE
RUN

Program text is resident in
memory with ZBasic, the
compiled program, and the
variables used by that
program. The user may
press <BREAK> when running
the program, re-enter
the edHor and debug any
mistakes and re-compile.

COMPILE AND RUN
A PROGRAM ~
IN MEMORY WWW

ZBasic™
Compiler

Operating System

RUN filename
The program text is saved to
disk and compiled from the
disk to memory and RUN.
Larger programs may be
compiled this way because
the program to be compiled
is not in memory.

ZBasic™
Compiler

Operating System

RUN* [filename I
The program is compiled
from memory or disk and the
resuning machine language
program is saved to disk.
The program is executed as a
machine language program.
When this program is executed
the program text and ZBasic
are no longer resident, leaving
more memory for the program.

RUN A COMPILED
PROGRAM
FROM DISK

"See your Computer Appendix to determine actual memory usage.

23 Running ZBasic Programs

RUNNING ZBASIC PROGRAMS

<BREAK>ING OUT OF RUNNING PROGRAMS

To make a program STOP when the <BREAK> key is pressed, use TRON, TRaNS,
TRONB or TRONX.

TRONB

TRONS

TRON

TRONX

Checks at the start of every line to see if the <BREAK> key
has been pressed. If pressed ZBasic returns control to DOS or
to the Standard line editor (if in interactive mode). To disable
TRONB use the TROFF command.

Single step trace. CNTR Z to engage/disengage
any other key to single step through the program a statement
at a time.

Displays line numbers during runtime.

Checks for the <BREAK> key at the beginning of that line only.

NOTE: TRONX, TRON, TRaNS and TRONB may cause INKEY$ to miss keys. TROFF
turns all the TRON functions off. All TRaNs will slow down programs AND increase size.

USING INKEY$ TO SET BREAK POINTS

You may also use INKEY$ to break out of a program. Put the following line in a program loop
or wherever you may want to escape:

IF INKEY$="S" THEN STOP
Program will stop if the "S" key is pressed (any key could have been used).

CASES WHERE BREAK WILL NOT FUNCTION

Since ZBasic compiles your programs into machine language, there occurs certain
situations where the <BREAK> key will be ignored. Remember; the <BREAK> key is
checked only at the beginning of a line. The following example will not break:

TRONB
*FOR X~ 1 TO 10: X~l: NEXT

This is obviously an endless loop (X never gets to 10). One obvious way around this is to
avoid putting the entire loop construct on one line.

Examples of other cases where the <BREAK> key is ignored; INPUT, LINE INPUT, DELAY
and SOUND statements.

Macintosh: <BREAK> = <COMMAND Period>. <CNTR Z>=< COMMAND <D. Most people use
BREAK ON instead of TRONB with the Macintosh. See Appendix. Apple II: <BREAK> means:
<CNTR C>. <CNTR RESET> may be preferable. MSDOS: <BREAK> means: <CNTR C>. CP/M:
<BREAK> means: <CNTR C>: TRS-BO: <BREAK> means the <BREAK> key.

Running ZBasic Programs 24

CHAINING

25 Chaining

CHAINING

ASIC
CHAINING PROGRAMS TOGETHER

Chaining is convenient when programs are too large for memory and must be broken into
smaller programs. There are three ways to chain programs:

• CHAIN WITH SHARED VARIABLES (GLOBAL or COMMON VARIABLES)
• CHAIN WITH INDEPENDENT VARIABLES
• CHAIN WITH SOME VARIABLES COMMON AND OTHERS NOT

!l
Macintosh CHAIN programs are limited to 28K. See "SEGMENT" and "SEGMENT
RETURN" in the appendix for instructions on using the Macintosh memory manager.

EXAMPLES OF CHAINING PROGRAMS WITH SHARED VARIABLES

Programs that will share variables must have those variables defined in exactly the same
order in all the programs being chained. ZBasic allows common or shared variables to be
DEFINED within DIM statements (even if they are not arrays). CLEAR or CLEAR END
should always be used to clear variables that are not shared. Examples:

"STARTB"
DIM A(10),100A$(100),Z,F5,W99
OPEN"I", 1, "PROGl lf : REM
RUN 1 : REM

"CHAIN1"
REM THIS IS PROG1
TRONB: REM ENABLE <BREAK> KEY
DIM A(10),100A$(100),Z,F5,W99
CLEAR END
TV=23: PR=4
CLS: PRINT"THIS IS PROGRAM *1"
PRINT"Z=tl i Z, "F5= 1T iF5
z=RND(10) :F5=RND(10)
PRINT"Z="iZi" FS=";F5
PRINT"JUMPING TO PROGRAM*2"
DELAY 2000
OPEN"I",l,uPROG2 11

RUN 1: REM RUNs Prog2

Always execute this program 1st
This is just a starter program

"CHAIN2"
REM THIS IS PROG2
TRONB
DIM A(10),100A$(100),Z,F5,W99
CLEAR END
ZZ=99: MYVAR=9191
PRINT "THIS IS PROGRAM *2"
PRINT"Z=lI;Z,"FS=":FS
Z=RND (10) :F5=RND (10)
PRINT"Z=";Z;" F5=";F5
PRINT"JUMPING TO PROGRAM *1"
DELAY 2000
OPEN"I",1,"PROG1"
RUN l:REM RUNs Prog1

Chaining 26

CHAINING

COMPILING THE EXAMPLE PROGRAMS

1. RUN" STARTB and save as START
Always RUN" a START program. This is a dummy program and is used only to get the
chained programs started and contains the runtime routines. Any filename will do.

2. RUN+ CHAIN1 and save as PROG1
3. RUN+ CHAIN2 and save as PROG2

NOTE: Always compile a START program using the RUN- command so that the chained
programs have a runtime package. All chained programs must be compiled using RUN+.

USE "DIM" TO DEFINE SHARED OR COMMON VARIABLES

When chained together, both PROG1 and PROG2 will share variables defined on line 10
after the DIM. If F5 equals10 in PROG1, nwill still equal 10 when you RUN PROG2.

Because variables "TV" and "PR" are unique to PROG1 and the variables "ll." and
"MYVAR" are unique to PROG2, CLEAR END must be used to initialize them (they must
be assigned values). Otherwise false values will be passed from other CHAIN programs.

The example programs (PROG1 and PROG2) will chain back and forth until you press
<BREAK>. Lines 80 and 90 are where the programs branch off to the other program.

CLEARING NON-SHARED VARIABLES WHEN CHAINING

Always use CLEAR END to clear variables that are not common between the programs.
All variables that follow a CLEAR END will be unique to that program and will start out as null
values.

(1)
10 DIM 200A$ (100), 65B$ (300)
20 CLEAR END
30 DIM FR(900)

(2)
10 DIM 200A$ (100), 65B$ (300)
20 CLEAR END
30 A9=10: Z=33

In the above examples, the array variables A$ and B$ are shared and will contain the same
values, while all other variables in the program following the CLEAR END statement will
be null or zero and unique to that program. FR(n) is unique to program (1) and A9 and Z are
unique to program (2).

This statement may be used in non-chained programs as well. It is a handy way to null or
zero out selected variables (the variables still exist, they are just set to zero or nUll).

CHAINING PROGRAMS WITHOUT SHARING VARIABLES

27 Chaining

This is done exactly as the same as the previous examples for shared variables, except
CLEAR is used on the first line of each chained program.

In the example programs CHAIN1 and CHAIN2, add a line:

3 CLEAR

Variables are not shared and CLEAR clears all variables (sets them to zero or nUll) each
time a program is entered or chained.

To selectively share some variables and not others use the CLEAR END statement
described on the previous page and in the reference section.

ERRORS

ERRORS

ASIC
There are different types of error messages. When errors are encountered during
compilation, compiling is stopped and the offending line is displayed. This is a Compile
Time error. Errors encountered during execution of a program are called Runtime Errors.

COMPILE TIME ERRORS

After typing RUN, ZBASIC compiles the program. If errors are encountered, ZBASIC will
stop compiling and display the error on the screen along with the offending line (when
compiling from disk using RUN "Filename" or RUN", ZBasic will stop compiling, load the
Source Code, and LIST the line where the error occurred.) The Statement within the line
and the line number will be displayed. The following program would cause ZBASIC to print
an error during compile:

00010 CLS
00020 PRINT "HELLO THERE MR. COMPUTER USER!"
00030 PRINT "I AM A COMPUTER"
00040 Z=Z+1: X=X+Z: PWINTX

RUN

Syntax Error in Stmt 03 at Line 00040
00040 Z=Z+1: X=X=Z: PW~ X

NOTE: The error will be marked in some way depending on the computer system being
used. The error marker indicates the general error location on the line where compilation
stopped. To edit line 40 above type; EDIT 40 (or just comma). Fix the spelling of PRINT.

ZBasic will often display the missing character H expected.

00010 INPUT"Enter a number" A$
RUN
";" expected error in Stmt 01 at line 00010
00010 INPUT"Enter a number"_A$

00010 DIM A(10,10}
00020 A(X}=100
RUN
"," expected error in Stmt 01 at line 00020
00020 A(X_}

Error Messages 28

ERRORS

COMPILE TIME ERROR MESSAGES

A compile time error is one that ZBasic encounters after you type RUN (while it is compiling
your program). More often than not, the error is a syntax error. Edit the line to fix the error
and type RUN again until all the errors have been deleted.

COMPILE TIME
ERROR MESSAGE
DIM Error In Stmt ...

No DIM Error In

Overflow Error In ...

Syntax Error In •...

Too Complex Error .•.

Re·DEF Error ...

Variable Error In •..

DEFINITIONS and POSSIBLE REMEDIES
Only constants may be used in DIM statements:
DIM A (X) or Z (A+4) are not allowed. If you have a need to erase and
reuse dynamic string arrays see; INDEX$, CLEAR INDEX$, MEM.

Array variable being used was not Dimmed. Make sure variable is
Dimmed correctly. Most interpreters allow ten elements of an array
before a DIM is required. A compiler requires a DIM for every array.

DEF LEN or DIM string length is less than one or greater than 255.
Also ij CLEAR =zero or CLEAR is too large. Check and adjust range.

Anything ZBasic does not understand. Check for spelling, formatting
errors and syntax. The offending part of the line is often highlighted.

String function is too complex to compile. Break up complex strings.

An FN or LONG FN was defined twice.

String assignment problem: A$=123: Change to A$=STR$(123)

Out of Memory Error In... Program is getting too large. Check large DIM statements and defined
string lengths, or compile using RUN*. For very large programs you
may wish to CHAIN programs together.

Line # Error In... GOTO, GOSUB, ON GOTO, ON GOSUB, THEN or some other
branching command can't find line number or a label.

Mismatch error In... The assignment to a variable is the wrong type.

Structure Error In .•. FOR wHhout NEXT, DO without UNTIL, WHILE wHhout WEND,
LONG IF without END IF or LONG FN wHhout an END FN.

Structure Error In 65535* Missing NEXT, WEND, END IF, END FN or UNTIL. If unable to find
error quickly, LLiST the program. Structures are indented two
spaces. Backtrack from the end of the program until the extra
indentation is located.

"?" Expected error In •.. ZBasic expected some form of punctuation that was not provided.

29 Error Messages

Check cursor position in displayed line for error.

*NOTE: Each ZBasic loop command must have one, and only one matching partner. Each
FOR needs a NEXT, each WHILE needs a WEND, each LONG FN needs an END FN, each
LONG IF needs an END IF and each DO needs an UNTIL.

ERRORS

RUN TIME ERRORS

A Run Time (execution) error is an error that occurs when the compiled program is running
(Object Code). The only Run Time error messages produced are:

DISK ERRORS (Unless trapped by the user). See Disk Errors in the FILES section of
this manual.

OUT OF MEMORY ERROR when loading a compiled program saved to disk that is too
large to execute in memory.

ARRAY BOUNDS ERROR will be shown if the user configures ZBasic to check for this.
This will slow down a program execution but is extremely handy during the debug phase of
programming. You may turn this off after the program is completely tested. If access to an
array element out of bounds is made, the program is stopped and the line number with the
error is printed.

STRING LENGTH ERROR. Some versions of ZBasic have a configure option that tells
ZBasic to check for string assignments greater than the length allowed. This does slow
execution speed and add memory overhead, so you may want to remove this error
checking after the program is debugged. See your appendix for specifics. If an attempt is
made to assign a string a value longer than its length, the program is stopped and the line
number with the error is printed.

RECOVERING FROM FATAL RUNTIME ERRORS

Since ZBasic is a compiler and converts your code into machine language, there is always a
risk that you may unintentionally enter an endless loop or hang up the system (the
computer will not respond to anything) .

In these instances you may not be able to get a response from the computer or be able to
<BREAK> out of the program. The system may have to be reset or turned off, and back on
again to regain control. To avoid losing valuable time, it is very important that you SAVE
PROGRAMS and MAKE BACKUPS FREQUENTLY. See your computer appendix for
possible alternatives.

USING SINGLE STEP DEBUGGING TO FIND THE SOURCE OF "CRASHES"

Should you encounter a situation where your program goes so far and then the system
hangs-up or you get a system error of some kind that you just can' locate, there is a simple
way to find the problem.

First put a TRaNS and TRON in the program somewhere before the crash occurs. The
TRON is added so that you can see a listing of the line numbers as the program executes.
Press the space bar a statement at a time, keeping track of the line numbers as they go by.

When the system crashes, make a note of the line number where the crash occurred and fix
the problem in your program.

Error Messages 30 ~

TERMS AND DEFINITIONS

31 Terms and Definitions

TERMS AND DEFINITIONS

ASIC
TERMS and DEFINITIONS

I use terms throughout this manual that may be unknown to you. The following terms are
used to make reading the technical information easier.

IMPORTANT NOTE

OPTIONAL

REPETITION

"The Hand" is pointing out something of importance for that section. Read it!

Items [enclosed in brackets] are OPTIONAL. You mayor may not include that part of a
command, function or statement.

Three periods (ellipsis) mean repetition ... when they appear after the second
occurrence of something.

PUNCTUATION
Any punctuation such as commas, periods, colons and semi-colons included in
definitions, other than brackets or periods described above, must be included as shown.
Any text in Courier font, like this: COURIER FONT TEXT, means it is something for
you to type in or a simulation of the way it will look on your screen like a program listing.

COMPUTER APPENDIX

SPECIAL32

Refers to the appendix in the back of this manual, ABOUT YOUR COMPUTER.

The superscripted 32 means this command, function or statement only works on 32 bit
computers. See your COMPUTER APPENDIX to see if your computer supports 32 bits.
In this edition of the manual it refers to the Macintosh computer only.

ABBREVIATIONS
Frequently used line editor commands have convenient abbreviations:

USE WITH <ENTER> USE WITHOUT <ENTER>
? PRINT , comma EDIT present line
DEL DELETE . period LIST present line
E EDIT / slash LIST next 10 lines
L LIST ; (semi-colon) FIND next occurrence

Terms and Definitions 32

TERMS AND DEFINITIONS

DIFFERENT (KEY) STROKES FOR DIFFERENT FOLKS

Since ZBASIC operates on many different computers, reference is made to the same
keys throughout this manual.

MANUAL USES
<SPACE>
<BACKSP>
<BREAK>
<ENTER>
<ESC>
<UPARROW>
<DOWN ARROW>
<Ieller>

YOUR COMPUTER MAY USE
SPACE BAR
BACKSPACE, DELETE, lEFT ARROW
CONTROL C, COMMAND PERIOD
RETURN, CARRIAGE RETURN
ESCAPE, CNTRl UP ARROW, TAB
CURSOR UP, PLUS KEY<+>
CURSOR DOWN, MINUS KEY<->
Press the Key with that leller

See your COMPUTER APPENDIX for variations or enhancements.

LABELS ON LINES

A line may have a label directly following the line number consisting of upper or lowercase,
alphanumeric characters, or symbols in any order enclosed in quotes. The length of a
label is limited to the length of a line. ZBasic recognizes only the first occurence of a label

Line numbers are essential only for line EDIT(ing), MERGE, and APPEND. Statements
like; LIST, EDIT, APPEND, GOTO, ON GOTO, GOSUB, ON GOSUB, DEL, etc., may
use either labels or line numbers. List programs without line numbers by using LIST + .

SIMPLE STRINGS

Quoted strIngs: "Hello", "This is within quotes"

Any StrIng variables: A$, NAME$, FF$, BF$(23).

Any of the following string functions:
MKI$, MKB$, CHR$, HEX$, OCT$, BIN$, UNS$, STR$, ERRMSG$, INKEY$,
INDEX$(9).

COMPLEX STRINGS

Complex strings are any combination of SIMPLE STRINGS. Any string operations
containing one of the following commands: simple string + Simple string, lEFT$,
R1GHT$, MID$, STRING$, SPACE$, UCASE$

ZBasic allows only one level of COMPLEX STRING expression. Complex strings MAY
NOT be used with IF THEN statements. Convert all multi-level complex strings to simple
strings:

CHANGE COMPLEX STRINGS
B$=RIGHT$(A$+C$,2)
B$=UCASE$(LEFT$(A$,3»
IF LEFT$(B$,2)="IT"THEN 99

!l

TO SIMPLE STRINGS
B$=A$+C$: B$=RIGHT$(B$,2)
B$=LEFT$(A$,3): B$=UCASE$(B$)
D$=LEFT$(B$,2): IFD$="IT"THEN 99

The Macintosh version allows much deeper levels of complex strings.

33 Terms and Definitions

TERMS AND DEFINITIONS

VARIABLE TYPES

A$, A#, AI, A%, and A%(n,n) represent different variables. If no type is given, integer is
assumed (unless configured differently by the user or changed with DEF DBL, DEF
SNG or DEF STR). A and A% would be the same variable. Types:

EXPRESSIONS

%
&
I

$

Integer variable
4 byte Integer (32 bit machines only)
Single precision variable
Double precision variable
String variable

Throughout this manual reference is made to expressions. There are different types of
expressions and the following words will be used to refer to specific expressions.

DEFINITION OF EXPRESSION

EXPRESSION refers to a combination of constants, variables, relational operators or math
operators in either integer, floating point or string used to yield a numeric result. The
following UNDERLINEP examples are EXPRESSIONS.

CLEAR 2000

A= ~

TEST= XA 2 23* 5+1

IF X*3 4 <= Y*98 3 THEN Z= 45*84 A R

IF A$>B$ AND B$<>C$ THEN GOTO 1000

Terms and Definitions 34

TERMS AND DEFINITIONS

BYTE EXPRESSION

A BYTE EXPRESSION always results in a number from 0 to 255. The expression may
be floating point, integer or string, but if the actual result is more than 255 or less than 0,
the final result will retum the posnive one byte remainder. ZBasic will not return an error if
the calculation result is out of this range.

INTEGER EXPRESSION

An INTEGER EXPRESSION results in an integer number from
-32768 to 32767. The expression may be floating point, integer or string, but if the
actual result is more than 32767 or less than -32768, the final result will return the integer
remainder which is incorrect. ZBasic will not return an error if the calculation result is out of
integer range.

Note: 32 bit computers have a Longlnteger range of ± 2,147,483,647.

UNSIGNED INTEGER EXPRESSION

An UNSIGNED INTEGER EXPRESSION always results in an unsigned integer
number from 0 to 65535. The expression may be floating point or integer but if the actual
result is more than 65535 or less than 0 the final result will return the remainder which will
be incorrect. See UNS$ for displaying Signed integers as unsigned.

Note: 32 bit computers have an unsigned Longlnteger range of 0 to 4,294,967,300.

CONDITIONAL EXPRESSION

Conditional expressions like A=B, A>B, A<B etc., will return negative one if
TRUE (-1), and zero (0) if FALSE.

It should be noted that a condition like IF X THEN ... would be TRUE if X is non-zero and
FALSE if X= zero.

IMPORTANT NOTE ABOUT MATH EXPRESSIONS: If you have configured
numeric expressions to be optimized as integer, the final result of an expression will be
evaluated by ZBasic as integer ~ one of the following conditions is found within
that expression:

• Constant with a type of (#,!, or exponent: D or E)
• Constant with a decimal point (period). Example: .34 or 1.92
• Non-integer variable. (Single or Double precision #, !)
• MATH Functions: COS, SIN, ATN, SQR, LOG, EXP, TAN, VAL, CVB, FRAC, and FIX.
• Floating point math symbols \, A or [

Note: One expression may be made up of other expressions within parentheses. Each
expression is evaluated separately and must meet the criteria above.

35 Terms and Definitions

MATH

ASIC
MATH OPERATORS

NEGATION

+ ADDITION
SUBTRACTION

* MULTIPLY
DIVIDE
DIVIDE (Floating point Divide or Integer Divide)"
" If configured as "Optimize Expressions as Integer" the \ is
forced floating point divide, otherwise it is forced integer divide.

1\ or [EXPONENTIATION (raise to the power)
MOD REMAINDER OF INTEGER DIVIDE (MODulo)
« SHIFT LEFT (BASE2 MULTIPLy)
» SHIFT RIGHT (BASE2 DIVIDE)

Negation will reverse the sign of an expression, variable or constant. Examples: -A, -12,
-.32, -(X*B+3"7), -ABS(Z*R)

SHIFT (binary multiply and divide)

Since computers do intemal calculations in binary (BASE 2), SHIFT is used to take
advantage of this computer strength. Multiply or divide SHIFTS are faster than floating
pOint multiply or divide and may be used when speed is a factor. (Integer Shift Right loses
sign). A good example; ATN (1) «2 = II (instead of the slower; ATN (1) *4)

»n Shift right (DIvide by 2n)

«n Shift left (Multiply by 2n)
(n Truncates to an integer number)

SHIFT BASE 2 DECIMAL
E!.!NQIIQ~S !;QUlllO!IIilDt* EQUlllO!llilDt BES!.!LI
4»1 (Divide) 4/21 4/2 2

4«1 (Multiply) 4" 21 4*2 8

89.34«2 89.34 *22 89.34*4 357.36

.008»1 .008/21 .008/2 4E-3

999.»7 999/27 999/128 7.8046875

*21 =2, 23 is the same as 2*2*2, 27 is the same as 2*2*2*2*2*2*2
With 10»8.231 or 10«8.231 the 8.231 would be converted to integer 8

Math Functions and Operators 36

MATH

REGULAR MATH EXPRESSIONS AND ZBASIC EQUIVALENTS

Regular math and algebraic expressions are quite similar to Z8asic expressions. The user
should, however, be aware of some important differences. As in regular algebraic
expressions, parentheses determine the part of the expression that is to be completed
first. Examples:

Regular Math ZBasic™ Equivalent

A-2B+1 A-2*B+1

A(~)
B A*(C/B)

(A-B)+ T2 A-B+TA2

(AC)H 2 (A*C)A(HA2)

(A+~),-s (A+BA2/C)*TA6

A(-B) A*-B

FORCING EXPRESSION EVALUATION TO DEFAULT TO FLOATING POINT

Z8asic normally optimizes expression evaluation by assuming integer if no floating point
types are seen in the expression. This can cause confusion for those used to MS8ASIC
or other languages without this capability. Setting "OPTIMIZE EXPRESSION FOR
INTEGER MATH?" to "NO" sets the expression evaluatorto interpret expressions as most
other computer languages do; that is, all expressions will default to floating point if
parentheses or any part of the expressions contain a floating point operator. While this
makes it easier to follow the logic in an expression, the speed of execution time will suffer
greatly.

It should be noted that a compiler cannot determine if an expression like C%=A%<8%
returns a floating point number. If A%=20000 and 8%=20000 an overflow will occur.

NOTE: Some versions of Z8asic, most notably versions older than 4.0, will not allow you
to configure the expression evaluator. Older versions default to optimized integer math
as described below.

WHY OPTIMIZE EXPRESSIONS FOR INTEGER MATH?

Z8asic defaults to a unique way of interpreting math expressions. Under CONFIGURE,
you are given the option of setting expression evaluation to optimized integer or regular
floating pOint. The default is INTEGER. This requires some extra thought on the part of
the user but forces programs to execute much faster and much more efficiently.

37 Math Functions and Operators

MATH

UNDERSTANDING EXPRESSIONS THAT ARE OPTIMIZED FOR INTEGER MATH

Optimized Integer Expressions return the final result of an expression in integer or
floating point, depending on how the expression is evaluated.

To optimize program speed and size, *integer is assumed ~ one of the following
is found in an expression: decimal Point, scientific function, \ (floating point divide: SEE
NEXT PAGE DEFINITIONS OF DIVIDE SYMBOLS) ,#, ! or a constant> 65,535.

The following examples will give you an idea how ZBasic evaluates expressions as Integer
or floating pOint. (B=10)

EXPRESSION
B* .123
B* 23
B *23#
B* 32000
B" 32000.
SIN(B)
B*0+65535
B*4800

RESULT
1.23
230
230
-11264
320000
-.54402111
-1
-17536

EXPRESSION EVALUATED AS
FLOATING POINT (Decimal point force REAL)
INTEGER
FLOATING POINT (# forces Double Precision)
INTEGER (Overflow error)
FLOATING POINT (Decimal point)
FLOATING POINT (Scientific Function)
INTEGER (UNS$(-1)=65535)
INTEGER (UNS$(-17536)=48000)

"Note: You may configure ZBasic to assume floating point by setting "Optimize
expressions for integer math" to "NO". See "Configure" in the beginning of this manual.

PARENTHESES IN OPTIMIZED INTEGER EXPRESSION EVALUATION

Parentheses are used to force an expression to be evaluated in a certain order. (See
ORDER OF PRECEDENCE)

ZBasic evaluates an expression by examining the outermost portions. In the expression:
X*(2*(4.03+4))*5, the innermost portion of 4.03+4 is floating point, but since the
outermost portions of X* and *5 are integer, the whole expression is returned as an
integer. (B=10 in examples)

EXPRESSION
B*(32000+1)
B*(32000.+ 1)+O!
B+(.23)+1200
B+(.23)+ 1200.
B+(200*(.001 A2))
B+200* .001 A2
B+ATN(2)

RESULT
-7670
320010
1210
1210.23
10
10.0002
11.107149

EXPRESSION EVALUATED AS
INTEGER (Out of range error)
FLOATING POINT (! forces REAL)
INTEGER
FLOATING POINT (period forces REAL)
INTEGER
FLOATING POINT
FLOATING POINT (Scientific Function)

The expression within each level of parentheses is still evaluated according to the
precision in that level.

NOTE: Newer versions of ZBasic may be configured to expression evaluation you are
more used to. See "OPTIMIZE EXPRESSIONS FOR INTEGER MATH" above.

Math Functions and Operators 38

MATH

INTEGER AND FLOATING POINT DIVIDE SYMBOLS

It should be noted that the Divide symbols I and \ take on different meanings depending
on the type of expression evaluation being used:

Optimized for Integer "YES"
I = Integer Divide

Optimized for Integer "NO"
I =Floating Point Divide

\ =Floating Point divide \ =Integer Divide

SCIENTIFIC FUNCTIONS

ZBasic offers several scientific and trigonometric math functions for making many
calculations easier.

SQR(expression)

LOG(expression)

EXP(expression)

SQUARE ROOT of expression.
Returns the number multiplied by itseH
that equals expression. SQR(9)=3

Natural LOGARITHM of expression
(sometimes refered to as LN(n».
Common LOG10 =LOG(n)/LOG(10)

Natural logarithm base value:
e=2.7182818284590452356028747135266249775724
TO THE POWER of EXPRESSION. Inverse of LOG.

LOG and EXP may speed up calculations dramatically in certain situations. Some
comparative equalities using LOG and EXP:

X'Y = EXP (LOG(X) + LOG(Y»
X/Y = EXP (LOG(X) • LOG(Y»
X"Y EXP (LOG(X) • Y)

CONFIGURING SCIENTIFIC ACCURACY

Scientific function accuracy may be configured up to 54 digits of accuracy (32 bit
machines may be higher). DefauH accuracy is 6 digits. Scientific accuracy may be
configured from two digits of accuracy, up to Double Precision accuracy (not necessarily
the same as Single or Double precision).

Precision is set when loading ZBasic under <C>onfigure. Scientific math functions are
complicated; the more digits of precision used, the longer the processing time required.
See "Setting Accuracy" in the floating point section of this manual for information about
accuracy, speed charts and memory requirements.

SCIENTIFIC MATH SPEED

When speed is more important than accuracy, configure DIGITS OF PRECISION (under
configure at start-up) to 6 digits for DOUBLE, 4 digits for SINGLE and 6 digits for
SCIENTIFIC.

39 Math Functions and Operators

TRIGONOMETRIC FUNCTIONS

TAN(expr)

ATN(expr)

COS(expr)

SIN(expr)

SQR(expr)

TANGENT of expression in radians.
TAN(A)=Y/X, X=YITAN(A), Y=TAN(A)*X

ARCTANGENT of the expression in radians.
A=ATN (Y/X), Pi=ATN(1)«2

COSINE of the expression in radians.
COS(A)=XlH, H*COS(A)=X, XlCOS(A)=H

SINE of the expression in radians.
SIN(A)=Y/H, Y=H'SIN(A), H=Y/SIN(A)

SQUARE ROOT of expression.
H= SQR(X'X+ Y'Y)

TAN, ATN, COS AND SIN return results in Radians.

OTHER ZBASIC MATH FUNCTIONS

FRAC(expr) Returns FRACTIONAL portion of an expression
FRAC(23.232)=.232, FRAC(-1.23)=-.23

INT(expr) Returns expression as a whole number
INT(3.5)=3, INT(99231.2)+.0=99231

SGN(expr) Returns the SIGN of an expression
SGN(-23)=-1, SGN(990)=1, SGN(0)=0

ABS(expr) Returns the ABSOLUTE VALUE of an expression
ABS(-15)=15, ABS(152)=152, ABS(0)=0

FIX(expr) Returns the whole number of an expression
FIX(99999.23)=99999, FIX(122.6231)=122
(Like INT but forces floating point mode)

expr MOD expr Returns the remainder of an integer divide (MODulo)
9 MOD 2=1, 10 MOD 2=0, 20 MOD 6=2

RND(expr) Returns a random number between 1 and expr
RND(10) randomly returns:1 ,2,3,4 ... 1 0

MAYBE Randomly returns -1 or 0. (50-50 chance)
IF MAYBE PRINT "HEADS" ELSE PRINT "TAILS"

MATH

Math Functions and Operators 40

MATH

DERIVED MATH FUNCTIONS

MATH FUNCTION
PI
e
Common LOG 10

Area of a CIRCLE
Area of a SQUARE
Volume of a RECTANGLE
Volume of a CUBE
Volume of a CYLINDER
Volume of a CONE
Volume of a SPHERE

SECANT
COSECANT
COTANGENT

Inverse SINE
Inverse COSINE
Inverse COSECANT
Inverse COTANGENT

Hyperbolic Sine
Hyperbolic Cosine
Hyperbolic Tangent
Hyperbolic Secant
Hyperbolic Cosecant
Hyperbolic Cotangent

Inverse Hyperbolic Sine
Inverse Hyperbolic Cosine
Inverse Hyperbolic Tangent
Inverse Hyperbolic Secant
Inverse Hyperbolic Cosecant
Inverse Hyperbolic Cotangent

Derivative of LN(X) (Natural LOG)
Derivative of SIN(X)
Derivative of TAN(X)
Derivative of COT (X)
Derivative of ARCSIN(X)
Derivative of ARCCOS(X)
Derivative of ARCTAN(X)
Derivative ofARCCOT(X)
Derivative of ARCSEC(X)
Derivative of ARCCSC(X)
Derivative of ARCSINH(X)
Derivative of ARCCOSH(X)
Derivative of ARCTANH(X)
Derivative of ARCCOTH(X)
Derivative of ARCSECH(X)
Derivative of ARCCOSECH(X)

TERM
(ll)PI
e
LOG

II R2

SEC(X)
CSC(X)
COT(X)

ARCSIN(X)
ARCCOS(X)
ARCCSC(X)
ARCCOT(X)

SINH(X)
COSH(X)
TANH (X)
SECH(X)
CSCH(X)
COTH(X)

ARCSINH(X)
ARCCOSH(X)
ARCTANH(X)
ARCSECH(X)
ARCCSCH(X)
ARCCOTH(X)

ZBaslc EQUIVALENT EQUATION
ATN(l) «2 (accurate to double precision)
EXP (1)
LOG(X)/LOG(10)

Y#=(ATN(l)<<2)'Radius*Radius
Y#=Length*Width
Y#=Length*Width*Height
Y#=Length*Length*Length
Y#=(ATN(l)«2) *Height*Radius*Radius
Y#=(ATN(l)«2) *Height*Radius*Radius/3
Y#=(ATN(l)<<2) *Radius*Radius*Radius*413

Y#=l/COS(X)
Y#=l/SIN(X)
Y#=lITAN(X)

Y#=ATN(XlSQR(l-X*X»
Y#=ATN(l)*2-ATN(XlSQR(1-X*X»
Y#=A TN(l /SQR(X*X-l »+(X< 0)*(ATN(1)«2)
Y#=ATN(l)*2-ATN(X)

Y#=(EXP(X)-EXP(-X»/2.
Y#=(EXP(X)+EXP(-X»/2.
Y#=(EXP(X)-EXP(-X»/(EXP(X)+EXP(-X»
Y#=2.1(EXP(X)+EXP(-X»
Y#=2.1(EXP(X)-EXP(-X»
Y#=(EXP(X)+EXP(-X»/(EXP(X)-EXP(-X»

Y#=LOG(X+SQR(X*X+ 1»
Y#=LOG(X+SQR(X*X-l »
Y#=LOG«1+X)/(1-X»/2
Y#=LOG«l +SQR(l-X*X»/X)
Y#=LOG«l-SGN(X)'SQR(l +X*X»IX)
Y#=LOG«X+ 1)/(X-l »/2

Y#=llX
Y#=COS(X)
Y#=1+TAN(X)A2
Y#=-(1+(1ITAN(X)A2)))
Y#=SQR(l-X*X)
Y#=-SQR(l-X*X)
Y#=l/(l+X*X)
Y#= lI(X*X+ 1)
Y#= l/(X*SQR(X*X-l»
Y#=-l/(X*SQR(X*X-l »
Y#= l/SQR(l +X*X)
Y#=-l/SQR(X*X-l)
Y#=l/(l-X*X)
Y#=-l/(X*X-l)
Y#=-l/(X*SQR(l-X*X»
Y#=-l/(X* SQR(l +X'X»

See DEF FN and LONG FN for adding these math functions to your programs.

41 Math Functions and Operators

MATH

ORDER OF PRECEDENCE

In order to determine which part of a math expression is done first an order of precedence
is used. The following math operators are performed in the this order.

1. ((1 st)2nd)3rd)

2 .•

3. NOT

4. 1\ orr

5. ',I,\,MOD

6. +,.

7. =,>=,=>,<=,=<,
>,<,<>,><

», «

8. AND, OR, XOR

Innermost expressions within parentheses always
performed lirst

Negation (not subtraction)

Logical operator

Exponential

Multiply, Divide, Floating point Divide, MODulo

Addition, Subtraction

Conditional operators

Shilts

Logical operator

ZBasic will calculate each operation of an expression in order 01 precedence, as delined
by the table above. The linal result 01 an expression depends on the order of operations.

II there are items 01 equal precedence in an expression, ZBasic will perform those
operations from left to right.

A#=2+5-3"6+1/4.

This expression is performed in the following order;

1. 3"6
2. 1/4.
3. 2+5
4. (2+5) - (3*6)
5. (2+5-(3*6}) + (1/4.)

A#=-10.75

Important Note: II expressions are optimized lor Integer Math, the decimal point alter
the 410rces the result of the expression to be lIoating point. If the decimal point had been
omitted, the result would be -11. See CONFIGURE.

Math Functions and Operators 42

MATH

USING PARENTHESES TO FORCE PRECEDENCE

Parentheses are used in math expressions to force ZBasic to calculate that part of an
expression first. If a math operation is enclosed in parentheses, which in turn is enclosed
within parentheses, the innermost expression will be calculated first.

A#=2+5-3*6+1/4.

To force the 2+5-3 part of the above equation to be calculated first, and then muliply that
by 6 and add 1 second, with division by 4 last, you would express the equation like this:

A#=«2+5-3)*6+1)/4.

The order of operations in this expression would be:

1. (2+5-3)
2. (2+5-3) *6+1
3. «2+5-3)*6+1)/4.

A#=6.25

Note: If Expressions are optimized for Integer Math; the outermost expression is used by
ZBasic to determine whether the final result will be returned as integer or floating point.

The decimal pOint after the 4 forces the expression to be calculated as floating point
(although each expression within parentheses is evaluated as floating pOint or integer
depending on the rules of expressions). If the decimal point had been omitted the result
would have been 6.

To use the standard rules of expression evaluation, set "Optimize Expression evaluation
to Integer" to NO under configure. Math expressions will be done in the usual manner if
this is done.

43 Math Functions and Operators

CONDITIONAL OPERATORS

The conditional operators return:

o (zero)
-1 (negative one)

If the Comparison Is FALSE
If the Comparison Is TRUE

A non-zero expression
A zero expression

Is always TRUE
Is always FALSE

These symbols are used for comparing expressions and conditions.

<>,><
<
>

Equal To
Not Equal To
Less Than
Greater Than

>=, =>
<=, =<

Greater Than OR Equal To
Less Than OR Equal To

Examples: (A$="HELLO" and A%=2000)

CONDITIONAL EXPRESSION
X=12<20
PRINT 23=45
IF 10>5 THEN PRINT "SURE IS"
IF A%-2000>100-99 PRINT A%
IF VAL(A$)=O THEN PRINT A$
PRINT 2>5, 3<5, 5>5

RESULT
X=-1
o
SURE IS
Nothing
HELLO
o -1 0
OK
Program STOPs

MATH

IF A%>120 THEN PRINT "OK"
IF A%*5>=10000 THEN STOP
IF A% PRINT "YES"
PRINT 50>50

YES (Non zero is True)
o

PRINT 50>=50
IF A%>30000 THEN PRINT "OK"
X=l: IF X THEN PRINT "YEP"
X=O: IF X THEN PRINT "YEP"
X=77.321>77.320+1

X= "HELLO"="HELLO"
IF A$="HELLO" PRINT "YES"
IF A$="HELLLO" PRINT "YES"
IF A$>"HEL" THEN PRINT A$
IF A$<>"GOON" THEN PRINT "NO"
IF STR$(A%)=" 2000" PRINT "YES"

-1
Nothing
YEP
Nothing
o

X=-1
YES
Nothing
HELLO
NO
YES

Math Functions and Operators 44

MATH

LOGICAL OPERATORS

Zbasic makes use of the logical operators AND, OR, NOT, SHIFTS and XOR. These
operators are used for comparing two 16 bit conditions and binary operations (except on
32 bit computers which can compare 32 bits). When used in comparative operations a
negative one (-1) is returned for TRUE, and a zero (0) is returned for FALSE.

Logical Operators
condition AND condition
condition OR condition
condition XOR condition
condition SHIFT condition
NOT condition

EQV (ernulate with)

RETURNS
TRUE(-1) if both conditions TRUE, else FALSE(0)
TRUE(-1) if either or both is TRUE, else FALSE(0)
TRUE(-1) if only one condnion is TRUE, else FALSE(0)
TRUE(-1) if any non-zero value returned, else FALSE(0)
TRUE(-1) if condition FALSE, else FALSE(0) if TRUE

NOT (condition XOR condition) TRUE(-1) if both conditions FALSE or both conditions
TRUE, else FALSE(0)

IMP (emulate with)
(NOT condition) OR condition FALSE(0) if first condition TRUE and second condition

FALSE, else TRUE(-1)

A~D eOOI.EAM "1 G ell" LOGIC
1 AND 1 1 00000001 00000111
o AND 1 0 AND 1Il1ll1ll1ll1111 AND 1Illlllllllll11l
1 AND 0 0 00000001 00000111
o AND 0 0

OB
1 OR 1 1 00000001 10000101
0 OR 1 = 1 OR 1Il1ll1ll1ll1111 OR 111l1ll1ll1ll111
1 OR 0 1 00001111 10000111
o OR 0 0

XOB
1 XOR 1 = 0 00000001 10000101
o XOR 1 = 1 XOR 1Illlllll1ll1ll1 XOR llllllllllllllll
1 XOR 0 = 1 00001110 00000010
o XOR 0 = 0

StllEI », «
255 » 2 63 11111111 00010111
23 « 3 = 184 » 1Il1ll1ll1ll1ll1ll 1 III « 1Illllllllllllllllll

00111111 10111000
NOT
NOT 1 = 0 NOT llllllllllllllll NOT 1Il11111ll11
NOT 0 = 1 00110011 10000100

~
With the Macintosh, 32 bit integers may also be used with logical operators (Longlnteger&).

45 Math Functions and Operators

NUMERIC CONVERSIONS

INTEGER BASE and SIGN CONVERSIONS

ZBasic has functions for converting integer constants to hexadecimal (BASE 16), octal
(BASE 8), binary (BASE 2), unsigned integer and back to decimal (BASE 10).
UNS$, HEX$, OCT$ and BIN$ are the functions used to convert an integer to the string
representation of that SIGN or BASE.

DECIMAL TO BASE CONVERSION

HEX$(48964)
="BF44 U

HEX$(32)
="0020"

BASE TO DECIMAL CONVERSION

HEX
VAL (" &0030")
=48

VAL ("&HFFFF")
=-1 (65535)

Q..CIAL.
OCT$(54386)
="152162"

OCT$ (8)
="000010"

OCTAL
VAL (" &0000011")
=9

VAL ("&0000030")
=24

DISPLAYING UNSIGNED INTEGERS

BINARY
BIN$(255)
="0000000011111111"

BIN$ (512)
="0000000100000000"

BINARY
VAL ("&X0000000001100011")

99

VAL("&X1111111111111111")
=-1 (65535)

To display or print an unsigned integer number use UNS$. UNS$ returns the unsigned
value of the number by not using the lellmost bit as a sign indicator:
UNS$(-1)=65,535, UNS$(-2311)=63,225

ZBasic interprets the integers, -1 and 65,535 as the same value. In BINARY format they
are both 1111111111111111. The lell-most bit sets the sign of the number to positive
or negative. This is the same unsigned integer format used by many other languages.

!b
The same holds true with Longlntegers, only 32 bits are used instead of 16 bits. The
signed range is ± 2,147,483,647. The unsigned range is 0 to 4,294,967,293. See
DEFSTR LONG in the appendix for ways of using 32 bit HEX$, OCT$, UNS$ and BIN$.

Numeric Conversions 46

NUMERIC CONVERSIONS

CONVERSION BETWEEN DIFFERENT VARIABLE TYPES

ZBasic will convert variables from one type to another as long as the conversion is within
the range of the target variable.

DOUBLE or SINGLE PRECISION VARIABLE =INTEGER VARIABLE will
convert exactly (unless single precision is set less then 6 digits).

INTEGER VARIABLE=DOUBLE or SINGLE PRECISION VARIABLE will
convert correctly if the double or single precision variables are within the integer range of
-32,768 to 32,767 (unsigned 0 to 65,535). Any fractional part of the number will be
truncated. Results outside integer range will be the rounded integer resuH, which is
incorrect, and no error will be generated ..

SINGLE PRECISION VARIABLE=DOUBLE PRECISION VARIABLE
conversions will be exact to the number of significant digits set for single precision since
the calculations are done in double precision. If the single precision defauH is 6 digits and
double precision is 14 digits, the 14 digit number would be rounded down to 6 digits in
this example (precision is configurable by the user).

STRING VARIABLE=STR$(INTEGER, DOUBLE OR SINGLE PRECISION
VARIABLE) will convert exactly. The first character of the string produced is used for
holding the sign. If the number is positive or zero, the first character of the string
produced will be a SPACE, otherwise the first character of the string will be a minus (-).

INTEGER VARIABLE=VAL(STRING VARIABLE) will convert correctly, up to the
first non-numeric character, if the string variable represents a number in integer range.
Fractional portions will be ignored. Zero will be returned if not convertable.

DOUBLE OR SINGLE PRECISION VARIABLE=VAL(STRING VARIABLE) will
convert correctly within the range of floating point precision set by the user (rounding will
occur if it is more digits than the set precision).

a
LonglNTEGER conversions are the same as regular integers with the exception that
the range is much larger. Since all internal integer calculations are done in Longlnteger,
conversions are simple. See DEFSTR LONG in the Macintosh appendix.

47 Numeric Conversions

CONSTANTS

CONSTANTS

ASIC

Constants are values used in expressions, variable assignments, or conditionals. In the
following underlined program lines, the constants values remain constant, while values
of A$, Z and T are variable.

10 PRINT"HELLO THERE": PRINT A$: z=z+T+2322 12

ZBasic uses both string (alphanumeric) and numeric constants.

INTEGER CONSTANTS

An integer constant is in the range of -32,768 to 32,767 (or unsigned integer in the range
of 0 to 65,535).

The BASE of an integer may be represented in Decimal, Hexadecimal, Octal or Binary.
See "Numeric Conversions" for information about converting integers to and from HEX,
OCTAL, BINARY and DECIMAL.

MEMORY REQUIRED FOR INTEGER CONSTANTS

Two bytes each in the same format as integer variables.

~
The Macintosh also has Longlnteger constants with a range of ±2,147,483,647.
Longlnteger constants require four bytes memory each. Macintosh format of integer is
the opposite of other versions. i.e. MSB is first and LSB is last.

Constants 48

CONSTANTS

FLOATING POINT CONSTANTS

The range of floating point constants is ±1.0E-64 to ±9.999E+63". Constants may be
expressed in scientific notation and/or up to 54 digits of significant accuracy.

Floating point constants are significant up to the double precision accuracy set by the
user. If the number of digits is greater than the accuracy of double precision, it will be
rounded to that precision. If the double precision default of 14 digits is assumed, a
constant of 1234567890.123456 will be rounded to 1234567890.1235.

Constants may be forced as double or single precision by including a decimal point in the
constant or by using # for double precision or ! for single precision.

MEMORY REQUIRED FOR FLOATING POINT CONSTANTS

ZBasic will store floating point constants in Binary Coded Decimal format (See Floating
point variables memory requirements). This is based on the actual memory requirement
of each constant, with a minimum memory requirement of 3 bytes per constant. To
calculate the memory requirements of a specific constant use the formula:

NUMBER of DIGITS In the constantl2+1=Bytes needed
Minimum of 3 bytes required per Floating pOint constant.

!l
"The range of Double precision contants is E±16,383 (single precision remains the same
for compatibility). To calculate the memory required use the following equation; Number
of Digits/2+2=bytes needed (single precision is the same as above).

Important Note: Some versions of ZBasic offer an optional high speed binary-floating
point option. While the speed of binary math packages is superior, the accuracy, range
and memory requirements of binary math are much different from the standard BCD math
described above. See the manual provided with the binary math package for details.

STRING CONSTANTS

String constants are alphanumeric information enclosed in double quotes with the
number of characters limited by line length (255 characters maximum).

"This is a string of characters"
"12345 etc."
"Hello there Fred"

Any character except quotes may be included between the quotes. To include quotes in
string constants use CHR$ (34). PRINT CHR$ (34) ; "HELLO" ;CHR$ (34) would print:
"HELLO". To conserve memory when using many string constants see PSTR$.

MEMORY REQUIRED FOR STRING CONSTANTS

49 Constants

One byte plus the number of characters, including spaces, within the string constant.
See PSTR$ for ways of conserving memory with string constants.

VARIABLES

VARIABLES

TM

ASIC

The word VARIABLE describes the label used to represent alterable values. ZBasic
differentiates between four types of variables.

VARIABLE TYPE
STRING
INTEGER
SINGLE PRECISION
DOUBLE PRECISION

!b

TYPE OF STORAGE
ALPHANUMERIC
INTEGER NUMBERS
FLOATING POINT NUMBERS
FLOATING POINT NUMBERS

~
o TO 255 CHARACTERS
±32,767
E± 63
E± 63

In addition to the variable types described above this version also supports Longlnteger
and an extended double precision range (single precision is the same as above).
LONG INTEGER FOUR BYTE INTEGER ± 2 ,147,483,647
DOUBLE PRECISION FLOATING POINT NUMBERS E±16,383

Important Note: Some versions of ZBasic offer an optional high speed binary-floating
point option. While the speed of binary math packages is superior, the accuracy, range
and memory requirements of binary math are much different from the standard BCD math
described above. See the manual provided with the binary math package for details.

VARIABLE TYPE DECLARATION

Variable names may be followed by a type symbol:

$
%
!

STRING VARIABLE
INTEGER VARIABLE
SINGLE PRECISION VARIABLE
DOUBLE PRECISION VARIABLE

If type is not given, integer is assumed (unless configured differently). A, A!, A$, A#,
A(2,2), A#(2,2), A!(2,2) and A$(2,2) are considered different variables. Note: A and A%
are the same variable if ZBasic is configured to Integer.

&
Type declaration for Longlnteger is; &

Variables 50

VARIABLES

DEFINING VARIABLE TYPES

If you want to define variables beginning with a specific letter to be a specific type, use the
DEF statement at the beginning of a program.

DEFSTR A-M, Z Defines all variables starting with A thru M and Z as string
variables. M and M$ are the same variable.

DEFSNG A-C Defines all variables starting with A thruC as single
precision variables. C and C! are the same variable.

DEFDBL F, W Defines all variables starting with F and
Was Double precision variables. F and F# are the same.

DEFINT A, G, T-W Defines all variables starting with A,G and T thru W as
integer variables. No % needed. A and A% are
considered the same variable.

Note: Even if a range of letters is defined as a certain type, a declaration symbol will still
force it to be 1l:J.al type. For instance, if A-Z are defined as integer using DEFINT, A$ is still
considered a string, and A# is still considered a double precision variable.

a
DEFDBL INT A-M Defines variables starting with A thru M as Longlntegers. No &

needed. A and A& are the same variable.

VARIABLE NAMES

Variable names must have the following characteristics:

Variable names may be up to 240 characters in length but only the first 15 characters
are recognized as a unique variable.
First character must be in the alpha range of A-Z, or a-z.
Additional characters are optional and may be alphanumeric or underline.
Symbols not allowed: ",~/+->=<J[O? etc.

SPACE REQUIRED AFTER KEYWORDS

Many versions of ZBasic have this as a configure option. See "Configure". If you don't
want to worry about embedding keywords in variables, set "Space Required after
Keywords" option to "yes". It will require that keywords be followed by spaces or non
variable symbols. This allows variable names like FORD or TOM.

If you do not set this parameter, or do not have this option for your version of ZBasic, you
must not embed keywords in variables.

UPPER/LOWERCASE WITH VARIABLES

51 Variables

If you want the variable TOM and the variable tom to be the same variable, you must
configure "Convert to Uppercase" to "yes". See "Configure".

If you do not set this parameter, or do not have this option for your version of ZBasic, you
must match case when using variables. I.e. TOM and tom are different variables.

MEMORY REQUIRED FOR VARIABLES

VARIABLES
INTEGER %

STRING $

SINGLE PRECISION!

DOUBLE PRECISION #

ARRAY VARIABLES

ARRAY VARIABLES
INTEGER %

STRING $

INDEX$(element)

SINGLE PRECISION!

DOUBLE PRECISION #

MEMORY REQUIRED
2 bytes

VARIABLES

256 bytes (default). String variable length is definable
from 1 to 255 characters (piUS one for length byte).

4 bytes (default)

8 bytes (default)
If Single or Double precision digits of preciSion is
changed, use this equation to calculate memory
requirements:
DIGITS of ACCURACY /2+1=BYTES REQUIRED*

MEMORY REQUIRED PER ELEMENT
2 bytes per element

256 bytes (default) per element. String variable length
is definable from 1 to 255 characters per element. Add
one byte per element to the defined length of the
string for the length byte. DEFLEN 200=201 bytes
required per element.

1 byte plus the number of characters in an element

4 bytes (default) per element

8 bytes (default) per element
If FLOATING POINT digits of preCision are changed,
use this equation to calculate memory requirements:
NUMBER OF DIGITS/2+1=BYTES REQUIRED*

Note: Remember to count the zero element if BASE zero is used.

Important Note:Some versions of ZBasic offer a high speed binary-floating-point
option. While the speed of binary math packages is superior, the accuracy, range and
memory requirements of binary math are much different from the standard BCD math
described above. See the manual provided with the binary math package for details.

~
*Longlnteger variables and arrays use four bytes each. To determine double precision
memory requirements for the Macintosh version: DIGITS/2+2=BYTES REQUIRED per
variable or per double precision array element.

Variables 52

VARIABLES

INTEGER VARIABLES

Because ZBasic always attempts to optimize execution size and speed, it will always
assume a variable is integer unless the variable is followed by a type declaration (#, !, $,
&) or that range of letters has been defined DEFSTR, DEFDBL, DEFDBL INT or
DEFSTR. AHhough it will slow down program performance, you may force ZBasic to
assume floating point variables under configuration. See "Configure". Integer
calculations may be 100 to 200 times faster than floating pOint!

INTEGER RANGE

-32,768 to +32,767

a
Longlnteger range is ±2,147,483,647. Speed is as fast as regular integers.

DEFINING VARIABLES AS INTEGER

ZBasic assumes all unDEFined variables, or variables without type declarations (#,!,$,&).
are integer (unless configured differently by the user).

DEFINT may be used to force a range of variables starting with a certain letter to be
integer with the DEFINT statement followed by a list of characters. For example; DEFINT
A-G defines all variables starting with A.B, C G to be integer. (G and G% would be the
same in this case.)

To force a specific variable to be integer, even if that letter type has been DEF(ined)
differently, follow a variable with %. TEST%, A% and F9% are integer variables.

INTEGER OVERFLOW RESULTS

If a program calculation in an integer expression exceeds the range of an integer number.
ZBasic will return the overflowed integer remainder of that calculation. The resuH will be
incorrect. ZBaslc does not return an Integer Overflow Error. Check program
logic to insure results of an operation remain within integer range.

HOW INTEGER VARIABLES ARE STORED IN MEMORY

53 Variables

Integer variables and integer array elements require two bytes' of memory. To find the
address (location in memory) of an integer variable:

ADDRESSl = VARPTR(INTEGER VARIABLE [(SUBSCRIPT! .SUBSCRIPT!])])
ADDRESs2 = ADDRESS 1 +1

The value of INTEGER VARIABLE is calculated using this equation:

INTEGER VARIABLE=VALUE OF ADDRESs2 '256 + VALUE OF ADDRESsl

!b
-Requires four bytes for Longlnteger. The MSB and LSB are stored in reverse order with
regular integers. See the Macintosh appendix for more information.

VARIABLES

FLOATING POINT (BCD) VARIABLES

There are three floating point precisions that may be configured by the programmer to
retum accuracy up to 54 significant digits:

ZBasic does all BCD calculations in DOUBLE PRECISION. This is extremely important
when speed is a factor. If you only need 6 or 7 digits of precision and speed is important
be sure to CONFIGURE DIGITS OF ACCURACY AS FOLLOWS:

DOUBLE PRECISION = 6
SINGLE PRECISION = 4
SCIENTIFIC PRECISION = 4

This setting will give you maximum speed in BCD floating point. See the appendix for
your computer for variations or enhancements. This is not a factor for the optional binary
math package available for some versions of ZBasic.

!l
The Macintosh accuracy can be configured up to 240 digits. Optimum BCD speed is
realized by configuring double precision to 8, single and scientific precision to 6.

~
'

~"':.",. }- .'{

.r:;ift".;,;,:. "',",' ~ -" -:;.

-" >.~~< ;,.'l

Important Note: Some versions of ZBasic offer an optional high speed binary-floating
point option. While the speed of binary math packages is superior, the accuracy, range
and memory requirements of binary math are much different from the standard BCD math
described above, See the manual provided with the binary math package for details.

DEFINING VARIABLES AS SINGLE OR DOUBLE PRECISION

To force the preCision of a specific variable to be single precision, follow every occurrence
of that variable with an exclamation point (!),

To force a variable to be double precision, follow the variable name with a pound sign (#).
To force ZBasic to define a range of variables as double or single precision, use the
DEFDBL or DEFSNG statement:

DEFDBL A-G

DEFSNG C

Makes all variables beginning with A-G as Double precision.
A# and A would be the same variable in this case

Makes all variables beginning with C as Single precision.
C! and C would be the same variable.

Note: Some verions of BASIC default to single preCision variables instead of integer. Use
DEFSNG A-Z in programs being converted or configure to assume Floating Point. Also
see "Optimize Expression Evaluation as Integer" under "Configure".

Variables 54

VARIABLES

SCIENTIFIC - EXPONENTIAL NOTATION

ZBasic expresses large numbers like:

5121,121121121,121121121,121121121
like this: 5E+1I2I or 5E1I2I

The plus sign (+) after the "E" indicates the decimal point moves to the right of the
number. Ten places in this example.
Technically: 5*10*10*10*10*10*10*10*10*10*10 or 5*10 Al0.

ZBasic expresses very small numbers like:

.1211211211211215
like this: 5E-12I6

A minus sign after the "E" indicates the decimal point is moved to the left of the number
that many places, six in this example. Technically: 5/10/10/10/10/10/10 or 5*10 A (-6) .

STANDARD NOTATION
9,123,000,000,000,000

-3,400,002,000,000,000,000
.000,000,000,000,000,000,011

-.000,012

SCIENTIFIC NOTATION
9.123E+15 (or E15)

-3.400002E18 (or E+18)
1.1E-20

-1.2E-05

Note: Some BASICs use scientific notation wtth a "0" instead of an "En. (like 4.230+12
instead of 4.23E+12) ZBasic will read old format values correctly but will use the more
common "E" when printing scientific notation.

WHEN SCIENTIFIC NOTATION IS EXPRESSED

Constants and variables will be expressed in scientific notation when the value is less than
.01 or exceeds 10 digits to the left of the decimal point.

You can force ZBasic to print all significant digits in regular notation with: PRINT USING

See PRINT USING in the Reference Section of this manual.

RANGE OF ZBASIC FLOATING POINT VARIABLES

55 Variables

The range of floating point numbers, regardless of the accuracy configured is:

±1E-64 to ±9.9E+63.*

The digits of accuracy are 14 digits for double and 6 digits for single (this is the default for
most systems and may be set by the user).

!l
Double Precision exponent may range from E-16,384 to E+16,383. Single Precision
exponent is the same for compatibility with 8 and 16 bit machines.

VARIABLES

OVERFLOW RESULTS

If an expression results in a number greater then ±9.999E+63, a result of 9.999 ... E+63
will be returned.

If the number is less then ±1.0E-64 the result will be zero. ZBaslc will not give an
overflow or underflow error. Check program logic so that numbers do not exceed
floating point range.

BCD FLOATING POINT SPEED

To obtain maximum speed out of BCD floating point math be sure to configure the digits
of accuracy to:

DOUBLE PRECISION = 6
SINGLE PRECISION = 4
SCIENTIFIC PRECISION = 4

Normally these setting are fine at 14 and 6 digits. The should only be changed when
speed is extremely important. Converting equations to integer will greatly increase speed
as well. These settings are important because ZBasic does all calculations in Double
precision. Single precision is used for saving memory only.

Important Note: Some versions of ZBasic offer an optional high speed binary-floating
point option. While the speed of binary math packages is superior, the accuracy, range
and memory requirements of binary math are much different from the standard BCD math
described above. See the manual provided with the binary math package for details.

SINGLE AND DOUBLE PRECISION DIGITS OF ACCURACY

The only difference between Single and Double Precision is that Single Precision holds
fewer significant digits than Double Precision. ALL ZBASIC FLOATING POINT
CALCULATIONS ARE PERFORMED IN DOUBLE PRECISION.

The default digits of accuracy are 6 digits for Single Precision and 14 digits for Double
Precision. The accuracy is configurable from 6 to 54 digits for Double and 2 to 52 digits
for Single Precision.'

ACTUAL
NUMBER
12,000,023
.009,235,897,4
988,888
.235,023,912,323,436,129
9,999,999 .999,900,001,2
88.000,000,912,001,51
12.34147

!b

SINGLE
PRECISION"
12000000
9.2359E-03
988,888
.235024
10000000
88
12.3415

DOUBLE
PRECISION"
12000023
9.2358974E-03
988,888
.23502391232344
9999999.9999
88.000000912002
12.34147

'Defaults are 8 and 12 digits for the Macintosh. Both are configurable up to 240 digits.

Variables 56

VARIABLES

ROUNDING

If the dign just to the right of the least significant digit is greater than 5, n will round up,
adding one to the least significant digit.

In the example for .009,235, 898,4 above, the last significant 6 dign number is
nine, but since the digit after 9 is 7, the 9 is rounded up by one to 10 (and subsequently
the 8 is rounded up to 9 to give us 9.2359E-03, which more accurately represents the
single precision value. See "Configure" for ways of selting the rounding factor.

NUMBER
####49
####50
####51
####52

PEFAULT ROUNDING FACTOR
.49+.49 = .98 which is less than one
.50+.49 = .99 which is less than one
.51+.49 = 1 which is equal to one
.52+.49 = 1.1 which is greater than one

IS; 49
No Rounding
No Rounding
Rounds up
Rounds up

This rounding option will not be available for optional binary floating point packages.

CONFIGURING ACCURACY

57 Variables

ZBasic allows the user to configure the digns of accuracy for Single, double or scientific
precision functions (like LOG, TAN, SIN, etc).

LIMITATIONS:
Double precision must be at least 2 digits more significant than single.
Digits of Accuracy must be In multiples of two (four with Macintosh).

TYPE
PRECISION
SINGLE
DOUBLE
SCIENTIFIC

MINIMUM DIGITS
OF ACCURACY
2 DIGITS
6 DIGITS
2 DIGITS

MAXIMUM DIGITS
OF ACCURACY·
2 DIGITS less than Dbl.
54 DIGITS
54 DIGITS

"Note: All floating point calculations are done In DOUBLE PRECISION. For
programs where floating point speed is important be sure to set the digits of accuracy to:

DOUBLE PRECISION = 6
SINGLE PRECISION = 4
SCIENTIFIC PRECISION = 4

Important Note: Some versions of ZBasic offer an optional high speed binary-floating
point option. While the speed of binary math packages is superior, the accuracy, range
and memory requirements of binary math are much different from the standard BCD math
described above. See the manual provided with the binary math package for details.

WARNING: Programs sharing disk files and CHAINED programs with single or double
preCision variables must have the same accuracy configuration. If one program is set for 6
and 14 digits, and another program is set for 10 and 20 digits, the programs will not be
able to read and write each othe~s files.

~
Configurable up to 240 digits. For hi-speed set Double to 8, single and scientific to 6.

VARIABLES

ACCURACY AND MEMORY REQUIREMENTS

The number of bytes of memory or disk space required for storing single and double
precison variables is dependent on the digits of accuracy. If you do not change the
accuracy, ZBasic will assume 6 digits for single precision (which requires 4 bytes), and 14
digits for double precision (which requires 8 bytes)"

When you change accuracy, disk files, variables, and constants memory requirements will
change as well. The equation to calculate memory or disk file space required for single or
double precision variables is:

Digits of Accuracy I 2+1=Bytes required per Floating Point variable

DIGITS of
ACCURACY
2 digits
4 digits
5 digits
6 digits

14 digits

52 digits
54 digits

~

DISK FILE AND
VARIABLE MEMORY REQUIREMENTS
2 bytes
3 bytes
Will round odd digits UP to the next even number, 6 here
4 bytes (Single precision default if not configured by user)

8 bytes (Double precision default if not configured by user)

27 bytes
28 bytes

• The Macintosh defaults to 8 digits for single (four bytes) and 12 digits for double (eight
bytes). Digits of accuracy are configurable in multiples of four (instead of two as above).
To figure memory: Digits of Accuracy 12+2=bytes required.

~
WARNING: Different ZBasic programs sharing files and CHAINED programs MUST be
set to the same accuracy. Failure to do this will result in program errors, faulty data reads or
program crashes.

Important Note: Some versions of ZBasic offer an optional high speed binary-f1oating
pOint option. While the speed of binary math packages is superior, the accuracy, range
and memory requirements of binary math are much different from the standard BCD math
described above. See the manual provided with the binary math package for details.

Variables 58

VARIABLES

HOW BCD FLOATING POINT VARIABLES ARE STORED IN MEMORY

59 Variables

Single precision default is 6 digits (4 bytes). Double precision default is 14 digits (8 bytes).
To locate the address (memory location) of either a Single or Double precision variable:

ADDRESS1=VARPTR(FLOATING POINT VARIABLE [(SUBSCRIPT(,SUBSCRIPT[, ..])])

Single and Double precision variables are stored in Binary Coded Decimal format (BCD).

*ADDRESS1=

ADDRESS2
ADDRESs3
ADDRESS4
ADDRESs5
ADDRESS6
ADDRESS?
ADDRESs8

Bit 7:
Bit 6:
Bit 5-0:

ADDRESS28

~

Bit 765 ... 0

Mantissa sign (0=POSITIVE, 1= NEGATIVE)
The exponent sign (0=E+, 1=E-)
The exponent value (0 to 64)
Digit 1 and 2 (Four bits for each digit)
Digit3 and 4
Digit 5 and 6 (Single precison default)
Digit 7 and B
Digit9 and 10
Digit 11 and 12
Digit 13 and 14 (Double precision default)

Digit 53 and 54 (Limit of significant digits)

:Single precision defaults to 4 bytes (six digits) and Double precision defaults to 8 bytes
(12 digits). Macintosh computers use two bytes for mantissa and exponent for its high
precision double precision variable type:

ADDRESS1 & 2 Bit 15 14 13 ... 0

Bit 15:
Bi:14:
Bil13-0

Mantessa sign
Exponent sign
Exponent value 0-16383

Range of 32 bit double precision is ±1.0E-16,383 to ±9.999E+ 16,384.

Note: Single precision range is the same on all machines

Important Note: Some versions of ZBasic offer an optional high speed binary-floating
point option. While the speed of binary math packages is superior, the accuracy, range
and memory requirements of binary math are much different from the standard BCD math
described above. See the manual provided with the binary math package for details.

VARIABLES

ACCURACY VERSUS PROCESSING SPEED

While ZBasic is capable 01 configuration to extremely high accuracy, you should be aware
that calculation time is in direct relation to the number of digits of accuracy.

The following chart will clarify the relationship of processing time to accuracy.

ACCURACY versus PERFORMANCE

Math Relative \ Digits of Accuracy \
EUD!<lItlD ~ !&. 2.&:. tl. 2L ~ M- ItHEGEB
AddlSubract ~ 213 ~ 1.20 1.50 2.0 1/77
Multiply 3 1(7 ~ 1.25 3.10 5.8 1/33
Divide 12 116 1.25 1.75 3.0 1/33
SQR 50 115 1/4 2.50 5.75 13.0
SIN 70 115 1/4 2.50 5.75 13.0 See USR8(0)
COS 70 115 1/4 2.50 5.75 13.0 See USR9(0)
TAN 150 115 1/4 2.50 5.75 13.0
EXP 100 115 1/4 2.50 5.75 13.0
LOG 65 115 1/4 2.50 5.75 13.0
ATN 80 115 1/4 2.50 5.75 13.0

X'n 140 115 1/4 2.50 5.75 13.0
X' (integer) 30 112 1.67 2.75 5.0
Shift «,» 2 3/4 1.25 1.75 2.2 1/20

EXPLANATIONS OF HEADINGS

SPEED

Math Function

Relative Speed

Digits of accuracy

INTEGER

*4/6

The type of math function being timed.

All speeds are relative to ADD and SUBRACT (SQR takes 50 times
longer than add and subtract). The numbers also correspond to the
approximate time (in milliseconds) it takes to perform 14 dig~ math on a
ZBO at4 MHZ.

The numbers underthe digits are all relative to 14 dig~ accuracy.
Examples: 54 digit divide takes 3 times longer than 14 digit
6 dig~ divide takes 1 17th the time of 14 digit multiply.

Integer calculations are relative to 14 digit processing time. Integer add
and subtract operations take 1177th the time of 14 digit operations.

Scientific Accuracy operations were set for LOG, TAN, EXP, " SIN,
COS and ATN only. Other functions remain at double precision.

To obtain maximum speed with BCD floating point calculations, configure the digits of
preciSion to: DOUBLE PRECISION=6, SINGLE PRECISION=4, SCIENTIFIC
PRECISION=4. ZBasic does ALL calculations in DOUBLE PRECISION.

~~~ ," 
';'J:~;~«" ." " ,,-' -" 
.. .,. "/+'t1,, ',J 

Important Note: Some versions of ZBasic offer an optional high speed binary-floating
point option. While the speed of binary math packages is superior, the accuracy, range 
and memory requirements of binary math are much different from the standard BCD math 
described above. See the manual provided with the binary math package for details. 

Variables 60 



VARIABLES 

STRING VARIABLES 

String variables are used for storing alphanumeric, symbol, and control characters. 

ZBasic string variables may hold up to a maximum of 255 characters. Any character with an 
ASCII code in the range of zero to 255 may be used. ASC(A$) will retum zero if A$ is a 
null string: IF LEN (A$) >0 AND ASC (A$) =0 THEN ASCII CODE=O 

STRING, NUMBER CONVERSIONS 

VAL 
STR$ 
CVI, CVB 
MKI$, MKB$ 

a 
Converts a string to a number: X=VAL(A$) 
Converts a number to a string: A$=STR$ (43) 
Converts a condensed string to a number 
Converts numbers to condensed strings 

See DEFSTR LONG for using CVI and MKI$ with Longlntegers. 

DEFINING STRING VARIABLES 

Use a $ symbol following a variable name to make it a string variable. A$ will always be a 
string variable because of the $. 

To define a range of variables beginning with a certain character to be string variables (so 
you do not have to use $ every time), use the statement DEFSTR: 

DEFSTR A-M 

DEFSTR X, Y, Z 

Makes all variables starting with A, B, C ... up 
to M as string variables. A is the same as A$. 
Makes all variables starting with X,Y and Z 
as string variables. Z is the same as Z$. 

STRIN.G VARIABLE ASSIGNMENTS 

61 Variables 

String variables are aSSigned alphanumeric values like this: 

A$="Hellothere" 
ART$="VanGogh"+" DaVinci" 
Z$=B$ 
Z$=B$+C$ 
Z$="Hello"+C$+TEST$ 
MID$(A$,2,3)="YES" 

(+) connects the strings (concatenates) 

Puts "YES" into A$ starting at position 2 



VARIABLES 

STRING FUNCTIONS AND RELATED COMMANDS 

String variables are used for storing and manipulating character information. Here are 
some examples of ZBasic's string capabilities: 

STRING FUNCTIONS 
DIM 10 A$ 
DEF LEN 20 
W$=LEFT$(A$,3) 
W$=RIGHT$(A$,1 ) 
B$=MID$(A$,4,2) 
MID$(A$,2,3)=B$ 
C$=CHR$(65) 
X=ASC("A") 
X=INSTR(2,A$,B$) 

A$=STR$(2345) 
X=VAL(A$) 
X=LEN(A$) 
INPUTA$ 
LlNEINPUTA$ 

A$=INKEY$ 
A$=UCASE$("Hello") 
X=VARPTR(A$) 
WRITE#1,A$;20 
READ#1,A$;20 
A$=STRING$(10,"#") 
PRINT SPACE$(4) 
SWAP A$,B$ 
LPRINTA$ 
PRINT A$ 
PRINT#2,A$ 
OPEN"R",1 ,F$, 129 
KILL A$ 
A$=DATE$ 
A$=TlME$ 
A$=B$+C$ 
A$="HI"+"THERE" 
PSTR$ 

SPECIAL INDEX$ COMMANDS 

INDEX$ (n)="simple string" 
INDEX$I (n)=A$ 
INDEX$D(n) 
X=INDEXF(A$) 

X=INDEXF("END",950) 
CLEAR nnnnn 
CLEAR INDEX$ 

DEFINITION 
Sets the string variable A$ to a length of ten. 
Sets following strings to 20 character length. 
W$= 3 characters from the left of A$. 
W$= 1 character from the right of A$. 
B$= 2 characters from A$ beginning at position 4. 
Puts first 3 characters of B$ into A$ starting at position 2. 
C$= the character represented by ASCII 65 (letter A). 
X= the ASCII code of "A" (65). 
Looks for B$ in A$ starting at position 2, and makes X equal 
to the pOSition if found, otherwise X= zero. 
Makes A$ equal "2345". 
Makes X equal the VALue of A$ (2345 if above). 
X= the number of characters in A$ . 
Gets input from the keyboard and stores it in A$. 
Accepts any keyboard characters, stores them in A$ and 
terminates input only with the <ENTER> key. 
Makes A$= the last key pressed without using <ENTER>. 
Converts A$ to UPPERCASE. (A$ now equals "HELLO"). 
X= the memory address of the variable A$. 
Writes 20 characters of A$ out to the disk file#1. 
Reads 20 characters off the disk into A$. 
Makes A$ equal to "##########" . 
PRINTs 4 spaces. 
Make A$ equal B$ and B$ equal A$. 
Prints A$ out to the printer. 
Prints A$ to the screen. 
Prints A$ to disk file 2. 
Opens the random access file named F$. 
Erases the file specified by A$ off the storage device. 
Puts the date into A$ (MM/DD/yy) (Most systems). 
Puts the time into A$ (HH/MM/SS) (Most systems). 
Makes A$ equal to B$ plus C$ (Concatenates). 
Makes A$ equal to "HI THERE". 
Special command to avoid duplication of string constants. 

INDEX$="Simple string". 
INSERT A$ at INDEX$(n), moves up all other elements. 
DELETE element (n) of INDEX$ and move up other elements. 
Looks for A$ in INDEX$ (all) X equals element if A$ found. 
else X equals -1. 
Look for "END" in INDEX$ starting at the 950th element. 
Set aside nnnnn bytes for INDEX$. 
Nullify the contents of the entire INDEX$ array. 

Variables 62 



VARIABLES 

STRING CONDITIONALS 

Strings may be compared using conditional operators just like numbers. The difference is 
that they are compared by the value of the ASCII code for that number. For instance, the 
ASCII code for "A" is 65 and "B" is 66. Therefore the expression "A"<"B" would be 
true (-1). 

See ASCII Chart in your computer manual. ASCII characters may vary from computer to 
computer and from printer to printer. 

Be aware that ZBasic differentiates between upper and lowercase characters. "a" is 
greater than "A" because the ASCII code for "a" is 97 and the ASCII code for "A" is 65. If 
you want ZBasic to look at a string variable as uppercase only, use the UCASE$ function 
to convert it. 

ZBasic "looks" at all the characters in a string when dOing comparisons. "Aa" is greater 
than "AA". "AAAAAAa" is greater than "AAAAAAA" etc. ZBasic will compare characters 
in a string to the last character in that string. 

CONDITION 
"RRRRR"<"S" 
"FRANK"= " FRANK " 
"abc">"ABC" 
TEST$="Hello" (If TEST$="Hello") 
"A">"B" 
"YES 11 ="yes" 

RESULT 
True (-1) 
True (-1) 
True (-1) 
True (-1) 
False (0) 
False (0) 

SIMPLE STRINGS 

Quoted string: "Hello", "This is within quotes" 
String variable: A$, NAME $ , FF$, BF$ (2,3) 
Any of the following string commands: MKI$, MKB$, CHR$, HEX$, OCT$, 
BIN$, UNS$, STR$, ERRMSG$, TIME$, DATE$, INKEY$, INDEX$(n) 

COMPLEX STRINGS 

63 Variables 

May be any combination of SIMPLE STRINGS. 

String operations containing one of the following commands: simple- string + 
simplestring, LEFT$, RIGHT$, MID$, STRING$, SPACE$, UCASE$ would be a 
complex string. 

COMPLEX STRINGS MAY NOT BE USED WITH IF-THEN STATEMENTS. 

ZBasic allows only one COMPLEX STRING per statement. If you wish to perform more 
than one complex string at a time, simply divide the complex string expression into 
multiple statements like this: 

CHANGE complex strings 
B$=RIGHT$(A$+C$,2) 
B$=UCASE$(LEFT$(A$,3» 
IF LEFT$(B$,2)="IT" THEN 99 

IQ simple strings 
B$=A$+C$: B$=RIGHT$(B$,2) 
B$=LEFT$(A$,3): B$=UCASE$(B$) 
D$=LEFT$(B$,2): IFD$="IT" THEN 99 



VARIABLES 

USING STRING VARIABLES EFFICIENTLY 

String variables will require 256 bytes of memory for each string used if the string lengths 
are not defined by the user. It is important to realize that extensive use of string variables 
or string array variables may require the user to define string lengths to avoid running out 
of memory. 

Note: Some BASIC(s) have what is referred to as "Garbage collection". ZBasic's 
method of storing strings NEVER creates time wasting "Garbage Collection". 

DEFINING THE LENGTH OF STRING VARIABLES 

ZBasic strings have a default length of 255 characters. This can cause excessive memory 
usage. To obtain maximum memory efficiency, there are two ways of defining the length 
of string variables and string array variables: 

DEF LEN = number (Numbers only. No expressions.) 
DIM number STRING VARIABLE, or number STRING ARRAY, ... 

DEFINING STRING LENGTHS WITH DIM 

DIM X$(10), 20 A$, Z$(5), 45 TEST$, 10 MD$(20,20) 

In this example the strings are allocated: 

X$( 10) 

A$ 

Z$(5) 

TEST$ 

MD$( 20, 20) 

255 each element (255 is the default. 2816 bytes) 

20 (21 bytes) 

each element of Z$ as 20* 
(21*6=105 total bytes of memory used.) 
45 (46 bytes) 

each element of MD$(20,20) as 10. 
(21 * 21 *11=4851 total bytes of memory used.) 

* If no length is defined, the last given length in t.!lal. DIM statement is used (20 for A$ in 
this example). If no length was defined in that DIM statement then the DEFined LENgth 
is assumed (255 if the string length has not been previously defined) 

Note: Add one to the defined length of each string to determine the actual memory 
requirement of the string PLUS ONE for the LENGTH BYTE. 

Variables 64 



VARIABLES 

DEFINING STRING LENGTHS WITH DEFLEN 

65 Variables 

Another command for DEF(ining) the LEN(gth) of string variables is: 

DEF LEN = NUMBER (No expressions) 
(In the range of 1 to 255) 

Each string variable located liEIEB the statement will have that length, unless another 
DEFLEN or DIM statement is used. 

DIM A$(9,9), X(99), H#(999), 4Bull$ 
DEF LEN=50:B$="HOPE" 
C$="HELLO" 
DEF LEN=100 
ART$="COOL" 
DIM Coolness$(9) 
A$=ART$ 

In the example: 

A$(9,9) allocated 255 characters for each array element (ZBasic 
automatically allocates 255 if length has not been defined). 

Bull$ allocated 4 characters. 

B$ and C$ allocated 50 characters each. 

ART$ allocated 100 characters. 

Coolness$ allocated 100 characters for each element. 

A $ allocated 100 characters. 

Note: The actual memory required for each string (each string element in an array) is the 
defined length plus one byte for the length byte. 



VARIABLES 

HOW STRING VARIABLES ARE STORED IN MEMORY 

ADDRESS=VARPTR(STRING VARIABLE [( SUBSCRIPT[ ,SUBSCRIPT[ , .... )))) 

ADDRESS 
ADDRESS+1 
ADDRESS+2 

ADDRESS+n 
ADDRESS+255 
ADDRESS+Defined Length 

Length Byte: Holds number of characters in the string. 
First character of the string variable 
Second character 

Last character of the string variable 
Last address available for undefined string variable 
Last address available for defined string variable 

~.>: ........ '~;"~"-
-",,"", ,'- '. 

r::; '~<"'.". ,'" of,;> ' 
WARNING 1: Strings should never be assigned a character length longer than the 
assigned length, If the length of A$ is 5 and a program line is executed that has: 
A$="1234567890", the characters "6" through "0" will overwrite the variables following 
A$, possibly causing system errors or faulty data. 

WARNING 2: If using INPUT to input strings with set length, always make sure the string 
length is at least one longer than the length being used for input. 

For most versions of ZBasic, no error is generated if string assignments exceed the 
length of the string. 

~ 
See "Configure" in the Macintosh appendix for setting string length error checking. 

Variables 66 



67 INDEX$ Variables 



INDEX$ 

ASIC 
SPECIAL INDEX$ STRING ARRAY 

INDEX$ is a special ZSasic string array with some powerful and unique capabilities. 

The following commands work with INDEX$ variables only. 

INDEX$ COMMAND 
INDEX$(n)=simple string 

INDEX$ I(n)=simple string 

INDEX$ D(n) 

X=INDEXF(simple string [,start#] ) 

USING INDEX$ 

MEANING 
Assigns a value to INDEX$(n) 

Move element n and all consecutive elements 
up one and INSERTsimple string at element n 
(the value in element 3 moves up to element 
4 ... ). Actually inserts the value into the array 
without destroying any other elements. 

DELETE element n and move all 
consecutive elements back down to fill 
the space (value in element 4 moves down to 
element 3 ... ). 

FIND simplestring in INDEX$. Segin 
looking at element START#. 
If found X=element number 
If not found X = -1. 

INDEX$ array variables may be assigned values like other string variables. To illustrate the 
power of INDEX$, the following values have been stored into INDEX$ elements 
INDEX$(O) through INDEX$(3) and will be used in the examples on the following pages: 

ELEMENT # 
INDEX$(O) = 
INDEX$(1) = 
INDEX$(2) = 
INDEX$(3)= 

MIA 
"AL" 
"SOS" 
"DON" 
"ED" 

INDEX$ Variables 68 



INDEX$ 

INSERTING ELEMENTS INTO INDEX$ 

INDEX$I (n) To INSERT "CHRIS" into INDEX$, between "SOS" and "DON", you would use the 
commandlNDEX$ 1(2)="CHRIS". 

This instructs ZSasic to move "DON" and "ED" down and insert "CHRIS" in element 2. 
(INDEX$ 1(2)=A$ would also be legHimate) INDEX$ would now look like this: 

ELEMENT # 
INDEX$(O) = 
INDEX$(1) = 
INDEX$(2) = 
INDEX$(3) = 
INDEX$(4) = 

DATA 
"AL" 
"SOS" 
"CHRIS" 
"DON" 
"ED" 

DELETING ELEMENTS FROM INDEX$ 

INDEX$ 0 (n) To DELETE "SOS" from INDEX$ use the command INDEX$ D(1). This instructs ZSasic to 
delete element one, and move "CHRIS" and "DON" and all the other elements up to fill in 
that space. The INDEX$ array would now look like this: 

ELEMENT # 
INDEX$(O) = 
INDEX$(1) = 
INDEX$(2) = 
INDEX$(3) = 

J2AIA 
"AL" 
"CHRIS" 
"DON" 
"ED" 

FIND A STRING IN INDEX$ 

X=INDEXF(simplestring [,element n I) 

69 INDEX$ Variables 

ZSasic will begin searching from element n (element zero if not specified) for the string 
specified by simple string. Examples: 

IF FOUND 
X=ELEMENT NUMBER 

IF NOT FOUND 
X=NEGATIVE ONE(-1) 

To FIND "DON" in the above list let's say that A$="DON". Using the command 
X=INDEXF(A$), X would return 2 to show that "DON" is in element 2 of INDEX$. 

To FIND "CHR" (part of "CHRIS"), you would use the command X=INDEXF("CHR"). X 
would return with the value of 1 since a match was found in the first three characters of 
"CHRIS". 

If you tried to FIND "RIS": X=INDEXF("RIS"), X would return wtth a value of -1 (negative 
one) since the FIND command begins the search at the 1irs1 character of each element, 
which MUST be significant ("C" must be part of the search). 

If the command had been INDEXF("CHRIS", 3), X would have equaled -1 since the 
search began at element 3 and "CHRIS" is at element 1 H would never find "CHRIS," 



INDEX$ 

INDEX$ MEMORY REQUIREMENTS 

INDEX$ variable elements use memory only if there are characters stored in that element 
and only as much memory as needed to hold those characters (plus one for length byfe). 
CLEAR nnnnn is used to allocate memory for INDEX$. CLEAR INDEX$ will clear 
(nullify) the present contents of INDEX$. 

INDEX$ LIMITATIONS 

INDEX$ may not be used wnh SWAP. 

USES OF INDEX$ 

INDEX$ is a valuable tool for disk indices, in-memory data bases, creating word 
processors, holding lists of strings with varying lengths and much more. 

INDEX$ is especially useful anyfime unknown string elements lengths are needed. 

USING INDEX$ FOR AN INSERTION SORT 

A good example of the power of INDEX$ is using it to create a perpetual sort. It allows you 
to add items to a list instantly and always have the list in order: 

CLEAR 10000: TRONB 
DO 

INPUT"Input String";A$: GOSUB "INSERTION SORT" 
UNTIL A$="END" <--- Type END to end inserting 
GOTO "PRINT LIST" 

"INSERTION SORT" 
REM N=Nurnber of items 
REM A$= New to string to insert 

B=N: S=O 
DO 

H=(B-S+1»>1. 
LONG IF A$ <= INDEX$(B-H) 

B=B-H 
XELSE 

S=S+H 
END IF 

UNTIL B=S 
INDEX$ I(B)=A$ 
N=N+1 
RETURN 

"PRINT LIST" 
FOR X=l TO N 

PRINT INDEX$ (X) 
NEXT 
END 

INDEX$ Variables 70 



INDEX$ 

HOW INDEX$ ARRAY VARIABLES ARE STORED IN MEMORY 

The INDEX$ array is stored in memory in one contiguous block. The distance between 
each element is the number of characters in the string plus one byte for the length byte of 
the string. 

WARNING: It is suggested that strings in INDEX$ not be manipulated with PEEK and 
POKE. 

Note: CLEAR is used on some computers to allocate memory for INDEX$. CLEAR 
INDEX$ is used to nullify the contents of INDEX$ 

!b 
This version has the ability to use up to ten INDEX$ arrays at the same time. See 
appendix for details. Also see MEM(-1) for determining memory remaining for INDEX$. 

71 INDEX$ Variables 



ARRAY VARIABLES 

ASIC 
ARRAY VARIABLES 

An Array variable is a multi-celled variable followed by coordinates for specifying which cell 
is to be used. The following is an example of a one dimension string array with 101 
elements. 

ARRAY ELEMENT 
NAME$(0)= 
NAME$(1)= 
NAME$(2)= 
NAME$(3)= 

NAME$(100)= 

YA!..!LE. 
"ABE" 
"ADAM" 
"ALEX" 
"AMOS" 

"ZORRO" 

Separate variables could be used for each value, like NAME1$="ABE", 
NAME2$= .. ADAM..... but typing a hundred different variables would become very tiring. 

Array variables are much easier to use when inputting, saving, loading, printing long lists, 
moving data around in a list, sorting lists of information, etc. This example shows how 
easy it is to print a complete list of the names in the array of variables. 

FOR X =0 TO 100 
PRINT NAME $ (X) 

NEXT 

Computers are very good at manipulating large amounts of data and using regular 
variables to do this is very impractical. 

MULTI-DIMENSIONED ARRAYS 

ZBasic will allow arrays of 1, 2, 3 or more dimensions, depending on the amount of 
memory available on your computer. 

Array Variables 72 



ARRAY VARIABLES 

TWO DIMENSION ARRAY EXAMPLE 

The following chart shows a two dimensional integer array; A(3,3). The number of 
elements are determined by the BASE OPTION that was configured when loading 
ZBasic. The default is Base 0: 

A(3,3) BASE 0 dimensions are 4 elements down (0,1,2 and 3) and 4 elements across 
(0,1,2 and 3). Base zero utilizes all the elements including the italicized. 

A(3,3) BASE 1 dimensions are 3 elements down (1,2,3) and 3 elements across (1,2,3) 
(not the italicized): 

TWO DIMENSION ARRAY 
A(O,O) A(t,O) A(2,O) A(3,O) 

A(O,t) A (1,1) A (2 ,1) A(3,l) 

A(O,2) A(l,2) A(2,2) A(3,2) 

A(O,3) A (1, 3) A (2,3) A (3,3) ---

This array was DIM(med) A(3,3). A(1,3) represents the cell underlined above. Accessing 
a cell only requires giving the correct coordinate after the variable name. 

Variables, constants or expressions may be used in specifying coordinates: 

A(3,2), A(X,Y), A(2,X) , A(X*2/3,2+Y) . 

BASE OPTION 

Zero is considered an element unless you set the BASE OPTION to one when 
configuring ZBasic. See "Configure" for more information about setting the Base option. 
The default BASE is zero. 

DEFINING THE DIMENSIONS OF AN ARRAY 

73 A"ay Variables 

All variable arrays ~ be DIMensioned at the beginning of a program. When you RUN 
a program, memory is set aside for the array based on the number of elements you have 
DIMensioned. 

An example of DIM: 

DIM A%(10,10,10), MI(5), A! (9,7), B$(10), 5Coo1$(20) 

Only numbers may be used within DIM statement parentheses. The following DIM 
expressions are /IIegal : 

DIM A(X), A(2*X) , A(FR) • 



ARRAY VARIABLES 
~" ,~ " . 
~ .)..' . ~ , "," ,\ , 

HOW ARRAYS USE MEMORY 

The following chart shows how to calculate the memory requirements of the arrays 
DIMensioned above with a BASE OPTION of zero (default value). 

Bytes per How to Memory 
ARRAY IY.M Element Cal!;ulat~" Reg!,!lreg 
A%(10,10,10) INTEGER 2 11'11'11'2 2662 Bytes 
A#(5) DOUBLE PREC. 8 6'8 48 Bytes 
Ai (9,7) SINGLE PREC. 4 10*8*4 320 Bytes 
B$(10) STRING 256 11'256 2816 Bytes 
Cool$(20) STRING 6 21*6 126 

"Note: If you use a BASE OPTION of ONE, you will not need to add one to the 
dimension. For instance, in the first example the way to calculate the memory required 
would be: 10*10*10*2. Also see DEF LEN and DIM under STRING VARIABLES for info 
about defining string lengths. 

Macintosh also has Longlnteger arrays. Each element takes 4 bytes. 

ARRAY BOUNDS CHECKING 

During the initial stages of writing a program, it is a good idea to configure ZBasic to check 
array bounds in runtime. See "Configure" for more information. 

OUT OF MEMORY ERROR FROM DIMMING 

It is necessary to have an understanding of how arrays use memory. DIMensioning an 
array larger than available memory will cause ZBasic to give an OUT OF MEMORY error at 
Compile time or RUN time. When calculating large arrays be sure to check if memory is 
sufficient. 

Array Variables 74 



ARRAY VARIABLES 

PRINTING ARRAYS 

Arrays were designed to make manipulating large lists of data easy. The following routines 
print the values of ARRAY(50) and/or ARRAY(50,5) to the screen (Substitute LPRINT for 
PRINT or use ROUTE 126 to print to the printer). Use AUTO or make your own line 
numbers. It does not matter which numbers are used. 

"One Dimension array PRINT routine" 
DIM ARRAY (50) 
FOR X=0 TO 50 

PRINT ARRAY(X) 
NEXT 

"Two Dimension array PRINT routine" 
DIM ARRAY (50, 5) 
FOR X=0 TO 50 

FOR X2=0 TO 5 
PRINT ARRAY(X,X2), 

NEXT X2 
PRINT 

NEXT X 

MAKING AN ENTIRE ARRAY ONE VALUE 

75 Affay Variables 

The following examples show how to make an entire array (ARRAY(50) or ARRAY(50,5)) 
equal to a certain value. This would be convenient if you wanted to zero out an array or 
have all the elements start the same values. 

"One Dimension array ASSIGNMENT routine" 
DIM ARRAY (50) 
FOR X=0 TO 50 

ARRAY(X)=VALUE 
NEXT 

"Two Dimension array ASSIGNMENT routine" 
DIM ARRAY (50, 5) 
FOR X=0 TO 50 

FOR X2=0 TO 5 
ARRAY(X,X2)=VALUE 

NEXT X2 
NEXT X 



ARRAY VARIABLES 

USING ARRAYS FOR SORTING 

Arrays are also very convenient for organizing large lists of data alphabetically or 
numerically, in ascending or descending order. 

The first program below creates random data to sort. This program is for example 
purposes only and should not be included in your programs. These programs are 
Included on your master disk. 

Follow the GOSUB with the label of the sort routine you wish to use (either "QUICK 
SORT" or "SHELL SORT"). Any line numbers may be used. These sort routines may be 
copied and saved to disk (using SAVE' or +) as a subroutine to be loaded with APPEND. 
See APPEND. 

""S""OJ,JR .... T ..... ,B""A"S'-__ FILL ARRAY WITH RANDOM DATA FOR SORTING __ 
DIM SA(500), ST(30,1): REM ST (30,1) FOR QUICK SORT ONLY, 
NI=500: REM Change DIM 500 and NI if sort larger 
FOR X=OTO NI 

SA(X)=RND(1000) : REM Stores random numbers for sorting 
NEXT 
PRINT"Start Time:";TIME$ 
GOSUB "QUICK SORT": REM Or SHELL SORT 
PRINT"Finish Time:";TIME$ 
FOR X=NI-10 TO NI 

PRINT SA (X): REM Print last to make sure SORT worked. 
NEXT 
END 

>i!S!lH!:!EL!:!L"".A~PC1P=--_____ SHELL-METZNER SORT ___ _ 
"SHELL SORT" Y=NI 
"Zl" Y=Y/2 

IF Y=0 THEN RETURN: REM Sort complete 
Z99=NI-Y 
FOR K9=1 TO Z99 

I=K9 
"X2" E2=I+Y 

REM: In line below change <= to >= for descending order 
IF SA ( I ) <= SA (E2) THEN "x3" ELSE SWAP SA ( I ), SA (E2) 
I=I-Y 
IF 1>0 THEN "X2" 

"x3" NEXT K9 
GOTO "Zl" 
END 

Note: To sort string arrays instead of numeric arrays add a "$" to the appropriate variables. 

Also see "Perpetual Sort" using INDEX$ in the previous chapter. 

Array Variables 76 



ARRAY VARIABLES 

77 Array Variables 

~au~I~OUW~uP ___________ auCK~ ____________ _ 

"QUICK SORT" 
REM Improved Quicksort submitted by Johan Brouwer, Luxembourg. 
REM Thanks for the submission, Johan. 
SP=O:ST(O,O)=O:ST(O,l)=O 
ST(O,l)=NI 
DO 

L=ST(SP,O): R=ST(SP,l) :SP=SP-l 
DO 

LI=L: Rl=R: SA=SA«L+R)/2) 
DO 

WHILE SA(LI)< SA 
LI=LI+l 

WEND 
WHILE SA(RI»SA 

RI=RI-l 
WEND 
LONG IF LI<= RI 

SWAP SA(LI), SA(RI) 
LI=LI+l:RI=RI-l 

END IF 
UNTIL LI>RI 
LONG IF (R-LI) >(RI-L) 

LONG IF L<RI 
SP=SP+l:ST(SP,O)=L: ST(SP,l)=RI 

END IF 
L=LI 

XELSE 
LONG IF LI<R 

SP=SP+l:ST(SP,O)=LI:ST(SP,l)=R 
END IF 
R=RI 

END IF 
UNTIL R<=L 

UNTIL SP=-l 
RETURN: REM QUICK SORT FINISHED HERE 
END 

Note: To use the QUICK SORT or SHELL SORT with STRING variables, use DEFSTR with 
the appropriate variables on the first line of the program or put a "$" after all variables that are 
strings 

Be sure to use DEFLEN or DIM to define the length of the string variables. If each element 
needs 50 characters, then set the length of SA$ to 50. The default is 256 bytes per 
element for string variables if you do not define the length. 

HINTS ON TYPING IN THE PROGRAM: First of all, use line numbers of your own chosing. 
Indentation in this program is the way ZBasic shows the loops or repetitive parts of the 
program. You do not need to type in spaces (Make everything flush left). ZBasic will indent 
the listing automatically when you type UST or LUST. 

Also see "Perpetual Sort" using INDEX$ in the previous chapter. 



ARRAY VARIABLES 
, • , • ~"~ • " ' ~f • ~. ; 

ARRAY ELEMENT STORAGE 

The following chart illustrates how array elements for each type of variable are stored in memory. 

Assumptions: 

1. Memory starts at address zero (0) 

2. Strings were dimmed: DIM 15 VAR$(1 ,2,2) (Each element uses 16 bytes") 

3. Other arrays dimmed: DIM VAR%(1 ,2,2), VAR!(1 ,2,2), VAR#(1 ,2,2) 
(SINGLE and DOUBLE precision assumed as 6 and 14 digit accuracy.) 

4. BASE OPTION of ZERO is assumed. 

RELATIVE ADDRESSES 
Array SINGLE DOUBLE 
t;LEMt;~US SIBI~G$ I~IEGt;Bo~ ~[~!;;I:iIQD ! ~[~!;;I:iIQDi! 
VAR(O,O,O) 00000 00000 00000 00000 
VAR(0,0,1) 00016 00002 00004 00008 
VAR(0,0,2) 00032 00004 00008 00016 
VAR(0,1,0) 00048 00006 00012 00024 
VAR(0,1,1) 00064 00008 00016 00032 
VAR(0,1,2) 00080 00010 00020 00040 
VAR(0,2,0) 00096 00012 00024 00048 
VAR(0,2,1) 00112 00014 00028 00056 
VAR(0,2,2) 00128 00016 00032 00064 
VAR(1,0,0) 00144 00018 00036 00072 
VAR(1,0,1) 00160 00020 00040 00080 
VAR(1,0,2) 00176 00022 00044 00088 
VAR(1,1,0) 00192 00024 00048 00096 
VAR(1,1,1) 00208 00026 00052 00104 
VAR(1,1,2) 00224 00028 00056 00112 
VAR(1,2,0) 00240 00030 00060 00120 
VAR(1,2,1) 00256 00032 00064 00128 
VAR(1,2,2) 00272 00034 00070 00136 

"Length byte adds one extra byte in front of each string element. 

Note: Arrays are limited to 32,768 (0-32,767) elements. 

!b 
Longlnteger arrays are also supported. Each element takes four bytes. Macintosh is 
limited to 2,147,483,647 elements . 

• MSDOS version 4.0 has a limit of 32,768 (0-32,767) elements for integer arrays and a limit 
of 65,536 (0-65535) for string and floating point arrays. 

Array Variables 78 



GRAPHICS 

79 Graphics 



GRAPHICS 

ASIC 
GRAPHICS 

Graphics are an extremely important way of communicating ideas. The old adage "A picture is 
worth a thousand words" is very true. ZBasic offers many powerful screen imaging 
commands and functions to take advantage of your computer's graphics capabilities. 

In addition to having powerful graphic commands, ZBasic defaults to utilizing the same 
graphic coordinates regardless of the system you happen to be programming on. This is 
ideal for moving programs from one machine to another without having to make changes to 
the graphic commands or syntax. Quite a change from the old days. 

Definitions of some commonly used graphic terms: 

PIXEL 

RESOLUTION 

COORDINATE 

The smallest graphic point possible for a given system. Some 
systems allow you to set the color of a pixel. 

Refers to the number of pixels (dots of light) on a screen. A 
computer with a resolution of 400 x 400 has 160,000 pixels (high 
resolution). A computer with 40 x 40 resolution has only 1600 pixels 
(low resolution). 

By giving a horizontal and vertical coordinate you can describe a 
specific screen location easily. With ZBasic the origin (0,0) is the 
upper left hand comer of the screen or window. 

With a standard device independent coordinate system you can 
specify a location on the screen without worrying about pixel 
positions. 

Graphics 80 



GRAPHICS 

ZBASIC'S DEVICE INDEPENDENT GRAPHIC COORDINATE SYSTEM 

ZBasic uses a unique DEVICE INDEPENDENT COORDINATE SYSTEM to describe the 
relative positions on a video screen, instead of a pixel system which describes specific 
graphic dots on the screen. 

~ 

81 Graphics 

The standard coordinate system is 1024 points across (0-1023) by 768 points down 
(O-767). The width is broader to be in proportion to a normal video monitor. 

This approach allows writing graphic programs the same way regardless of a computer's 
graphic capabilities. 

ZBasic's STANDARD GRAPHIC 
COORDINATE SYSTEM 

00 209 1023,0 
, ~~&-__ ~.~~~5~~ __ ~ ________ -.A(' 

304, 

384' 

0,767 ..... 

~ / POSTON 209,304 

........ m .... · : ......... : ................. . 
~~ 

CENTER SCREEN POSITION 512,383 

'1023,767 

Device independent graphics means the coordinate syntax is the same regardless of the 
device or type of graphics being used! 

The ZBasic approach to graphics makes commands function the same way EVEN ON 
DIFFERENT COMPUTERS! ZBasic handles all the transformations needed to match 
up the ZBasic coordinates to the actual resolution of the computer. This is an ideal way of 
handling graphics in a standardized way. 

On the Macintosh the standard coordinates apply to the current window, not to the 
screen. Macintosh and MSDOS versions of ZBasic have the extra commands; 
COORDINATE and COORDINATE WINDOW which allow you to set relative coordinates of 
your own or pixel coordinates, respectively. See the Apple appendix for ways of 
configuring ZBasic to pixel coordinates. Some Z80 See appendix for specifics. 



GRAPHICS 

SCREEN PIXEL versus SCREEN POSITION 

It is important to realize that ZBasic's standard coordinate system of 1024 x 768 has a direct 
relation to the screen, NQI to the actual pixel resolution of the computer being used. It is 
important not to confuse the pixel coordinate with the position coordinate: 

How ZBasic and Pixel Coordinates 

0 1 2 3 ...• 256 
May Overlap 

om "ZBBSIC Coordlnatos ... PLOTting any ZB40lc coordll'lato 
between 0,0 and 3,2 will aet 

1\. 
....... 

r-..... 0,0 1,0 2,0 3,0 the graphic pixel 0,0 on a 
computer with 256 II 256 
pixel resolution graphics 

2 ~ 0,1 1,1 2,1 3,1 

256 ~ 
PIXELS 

0,2 1,2 2,2 3,2 

EXAMPLE SITUATION OVERLAP I 
Computer PIXEL resolution: 256 x 256 4 to 1 Horlzon •• 1 
ZBaslc Posllion r.solutlon: 1024 x 768 ..... 310 1 Vertical 

You can see that plotting coordinates; 0,0 through 3,2, sets the same pixel on a screen with 
256 x 256 resolution. If the pixel resolution of a computer is 64 x 64 then PLOTting 0,0 or 
15, 11 will plot the same pixel (16 to 1 horizontal and 12 to 1 vertical). 

Fortunately this Information Is rarely Important. ZBasic takes care of the tedious 
transformations between different graphic modes and resolutions. Skills learned on one 
machine may be used on any other machine that uses ZBasic! 

OFF SCREEN COORDINATES 

ZBasic allows coordinates to be given with graphic commands that are out of bounds of the 
actual screen coordinates. This allows drawing lines, circles or rectangles off the screen, with 
only that part of the graphics that are within bounds to be shown on the screen. ZBasic 'clips' 
the rest of the drawing. 

·8191 
COORDINATE 

LIMITS COMPUTER 

____ •. _._ ....... =!......;./=--__ s_"_"_._ +8192 
·8191 

/FD, 
+767 +1023 

Graplics outside ofthe screen 
Imtsara nolvisiJle. +8192 

The limits are from -8191 to +8192. Any coordinates given out of this range will cause an 
overflow and the actual result will be the overflowed amount without generating an error. 

Graphics 82 



GRAPHICS 

DIFFERENT TYPES OF GRAPHICS 

Graphic appearance and quality will depend on the resolution of the computer or terminal you 
are using. Resolution is the number of graphics pixels on a screen. A computer with a 
resolution of 40 x 40 has 1600 different pixels. This is low resolution graphics because the 
graphic points (pixels) are very large. 

For computers wi1hout graphics, ZBasic will simulate the graphics as closely as possible 
using an asterisk. The resolution would be the number of characters across by characters 
down. See MODE. 

GRAPHICS TYPE 
HIGH RESOLUTION 
LOW RESOLUTION 
CHARACTER 

RESOLUTION 
about 200 x 150 or More 
about 150 x 100 or Less 
TEXT graphics simulation. 

A COMPARISON OF LOW AND HIGH RESOLUTION IMAGES 

83 Graphics 

HIGH RESOLUTION LOW' RESOLUT ION 

\:?\> 
DD 
·0 0 

CHARACTER 

Notice the variation in quality. Programmers porting programs over to other machines should 
keep the resolution of the target computer in mind when creating programs. 



GRAPHICS 

MORE GRAPHIC EXAMPLES AT DIFFERENT RESOLUTIONS 

Quality deteriorates as graphic complexity increases and screen resolution decreases. 
although usually the lower the resolution the faster the execution speed. In this line example 
you can see the variation of quality. 

The ZBasic statement to create all the lines in the first example was the same: 
PLOT 60,660 TO 1000, 10: 

HIGH RESOLUTION LOW RESOLUTION CHARACTER 

Additional examples of more complex graphics forms in different resolutions: 

HIGH RESOLUTION CHARACTER 

Graphics 84 



GRAPHICS 

MODE 

85 Graphics 

ZBasic offers different modes of text and graphics output depending on hardware and 
model. The ability to change modes allows you to simulate the output for different machines. 
Syntax: 

MODE expression 

The following chart gives the modes for some popular microcomputers, and illustrates how 
modes are grouped according to resolution. 

MODE CHART 

MSDOS type APPLE lie, IIc TRS-SO I, III 
Mode 
number Text Graphic Text Graphic Text Graphic 

0 40x25 character 40x24 character 32x16 character 

1 40x25 40x40 none 40x48 64x16 128x48 

2 80x25 character 80x24 character 32x16 character 

3 80x25 80x25 none 80x48 64x16 128x48 

4 80x25 character 40x24 character 32x16 character 

5 40x25 320x200 40x24 280x192 64x16 128x48 

6 80x25 character 80x24 character 32x16 character 

7 80x25 640x200 80x24 560x192 64x16 128x48 

8 40x25 character 40x24 character 32x16 640x240? 

9 40x25 40x40 Bottom 40x48 64x16 128x48 

10 80x25 character 80x24 character 32x16 character 

11 80x25 80x25 Bottom 80x48 64x16 128x48 

12 80x25 character 80x24 character 32x16 character 

13 40x25 320x200 Bottom 280x165 64x16 128x48 

14 80x25 character 80x24 character 32x16 character 

15 80x25 640x200 Bottom 560x165 64x16 128x48 

MACINTOSH CP/M-SO Be sure to read 

Text Graphic Text Graphic the appropriate 

Many Font SEE SEE 
appendix for 

Normally exact mode styles and Macintosh 80x24 Z80 
sizes here! APPENDIX APPENDIX designations. 

Note: Check your computer appendix for variations. 



GRAPHICS 

PLOTTING POINTS AND LINES 

0.0 

To set a specific screen position(s) to the current color or to draw lines from one screen 
position TO another, TO another ... , or to draw from the last screen position used (in another 
ZBasic statement) TO another ... 

PLOT [TO] horizontal, vertical [TO [ horizontal, vertical [TO ... ]]]] 

PLOT draws with the last color defined by COLOR. COLOR=O is the background color of 
most computers, while COLOR=-1 is the foreground color. If you have a system with a black 
background, COLOR -1 is white and COLOR 0 is black. See COLOR in this chapter. 

PLOT PLOT TO 
209 !J!l7 . . 

'III1111.IIIIIIIIIIIIIIIIIII'IIIIIIJII"'" 1023 
209 322 a/37 

0.0 .-'-~u..u.u.J..LLJ..J.1.I.J~u..u.LU..LLJ..~L.Cu.LU..u..c:. 

.. . 
. PLOT 209,304 PLOT :!09, 30~ TO 987, 643 TO :322,742 

· .. . · .. . . : II 
304,; .•.•••••. ~ .••• ,304.: ........ }::>: ... ~ ~ 

" . · . 
PLOT 967,643 

643: ~~ ': .................................. ~. 
· . . 

': : , : 
643 •. : ••..•••.•.•.•.• .:............... .: . · . . · . · . 
742 .• : •.•...•.•.•.•.••.. 

767 

As with all other graphic commands, PLOT uses the standard ZBasic coordinates of 1024 x 
768 regardless of the computer being used. When TO is used, ZBasic will plot a line from 
the first position TO the next position, TO the next position ... 

EXAMPLES OF PLOTTING 
PLOT 4,5 

PLOT 0,0 TO 1023,767 

PLOT TO 12,40 

PLOT 0,0 TO 400,0 TO 0,300 TO 0,0 

RESULT 
Turns on the pixel at the graphic position 
4 positions over and 5 positions down 

Plots a line from the upper left corner 
of the screen down to the lower 
right corner of the screen. 

Draws a line from the last position 
used with the PLOT command TO 
the point on the screen 12 positions 
over by 40 pOSitions down. 

Plots a triangle in the upper left 
corner of the screen. 

NOTE: All the examples above will plot in the current COLOR. 

1023 

Graphics 86 



GRAPHICS 

POINT 

87 Graphics 

POINT (horizontal coordinate, vertical coordinate) 

Returns the COLOR of the pixel at the ZBasic coordinate. Point is available on many 
computers to inquire about the COLOR of a specific screen graphic position (some 
computers do not have the capability to "see" pixels). 

As with other commands, ZBasic Device Independent Graphic coordinates may overlap 
pixels. The following illustration shows the pixels and color types associated with them. 

In this example: I2l=BACKGROUND (WHITE) 1 =FOREGROUND (BLACK) 

ZBasic 0 NT h ) coordinates P I {, V 
~0123 ... 
o ~-----------
1 
2 
3 

EXAMPLES * 
POINT (0,0) =1 
POINT (1,0) =1 
POINT (0,2) =0 
POINT (2,1) =0 
POINT (2,2) =1 

Screen Pixel 

• Note: Point returns COLOR of coordinate 

As with all other ZBasic graphic commands the standard device independent coordinate 
system of 1024 x 768 is used. 

Note: The ZBasic device independent coordinate system specifies poSitions on the screen, 
not pixels. See below for ways of setting your system to actual pixel coordinates, if needed. 

Macintosh and MSDOS systems can be set to use pixel coordinates with COORDINATE 
WINDOW. See Apple appendix for ways of configuring to pixel coordinates. Z8D see your 
hardware technical manual and the Z80 appendix for specifics of your machine. 



CIRCLE 

GRAPHICS 

CIRCLE [FILL] horizontal, vertical, radius 

CIRCLE draws a circle in the currently defined COLOR and RATIO. COLOR=O is the 
background color of most computers, while COLOR=-l is the foreground color. If you have 
a system with a black background, COLOR -1 is white and COLOR 0 is black. 

See RATIO for ways of changing the shapes of circles. Also see CIRCLE TO and CIRCLE 
PLOT for creating PIES and ARCS. 

If FILL is used, the circle will be a solid ball in the current color. 

CIRCLE 
850 

1023 

324 

d. CIRCLE FILL 850, 624, 50 

624 .. ~ ............... r~. ~~~...................... .•. . 
674 .: ............ ........... ..... ....... ... ......... . '" ra~~us - . - -

767 

As with all ZBasic graphic commands, the Device Independent Graphic Coordinates of 1024 
x 768 are the default. 

~ 
FILL is taken from PEN pattern; PEN .... n. Where n is one of the pen patterns used under the 
control panel. Quickdraw circles are also available using toolbox calls. See appendix. 

Graphics 88 



GRAPHICS 

GRAPHICS THAT EXTEND OFF THE SCREEN (CLIPPING) 

89 Graphics 

Jf coordinates are given that exceed the limits of the ZBasic screen coordinates, that part 
of the image exceeding the limtis will be "CLIPPED". 

It is still permissible to use these numbers and in many cases H is important to have them 
available for special effects. 

CIRCLE, or other graphic commands like PLOT, BOX, PRINT% etc., wHh coordinates 
that are off the screen but are within the limits of -8191 to +8192 are permissible and that 
part out of range will be "Clipped": 

GRAPHICS THAT 
EXTEND OFF THE SCREEN 

0,0 1023 

CIRCLE 1023,767,687 

767 

As with all ZBasic graphic commands, the Device Independent Coordinates of 1024 x 768 
are used. 



GRAPHICS 

SEGMENT OF A CIRCLE (PIE) SEGMENT OF A CIRCLE (ARC) 
512 0,0 512 

0,0 1023 t"'IIIIIIIIIIIIIIIIIIIIIIIIIIIII"I","1 

CIRClE 512,383,320 TO 80,32 CIRCLE 512,383,320 PLOT 80,32 

.~ ! r~ · . · . · . · . · . 
383 ,.................. t ......... 383 .; ··········cr····· 

CIRCLE 512,383,320 TO 192, 84 CIRClE 512,383,320 PLOT 192,84 

767 767 

'. J~\,' ,'~t, f 
, ::t,. 0 

SEGMENT OF A CIRCLE (PIE) 

To draw an enclosed segment of the circumference of a circle (PIE), use this syntax: 

CIRCLE h, v, radius TO starting BRAD degree, number of BRADs (counter clockwise) 

CIRCLE draws with the last color defined by COLOR. COLOR=O is the background color of 
most computers, while COLOR=-1 is the foreground color. If you have a system with a black 
background, COLOR -1 is white and COLOR 0 is black. See COLOR in this chapter. 

SEGMENT OF A CIRCLE (ARC) 

To draw a segment of the circumference of a circle (an ARC) use the syntax: 

CIRCLE h, v, radius PLOT starting BRAD degree, number of BRADs (counter-clockwise) 

CIRCLE draws with the last color defined by COLOR. COLOR=O is the background color of 
most computers, while COLOR=-1 is the foreground color. If you have a system with a black 
background, COLOR -1 is white and COLOR 0 is black. See COLOR in this chapter. 

Note: 256 BRADS=360 DEGREES. See the BRAD chart on the next page. As with all 
ZBasic graphic commands, the standard coordinates of 1024 x 768 are used. 

l!o 
FILL may be used with the CIRCLE FILL x,y,r, TO s,n statement on this version. The FILL 
pattern is taken from PEN pattern; PEN .... n. Where n is one of the pen patterns used under 
the control panel. Quickdraw arcs are also available using toolbOX calls. 

1023 

" .• ,·;1 

Graphics 90 



GRAPHICS 

BRADS 

91 Graphics 

Brads are used with ZBasic CIRCLE commands to determine a position on the circumference 
of a circle. Instead of DEGREEs of zero to 359, BRADs range from zero to 255. (Starting at 
3 O'clock going counter-clockwise.) 

ZBaslc™ BRAD CHART 

112 

128 

142 

192 Degrees INSIDE circle 
Brads OUTSIDE circle 

Methods of Measuring Angles and Circles 
RADIANS DEGREES GRADS BRADS 

~Ej~Ej 
Total Radians 
6.2831852 

Total Degrees 
360 

Total Grads 
400 

Total Brads 
256 

CONVERSIONS FROM ONE TYPE TO ANOTHER 
RADIANS=DEGREES* ATN(1 )/45 GRADS=10 * DEGREES/9 
RADIANS=9*GRADS/10 GRADS=RADIANS*63.66197723 
RADIANS=BRADS/40.7436666 GRADS=BRADS*1.5625 

DEGREES=RADIANS*45/ATN(1) 
DEGREES=BRADS*1.40625 
DEGREES=GRAD/63.66197723 

BRADS=DEGREES/1.40625 
BRADS=GRADS/1.5625 
BRADS=RADIANS*40.743666 

Also see USR8 and USR9 for high-speed Integer SIN and COS. 



RATIO 

GRAPHICS 

ZBasic allows you change the aspect ratio of any CIRCLE, ARC or PIE with the graphic 
statement RATIO: 

RATIO Width (-128 thru + 127), Height (-128 thru +127) 
(See CIRCLE) 

0,0 

:e 
767 

Examples: 

RATIO 

~ 
~ 

Ratio settings are executed immediately and all CIRCLE commands will be adjusted to the 
last ratio. 

!b 

+127 
+64 
+32 

(2) 

-32 
-64 
-96 

-128 

2 
1.5 
1.25 
(2) 

.75 

.5 

.25 
o 

times normal 
times normal 
times normal 
Normal proportion 
times normal 
times normal 
times normal 
(no width or height) 

Quickdraw circles use box coordinates to set circle shape. See toolbox section of appendix. 

Graphics 92 



GRAPHICS 

BOX 

93 Graphics 

Box is used for drawing rectangles in the current color. The size of a rectangle is specified by 
giving the coordinates of opposing corners. 

BOX [FILL] M, v1 TO h2, v2 

The first corner coordinate of the BOX. h1, v2 
h2, v2 The opposite corner coordinate of the BOX. 

The BOX is plotted in the current color. If FILL is used the BOX will be filled with the current 
COLOR. 

BOX 

II I I I I I I I I II I I I I II I I II' i • I" 1'1 I 1'1'1" " I ~I'" I I I 1'1': , 1023 0,0 
209 465 843 987 
-. .. 

: BOX 209,3·04 TO 465; ~ ~ 

:1::0 .•••••••••••••• 
B~X FILL 843~'134 TO 987,643 :/ 

767 

As with all ZBasic graphic commands, the device independent coordinates of 1024 x 768 are 
used. Notice the different quality of BOXes on various computers and different modes. 

!!b 
FILL is taken from PEN pattern; PEN .... n. Where n is one of the pen pattems used underthe 
control panel. Quickdraw boxes are also available using toolbox calls. See appendix. 



FILL 

GRAPHICS 

FILL Horizontal expression, Vertical expression 

The fill command will fill a screen position from the upper left most position it can reach 
without finding a color other than the background color, and down to the right and to the left 
until a non-background color is found. 

This command will not function on computers lacking the capability to read screen pixel 
coordinates. See computer appendix. 

Example: 

F~ll 
BEFORE AFTER 

FILL 0,384 

etO 

As with all ZBasic graphic commands, the Device Independent Coordinates of 1024 x 768 
are used. 

Also see CIRCLE FILL and BOX FILL. 

!b 
FILL pattern is taken from PEN pattern; PEN""n. Where n is one of the pen patterns used 
under the control panel. A much faster way to fill screen segments is using Quickdraw FILL 
with polygons, circles and rectangles. See appendix. 

Graphics 94 



GRAPHICS 

COLOR 

COLOR is used to signify the color to be used with PLOT, CIRCLE, BOX and FILL. All 
systems support zero and -1 for background and foreground colors (BLACK and WHITE 
respectively on most systems). 

COLOR [=) expression 

The following chart represents the color codes for IBM PC and compatible systems with color 
graphics. Colors codes vary significantly from system to system so check your computer 
appendix for variations. 

IBM pc and Compatible COLOR codes 
0= BLACK 8= GRAY 
1= BLUE 9= LIGHT BLUE 
2= GREEN 10= LIGHT GREEN 
3= CYAN 11= LlGHTCYAN 
4= RED 12= LIGHT RED 
5= MAGENTA 13= LIGHT MAGENTA 
6= BROWN 14= YELLOW 
7= WHITE 15= BRIGHT WHITE 

Color intensities will vary depending on the graphics hardware and monitor being used. 
Check your computer appendix for variations. 

& 
While most Macintoshes are black and white, COLOR is useful when printing to the 
ImageWriter II with a color ribbon. See appendix for details. 

CLS, CLSLlNE, CLSPAGE 

95 Graphics 

CLS is used to clear the entire screen of graphics or text quickly. Optionally, the text screen 
may be filled with a specific ASCII character (in most modes). Check your computer appendix 
for variations. 

CLS [ASCII code:O-255 ) 

CLS LINE is used to clear a text line of text and graphics from the current cursor position to 
the end of that line. 

CLS LINE 

CLS PAGE is used to clear a text screen of text and graphics from the current cursor poSition 
to the end of the screen. 

CLS PAGE 

See Computer Appendix 



GRAPHICS 

BUSINESS GRAPHS, CHARTS ETC. 

Business graphs and charts are easily accomplished with ZBasic graphics. An added benefit 
is that the graphs are also easily transported to different computers. 

HIGH RESOLUTION LOW RESOLUTION 

~ / 1m/" ... 
JDl 1 2.2'tS 

ffJ' 
. 5 • 

CHARACTER 

To further assist you in porting graph programs, ZBasic has two text commands that 
correspond to the graphic position on the screen instead of the text position: 

PRINT%(h, v) 

INPUT%(h,v) 

Prints from the position specified by the 
ZBasic graphic coordinates. 

Positions the input to be from the graphic 
position specified by h,v. 

The syntax of these commands is the same as PRINT and INPUT. Also see PRINT@. 

Graphics 96 



GRAPHICS 

SPECIALIZED GRAPHICS 

The Apple, MSDOS, Macintosh and some Z80 versions of ZBasic have some added 
powerful features for graphics. See the appendix for your version of ZBasic for specific 
information: 

APPLE 1/ GRAPHICS 

B 
Double Hi-Res with 16 colors is supported for the Apple /Ie, /lc and /lGS with 128K or more. 
Text and graphic may be integrated on the screen and customizable character sets are also 
supported. LONG FN's for DRAW, BLOAD and BSAVE are on the master disk. 

IBM PC, MSDOS GRAPHICS 

• Version 4.0 supports most of the graphic modes of IBM PC's and compatibles including; 
Hercules Monchrome Graphics, Hercules PLUS, Enhanced Graphics Adaptor (EGA), Color 
Graphics Adaptor (CGA), Monochrome and all other graphics modes. 

Also supported are GET and PUT graphic commands, PLOT USING, COORDINATE and 
COORDINATE WINDOW. See appendix for specifics. 

MACINTOSH GRAPHICS 

!b 
The master disk contains examples of printing and displaying MacPaint graphics and TI FF bit 
images. Also supported is GET and PUT graphics, PICTURE, TEXT, Apple's QuickDraw 
and toolbox routines, PEN and many more. See appendix for specifics. 

TRS-80, CP/M-aO GRAPHICS 

97 Graphics 

)a"k ............. 
Most TRS-80 graphics are supported including Radio Shack's Hi-Res and Micro-Lab's Hi-Res 
boards on the Model 4 in MODE 8 and 15 (text and graphic integration is not supported with 
the Radio Shack Hi-Res board). Hi-Res is not supported on the model one or three. 

Because of the diversity of machines for CP/M systems and because of a lack of a common 
interface, graphics are not supported wHh CP/M systems (although we have special graphics 
versions for Kaypro 4 and 10 with graphics capabilities). 



FILES 

TM 

ASIC 
FILE HANDLING 

ZBasic file commands are the same on all versions. This section explains file commands 
and statements. ZBasic file concepts are similar to a file cabinet: 

John 

Last Name ~S~m~i~th~ __________ __ 

Address 1234 East SouthWest Ave. 

City San Mateo State~ZIP 98345 

Age 34 Money Spent ~.23 

EVERYDAY TERMS 
FILE CABINET 
Holds files in drawers. 

FILE 
Contains data for a mail list or inventory 
control system among other things. 

RECORD 
One logical part of a file: All the data for 
Mr. Smith in a mail list (name, address ... ) 

PARTS OF A RECORD 
One part of a Record: The address or 
the City in a mail list record. 

ZBASIC TERMS 
DISK OPERATING SYSTEM 
Holds files on diskettes, cartridges etc. 

FILENAME, FILENUMBER 
Contains data for a mail list or inventory 
control system among other things. 

RECORD 
One logical part of a file: All the data for 
Mr. Smith in a mail list file (name, address ... ) 

LOCATION 
One part of a RECORD: The address in 
a mail list record or even one character 
in the address. 

Files 98 



FILES 

GLOSSARY OF ZBASIC FILE TERMS 

DOS: The Disk Operating System is a program residing in a computer's memory which 
takes care of the actual reading, writing and file control on a storage device such as floppy 
drives, hard drives, tape backup devices, etc. ZBasic works with the formats and syntax of 
each disk operating system using its syntax for such things as filenames, drive specs, etc. 

FILENAME: Tells ZBasic which file to access. A string constant or variable is used. 

FILESPEC: The part of a filename (or some other indicator) that specifies the device, 
directory or sub-directory a file is on. See your DOS manual for correct filespec syntax. 

FILENUMBER: ZBasic may be configured to have from 0 to 99 files OPEN at the same 
time (if DOS and available memory permit). Filenumbers are used in a program with disk file 
commands to instruct ZBasic which file is being referred to. For example; if you open a file 
called "Fred" as number one, when doing file commands you need only refer to file number 
one, not "Fred". This saves a lot of typing. 

RECORD: A record is one segment of a file. A mail list record might include Name, 
Address, City, State, ZIP, etc. If you want data from a specific record, it is called up using 
the RECORD command. The first record in a ZBasic file is RECORD O. There may be up to 
65,535 RECORDs in a file" RECORD #filenumber, record, location. 

LOCATION: Specifies a location within a record. There may be from 0 to 65,535 locations 
in a record. Each location in a record can hold one character (1 byte). Location is the 
second parameter in RECORD; RECORD #fiIenumber, record, location. 

SEQUENTIAL METHOD: This is a method of reading a file one element or record at a 
time, in order ---one after another i.e. 1,2,3 .... 

RANDOM METHOD: This is the method of reading file items randomly--- out of order. i.e. 
RECORD 20, 90, 1, 22 .... 

FILE POINTER: "is often important to know how to manipulate the file pointer. ZBasic 
allows you to position the file pointer by using RECORD, and tells you where the file pointer 
is currently positioned by using REC(filenumber) and LOC(filenumber). 

COMPATIBILITY WITH MSBASICTM 

99 Files 

Experienced BASIC programmers will like the power and simplicity of ZBasic file commands. 
For the first time, BASIC file handling commands have been made compatible and portable. 
All ZBasic disk commands function the same way regardless of the computer being used. 

Sequential file commands are very similar. The main difference being that items written with 
PRINT# should be separated with quoted commas in ZBasic if being read back with INPUT#. 

Random file commands have been made simpler, yet just as powerful. Those experienced 
with MSBASIC file commands should find the conversion painless: 

ZBASIC COMMANDS 
READ, WRITE, RECORD 

PRINT#, INPUT#, LlNEINPUT# 

MSBASIC EQUIVALENTS 
FIELD, GET, PUT, MKI$, CVI, MKS$, 
CVS, MKD$, CVD, LSET, RSET 

PRINT#, INPUT#, LlNEINPUT# 



FILES 

FILE COMMANDS COVERED IN THIS SECTION 

This outline gives an overall perspective of file commands available in this section and 
groups commands in logical order. This section of the manual provides lots of examples 
and a tutorial for the file commands of ZBasic. 

OPENING AND CLOSING FILES 
OPEN 
CLOSE 

DELETING OR ERASING FILES 
KILL 

RENAMING A FILE 
RENAME 

POSITIONING THE FILE POINTER 
RECORD 

WRITING TO A FILE 
WRITE# 
PRINT# 
PRINT# , USING 
ROUTE 

READING FROM A FILE 
READ# 
INPUT# 
LlNEINPUT# 

GETTING IMPORTANT FILE INFORMATION 
LOF 
LOG 
REG 

Be sure to read the appendix for your computer. Many versions have extra commands that 
take advantage of a particular system. 

Files 100 



FILES 

CREATING AND OPENING FILES 

OPEN ["0, lor R"J, filenumber, "filename" [,record length J 

All ZBasic files must be opened before processing. 

OPEN "0" 
Opens a file for "O"utput only. If the file does not exist, it is created. If it does exist, all data 
and pointers are erased and it is opened as a new file. 

OPEN "I" 
Opens a file for "I"nput only. If the file does not exist, a "File Not Found" error is generated 
for that file number. 

OPEN "R" 
Opens a "R"andom access file for reading and/or writing. If the file does not exist, it is 
created. If the file exists, it is opened, as is, for reading or writing. 

fifenumber 
ZBasic may be configured to have from 1 to 99 files open at one time in a program 
(depending on the DOS and available memory for that computer). Files are assigned 
numbers so ZBasic knows to which file it is being referred. The original copy of ZBasic is 
configured to allow up to two open files at a time. If you wish to have more files open, you 
may configure ZBasic for up to 99 open files. See "Configure". 

"filename" 
The filename is the name of the file on the disk. Filenames may be string constants or string 
variables. Filenames may also specify which drive to use. Filename and drive speCification 
syntax is dictated by the disk operating system. See your DOS manual. 

record length 
Record length is optional. If it is omitted, a record length of 256 characters is assumed. 
Maximum record length is 65,535 characters, or bytes (check appendix for variations). 

EXAMPLES OF OPENING FILES 

101 Files 

OPEN "0", 2, "NAMES", 99 
Opens filenumber 2 as "NAMES", with a record length of 99 characters, for OUTPUT only. If 
"NAMES" doesn1 exist, a file named "NAMES" is created. If a file called "NAMES" exists, all 
data and pointers in it are deleted and it is opened as a new file. 
OPEN "1",1, A$ 
Opens file number 1 whose filename is the contents of A$, with assumed record length of 
256 for INPUT only. If A$ doesn't exist, a "File Not Found" error is generated for filenumber 
one. See "Disk Error Trapping" for more information. 
OPEN "R", 2, "BIGFILE" , 90 
Opens filenumber 2 named "BIG FILE", with a record length of 90, for Reading and Writing. 
If "BIG FILE" doesn't exist it is created. 

a 
OPEN"IR", "OR", "RR" for resource forks. OPEN "A" for append also supported. Volumn 
number is used after record number i.e. OPEN"R",1,"Fred",99, vol%. A number of other 
enhancements are covered in the appendix. . 



FILES 

CLOSING FILES 

CLOSE[# filenumber [. filenumber, ... )] 

All files should be closed when processing is finished or before ending a program. E.ailJ.J.!f1 
to close files maY resuff in lost data 

CLOSE without a filenumber closes all open files (STOP and END will also CLOSE all files). 
It is very important to close all opened files before exiting a program. When a file is closed, 
the end-of-file-marker is updated and any data in the disk buffer is then written to the disk. 

After you close a file, that filenumber may be used again with another OPEN. 

DELETING FILES 

KILL "filename" 

Files may be deleted from the disk from within a program or from the editor with the "KILL" 
command. From the editor the filename must be in quotes on Macintosh and Z80 versions. 

Filename is a simplestring and may be represented by a string constant or variable: 

RENAMING FILES 

TRONB 
INPUT"FILE TO KILL: ";FILE$ 
INPUT"ARE YOU SURE? ";A$ 
IF A$<>"YES" THEN END 
KILL FILE$ 
END 

RENAME "oldfilename" TO [or comma I "newfilename" 

Files may be renamed on the disk from within a program or directly using RENAME. 

Filenames may be a string constant or variable. Example: 

pl!l 

TRONB 
INPUT"FILE TO RENAME";OLDFILE$ 
INPUT"NEW NAME: ";NEWFILE$ 
RENAME OLDFILE$ TO NEWFILE$ 

The TRS-80 Model 1 ,3 version does not support RENAME. 

a.a 
Macintosh: Both KILL and RENAME also use Volumn number. See appendix for syntax. 
MSDOS: CHDIR and Path names may be used. APPLE ProDOS: Pathnames may be used. 

Files 102 



FILES 

WRITING TO A FILE USING PRINT#, WRITE# AND ROUTE# 

PRINT# 

WRITE# 

ROUTE# 

103 Rles 

PRINT # filenumber, (variables, constants or equations) [ j"," ... ) 

PRINT# is used for writing data in TEXT format. It is saved to the disk quite like an image is 
saved to paper using LPRINT. PRINT# is useful for many things but it is not the fastest way 
or most efficient way to save data. See WRITE# below. Examples: 

PRINT#1, A$ j","j C$j","j Z% j","j X# 
Prints A$, C$, Z%, and X#, to filenumber one starting at the current file pointer. A carriage 
return* is written after the X#. This command stores data the same way it would be printed. 
Syntax is compatible with older versions of BASIC. The file pointer will point at the location 
in the file directly following the carriage return: 

PRINT#1,USING "##.##"j 12.1 
Formats output to filenumber one starting at the current file pointer (stores 12.10). 
Functions like PRINT USING. 

*Data MUST be separated by a delimiter of a quoted comma or a carriage retum if reading 
data back using INPUT#. Some systems write a carriage return and a linefeed (two bytes). 

WRITE [#) filenumber, variable [. variable ... ) 

WRITE# is used for storing data in condensed format at the fastest speed. WRITE# may 
only be used with variables and data is read back with the READ# statement. Example: 

WRITE#1, A$j10, Z%, K$j2 
Writes 10 characters from A$, the value of Z%, and 2 characters from K$ to file number one, 
starting at the current file pointer. In the example; A$;1 0 stores A$ plus enough spaces, if 
any, to make up ten characters (or truncates to ten characters if longer). 

ROUTE [#] device 

ROUTE is used to route output to a specific device. Device numbers are: 

" video monitor (default) 1-99 DISK filenumber (1-99) 
128 PRINTER (same as LPRINT) -1 or -2 SERIAL port 1 or 2* 

Example of routing screen data to a disk file or serial port: 

1. Open a file for output (use OPEN "C" and -1 or -2 for serial ports) 
2. ROUTE to filenumber or serial port number that was opened. 

All screen PRINT statements will be routed to the device specified. 
3. ROUTE" (so output goes back to the video) 
4. Close the file or port using: CLOSE# n. 

* Be sure to see your computer appendix for specifics. 



FILES 

READING FROM A FILE USING INPUT#, L1NEINPUT# AND READ# 

INPUT# 

INPUT # fifenumber, variable [. variable ... ] 

INPUT# is used to read text data from files normally created with PRINT#. The data must be 
read back in the same format as it was sent with PRINT#. When using PRINT# be sure to 
separate data items with quoted comma or carriage return delimiters, otherwise data may be 
read incorrectly or out of sequence. Example: 

INPUT#1, A$, C$, Z%, X# 
Inputs values from filenumber one from the current RECORD and LOCATION pointer, into 
A$, C$, Z%, and X#. In this example the data is input which was created using the PRINT# 
example on the previous page. The file pointer will be pointing to the next location after X#. 

L1NEINPUT# 

READ# 

L1NEINPUT# filenumber, variable (One variable only) 

L1NEINPUT# is used primarily for reading text files without the code limitations of INPUT#. 
Commas, quotes and other many other ASCII characters are read without breaking up the 
line. It will accept all ASCII codes accept carriage returns or linefeeds. TEXT is read until a 
carriage return or Iinefeed is encountered or 255 characters, whichever comes first: 

L1NEINPUT#5, A$ 
Inputs a line into A$ from filenumber five from the current file pointer. Accepts all ASCII 
codes including commas and quotes, except linefeed (chrl0) and carriage return (chr 13). 
Terminates input after a chr 13, chr 10, End-of-file, or 255 characters. 

READ [#] fifenumber, variable [. variable ... ] 

READ# is the counterpart of WRITE#. It is used to read back data created with WRITE# in 
condensed high-speed format. This is the most efficient way of reading files. Example: 

READ#l, A$;10, Z%, K$;2 
Reads 10 characters into A$, an integer number into Z%, and 2 characters into K$ from 
filenumber one, from the current file pointer. The file pointer will be pointing to the location 
directly following the last character in K$ (includes trailing spaces tl string was less than ten). 

GETTING IMPORTANT INFORMATION ABOUT A SPECIFIC FILE 

~ 
REC( filenumber) 

LOC( filenumber) 

LOF( filenumber) 

Description 
Returns the current RECORD number location for fifenumber. 

Returns the current location within the current RECORD for 
fifenumber (the byte offset). 

Returns the last RECORD number of fifenumber. If there 
are one or zero records in the file, LOF will return one. 
Due to the limitations of some disk operating systems this 
function is not always exact on some systems. Check the 
COMPUTER APPENDIX for specifics. 

Files 104 



FILES 

ZBASIC FILE STRUCTURE 

105 Rles 

All ZBasic files are a contiguous string of characters and/or numbers (bytes). The order and 
type of characters or numbers depends on the program that created the file. 

FILE STRUCTURE 
OPEN "R", 1, "TESTFILE", 30 

~~~~~R~E~C;O~R~D~(~S)~W~lt~h~le~n~g~th~S~O~f~3~O~~;:~ f Up to 65,535 
RECORD(s) In

L-L...J'--I......L....J....L~~....L.......L..."'--"'--L...J'--I'--I....J....L...L..J....~.J 8 ZBasle file.

RECORD 6

?.:=:::=::~b~~~~i,J~=::~:=::~ Up to 65,535
LOCATION(s) In

L...l.....L..1....1.....L..1....1....L..JL...L....L....IL...L..1...JL...L.L.L..L..L-L...L..L~ a ZBasle RECORD.
o 1 23456... 29

'The "d" Is at LOCATION 3 In RECORD 6

In the illustration, the name "Fred Stein" was stored in RECORD six of "TESTFILE". To
point to the "d" in FILENUMBER 1, RECORD 6, LOCATION 3 use the syntax:

RECORD/tl, 6, 3

The location within a record is optional, zero is assumed if no location is given. If RECORD 1,
6 had been used (without the 3). the pointer would have been positioned at the ··F" in
"Fred" which is LOCATION zero.

If RECORD is not used, reading or writing starts from the current pointer position. If a file
has just been OPEN(ed), the pointer is at the beginning of the file. (RECORD#n, 0, 0)

After each read or write, the file pointer is moved to the next available position in the file .

~
Macintosh: RECORD length and number of records is 2,147,483,647.

FILES

POSITIONING THE FILE POINTER

RECORD [#] filenumber, RECORD number [. LOCATION numbetj

To point to any LOCATION in any RECORD in any FILE, use:

RECORD 3, 23, 3 Sets the pOinter of filenumber 3 to RECORD 23, LOCATION 3.
If RECORD 23 contained "JOHN", then LOCATION 3
of this record would be "N", since zero is significant.

RECORD #3, 23 Sets the pointer for file#3 to location zero in RECORD 23. If
RECORD 23 contained JOHN, the character being pointed at
would be "J".

RECORD IS OPTIONAL

If the RECORD statement is not used in a program, the pointer will have a starting position of
RECORD 0, LOCATION 0 and is automatically incremented to the next position (for reading
or writing) depending on the length of the data.

FILE SIZE LIMITATIONS'

The file size limitations for sequential files are either the physical limitations of the storage
device or the limit of the Disk Operating system for that computer.

The limitation for Random access files is 65,536 records with each record containing up to
65,536 characters. Maximum file length is 4,294,967,296 characters (although multiple
files may be linked to create larger files).

It is important to note that most Disk Operating Systems do not have this capability. Check
your DOS manual for maximum file sizes and limitations.

!b
Macintosh: RECORD length and number of records is 2,147,483,647.

CONFIGURING THE NUMBER OF FILES IN A ZBASIC PROGRAM

If the number of files is not configured, ZBasic assumes only 2 files will be used and sets
aside only enough memory for two files.

To use more than 2 files, configure ZBasic for the number of files you need under
"Configure" .

ZBasic allows the user to configure up to 99 disk files for use in a program at one time
(memory and disk operating system permitting). Each type of computer requires a different
amount of buffer (memory) space for each file used so check your computer appendix for
specifics (usually there are 256--1024 bytes allocated per file; 10 files would require
between 2,560-10,240 bytes).

'See computer appendix for variations.

Files 106

SEQUENTIAL METHOD

107 Sequential File Method

SEQUENTIAL METHOD

TM

ASIC
SEQUENTIAL METHOD

This section covers some of the methods that may used when reading or writing files
sequentially. It covers the use of READ, WRITE, PRINT#, INPUT# and LlNEINPUT#.

SEQUENTIAL METHOD USING PRINT# AND INPUT#

These two programs demonstrate how to create, write, and read a file with PRINT# and
INPUT# using the Sequential Method:

PRINT#
OPEN n O",l,"NAMES"
DO: INPUT"Name: "; NAME$

INPUT "Age:"; AGE
PRINT#l, NAME$","AGE

UNTIL NAME$="END"
CLOSE#l: END

INPUT#
OPEN"I",l,"NAMES n

DO: INPUT#l, NAME$,AGE
PRINT NAME$","AGE

UNTIL NAME$="END"
CLOSE#l:END

Type "END" to finish inputing names in the PRINT# program. The INPUT#
program will INPUT the names until "END" is read.

FILE IMAGE CREATED WITH PRINT#

IT 10 1m!. 12 131 rrl H la Ir I r Iy I· 14151 !fIG I i/ I I d I a I. 11 17 Iff I KI a I t I h Iy I. 11 10 l1jfirl
rr Carriage return and sometimes lineteed depending on the Disk Operating System (DOS)

Unless a semi-colon is used after the last data being printed to the disk, the
end of each PRINT# statement is marked with a carriage retum.

PRINT# USING

USING is used to format the PRINT# data. See "PRINT USING".

COMMAS IN PRINT# AND INPUT#

It is important to remember when using PRINT# w~h more than one data ~em,
that quoted commas (",") must be used to set delimiters for data being written. It
commas are not quoted, they will merely put spaces to the disk (as to the printer)
and INPUT# will not be able to discern the breaking points for the data.

Sequential File Method 108

SEQUENTIAL METHOD

SEQUENTIAL METHOD USING READ# AND WRITE#

Other commands which may be used to read and write sequential data are READ# and
WRITE#. The main difference between READ#--WRITE# and PRINT#--INPUT# is that the
latter stores numeric data and string data, much the same way as H appears on a printer;
READ# and WRITE# store string and numeric data in a more condensed and predictable
format. In most cases this method is also much faster.

VARIABLES MUST BE USED WITH READ# AND WRITE#

READ# and WRITE# require that variables be used for data. Constants or expressions may
not be used with these commands except the string length, which may be an expression,
constant or variable.

HOW STRINGS ARE STORED USING WRITE#

When using WRITE# or READ# wHh strings, you must follow the string variable with the
length of the string:

WRITE#1, A$;10, B$;LB READ#1, A$;10, B$;LB

An expression may be used to specify the string length and .IIll..lS1 be included. When
WRITE#ing strings that are shorter than the specnied length, ZBasic will add spaces to the
string to make H equal to that length. If the string is longer than the length specified, it will be
"Chopped off" (If the length of A$ is 20 and you WRITE#1 ,A$;1 0, the last 10 characters of
A$ will not be written to the file).

Normally, you will READ# strings back exactly the same way you WRITE# them. Notice that
the spaces become a part of the string when they are READ# back. If you WRITE# A$;5 ,
and A$="HI" when you READ# A$;5, back, A$ will equal "HI "(three spaces at the end of
H). The length of A$ will be 5.

To delete the spaces from the end of a string (A$ in this example), use this statement
directly following a READ# statement:

WHILE ASC (RIGHT$ (AS, 1» ~32: A$~LEFT$ (A$, LEN (A$) -1): WEND

You can use READ# and WRITE# using variable length strings as well. See the two format
examples on the following pages.

109 Sequential File Method

SEQUENTIAL METHOD

READ# AND WRITE# IN CONDENSED NUMBER FORMAT

Numbers are stored in condensed format when using READ# and WRITE#. This is done to
conserve disk space AND to make numeric space requirements more predictable. ZBasic
automatically reads and writes condensed numbers in this format. Just be sure to read the
data in exactly the same order and precision with which it was written. Space requirements
by numeric variable type are as follows:

PRECISION
INTEGER

MAXIMUM DIGITS
4.3 (±32,767)

SPACE REQUIRED
2 bytes

SINGLE PRECISION
DOUBLE PRECISION

6 (defautl)
14 (default)

4 bytes
8 bytes

Since single and double preCision may be configured by the user, use this equation to
calculate the disk space required if different than above:

(Digits of precision I 2) +1 = number of bytes per variable

~
Longlnteger has 9.2 digits and requires 4 bytes for storage. To calculate the storage
needs for Macintosh Double precision; Digits/2+2=space required per variable.

INTEGER NUMBER CONVERSIONS

For those programmers that want to control conversions these commands are available.
They are not required with READ and WRITE since these commands do it automatically.

X=CVI (simplestring)
A$=MKI$ (integer)

Converts the first two bytes of simple-string to integer (X).
Converts an integer to a 2 byte string.

SINGLE AND DOUBLE PRECISION NUMBER CONVERSIONS

For those programmers that want to control conversions these commands are available.
They are not required with READ and WRITE since these commands do it automatically.

X#=CVB (simplestring) Converts up to the first 8 bytes' of simplestring to an uncond-
ensed double precision equivalent and stores the value in X#.
(If string length is less than eight characters, only that many
characters will be converted. At least two bytes are needed.)

A$=MKB$ (X#) Converts a Double precision number to an 8 byte string.'

XI=CVB (simplestring) Converts the first 4 bytes' of simplestring into a single precision
number and stores the value in Xl If string length is less than
eight characters, only that many characters will be converted.
At least two bytes are needed.

A$=MKB$ (X!) Converts a single preCision number to a 4 byte string:

'Note: The number of bytes of string space in the conversions depends on the precision
set by the user. Use the equation above for calculating the space requirements. ZBasic
assumes 8 bytes for double precision and 4 bytes for single precision if the user does not
set precision.

~
To manipulate Longlntegers with MKI$/CVI use DEFSTR LONG. See Macintosh appendix.

Sequential File Method 110

SEQUENTIAL METHOD

SEQUENTIAL FILE METHOD USING READ# AND WRITE#

The following programs illustrate how to use READ# and WRITE# using the sequential file
method.

USING READ# AND WRITE# WITH SET LENGTH STRINGS

The programs below create and read back a file with the sequential method using READ#
and WRITE#. String length is set to 10 characters by the "10" following NAME$. Z8asic
adds spaces to a string to make it 10 characters in length. then saves it to the disk.

AGE is assumed to be an integer number since it was not defined and is stored in
condensed integer format.

WRITE#
OPEN"O", 1, "NAMES"
DO: INPUT"Name: "; NAME$

INPUT"Age:"i AGE
WRITE#l,NAME$;lO, AGE

UNTIL NAME$="END"
CLOSEU: END

OPEN U I",l,"NAMES"
DO:READ#l,NAME$;lO, AGE

PRINT NAME$;",";AGE
A$=LEFT$(NAME$,3)

UNTIL NAME$="END"
CLOSEU: END

Type "END" to finish inputting names for the WRITE# program. The READ# program will
READ the names until "END" is encountered.

FIXED STRING LENGTH WRITE#

This illustration shows how strings saved with set lengths appear in a disk file:

FILE IMAGE CREATED WITH WRITE#

Condensed 2 byte
Integer numbers

Wrth SET STRING LENGTHS
~ 23 _______ -... 4S

A. A. A.

Sets 10 characters for each string. ~ a string is less than 10 characters
the rest of the string is packed with spaces.

The reason the ages 23. 45 and 17 are not shown in the file boxes is because the numbers
are stored in condensed format (2 byte integer).

111 Sequential File Method

SEQUENTIAL METHOD

USING READ# AND WRITE# with VARIABLE LENGTH STRINGS

READ# and WRITE# offer some benefits over PRINT# and INPUT# in that they will read and
write strings with ANY ASCII characters. This includes quotes, commas, carriage retums or
any ASCII characters with a code in the range of 0-255. The following programs will save
strings in condensed format, using the amount of storage required for each string variable.

WRITE#
OPEN"O",l,IINAMES"
DO: INPUT"Name: "; NAME$

INPUT" Age: "; AGE
LB$=CHR$(LEN(NAME$»
WRITE#l,LB$;l
WRITE#l, NAME$;ASC(LB$),AGE

UNTIL NAME$="END"
LAST$="END" :
WRITE#1,LAST$;3:CLOSE#1
END

OPEN"I",l,"NAMES"
REM
DO: READ # 1 ,LB$; 1

READ # 1 , NAME$;ASC(LB$) ,AGE
PRINT NAME$","AGE

UNTIL A$="END"
CLOSE#l
END

The WRITE# program stores a one byte string called LB$ (for Length Byte). The ASCII of
LB$ (a number from 0 to 255) tells us the length of NAME$.

Notice in line 30 (of READ#) that LB$ is read BEFORE NAME$, thus allowing us to read the
length of NAME$ first (all data in file handling statements is processed IN-ORDER).

VARIABLE STRING LENGTH WRITE#

This illustration shows how the data is saved to the disk when string data is saved using the
variable length method. LB for "Tom" would be 3, LB for "Harry" would be 5, elc ...

FILE IMAGE CREATED USING WRITE#
W~h VARIABLE STRING LENGTH

Condensed 2 byte ~ 23 .. 45 • 17 • 101
Integer numbers A A A A

I ~ITI olml-I-I ~I HI a I r I r I y I-I-I~ IGI i II I dla I-I-I~ I Kia I I I hE 1-1-1
b Represents the Length Byte (stored as LB$ in the example)

Sequential File Method 112

SEQUENTIAL METHOD

APPENDING DATA TO AN EXISTING FILE CREATED
USING THE SEQUENTIAL METHOD

Sometimes it is faster (and easier) to append data to the end of an existing text file, instead
of reading the file back in, and then out again.

This may be accomplished by using "RH, for random access file when opening the file, and
keeping track of the last position in a file using REC(filenumber) and LOC(filenumber) and
pulling a character 26 at the end of the file .

To append sequentially to a text file created with other programs try using this example
program. The key is setting the record length to the right amount. The MS-DOS version
uses 128. Other versions will vary.

This example creates a function called: FN Open (f$, F%) and will OPEN the file named f$,
with file number f%, for appending. The RECORD pointer will be positioned to the next
available space in the file.

To close a file properly for future appending, use the function called FN Close (f$, f%).

LONG FN Open (f$,f%): REM FN OPEN(f$, f%)
OPEN "R", f%, f$,128:REM Change 128 to correct# for your DOS
Fi1e1en%=LOF(f%): NextRec%=Fi1eLen%: NextLoc%=0
LONG IF FileLen%>0

NextRec%=NextRec%-1
RECORD #f%, NextRec%, NextLoc%
READ #f%, NextRec$;128: REM Change this 128 too!
NextLoc%=INSTR(1,NextRec$,CHR$(26»: REM (zero on Apple)
IF NextLoc%>O THEN NextLoc%=NextLoc%-1 ELSE NextRec%=NextRec%+1

END IF
RECORD #%f, NextRec%, NextLoc%

END FN

LONG FN Close (f$, f%)
REM TCLOSE the file correctly with an appended chr 26.
PRINT#f%, CHR$(26);
CLOSE#f%
END FN

NOTE: This method will work with ASCII text flies ONL VI

~
See Open "A" in the appendix for opening files for APpend.

113 Sequential File Method

RANDOM METHOD

ASIC
CREATING FILES USING THE RANDOM ACCESS METHOD

Random access methods are very important in disk file handling. Any data in a file may be
stored or retrieved without regard to the other data in the file. A character or field from the
last record in a file may be read (or wrnten) without having to read any other records.

A simple example of the Random access method is the following program that reads or
wrnes single characters to any LOCATION in a file:

RANDOM ACCESS EXAMPLE USING A ONE BYTE RECORD LENGTH

OPEN "R", 1 , "DATA", 1
REM RECORD LENGTH = 1 character

"Get record number"
DO: INPUT "Record number: ";RN

INPUT "<R>ead, <W>rite, <E>nd:"; A$
IF A$="R" GOSUB "Read" ELSE IF A$ = "W" GOSUB "Write"

UNTIL A$="E": CLOSE#l: END

uWrite"
INPUT "Enter character:" A$
RECORD # 1 , RN
WRITE #l,A$;l :RETURN

"Read"
RECORD #l,RN :REM Point at record# RN
READ #l,A$;l
PRINT" Character in RECORD# "; RN ;" was" ;A$: RETURN

To change this program to one that would read or wrne people's names, merely change the
RECORD LENGTH to a larger number and increase the number after the A$ in the READ#
and WRITE# statements.

The following pages will demonstrate a more practical use of the Random Access method
by creating a mail list program in easy to understand, step by step procedures.

Random Access File Method 114

RANDOM METHOD

CREATING A MAIL LIST USING THE RANDOM ACCESS METHOD

This mail list uses: First and Last name, Address, City, State, Zip, Age and Money
spent. The first thing to do is calculate the record length for the mail liS! file. This is
done by calculating the space requirements for each field in a RECORD.

FIELD
FIRST NAME
LAST NAME
ADDRESS
CITY
STATE
ZIP
AGE
MONEY SPENT
Totals:

VARIABLE TYPE
STRING$
STRING$
STRING$
STRING$
STRING$
DOUBLE PRECISION
INTEGER
SINGLE PRECISION
8 VARIABLES

SPACE NEEDED
10 characters
18 characters
35 characters
25 characters
15 characters
8 bytes (holds up to 14 digits)
2 bytes (Holds up to 32,767)
4 bytes (Holds up to 6 digits)
117 bytes per RECORD

The following illustration illustrates how the mail list data is stored within each
RECORD. LOCATION numbers are shown by position.

MAIL LIST RECORD LAYOUT

0--------- Locations ·----------9 10--------------------Locations ------------------------------27

I J I 01 h In! I I I I I II simi ij t I h I I I I I I I I I I I I I I
First name Last name

10 Character :stnng 18 character :stnng

117 TOTAL
LOCATIONS

28-- Locations --62

191415161811El alsltilMlij s lslilsislilpiplij Isltl·IIAlplq 19131111
Address

35 Character :string

63--- Locations -----------------------------------87

IslolultlhlelalsltllTlulsiclalllol oIsial I I I I I Age
City

25 character String
2 byte Integer

/'
88-----------· Locations ----------------------102 103------Loc. --------110 111-112 113---116

.--.--.
condo

State ZIP Money Spent
15 character string 8 byte Double precision 4 byte Single precision

115 Random Access File Method

RANDOM METHOD

MAIL LIST PROGRAM

The following program will READ# and WRITE# mail list data as described on previous
pages. The names are input from the user and a mail list file record is created for each
name.

You will be able to retrieve, print, and search for names in the mail list and, with some simple
modifications (like using the sort routines in the ARRAY section of this manual) you will
have a complete mail list program ready to use.

EXPLANATIONS OF THE MAIL LIST PROGRAM BY LINE NUMBER

10-21

22

25-77

80

100-210

220

230-255

500-590

700-780

1000-1040

1100-1140

Asks if you want to create a new file. If you say
yes the old data is written over.

If old data is being used, the data in RECORD zero is READ
to find out how many names are on the disk. NR holds the
number of records on the disk.

Puts a menu on the screen and awaits user input.

"END" routine. Closes file and exits the program.

"ADD" names to mail list. Gets data from user,
checks if OK. If not OK starts over. Note that the spaces in the
input statements are for looks only. Space may be omitted.

If not OK then redo the input.

Gets the disk record (DR) from NR. Saves the
variables to disk, then increments the number of
records. (NR=NR+ 1) and saves it to disk record zero.

PRINT(s) all the names in the file to the printer.
(Change LPRINT to PRINT for screen output).

"FIND" all occurences of LAST NAME or PART of a LAST NAME.
To find all the names that start with "G" just type in "G".
To find "SMITH" type in "SMITH" or "SMIT" or "SM".

"READ A MAIL LIST ITEM"
READ(s) RECORD DR from the disk into the variables
FIRST_NAME$, LAST_NAME$, ADDRESS$, ...

"WRITE A MAIL LIST ITEM"
WRITES the variables FIRST_NAME$, LAST_NAME$,
ADDRESS$, ... out to the RECORD specified by DR.

HINTS: Spaces are not important when typing in the program, except between double
quotes (if you have set "Spaces required between keywords" they will be required).

Random Access Rle Method 116

RANDOM

0010
0015
0016
0021
0022
0025
0030
0040
0050
0052
0055
0060
0075
0077
0079
0080
0099
0100
101
102
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0255
0260
0261
0500
0510
0515
0520·
0530
0540
0550
0560
0570
0575
0580
0585
0590

METHOD

MAIL LIST PROGRAM EXAMPLE

CLS
OPEN"R",1,"MAIL",117
INPUT"CREATE A NEW FILE:Y/N";A$: IF A$><"Y" THEN 22

NR=l: RECORD1,0: WRITE#l,NR:REM NR=Number of names in list
RECORD 1,0: READ # 1 , NR
DO: CLS

PRINT"MAIL LIST PROGRAM"
PRINT"I. Add names to list", "Number of names: ";NR-l
PRINT"2. Print List"
PRINT"3. Find names"
PRINT"4. End"
INPUT@(0,7)"Number: ";ANSWER: IF ANSWER<1 OR ANSWER>4THEN60

ON ANSWER GOSUB "ADD", "PRINT", "FIND"
UNTIL ANSWER=4

"END": CLOSE#I: END

"ADD"
CLS
PRINT"MAIL LIST INPUT": PRINT
INPUT"First Name: ";FIRST NAME$
INPUT"Last Name: ";LAST NAME$
INPUT"Address: ";ADDRESS$
INPUT"City: ";CITY$
INPUT"State: ";STATE$
INPUT"ZIP: ";ZIP#
INPUT"AGE: ";AGE%
INPUT"Money Spent:";SPENT!
PRINT
INPUT"Is everything correct? yiN: ";A$: IFA$<>"Y"THEN "ADD"
RECORD 1,0:READ#l,NR: DR=NR: NR=NR+l: REM NR is incremented
GOSUB"WRITE A MAIL LIST ITEM": REM when names added
RECORD 1,0: WRITE#I, NR : REM Stores records to record zero
RETURN

"PRINT"
REM Change LPRINT to PRINT if screen output preferred
RECORD 1,0: READ#l,NR
FOR X=lTO NR-1: DR=X :REM DR=DISK RECORD

GOSUB"READ A MAIL LIST ITEM"
LPRINT FIRST NAME$;" ";LAST NAME$
LPRINT ADDRESS$ -
LPRINT CITY$;",";STATE$;" ";ZIP#
LPRINT AGE%, "SPENT:"; USING"$###,###.##";SPENT!
LPRINT:IF FLAG=99 RETURN

NEXT
DELAY 3000
RETURN

Continued next page

117 Random Access File Method

0700
0704
0705
0710
0720
0730
0740
0750
0755
0760
0770
0780
0781
0782
1000
1001
1020
1030
1035
1040
1041
1042
1100
1101
1110
1120
1130
1135
1140

"FIND"
CLS
RECORD 1,0: READ#l, NR

RANDOM METHOD

IF NR=l THEN PRINT "No names to find!":DELAY 999:RETURN
INPUT"NAME TO FIND: ";F$:F$=UCASE$ (F$)
FOR X=l TO NR-1

DR= X: GOSUB"READ A MAIL LIST ITEM"
T$=UCASE$(LAST NAME$) :REM CASE must match
IF INSTR(l,T$,F$) THEN FLAG=99: GOSUB 540: FLAG=O

NEXT
INPUT "LOOK FOR ANOTHER? Y/N:";A$:IFA$="Y" THEN 700
RETURN

"READ A MAIL LIST ITEM"
REM:This routine READS RECORD DR
RECORD 1, DR
READ#l, FIRST NAME$;10, LAST NAME$;18, ADDRESS$;35,
READ#l, CITY$;25, STATE$;15,-ZIP#, AGE%, SPENT!
RETURN

"WRITE A MAIL LIST ITEM"
REM: This routine WRITES RECORD DR
REM CALL WITH DR=DISK RECORD NUMBER TO WRITE
RECORD 1, DR
WRITE#l, FIRST NAME$;10, LAST NAME$;18, ADDRESS$;35
WRITE#l, CITY$;25, STATE$;15,-ZIP#, AGE % , SPENT!
RETURN: END

Random Access File Method 118

MIXING FILE METHODS

119 Mixing File Methods

MIXING FILE METHODS

ASIC
MIXING SEQUENTIAL AND RANDOM FILE METHODS

Since ZBasic stores data as a series of bytes whether sequential methods or random
methods are used, these methods may be intermixed.

The following program uses both methods. The program reads files from the mail list
program created with the random access method earlier in this chapter.

The second and third lines read the number of records in the file. Then the list is read off
the disk sequentially using the DO/UNTIL loop.

To read and print the mail list in sequential order:

OPENIII", 1, "MAIL", 117
RECORD 1,O:READ#1, NR:REM Gets number of records to read
RECORD 1,1: REM Set pointer to the first record
REM Change LPRINT to PRINT if screen output prefered
DO: NR=NR-1: REM Counts down the number of names

READ#l, FIRST NAME$;10, LAST NAME$;18, ADDRESS$;35,
CITY$;25, STATE$;15, ZIP#, AGE%, SPENT!
LPRINT FIRST NAME$;" ";LAST NAME$
LPRINT ADDRESS$ -
LPRINT CITY$;",";STATE$;" ";ZIP#
LPRINT AGE%, "SPENT:"; USING"$###,###.##";SPENT!

LPRINT
UNTIL NR=l:REM Until the last name is read
CLOSEn
END

The READ#1 after the DO reads the data in. Whenever read or write functions are
executed, ZBasic automatically positions the file pointer to the next position.

Mixing File Methods 120

DISK ERRORS

121 Disk Errors

DISK ERRORS

ASIC
D~K ERROR MESSAGES

If a disk error occurs while a program is running, ZBasic will print a message something like
this:

File Not Found
(C)ontinue or

Error in
(S)top?

File Ul2

If you type "S", ZBasic will stop execution of the program and return to the disk operating
systern (or to the editor if you are in interactive mode).

If you press "e", ZBasic will ignore the disk error and continue with the program. This could
destroy disk data!!

The following pages will describe how to ''TRAP'' disk errors and interpret disk errors which
may occur.

END OF FILE CHECKING

Some versions do not have an "END OF FILE" command because some operating systems
do not have this capability. Example of END OF FILE checking for some versions:

ON ERROR GOSUB 65535: REM Set for User Error trapping
OPEN"I",l,"DEMO":IF ERROR PRINT ERRMSG$(ERROR) :STOP
DO

LINEINPUTU,A$
UNTIL ERROR <>0
IF ERROR >< 257 THEN PRINT ERRMSG$(ERROR): STOP
REM 257=EOF Error in filenumber l(See error messages)
ERROR=O:REM You ~ reset the ERROR flag.
ON ERROR RETURN:REM Give error checking back to ZBasic
CLOSEU

Note: Many versions have an EOF function. See your appendix fordetails.

Disk Errors 122

DISK ERRORS

TRAPPING DISK ERRORS

ZBasic provides three functions for disk error trapping:

ON ERROR GOSUB 65535

ON ERROR GOSUB line

ON ERROR RETURN

Gives complete error trapping control
to the user. User must check ERROR
(If ERROR <>0 then a disk error has
ocurred) and take corrective action if
any disk errors occur. (Remember to set
ERROR=O after a disk error occurs). ZBasic
will not jump to a subroutine when the error
occurs. The 65535 is just a dummy number.
See the ON ERROR GOSUB line:

GOSUB to the line number or
label specified whenever and wherever,
ZBasic encounters a disk error.

Gives error handling control
back to ZBasic. Disk error messages
will be displayed if a disk error occurs.

When l(QJ.!. are doing the ERROR trapping it is essential that ERROR be set to ;zero after an
error is encountered (As in line #45 and #1025 in the program example). Failure to set
ERROR=O will cause additional disk errors.

DISK ERROR TRAPPING EXAMPLE

123 Disk Errors

The following program checks to see if a certain data file is there. If disk error 259 occurs
(File Not Found error for file #1), a message is printed to insert the correct diskette:

10 ON ERROR GOSUB "CHECK DISK ERROR"
15 REM Line above Jumps to line 1000 if any disk error occurs
20 OPEN"I",l,"TEST"
30 IF ERROR=O THEN 50
40 INPUT"Insert Data diskette: press <ENTER>";A$
45 ERROR=O:REM You MUST reset ERROR to zero!
46 GOTO 20 :REM Check diskette again ...
50 ON ERROR RETURN:REM ZBASIC DOES DISK ERROR MESSAGES NOW

1000 "CHECK DISK ERROR"
1003 REM ERROR 259 is "File Not Found Error in File *01"
1005 IF ERROR=259 RETURN
1010 PRINT ERRMSG$(ERROR) :REM Prints error if not 259
1015 INPUT"(C)ont. or (S)top? ";A$
1020 A$=UCASE$(A$): IFA$<>"C" THEN STOP
1025 ERROR=O:REM You MUST reset ERROR to zero!
1030 RETURN

Note: This method may not work on some Disk Operating Systems (like CP/M). Check
your computer appendix for specifics.

DISK ERRORS

DISK ERROR CODES AND MESSAGES

If you wish to do the disk error trapping yourseH (using ON ERROR GOSUB), ZBasic will
return the ERROR CODE in the reserved variable word "ERROR".

For instance, if a "File not Found Error in file# 2" occurs, then ERROR will equal 515. To
decode the values of 'ERROR', follow this table:

DISK ERROR COPES & MESSAGES

f.B.R.QB.
No Error in File #

ERROR COPE
12)

End of File Error in File #
Disk Full Error in File #

1 (257=file#1, 513=file#2, 769=file#3, etc.)
2

File Not Found Error in File #
File Not Open Error in File #
Bad File Name Error in File #
Bad File Number Error in File #
Write Only Error in File #
Read Only Error in File #
Disk Error in File #

3
4
5
6
7
8
9-255

ERROR CODE=ERROR AND 255
FILE NUMBER= ERROR» 8

ERROR FUNCTION

ERROR returns a number between 12) and 32,767. IF ERROR does not equal zero then a
disk error has occurred. The disk error code of the value returned in ERROR is deciphered
by using one of the following equations or statements:

IF ERROR =515 calculate the disk error type by:
ERROR AND 255 =3 File Not Found Error in File #
ERROR »8 =2 File Number is 2
ERRMSG$(ERROR)= File Not Found Error in File #02

Also See ERROR and ERRMSG$ in the reference section.

Important Note: To avoid getting the same error again ... ALWAYS set ERROR back to
zero after an error occurs; ERROR=I2).

&
Also see SYSERROR in the Macintosh appendix.

Disk Errors 124

SCREEN AND PRINTER

125 Screen and Printer Control

SCREEN AND PRINTER

ASIC
SCREEN AND PRINTER

ZBasic has several functions and commands for screen and printer control. PRINT
or LPRINT are the most frequently used. The following syntax symbols are used to
control the carriage return and TAB for either PRINT or LPRINT:

PRINT SYNTAX
Semi-Colon ";"

Comma","

DEFTAB=n

PRINT EXAMPLES
PRINT''HI''

PRINT"HI"j

PRINT"HI",

PRINT TAB(20)"HI"

PRINT ,"HI"

PRINT USING"##.##";23.2

POS(O)

POS(1)

RESULT
Suppress Carriage retum and Iinefeed after printing.
Subsequent prints will start at the cursor posHion.

TAB over to the next TAB stop. The default is16: TAB stops are:
16,32,48,64, ... 25 (also see DEF TAB below).

Defines the space between the TAB stops for comma (,). Any
number from 1-255. If 10 is used then positions 10, 20, 30,
... 250, are designated as TAB stops.

RESULT
Screen PRINT "HI" to the current cursor posHion and move to the
beginning of the next line. <CR>

Screen PRINT "HI" and DON'T move to next line (the semi-colon
suppresses the carriage return)

Screen PRINT "HI" and move over to next TAB poSition.

Print "HI" at the 20th position over from the left or at the current
position if past column 20.

Print "HI" at the next TAB stop position. See" DEF TAB".

PRINTS 23.20 and moves to the next line. See "USING" in the
reference section for further information.

Returns the horizontal cursor position on the screen where the
next character will be printed.

Returns horizontal cursor position of the printer where the next
character will be printed.

Screen and Printer Control 126

SCREEN AND PRINTER

PRINTING AT A SPECIFIC SCREEN LOCATION

o
1
2
3

~

o 1 2 3 4

H i

N m 0 :

r'\
\

.... HORIZONTAL

........
PRINT@(l,l)"HI";

V
E
R
T
I
C
A
L

, PRINT @ (O,5)"Name: ..

PRINT@(H,V)"HI" Start printing H characters over horizontally
and V lines down vertically from the upper left hand
corner of the screen, then move to the
beginning of the next line (Use a SEMI-COLON or
COMMA to control the carriage return).

PRINT %(Ghoriz, Gvert) Position the print output to be at the graphics
coordinates specified by Ghoriz, GVert (or as close as
possible for that computer. Great for easy porting of
programs.

CLS [ASCII] Fill Screen with spaces or optional ASCII characters.
(CLS 99 would fill the screen wHh c's.)

CLS LINE or PAGE Fill with spaces to the end of the LINE or to the
end of the PAGE (screen).

STRING$(Qty, ascii or string) Used to print STRINGS of charaters. STRING$ (10, "X")
prints lOX's to the current cursor posHion.
STRING$ (25, 32) will print 25 spaces.

SPACE$(n) or SPC(n) Prints n spaces from current cursor position.

COLOR [=] n Sets the color of Graphics output and sometimes
text. (0= background color, usually black.
-1= foreground, usually white).*

MODE [=] n Sets screen attributes. Some computers allow
80 character across or 40 characters across, etc ..
Graphics may also be definable.*

ROUTE byte integer Used to route output to the screen, printer or
disk drive .•

• See Computer Appendix for specifics.

127 Screen and Printer Control

PRINT %

SCREEN AND PRINTER

The PRINT % command functions exactly the same way as PRINT@ except
the X-V coordinate specifies a screen graphic position instead of a character
position.

Since ZBasic utilizes device independent graphics, this is a handy way of
making sure the text goes to the same place on the screen regardless of the
computer being used.

Use MODE to set certain character styles for some computers.

Examples:

PRINT % (512,383)
PRINT % (0,0)
PRINT % (0,767)

!b

Print to middle of screen
Upper left corner of screen
Lower left corner of screen

Same as the toolbox MOVETO function. ZBasic coordinates unless
COORDINATE WINDOW is used.

TYPICAL VIDEO CHARACTER LAYOUTS

Here are some of the typical character layouts for a few of the more popular
computers:

COMPUTER
IBM PC and compatible
APPLE liE, IIC
TRS-80 Modell, III
TRS-80 Model 4, 4p
CP/M-80 computers
Macintosh

Columns (across)
80 or 40
800r40
640r32
80 or 40·
80
Almost any1hing ...

·Will also run TRS-80 models 1, 3 version.

Rows (down)
25
24
16
24
24
See appendix

Screen and Printer Control 128

KEYBOARD INPUT

129 Keyboard Input

KEYBOARD INPUT

ASIC
KEYBOARD INPUT

ZBasic utilizes the INPUT and L1NEINPUT statements of getting keyboard data from
a user. There are many options allowed so that input may be configured for most
input types. Parameters may be used together or by themselves in any order.
Syntax for INPUT and L1NEINPUT:

[L1NE]INPUT[;][[@or%] (horiz,vert);] [I] [& n,] ["string constanf';] var[, var[, ...]

L1NEINPUT

an,

Optional use of INPUT. Allows inputting quotes, commas, and
some control characters.

A semi-colon directly following "INPUT" disables the carriage
return (cursor stays on same line after input).

"&" directly following "INPUT" or semi-colon, sets the limit of
input characters to n. Length of strings used in INPUT must
be one greater than n.

An exclamation point used with "&" terminates the INPUT
when the character limit, defined by "&", is reached, without
pressing <ENTER>. If "!" is not used, <ENTER> ends input.

@(horiz, vert); Pos~ions the INPUT message to appear at character
coordinates horiz characters over & vert lines down.

%(horiz, vert); Positions the INPUT message to appear at the closest
graphic coordinates horiz pixels over avert pixels down.

"string constanf'; Prints a message in front of the input.

var [, varU, ...] The variable(s) to receive the input. Using more than one
variable at a time is allowed except with L1NEINPUT.

Important Note: When using strings with INPUT make sure that you define the
length of the string at least one character more than will be input.

Keyboard Input 130

KEYBOARD INPUT

EXAMPLES OF REGULAR INPUT

EXAMPLE
INPUT AS

INPUT'NAME: ";A$

INPUT;A$

RESULT ,
Wait for input from the keyboard and store the input in
A$. Quotes, commas and control characters cannot be
input. <ENTER> to finish. A carriage return is generated
when input is finished (cursor moves to beginning of
next line).

Prints "NAME: " before input. A semi-colon must follow
the last quote. A carriage return is generated after input
(cursor moves to next line).

Same as INPUT AS above, only the semi-colon directly
after INPUT disables the carriage return (wrsor stays on
the same line).

EXAtJlPLES OF LIMITING THE NUMBER OF CHARACTERS WITH INPUT

EXAMPLE RESULT
INPUT &10, AS Same as INPUT A$ only a maximum of ten characters may

be input. (&10) A carriage return is generated after
input (cursor moves to the beginning of the next line).
The limit of input is set for ALL variables, not each.

INPUT; &10,1% Same as INPUT &10, except the SEMI-COLON following
INPUT stops the carriage return (cursor stays on line).

INPUT 1&10, A$ Same as INPUT & 10 except INPUT is terminated as soon
as 10 characters are typed (or <ENTER> is pressed).

INPUT ;! &10, "NAME: ";A$ Same as INPUT ;&10,A$ except no carriage return is
generated (semi-colon). INPUT is terminated after 10
characters(&10 and Exclamation point). and the
message "NAME: " is printed first.

LlNEINPUT;!&5,"NAME: ";A$ LlNEINPUT A$ until 5 characters or <ENTER> is
pressed. (no carriage retum after <ENTER> or after the
5 characters are input. Accepts commas and quotes.)

Note 1: Wherever INPUT is used, LlNEINPUT may be substituted when commas,
quotes or some other control characters need to be input (except with multiple
variables).

Note 2: If more than one variable is INPUT, commas must be included from the user to
separate input. If all the variables are not input, the value of those variables will be null.

!b
In certain cases EDIT FIELD, MENU or BUTTON may be preferable. See appendix.

131 Keyboard Input

KEYBOARD

INPUTTING FROM A SPECIFIC SCREEN LOCATION

o
1
2
3

~

V
E
R
T
I
C
A
L

o 1 2 3 4

?~

'"
N a m e :

I"i.

1\
~

.... HORIZONTAL

.......

.........
INPUT @(2,1)"?";X

INPUT @ (O,5)"Name: ";A$

INPUT@(H,V); A$ Wait for input at TEXT screen POSITION defined by Horizontal
and Vertical coordinates. No "?" is printed. A carriage return is
generated.

INPUT %(gH, gV);A$ Input from a graphic coordinate. Syntax is the same as "@".
Very useful for maintaining portability without having to worry
about different screen widths or character spacing.

INPUT

INPUT@(H,V);!10,"AMT: ";0# Prints "AMT:" at screen position H characters over by V
characters down. 0# is input until 10 characters. or <ENTER>.
are typed in. and the input is terminated without generating a
carriage return (the cursor DOES NOT go to the beginning of
the next line).

INPUT%(H,V);!10,"AMT: ";0# Prints "AMT:" at Graphic position H positions over by V
positions down. 0# is input until 1 0 characters. or <ENTER>.
are typed in, and the input is terminated without generating a
carriage return (the cursor DOES NOT go to the beginning of
the next line).

Note: Replace INPUT with LlNEINPUT whenever there is a need to input quotes, commas and
control characters (except with multiple variables).

Keyboard Input 132

KEYBOARD INPUT

INPUT %

The INPUT % command functions exactly the same way as INPUT@ except
the X-Y coordinate specifies a screen graphic position instead of a character
position.

Since ZBasic utilizes device independent graphics, this is a handy way of
making sure the INPUT goes to the same place on the screen regardless of the
computer being used.

Use MODE to set certain character styles for some computers.

Examples:

INPUT% (512,383)
INPUT% (0,0)
INPUT% (0,767)

a
middle of screen
upper left corner of screen
lower left corner of screen

Although all parameters above function properly, EDIT FIELD, MENU or
BUnON are preferable for getting user input. See appendix.

TYPICAL VIDEO CHARACTER LAYOUTS

Here are some of the typical character layouts for a few of the more popular
computers:

COMPUTER
IBM PC and compatible
APPLE 1/ series
TRS-80 Modell, III
IRS-80 Model 4, 4p
CP/M-80 computers
Macintosh

133 Keyboard Input

Columns (across)
800r40
800r40
640r32
800r40
80
Almost anything ...

Rows (down)
25
24
16
24
24
See appendix

INKEY$

KEYBOARD

Unlike INPUT which must WAIT for characters, INKEY$ can receive characters from
the keyboard "on the fly". When INKEY$ is encountered in a program, the
keyboard buffer is checked to see if a key has been pressed. For computers with
no buffer, the keyboard is checked when the command is encountered. If a key is
pressed, INKEY$ retums the key. If no key has been pressed, INKEY$ retums a
null string. Examples:

I$=INKEY$ When the program reaches the line with this
command on it, ZBasic checks to see if a
character is in the input buffer. If a key has
been pressed it will be returned in 1$.
Otherwise 1$ will contain nothing (1$ will equal
"" or LEN(I$)=zero).

INPUT

IF INKEY$="S" STOP If the capital "S" key is pressed the program will
stop. Sometimes more appropriate than using
TRONB or TRONX for debugging purposes.

DO: UNTIL LEN(INKEY$)
DO: UNTIL LEN(lNKEY$)=O

Wait for any key press, then continue
Clears characters out of INKEY$ buffer

Note: TRONX, TRON or TRONB may cause INKEY$ to function improperly!

&&
Macintosh: If doing EVENT Trapping or any TRON type, the INKEY$ function may operate
incorrectly. Use DIALOG(16) instead. See appendix for examples. MSDOS: See
appendix for special ways of getting function keys (INKEY$ retums two characters).

INKEY$ EXAMPLE

The program below will wait awhile for a key to be pressed. If you make it wait to long, it will
complain loudly. If you do press a key, it will tell you which key was pressed. If you press "S"
or "s", the program will stop.

"Start": CLS
DO

A$=INKEY$:REM Check if a key has been pressed
X=X+l: IF x>3000 THEN GOSUB"YELL FOR INPUT! ":REM Timer

UNTIL LEN(A$): REM If a key is pressed then LEN(A$)=l
PRINT "You pressed ";A$
X=O: REM Reset timer
IF A$="S" OR A$="s" THEN STOP: REM PRESS "s" to STOP!
GOTO "Start":REM Go look for another key

"YELL FOR INPUT!":REM This routine complains
PRINT"HURRY UP AND PRESS A KEY! I'M TIRED OF WAITING"
X=O:REM Reset Timer
RETURN

Keyboard Input 134

LOOPS

135 Loops

LOOPS

LOOPS

ASIC

Loops are sections of a program that repeat over and over again until a condition is
met.

Loops are used to make programs easierto read by avoiding IF THEN and GOTO,
(although these commands may also be used to loop). ZBasic has a number of
ways of looping or executing a routine until a condition is met.

* FOR, NEXT, STEP
* DO, UNTIL

WHILE, WEND

• Each of these loop types is executed at least once.

ENTERING OR EXITING LOOPS

ZBasic loops may be entered or exited without ill affects. Some compilers require
you to use a loop EXIT statement. This is not required with ZBasic. Just use a
GOTO or RETURN to exit as appropriate.

IMPORTANT LOOP REQUIREMENTS

ZBasic requires that each FOR has one, and only one, NEXT. Each WHILE must
have one WEND and each DO must have one UNTIL. Otherwise a STRUCTURE
error will resutt when you attempt to RUN the program.

AUTOMATIC INDENTING OF LOOPS

ZBasic automatically indents loops two characters in listings for readability (LIST).

Loops 136

LOOPS

FOR-TO-STEP
NEXT

137 Loops

FOR VAR counter= start expression TO end expression [STEP expression]
Program flow ...

NEXT [VAR counter]

STEP is an optional part of FOR/NEXT. If STEP is omitted, the step is one. An
example of a FOR-NEXT-STEP loop:

FOR x=o TO 20 STEP 2
PRINT X;

·NEXT X
program continues ...

LINE 1: Begin the loop where X is incremented in STEPs of 2 (0,2,4,6 ... 20)
LINE 2: Prints the value of X each time the loop is executed.
LINE 3: If X => 20 the loop falls through to line 4. X will equal 22 in line 4 of this

example program.

FOR-NEXT loops will go through the loop at least once regardless of
the values in the FOR instruction. See WHILE-WEND for immediate exiting.

To count backwards in a FOR/NEXT loop set STEP to a negative number.

Note 1: STEP zero will cause an endless loop.

'Note 2: With integer loops, be sure the maximum number is less than 32,767;
otherwise an endless loop may occur for some systems. The reason for this is that
the sign of the number increments to -32768 after 32767 which restarts the loop all
over again! Endless loop example:

FOR x%= 1 TO 32767 <--Endless loop!
NEXT X%

Note 3: STEP number must stay within the integer range. STEP 32767 would
create an endless loop.

Note 4: Unlike most other languages, FOR-NEXT loops may be entered or exited
in the middle with no ill effects.

a
'The same problem arises with four byte integers when the maximum Longlnteger
number in the FOR loop exceeds 2,147,483,647.

DO
UNTIL

LOOPS

DO
Program flow ...

UNTIL conditional expression is TRUE

LINE 1:
LINE 2:
LINE 3:
LINE 4:

DO
X=X+2
PRINT X;

UNTIL X>19
program continues ...

Start of the DO loop
Make X=X+2
PRINT the value of X each time the loop is executed.
If X<20 then go back to the beginning of the loop. When X> 19 program
falls through to the next statement (line 4 in example)

A DO loop wllf execute at least once. In contrast to WHILE-WEND, which
checks the condition at the beginning of the loop, DO-UNTIL checks the condition
at the end of the loop. Use WHILE-WEND when you need to check the condition at
the beginning.

Note: Unlike most other languages, the loop may be entered or exited in the
middle with no ill effects. For instance, in line 2 above, you could used: IF X>10
then RETURN. This would not cause any problems in the program.

Loops 138

LOOPS

WHILE
WEND

139 Loops

WHILE conditional expression
Program flow ...

WEND end loop here when condition of WHILE is FALSE

LINE 1:
LINE 2:
LINE 3:
LINE 4:

WHILE X<20
X=X+2
PRINT X;

WEND
program continues ...

Continue the loop while X is less than 20.
Make X=X+2.
Print the value of X each time the loop is executed.
If X is less than or equal 20 then go back to the WHILE and do the loop
again, otherwise continues at the first statement after WEND.

In contrast to DO-UNTIL and FOR-NEXT (which check the condition at the end of a
loop), WHILE-WEND checks the condition at the beginning of the loop
and will exit Immediately If the condition Is not met.

Note: Unlike most other languages, a WHILE-WEND loop may be entered or exited
in the middle wijh no ill effects. For instance, in line 30 above, you could have used:
IF X>1 0 then RETURN. This would not cause any problems in the program.

FUNCTIONS AND SUBROUTINES

ASIC
FUNCTIONS AND SUBROUTINES

APPEND

DEF FN

ZBasic contains some powerful tools for creating re-usable subroutines and
appending or inserting them into other ZBasic programs that you create.

APPEND is a command that will take an un-line numbered subroutine and insert it
anywhere in an existing program. The syntax for the command is APPEN D
linenumber or label, filespec.

To save a subroutine or program without line numbers, use the SAVE+ command.
MERGE is available for merging subroutines or programs with line numbers into an
existing program.

ZBasic incorporates the DEF FN and FN statements similar to many other BASIC
languages. This is very handy for creating functions thai may be used like
commands in a program.

A function is given a name and may be called and passed variables. FN's save
program space. Note thai functions may utilize other functions within definitions
and program code.

Examples of using DEF FN to create Derived Math functions.
DEF FN eil = EXP(l.)
DEF FN Piil = ATN(l) « 2
DEF FN SECiI(xiI) = 1. \ cos (Xii)
DEF FN ArcSinil(XiI) = ATN (Xii \ SQR(l-xil * Xii»
DEF FNArcCos#(xiI) = ATN(1.)*2-FN ArcSin#(X#)

Examples of program use:
PRINT FN Pi#
Angleil = SIN (FN ArcSin#(IiI»
PRINT FN ArcCos# (Gil)

Note: Be sure to define the function at the beginning of the program before
attempting to use it otherwise an UN DEF error will result at compile time.

Functions and Subroutines 140

FUNCTIONS AND SUBROUTINES

LONG FN

Included is a sophisticated and powerful multiple line function called LONG FN.

LONG FN allows you to create mUlti-line functions as large as a subroutine and
allows you to pass variables to the routine. This comes in very handy for creating re
usable subroutines that you can insert or APPEND to other programs.

LONG FN is similar to DEF FN except that the function being defined may be many
lines long. Use END FN to end the LONG FN subroutine. WARNING: Do not exit a
LONG FN except at END FN otherwise system errors may result.

Example of LONG FN to remove trailing spaces from a string:

LONG FN RemoveSpace$ (x$)
WHILE ASC(RIGHT$(x$,1)=32

x$= LEFT$(x$, LEN(x$)-l)
WEND

END FN= x$
Name$="ANDY
PRINT X$, FN RemoveSpace$ (Name$)
z$=FN RemoveSpace$(fred$)

Example of a LONG FN for dOing a simple matrix multiplication:

DIM A%(lOOO)
LONG FN MatrixMult%(number%, last%)

FOR temp%= 0 TO last%
A%(temp%)=A%(temp%)*number%

NEXT
END FN
A%(O)=l: A%(1)=2:A%(2)=3
FN MatrixMult%(lO,3)
PRINT A%(O), A%(l), A%(2)

SYNTAX OF DEF FN AND LONG FN NAMES

FN names have the same syntax as variable names. A function that returns a string
value should end with a $. A function that returns a double precision value should
end with a#.

AUTOMATIC INDENTATION

ZBasic automatically indents that code between a LONG FN and END FN so
programs are easier to read.

SAVING FUNCTIONS FOR USE IN OTHER PROGRAMS

To save DEF FN'S or LONG FN's (or any subroutine) for future use, use SAVE+.
This saves the subroutine without line numbers so it may be used in other programs
by loading with the APPEND command (be sure to avoid line number references
and GOTOs in subroutines to make them easily portable).

141 Functions and Subroutines

FUNCTIONS AND SUBROUTINES

MORE EXAMPLES OF LONG FN

The following example will check to see if a random file specified by the filename
file$ exists. If it does it will open it as a random file. If it does not exist, it will return a
disk error.

Remember; with OPEN"R" if the file exists it is opened, if it doesn't exist it is
created. You may not want it created in certain circumstances (like if the wrong
diskette is in a drive).

LONG FN Openfil.e% (files$, filenum%, reclen%)
ON ERROR 65535: REM Disk error trapping on
"Open file"
OPEN"I",filenum%,file$
LONG IF ERROR

LONG IF (ERROR AND 255) <>3
PRINT@(O,O);"Could not find ";file$;" Check disk drive"
INPUT"and press <ENTER> when ready";temp%
ERROR=O: GOTO "Open file"

END IF
XELSE

CLOSE* filenum%
END IF

ON ERROR RETURN: REM Give error checking back to ZBasic
OPEN"R",filenuril%, file$, reclen%
END FN

EASY GETKEY FUNCTION

LONG FN Getkey$ (Key$)
DO

Key$=INKEY$
UNTIL LEN(Key$)

END FN = Key$

Functions and Subroutines 142

MACHINE LANGUAGE SUPPORT

143 Machine Language Support

MACHINE LANGUAGE SUPPORT

ASIC
MACHINE LANGUAGE

MACHLG

LINE

Occasionally it is important to be able to use machine language programs with your
program, whether for speed or to utilize special features of the hardware of that
machine. ZBasic incorporates a number of special commands to integrate machine
language subroutines into your programs.

CAUTION: Unless you have a working knowledge of the machine language of the
source computer and target computer, use extreme caution when porting programs
with machine language commands or subroutines.

This statement allows you to put bytes or words directly into your program:

CALL LINE "Machlg": END
"Machlg": REM EXAMPLE ONLY--> DO NOT USE!
MACHLG 10, 23 ,233, 12, 0, B%, A, 34, 12, &EF
MACHLG 23, 123, 222, 123, 232, GameScore%, &AA

Hex, Binary, Octal or Decimal constants, Integer variables, or VARPTR may be
used. Be sure to put a machine language RETURN at the end of the routine if
using CALL. Be sure you understand the machine language of your computer
before using this command.

This gives you the address of a specific line as it appears in the object code. This
allows you to CALL machine language programs starting at specific line numbers or
labels. Syntax is

LINE label
or LINE line number

a
Since the Macintosh is a 16 bit machine, MACHLG code is stored in WORDS not
BYTES. The code above would be stored in every other byte. With LINE
parentheses are required because it is also a toolbox call Le. LINE (n).

Machine Language Support 144

MACHINE LANGUAGE SUPPORT

CALL

Allows you to CALL a machine language program. The syntax is:

CALL address

Be sure the routine being called has a RETURN as the last statement if you wish to
return control to your program.

If you wish to CALL a machine language subroutine in your program that was made
with MACHLG, use CALL LINE line number or label.

aa
These versions have additional parameter passing capabilities. See appropriate
appendix under CALL for specifics.

II
The ProDOS version provides a special interface to the ProDOS Machine
Language Interface (MLI). See appendix for specifics.

DEF USR 0 - 9

Allows you to set up to 10 different machine language user routines. The syntax
for using this statement is:

DEFUSR digit =address

This command may be used to pass parameters or registers. See your computer
appendix for the specifics about your computer. There are also default routines.
See USR in the reference section.

INTEGER BASE CONVERSIONS

ZBasic makes integer BASE conversions simple. Some of the commands for
converting between BASES:

BIN$, &X
HEX$, &H or &

See "Numeric Conversions" for specifics.

a
UNS$
OCT$, &0

See DEFSTR LONG for configuring conversions above for Longlnteger (and also
CVI and MKI$).

145 Machine Language Support

MACHINE LANGUAGE SUPPORT

OTHER MACHINE LANGUAGE COMMANDS

Other tools for machine language programmers include powerful PEEK and POKE
statements that can work with 8,16 or 32 bit numbers and BOOLEAN MATH
operators.

PEEK, POKE

In addition to the "standard" BYTE PEEK and POKE provided by many versions of
BASIC, WORD (16 bft) and LONG (*32 bit) PEEK and POKE are also provided:

PEEK
PEEKWORD
PEEKLONG

!l

8 BIT
16 BIT
*32 BIT

* Macintosh only at this time.

BINARY/BOOLEAN MATH FUNCTIONS

OR
XOR
SHIFT LEFT

POKE
POKEWORD
POKE LONG

AND
NOT

8 BIT
16 BIT
*32 BIT

SHIFT RIGHT

EXP and IMP may be emulated easily. See "Logical Operators" in the "Math" section
of the manual.

VARIABLE POINTER

VARPTR (variable) will return the address of that variable.

a&
Macintosh: Remember to use Longlntegers to store the address since Macintosh
memory exceeds 65,535 (the limit 01 regular integers). Also see DEFSTR LONG for
defining integer functions to do Longlnteger. MSDOS: Check appendix for way of
determining SEG 01 variable.

Machine Language Support 146

STRUCTURED PROGRAMMING

147 Structure

STRUCTURED PROGRAMMING

ASIC
STRUCTURE

Much has been said about the difficulty of reading BASIC programs and the so
called spaghetti code created (the program flow is said to resemble the
convoluted intertwinings of string spaghetti).

While we believe structure is important, we don't believe that a language
should dictate how a person should compose a program. This inhibits
creativity and may even paint programmers into comers.

Nevertheless, we have provided powerful structure support in ZBasic.

THAT NASTY "GOTO" STATEMENT

The GOTO statement has been classified by many as a programmer's
nightmare. If you want programs that are easy to read, do not use this
command. If you must use GOTO, do not use line numbers, use labels to
make the code easier to follow.

LINE NUMBERS VERSUS LABELS

The standard line editor (command mode) uses line number for three reasons:

1. Remain compatible with older versions of BASIC
2. For the Standard line editor commands
3. To give more easily understandable error messages

To make programs easier to read you should use alphanumeric labels for
subroutines or any other area of a program that does a specific function.

It is much easier to follow the flow of a program if GOSUB, GOTO and other
branching statements use labels instead of line numbers.

To LIST programs without line numbers use LIST +. Many versions of ZBasic
now use full screen editors that don't require line numbers. See your appendix
for specifics.

Structure 148

STRUCTURED PROGRAMMING

INDENTATION OF LOOPS, LONG FN and LONG IF

Some versions of structured languages require that you manually indent
nested statements for readability.

ZBaslc does all the Indenting automatically!

Each nested portion of a program will be indented 2 spaces when the program
is listed. Program statements like FOR-NEXT, WHILE-WEND, DO-UNTIL,
LONG FN, LONG-IF etc. will be indented.

Example using LIST +:

LONG FN KillFile(file$)
PRINT@(0,10);"Erase ";file$;" YIN";
DO

temp$=INKEY$
UNTIL LEN (temp$)
LONG IF temp$="y" or temp$="Y"

KILL tempS
END IF

END FN
FOR X=l TO 100

DO : G=G+l
WHILE X<95

PRINT "HELLO"
LONG IF J< 4

J=J+l
END IF
WEND

UNTIL G >= 3.5
NEXT X

MULTIPLE LINE STATEMENTS

149 Structure

ZBasic allows putting more than one statement on a line with ":" (colon). While
this is handy for many reasons, over-use of this capability can make a program
line very difficult to understand.

UNSTRUCTURED 10*FORX=lT0100:DO:G=G+1:PRINT G:UNTILG=99:NEXT

STRUCTURED FOR X = 1 TO 100
DO : G=G+1

PRINT G
FOR V=l TO 20:NEXT
UNTIL G=99

NEXT X
*FOR V=l TO 20:NEXT

'Note: An asterisk will appear at the beginning of a line containing a complete
loop if that line is not already indented. In that case the line will be un-indented
two spaces (as in the examples above).

STRUCTURED PROGRAMMING

SPACES BETWEEN WORDS

To make code more readable, you should insert spaces between words,
variables and commands, just as you do when writing in English. While
ZBasic does not care if spaces are used (unless you configure ZBasic to require
spaces), ~ is a good practice to insert spaces at appropriate places to make
reading the program easier.

Hard to Read
Easier to Read

VARIABLE NAMES

IFX=93*24THENGOSUB"SUB56"ELSEEND
IF X=93*24 THEN GOSUB "SUBS6" ELSE END

To make code more readable, use logical words for variables.

Hard to Read
Easier to Read

B=OP+I
Balance = Old_Principle + Interest

ZBasic allows variable name lengths up to the length of a line, but only the first
15 characters in the name are significant. Do not use spaces or symbols to
separate words in a name, use underlines; Buildin(LPrinciple, Freds_House.

Keywords may not be used in variable names unless they are in lowercase and
"Convert to Uppercase" is "NO" (this is the default). Also see next paragraph.

INCLUDING KEYWORDS IN VARIABLES

To allow keyword in variables configure ZBasic for; "Spaces Required after
Keywords" (not available on all systems). See "Configure".

HOW CASE AFFECTS VARIABLE NAMES

To make the variable "FRED" and "fred" the same variable configure ZBasic for
"Convert to Uppercase". See "Configure".

GLOBAL VERSUS LOCAL VARIABLES

Programmers familiar with LOCAL variables in PASCAL and some other
languages can structure their variable names to approximate this in ZBasic. (All
ZBasic variables are global.)

GLOBAL variables should start with a cap~alletter.

LOCAL variables should start with lowercase. Many programmers also use
(and re-use) variables like temp$ or local$ for local variables.

Structure 150

STRUCTURED PROGRAMMING

DEFINING FUNCTIONS

Use DEF FN or LONG FN to define functions and then call that function by
name. This is easy reading for people trying to decipher your programs. It
saves program space as well. FN names have the same definition as variable
names. Passing values to functions in variables is also very easy.

LONG FN may be used when a function the size of a subroutine is needed.
One FN may call previously defined functions.

LOADING PREVIOUSLY CREATED SUBROUTINES

To insert subroutines you have used in previous programs, use the APPEND
command. This will append (or insert) a program saved with SAVE+ (a non-line
numbered program or subroutine), into the current program starting at the line
number you specify; APPEND Iinenumber or label filename

Be sure to avoid the use of line numbers or GOTO statements in your
subroutine to make them more easily portable.

If using variables that are to be considered LOCAL, we recommend keeping
those variables all lowercase characters to differentiate them from GLOBAL
variables (all ZBasic variables are GLOBAL).

Sometimes LONG FN may be more appropriate for re-usable subroutines.

LISTINGS WITHOUT LINE NUMBERS

151 Structure

To make program listings easier to read, use LIST+ or LLIST+ to list a program
without line numbers.

ZBasic automatically indents nested statements with LIST for even more
readability.

~&
Macintosh: Listings can be sent to the Screen, LaserWriter or ImageWriter
without linenumbers and with keywords boldfaced by using LLIST+*.
MSDOS: Screen listings with highlighted keywords and no linenumbers are
accomplished with LIST+* (no printer support for highlighted keywords).

LONG IF

STRUCTURED PROGRAMMING

For more control 01 the I F statement. ZBasic provides LONG IF lor improved
readability and power.

UNSTRUCTURED
10 IFX=ZTHENY=10+H:G=G+Y:F=F+RELSEGOSUB122:T=T-1

STRUCTURED LONG IF X=Z
Y=10+H
G=G+Y
F=F+R

XELSE
GOSUB"READ"
T=T-1

END IF

UNSTRUCTURED
10 FORI=-3T03:PRINT"I= ";I:IF I> THEN IF 1>-3 AND 1<3
PRINT I;">O",ELSEPRINT"Inner If False":GOTO 30
20 *PRINT I;"<=O", :X=-4:DO:X=X+1:PRINT"X=";X:UNTILX=I
30 NEXT I

STRUCTURED
FOR I = -3 TO 3: PRINT "1= ";I

LONG IF I > 0
LONG IF I > -3 AND I < 3

PRINT Ii n> 0",
XELSE

PRINT "Inner LONG IF false"
END IF

XELSE
PRINT Ii"<= 0",
X = -4
DO : X=X+1

PRINT"X="iX
UNTIL X=I

ENDIF
NEXT I

Important Note: Any loops enclosed in LONG IF structures must be
completely contained within the LONG IF. END IF construct.

~.
The Macintosh and IBM versions also support SELECT CASE. a structured.
multi-conditional LONG IF statement. See appendices lor syntax.

Structure 152

DEBUGGING TOOLS

153 Debugging Tools

DEBUGGING TOOLS

ASIC
DEBUGGING TOOLS

TRON

To get programs running bug-free in the shortest amount of time, ZBasic has incorporated
some powerful error catching tools.

Display program flow

Tums on the line trace statement. As the program is running, ZBasic will display the line
number where the program is being executed on the screen.

!L
Also see TRON 128 for sending the line numbers to the printer so the display is not
affected.

TRONS Single Step

SINGLE STEP line trace debugging. Allows you to single step through that part of a
program. To activate single step mode press CTRL Z. To single step press any key. To
return to regular mode press CTRL Z again. To single step and display line numbers use
TRONS:TRON. Note: CTRL Sand CTRL Z will function during any TRON type.

TRONB Check for <BREAK> key

Sets a break point on that line and all the following lines of that program (until a TROFF is
encountered). As each line is executed, the program will check H CTRL C or <BREAK> is
being pressed.

If <BREAK> is pressed, the program will return to the edit mode (the operating system if
RUN' was used). Without a break point the program will not respond to the <BREAK:> key.
No line numbers are displayed unless TRON was also used.

!L
BREAK ON is often preferable as a check for <COMMAND PERIOD>. See appendix.

Debugging Tools 154

DEBUGGING TOOLS

TRONX Check for <BREAK> on that line only

Sets a break point only on that line. If CTRL C or <BREAK> is pressed as that line is
executed, theprogram will return to the edij mode (if interactive) or to the operating system.

TROFF Disable all TRON modes

Turns off TRON, TRONB, TRONX and TRaNS. line number display and <BREAK> points
will be disabled in the program flow following this statement.

ARRAY BOUNDS CHECKING

Set "Check Array Bounds" to "YES" when configuring ZBasic to make sure you do not
exceed DIM limits. This is a RUN TIME error check and is very important for use during the
debug phase.

Exceeding array limits could cause overwriting of other variables and fauRy data.

After you have finished debugging your program, disable this function since it will slow
execution speed and increase program size.

STRING LENGTH CHECKING (not all versions; check your appendix)

Set "String Length Checking" to "YES" when configuring ZBasic to make sure you do not
exceed defined string length limits. This is a RUN TIME error check and is very important
for use during the debug phase.

Exceeding string lengths could cause overwriting of other variables and/or faulty data.

After you have finished debugging your program, you may wish to disable this function
since ij will slow execution speed and increase program size.

COMPILE TIME ERROR CHECKING

ZBasic compile time error messages help you pinpoint the cause of the problem
immediately by highlighting the error on the line and printing a descriptive message instead
of an error number.

Unlike BASIC interpreters, ZBasic will not execute a program with syntax errors in it. If the
program compiles without an error you can be sure ij is at least free of syntax errors.

DISK ERROR CHECKING

ZBasic gives the programmer a choice of trapping disk errors themselves or letting ZBasic
display the disk error. See "Disk Error Trapping" lor more information.

155 Debugging Tools

PORTING PROGRAMS

ASIC
PORTING PROGRAMS

Porting means taking a program from one computer and moving it to another computer of
different type or model. As from an Apple to an IBM.

Because most ZBasic commands contained in the reference section of this manual (except
USR, OUT, INP, PEEK, POKE, VARPTR, CALL and MACHLG) function the same way, it is
very easy to move the source code from one machine to another.

The following pages will describe some of the problems and solutions of porting programs.

OBJECT CODE AND SOURCE CODE

There are two separate types of programs created with ZBasic and you should understand
the differences.

SOURCE CODE This is the text part of a program you type into the computer and
looks like the commands and functions you see in this manual. In
order to turn SOURCE CODE into OBJECT CODE, ZBasic compiles
it when you type RUN (or RUN' or RUN+).

OBJECT CODE The OBJECT CODE is what ZBasic creates from the SOURCE
CODE after you type RUN. Object code is specific to a certain
machine. i.e. an IBM PC uses an 8088 CPU and and Apple /I uses a
6502 CPU. The ZBASIC OBJECT CODE for each of these
machines is different and cannot be ported. Port the SOURCE
CODE to the target machine and then recompile it into the OBJECT
CODE of that computer.

FILE COMMANDS

ZBasic file commands work almost exactly the same way from one computer to the next.
The areas to be aware of when porting code from one machine to another are covered in
the following two paragraphs.

Porting Programs 156

PORTING PROGRAMS

DISK CAPACITIES

Make sure the target machine has enough storage space to accommodate the program and
program files being ported.

COMMON DRIVE CAPACITIES
IBM PC, XI, jr. 5.25"

3.50"
IBM PC AT 5.25

Apple /I series

Macintosh
Macintosh Plus
Other:
SSSD
SSSD
SSDD
DSDD
DSDD

3.50"
variable density
5.25"
3.50·
single sided
double sided

5.25"
B.OO"
5.25"
5.25"
B.OO"

SSSO: Single sided Single density
5500: Single sided Double density
DSDD: Double sided Double density

320K-360K
7BOK
360K
7BOK
1200K
143K
BOOK
400K
BOOK

SOK
200-500K
160K
320K
600-2000K

FILESPECS

MEMORY

ZBasic filenameslfilespecs work within the limitations of the disk operating system. When
porting programs make sure the filespecs are corrected. For instance; if porting a program
from a TRS-80 Model 3 to an IBM PC, you must change all references to a file like; Fred:1
to A:Fred

Some computers cannot do RENAME or EOF. Others are incapable of certain DISK
ERRORS. Be sure to study the DOS manual of the target machine for variations.

Memory is another area of importance when porting programs from one machine to another.

Porting from smaller machines to machines with larger memory should not be a problem, as
long as other hardware is similar. Programs from TRS-BO MODEL I, 111,4, Apple lie and IIc
and CP/M SO machines should port over to an IBM PC or Macintosh with little or no changes.

Porting a large program (12BK or more) from a larger machine like an IBM PC or Macintosh to
a smaller machine will require a number of memory saving measures covered in the following
paragraphs:

CHAINING PROGRAMS TOGETHER

If a 12SK program is being moved to a 64K system, you will have to split it up into two or
more separate programs and CHAIN them together. Since ZBasic allows sharing variables
while chaining, this should solve most problems.

157 Porting Programs

PORTING PROGRAMS

CHECK STRING MEMORY ALLOCATION

ZBasic allows the user to change the size of strings. Since some programmers on larger
machines may not be concerned with creating efficient code or keeping variable memory
use down, check if string size has been set. Setting string size from the 256 byte default to
32 or 64 will reduce string variable memory requirements dramatically.

See DEFLEN, DIM and "String Variables" in this manual for more information about
allocating memory for strings.

QUOTED STRINGS

Excessive use of quoted strings often occurs on larger computers because there is so
much free memory. Shortening quoted strings may save memory. Also see ZBasic
PSTR$function for an extremely efficient way of utilizing string constants in DATA
statements and in regular statements.

EFFICIENT CODE

Careful examination of source code may uncover ways to decrease code size by making
repeated commands into subroutines or FN's, or just cleaning up inefficiencies.

RAM DISKS

Some smaller computers allow the use of RAM disks. The Apple /I ProDOS version for
example, allows RAM disks up to 8 megabytes, while program and variable size are limited to
4OK-50K. Utilizing a RAM disk to store indices, large arrays or whatever is nearly as fast as
having that data in direct memory.

USE DISK INSTEAD OF MEMORY

If very large arrays or indices have been used in a large program you may have to store and
access them from disk in a random file. This is slower than RAM access but is usually quite
acceptable on most systems.

TEXT WIDTHS

Some computers have only 64 or 40 characters across the screen or 16 rows down the
screen. You may have to adjust the program to accommodate this.

You should think about using the PRINT% or INPUT% commands if you plan on
porting programs often. PRINT% puts text at ZBasics' device independent graphic
coordinates, not text column/row coordinates. This makes porting programs much
simpler. Here are some ~ character layouts:

COMPUTER
IBM PC and compatible
Apple /I series
TRS-80 Modell, III
TRS-80 Model 4, 4p
CP/M-80 (typical)
Macintosh

Columns (across)
800r40
800r40
64or32
80, 64 or32
80
Almost anything ...

Rows (down)
25
24
16
16 or 24
24
See appendix

Porting Programs 158

PORTING PROGRAMS

CHARACTER SETS

Screen and printer characters vary from one computer to the next. Check the ASCII chart in
the owners manuals to see the differences. (Most between 32-127 are the same.)

KEYBOARD, JOYSTICK AND MOUSE

SOUND

Keyboards vary from computer to computer so be sure the target computer has the same
keys available. If not, make changes in the program to use other keys.

Joystick and MOUSE devices vary considerably. Test the controls on the target computer
and make adjustments for the hardware.

Sound tone may vary from machine to machine. Check program and make any adjustments
needed. Some machines may not have this capability at all.

DEVICE INDEPENDENT GRAPHICS

ZBasic makes use of very powerful and simple graphic commands that work the same way
regardless of the graphic capabilities of the target computer (or lack of).

You will have to determine if the graphic hardware on the target computer is of sufficient
quality to display the graphics of your program. Note: Colors and grey levels may have to be
adjusted. Here are some of the typical graphic types available for some major computers:

COMPUTER
IBM PC and compatibles

Apple][,][+,lIe, IIc,lIGS
Apple lie, IIc, IIGS
Macintosh
TRS-80 Modell,lII
TRS-80 Model 4, 4p

CP/M-80 (typical)
KA YPRO with graphics

Horizontal x Venlcal pixels
CGA: 640x200 (3 color) or 320x200 (8 color)
EGA: 640x348 (many colors)
HERCULES and HERCULES PLUS: 720x348
MDA: 80x25 (text simulation)
Hi-Res 280x192 (6 color)
Double Hi-Res 560x192 (16 color)
512x340 (larger monitors also supported)
128x48
160x72
RS and Micro-Lab's hi-res boards 640x240
80x24 (text simulation)
160x100

MACHINE DEPENDENT SUBROUTINES

If the program being ported contains machine language subroutines, you will need to
rewrite those routines in the machine language of the target computer. Watch out for:

DEFUSR
MACHLG
PEEK
POKE

USR
LINE
PEEKWORD
POKEWORD

OUT
CALL
PEEKLONG
POKELONG

INP

Unless you completely understand the machine language of both the target and source
computer, use extreme caution when porting programs with these commands.

159 Porting Programs

PORTING PROGRAMS

MACHINE SPECIFIC COMMANDS

In order to take advantage of unique or special features of some computers, ZBasic offers
special commands that will not work or function on others. Be sure the program you are
porting contains only commands from the reference section of this manual.

Special ZBasic commands may have to be rewritten for the target computer.

Be sure to read the ZBasic appendices for both the Target and Source computers. They
will explain in detail the special commands for each system (you must purchase a version of
ZBasic for each computer you wish to compile from).

METHODS OF TRANSFERRING SOURCE CODE FROM ONE MACHINE TO ANOTHER

Telephone Modem Transfer
Transfer files using a Modem and simple communications software routines like the ones
under OPEN"C" in the main reference section of this manual.

Serial (RS-232) Transfer
Transfer files over the Serial (RS-232) ports of the two computers using a good
communication software package like Crosstalk or SmartCom. Crosstalk is available at
computer or software stores nationally.

Diskette File Transfer Utility Programs
Use Diskette file transfer utility programs like Uniform or Interchange. These programs will
convert a file from one disk format, like from a TRS-80 diskette, to another disk format, like
MS-DOS or CP/M. These programs are available from computer or software dealers
nationally.

Re-type the Program
Type the program into the other computers. This may be acceptable for small programs but
you will save plenty of time by using one of the options above.

See OPEN"C" in the reference section for a ZBasic terminal routine that may be used to
transfer files.

Important Note: Always transfer files in ASCII. Tokens are not necessarily the same from
one version of ZBasic to another and from old versions to newer versions on the same
machine.

Porting Programs 160

CONVERTING OLD PROGRAMS

161 Converting old Programs

CONVERTING OLD PROGRAMS

ASIC
CONVERTING PROGRAMS WRITTEN IN OTHER VERSIONS OF BASIC

ZBasic is a very powerful and improved version of BASIC. Many of the
traditional BASIC commands have been retained to make conversion as easy as
possible. Nevertheless, ZBasic is not 100% compatible with every BASIC.
You will have to make some changes to your old programs if you wish to convert
them to ZBasic.

If file and graphic handling are not used, conversion will normally be very simple.
If files or graphics are used the conversion will take a little more thinking. The
following pages will give you important insights into making the conversion
process as easy as possible.

The following pages will give you some ideas about converting your older
BASIC programs. Following the paragraphs step-by-step will make conversion
much easier.

SAVE YOUR OLD BASIC PROGRAM AS ASCII OR TEXT

Save your old BASIC program in ASCII or TEXT format so it can be loaded into
ZBasic. ZBasic tokens are different from other BASIC tokens so loading them
without first converting them to ASCII will make programs loaded look like
random control codes or the wrong commands (if the program will load at all).

See the owners manual for the older BASIC to determine how to save in ASCII
or TEXT format for your computer. The typical syntax is; SA VE '1ilename",A .

Note: When upgrading to newer versions of ZBasic, programs may have to be
saved in ASCII in the older version before loading into the newer version since
tokens may have changed.

Converting old Programs 162

CONVERTING OLD PROGRAMS

CONFIGURING ZBASIC TO MAKE CONVERSIONS A LOT EASIER

ZBasic has been configured to give you maximum performance. When
converting older BASIC programs this can be a problem. Often they are
configured for ease of use instead of performance. ZBasic allows you to
configure options so that converting your programs is simpler. Setting some of
the options below will also make ZBasic more like the BASIC you may be used
to (like MSBASIC and BASICA).

Be sure to see "Configure" in the main reference section and in your appendix
for details about other ways of configuring ZBasic.

To solve many of the problems encountered in converting we suggest setting
the following options when converting other programs. Be sure to set these
options BEFORE LOADING your program:

CONFIGURE OPTION
1. Double precision digits of accu racy
2. Single Precision Accuracy
3. Array bounds checking YIN
4. Default Variable type <S>ingle, <D>ouble, <I>nteger
5. Convert to Uppercase YIN
*6. Optimize expressions for Integer YIN
*7. Spaces Required between Keywords YIN

SET TO
60rB
40r6
Y
S
Y
N
Y

1. Since ZBasic does all floating point operations in double preCision, it is
important to configure ZBasic for the speed and accuracy that you need. In
most cases the configuration above will be suitable (but not in all cases). If
you wish disk files and memory requirements to be the same as MSBASIC
leave the digits of accuracy at 14 and 6 as they take up B bytes of Double
and 4 bytes for single (the same as MSBASIC).

2. Set to two digits less than Double precision.

3. Sets array bounds checking to give runtime errors. Set to "N" when your
program is debugged.

4. Set to Single (S) if you want code to be most like other BASICs. We highly
recommend you set ~ to Integer if possible. Integer will often increase
program speeds 10 to 100 times.

5. Setting allows variables like "Fred" and "FRED" to be the same variable. If
you want CASE to be significant, do not change the configuration.

6. ZBasic gives you two options for deciding how expressions may be
evaluated. ZBasic defaults to optimizing expressions for Integer to get the
fastest and smallest code. Most other languages do not. Set to "N" for
easier conversions. See "Math" for explanation of ZBasic options for
expression evaluations.

7. Some BASICs allow using keywords in variables (like INTEREST). To
allow this, spaces or other non-variable type characters are required
around keywords. Set this for easier conversion in most cases (especially
IBM PC and Macintosh BASIC type programs).

'Note: Not available on all versions of ZBasic.

163 Converting old Programs

CONVERTING OLD PROGRAMS

CONVERTING RANDOM FILES

ZBasic incorporates FIELD, LSET, MKI$, MKS$, MKD$, CVI, CVS, and CVD into the READ
and WRITE statements saving the programmer a lot of time. RECORD is used instead of
GET and PUT for positioning the file pointer.

The OPEN and CLOSE statements are the same for both BASICs except for MSBASIC use
of OPEN FOR RANDOM type. This is changed easily.

ZBASIC statements
OPEN"R"

READ, WRITE, RECORD

MSBASIC equivalents
OPEN"R" or OPEN FOR RANDOM

FIELD, GET, PUT, LSET, RSET, CVS, CVD,
MKS$, MKD$, CVI, MKI$

Note: While ZBasic also supports MKI$, CVI and MKB$, CVB, they are not necessary for
use in Random files since ZBasic's READ and WRITE automatically store and retrieve
numeric data in the most compact format (ZBasic's MKI$, CVI, MKB$ and CVB are most
useful for condensing numbers for other reasons). Since ZBasic allows using any variable
type in READ and WRITE statements, the user is not faced with complicated conversions of
strings-to-numbers and numbers-to-strings.

CONVERTING SEQUENTIAL FILES

Most ZBasic Sequential file commands are very similar or the same to MSBASIC.

ZBASIC statements
OPEN"I" or OPEN"O"
OPEN"A" some versions
EOF(n) some versions

L1NEINPUT, INPUT, PRINT

MSBASIC equivalents
OPEN"I", OPEN"O" or OPEN"A" or OPEN FOR INPUT,
OUTPUT or APPEND some versions
EOF(n) some versions

L1NEINPUT, INPUT, PRINT

Note: The biggest difference when converting sequential file statements is that ZBasic's
PRINT# statements should have quoted commas:
MSBASIC: PRINT#l, A$, B$, C$ or PRINT#l, A$ B$ C$
ZBASIC: PRINTjfl, A$", "B$", "C$

DISK ERROR TRAPPING

ZBASIC statement
ON ERROR GOSUB

MSBASIC equivalent
ON ERROR GOSUB

Read "ON ERROR" and "Disk Error Trapping" in this manual for detailed information. ZBasic
error codes are much different from MSBASIC.

Important Note: ZBasic does not necessarily store data in disk files in the
same way or format as other versions of BASIC. You may have to convert
existing BASIC files to ZBasic format.

Converting old Programs 164

CONVERTING OLD PROGRAMS

CONVERTING GRAPHIC COMMANDS

ZBasic's Device Independent Graphics are very powerful and simple to understand.
Conversion should be painless in most cases:

ZBASIC GRApHICS
PLOT
CIRCLE
BOX
COLOR
MODE
POINT
GET, PUT (some systems)
RATIO
FILL
PLOT USING

MSBASIC equivalent
LINE, PSET, PRESET
CIRCLE
LINE (with parameters)
COLOR (PSET, PRESET black and white)
SCREEN
POINT
GET, PUT (some systems)
aspect parameter of CIRCLE
PAINT
DRAW

ZBasic defau Its to a relative coordinate system of 1024x768. This system does
not pertain to pixels but to imaginary positions on the screen. Most older
versions of BASIC use pixel coordinates.

a.a
Macintosh and MSDOS: Use COORDINATE WINDOW at the beginning of
program to set a program to pixel coordinates. Apple: See appendix for ways
of using POKE to set system to pixel coordinates.

LOOP PAIRS

All ZBasic FOR-NEXT, WHILE-WEND and DO-UNTIL loops must have matching pairs.
Some BASIC interpreters allow the program to have two NEXTs for one FOR, or two
WENDs for one WHILE. Since ZBasic is a compiler it will not allow this. A STRUCTURE
ERROR will be generated when you compile a program with unmatched LOOP pairs.

Another way to find unmatched pairs is to LIST a program. Since ZBasic automatically
indents loops, just read back from the end of the LiSTing, looking for the extra indent, to
find the unmatched statement.

COMPLEX STRINGS

Complex strings may have to be converted to simple strings (some machines).

Improper
Proper

B$=LEFT$(Right$(A$,12), 13)
B$=RIGHT$(A$,12): B$=LEFT$(B$,13)

IF-THEN statements may have only one level of complex string.

Improper
Proper

165 Converting old Programs

IF B$=LEFT$(A$,5) THEN GOSUB "END"
C$=LEFT$(A$,5): IF B$=C$ THEN GOSUB "END"

CONVERTING OLD PROGRAMS

LONG LINES

Multiple statement lines with over 253-256 characters (depending on computer) will
automatically be shortened by ZBasic when loading. That part of the line longer than
253 will be added to a new line number. Most programs do not have lines of that length.

TIMING LOOPS

Timing loops may have to be lengthened to make up for ZBasic's faster
execution time. For some BASIC Languages a FOR-NEXT loop of 1000 would
take second or two. (About 111000 of a second in ZBasic!) Replace these
types of delay loops with the ZBasic DELAY statement.

STRING MEMORY ALLOCATION

~
Important Note: ZBasic assumes a 255 character length for every string and string
array element and allocates 256 bytes for each (255+1 for length byte) unless string
length is defined with DIM or DEF LEN.

Many versions of BASIC, like BASICATM, MSBASICTM, APPLESOFTTM and others,
allocate string memory as a program needs.

While this may seem efficient on the surface, immense amounts of time are wasted in
"String Garbage Collection". Garbage Collection is what happens when your program
suddenly stops and hangs up for two or three minutes while BASIC rearranges strings in
memory. This makes this method unusable for most serious programming.

HOW DIMMING STRING ARRAYS AFFECT PROGRAM CONVERSION

MSBASICTM: CLEAR 10000
DIM A$(1 000)

ZBaslc™: DIM A$(1000)
ZBaslc™: DIM 10 A$(1000)

Sets aside 10,000 bytes for ALL strings
Uses memory allocated with CLEAR plus
3-8 byte pointers per element.
256,256 bytes allocated (1001x256)
10,010 bytes allocated (1001x10)

Many BASICs use CLEAR to set aside memory for strings. Each string in ZBasic is
allocated memory at compile time.

A problem you may encounter while converting: Out of Memory Error from DIMension
statements, like the ones above (just define the length of the string elements).

ZBasic allows you to define the length of any string with DEFLEN or DIM statements.
Check the string requirements of the program you wish to convert and set the lengths
accordingly.

If you have large string arrays that must have elements with wide ranging lengths
(constantly changing from zero to 255 characters), use ZBasic's speciallNDEX$ string
array. Like other BASIC's CLEAR is used to set aside memory for this array (no "Garbage
collecting" here either).

See INDEX$, DEFLEN, DIM and "String Variables" for more information.

Converting old Programs 166

CONVERTING OLD PROGRAMS

OTHER INFORMATION

Check your appendix for more information about converting programs.

A good resource for information about converting from one version of BASIC to
another is David Lien's "The BASIC Handbook".

CONVERTING OLD COMMANDS

Some BASIC(s) have commands that may be converted over quickly using a word
processing program. Simply load the BASIC ASCII file into the word processor and use the
FIND and REPLACE commands. (You may also use ZBasic FIND command if you choose.)

A good example would be converting Applesoft™'s HOME commands into ZBasic's CLS
command. Have the word processor FIND all occurrences of HOME and change them to
CLS.

If you don1 have a word processor try using this simple ZBasic convert program to change
commands in a BASIC file quickly (file MUST have been saved in ASCII using SAVE*).

SINGLE COMMAND CONVERSION PROGRAM

ON ERROR GOSUB "DISK ERROR": REM Trap Disk Error
INPUT"Command to Change:";Old$
INPUT"Change to:";New$
CLS: PRINT" Changing File One Minute please"
OLDFILE$="oldfile" :NEWFILE$="newfile": REM < .. Change to correct filenames
OPEN"I",l, OLDFILE$
OPEN"O",2, NEWFILE$
WHILE ERROR=O

LINEINPUT#l, Line$
DO

Line$=LEFT$ (Line$, I-I) +New$+RIGHT$ (Line$, LEN (Line$) -I+l+LEN (Old$))
I=INSTR(l, Line$, Old$)

UNTIL 1=0
PRINT#2, Line$

WEND
"Done Changing"
ERROR=O
CLOSE
PRINT "All '";Old$;''' have been converted to '";New$;'''''
INPUT"Rename OLD file? YIN: "; A$: A$=UCASE$ (A$)
IF A$="Y" THEN KILL OLDFILE$
RENAME "NEWFILE" TO OLDFILE$
END
"DISK ERROR"
PRINT ERRMSG$(ERROR)
CLOSE: STOP

Important: Practice on a dummy file until you are sure the program is working properly.

167 Converting old Programs

KEYWORDS

ASIC
STANDARD STATEMENTS, FUNCTIONS AND OPERATORS

ABS FIX MOD SIN
AND FN MODE SOUND
ASC FOR MOUSE SPACE$
ATN FRAC NEXT SPC
BIN$ GOSUB NOT SOR
BOX GOTO OCT$ STEP
CALL HEX$ ON STOP
CHR$ IF OPEN STR$
CIRCLE INDEX$ OR STRING$
CLEAR INDEXF OUT SWAP
CLOSE INKEY$ PAGE TAB
CLS INP PEEK TAN
COLOR INPUT PLOT THEN
COS INSTR POINT TIME$
CVB INT POKE TO
CVI KILL pas TROFF
DATA LEFT$ PRINT TRON
DATE$ LEN PSTR$ UCASE$
DEF LET RANDOM UNS$
DEFDBL LINE RATIO UNTIL
DEFINT LaC READ USING
DEFSNG LOCATE REC USR
DEFSTR LOF RECORD VAL
DELAY LOG REM VARPTR
DIM LONG RENAME WEND
DO LPRINT RESTORE WHILE
ELSE MACHLG RETURN WIDTH
END MAYBE RIGHT$ WORD
ERRMSG$ MEM RND WRITE
ERROR MID$ ROUTE XELSE
EXP MKB$ RUN XOR
FILL MKI$ SGN

IMPORTANT: See your computer appendix for other keywords that pertain to your
version of ZBasic. Most versions of ZBasic offer more and also use two-word keywords like
LONG FN, POKE WORD etc.

Keywords 168

KEYWORDS

STANDARD COMMANDS

APPEND
AUTO

169 Keywords

DELETE or DEL
DIR
EDIT. E or comma
FIND or semicolon ";"

HELP
LIST. L or period
LLiST
LOAD
MEM
MERGE

NEW
QUIT
RENUM
RUN
SAVE

STANDARD REFERENCE ----
ASIC

STANDARD REFERENCE GLOSSARY

This reference section is an alphabetical listing of the "Standard ZBasic Commands". The
following paragraphs describe the information layout and syntax of this section.

TYPE OF INFORMATION CONTAINED IN THIS REFERENCE SECTION

function
statement
command
operator

COMPATIBLE COMMANDS

BLACK BAR

SPECKLED BAR

PAGE LAYOUT

Retums a value; used wherever an expression is used
Executed by Hself
Used from the standard line edHor mode; EDIT, SAVE. ..
Like AND, OR, XOR or NOT

may
Check to see if your system does not support that command.

The pages are layed out in the same way. Whenever possible descriptions are kept to one
page. The header has the command type and description. Paragraph layout is:

FORMAT
DEFINITION
EXAMPLE

REMARK

Correct syntax for that statement, function or command
Definition or explanation of usage
Program example or direct example of usage. Note that
linenumbers are usually omitted. Add linenumbers if needed.
Other information of importance and usually a reference to other
related sections that will aid the understanding of that item.

IMPORTANT NOTE ABOUT DIVIDE

ZBasic compiles divide symbols based on configuration.

If the default expression evaluator; "Optimize Expressions as Integer?" is YES;
I=integer divide \=floating point divide
If the expression evaluator; "Optimize expressions as Integer?" is NO;
1= floating point divide \=integer divide
See "Configure" and "Converting Old Programs" and "Math expressions" for more
information about the options offered for expression types and how they are evaluated.

continued next page ...

Standard Reference 170

STANDARD REFERENCE

CROSS REFERENCE

These commands work the same way on almost every version of ZBasic. There is an
extensive cross-reference to other commands and how a command works on specific
machines. The reference section uses a computer icon to bring attention to a specific
version of ZBasic. The following icons are used:

II
liDOS 3.3 and ProDOS versions.

MSDOS and IBM PC and compatible versions.

!b
The Macintosh versions (all except the 128K machine).

ell
Z80 machines; Amstrad, CP/M-80 2.x and higher, Kaypro Graphics versions and TRS-80
model 1, 3 and 4 versions.

SYNTAX GLOSSARY

GLOSSARY
RUN or COMMAND
[brackets I
{ AlBIC}
... repeats
Courier text
expression or expr
byte expression
word expression
long expression
variable or var
var$, vat'/o, var&, var!, var#

"string"
simplestring or string

filenumber
filename
filespec
line
number
varname

PEFINITION
What follows is program or command output.
Items within the brackets are optional (may be omitted)
Anyone of A, B or C may be used
Three periods following ijems indicates a repeating sequence
Something you type in, a program example, or program output
Numeric: Any; including integer and floating point
Numeric: 0-255
Numeric: 0 to 65,535 or ±32,767
Numeric: 0 to 4,294,966,293 or ±2,147,483,647
Any Variable
String, integer, Longlnteger, single or
double precision variable types, respectively
Quoted strings (string contants)
String variable, string contant, BIN$, CHR$, HEX$, INDEX$,
OCT$, PSTR$, STR$, SPACE$, STRING$ or UNS$.
File number: An expression 1-99. See "Configure"
A legal filename for that operating system filename
Drive or storage volume specifier
A line number from 0 to 65,534 or a "label"
Requires a number. No variable or expression allowed
A valid variable name

Be sure to take note when you see this hand. It is pointing out important information about
using that command. If there is the message "Important Note" with the hand it is even
more critical that you read the notes.

171 Standard Reference

FORMAT

DEFINITION

EXAMPLE

REMARK

function ASS

ABS (expression)

Returns the absolute value of an expression. The absolute value is the value without
regard to the sign (negative, zero or positive).

The result of ASS will always be a positive number or zero.

A=-15: B=15
PRINT ABS(A), ABS(B), ABS(-555)
X=ABS (0)
PRINT X

RUN

15, 15, 555
o

The SGN function will return the sign of an expression.

Standard Reference 172

FORMAT

DEFINITION

EXAMPLE

REMARK

expression1 AND expression2

Used to determine if BOTH conditions are true. If both expression1 AND
expression2 are true (non-zero), the result is true. Retums -1 for true, 0 for false.
See AND truth table below.

Also used to compare bils in binary number operations. 1 AND 1 return a 1, all olher
combinations of O's and 1 's produce O. See truth tables below.

IF 30>20 AND 20<30 THEN PRINT "TRUE "
IF "Hi"="hello" AND 6-5=1 THEN PRINT "TRUE TOO!"

RUN

TRUE

PRINT BIN${ &X00001111 AND &X11111111)
PRINT 4 AND 255

RUN

0000000000001111
4

See OR, XOR and NOT.

AND TRUTH TABLE

condition AND condition

AND
1 AND 1
o AND 1
1 AND 0
o AND 0

l!b

1
o
o
o

TRUE(-1) if both conditions TRUE, else FALSE(O)

BOOLEAN "16 BIT" LOGIC
00000001 00000111

AND 00001111 AND 00001111
00000001 00000111

Longlnteger will function wilh this operator in 32 bits.

173 Standard Reference

FORMAT

DEFINITION

EXAMPLE

REMARK

command APPEND

APPEND
APPEND·

line or label ["I filename ["I
line or label ["I filename ["I

Used to append or insert a program segment or subroutine (saved with SAVE+) into
the present program in memory.

A non-line numbered ASCII program file is required to append a subroutine into the
present program in memory at the specified line number. Line numbers will be
assigned in increments of one.

APPEND" will strip REM(arks) and spaces to free up more memory for the program as
the program in inserted.

10 "TEST ROUTINE"
20 FOR I = 1 TO 10
30 PRINT I
40 NEXT I
50 RETURN

SAVE+ TEST .APP

APPEND 31 TEST.APP

LIST

00010 "TEST ROUTINE"
00020 FOR I = 1 TO 10
00030 PRINT I
00031 "TEST ROUTINE"
00032 FOR I = 1 TO 10
00033 PRINT I
00034 NEXT I
00035 RETURN
00040 NEXT I
00050 RETURN

<----Subroutine inserted here
<--- (Example only, program will not run)

The program to be appended must be in ASCII format and not contain line numbers.
Use the SAVE+ command to save programs without line numbers.

If any line number being used in APPEND already exists, it will overwrite the existing
line. Also see MERGE, LOAD, SAVE, SAVE', SAVE+.

Standard Reference 174

Ase function

FORMAT

DEFINITION

EXAMPLE

REMARK

175 Standard Reference

ASC (string)

Returns the ASCII code value (a number between 0 and 255) of the first character in a
string. ASCII stands for American Standard Code for Information Interchange.

PRINT ASC("A"), ASC("B")
PRINT CHR$(65), CHR$(66)
PRINT ASC("America")

RUN

65
A
65

66
B

ASC returns 0 if the length of string is zero or the ASCII code of the string is zero. Use
this logic to determine the true status if an ASCII zero is the resuH:

LONG IF ASC(A$)=O AND LEN(A$»O
PRINT "ASCII code of A$ =0"

XELSE
PRINT"A$ is an empty string"

END IF

The inverse function of ASC is CHR$. To return the character represented by the
ASCII code, use CHR$(ASCII number).

ASCII codes may vary from machine to machine.

ASCII codes 32 through 127 are usually the same for all microcomputers. See CHR$
with example ASCII listing.

FORMAT

DEFINITION

EXAMPLE

REMARK

function ATN

ATN (expression)

Returns the angle, in radians, for the inverse tangent of expression.

A=ATN(Y/X), PI=ATN(1)« 2

pijI=ATN(l) « 2
PRINT pijI

RUN

3.141592 ___ <---Based on digits of accuracy set in configuration.

ATN is a scientific function. Using ATN in an expression will force ZBasic to calculate
that part of an expression in Double Precision.

ZBasic allows you to configure the accuracy for scientific functions separately for both
Double and Single Precision. See "Configure".

Also see "Expressions" and "Derived math functions" in the "MATH" section of this
manual.

Standard Reference 176

AUTO command

FORMAT

DEFINITION

EXAMPLE

REMARK

177 Standard Reference

AUTO
AUTO starting line
AUTO starting line, increment
AUTO ,increment

This command automatically generates line numbers in the Standard Line editor to
save time. The two optional parameters are:

starting line
increment

Starting line number (default is 10)
Line spacing (default is 10)

To end AUTO line numbering press either <BREAK> or <CTRL C> at the first line
number you will not use.

AUTO

10
20
30 <BREAK>

AUTO 100,20

100
*120
130 <BREAK>

<---- Type in text then <ENTER> to go to next line.

<---- Careful this line already exists!!

An asterisk appearing before a line number indicates an occupied line. Pressing
<ENTER> will skip that line leaving the original contents intact and resume auto line
numbering with the next line. To remove the line type a space and <ENTER>.

Also see LIST, EDIT

FORMAT

DEFINITION

EXAMPLE

REMARK

statement BEEP ...
• "'". • .". "'."'.". "'1' "'."'". • .,. "' "..rl'."'.rI' "."l'."'."' "' "' "'.rI'
-:""'""'""'"":""'""'"":"":""'""'"":':.":"":""'""'"":""'""'""'"":""'""'"":0:.":""'""'"":",,:" ... " ... " ... " ... " ... " ... " " ... " ":" ... " ... ",,:":-" ... " ... " ... " ... " ... ",,:",,:':.,,:":"0:.:00

BEEP

Sounds the speaker.

FOR X=1 TO 10
BEEP

NEXT

RUN

BEEP, BEEP ...

Also see SOUND.

BEEP is not supported with Apple /I or zao computers. For Apple /I and most CP/M
computers use PRINT CHR$ (7) instead. See your SOUND and your computer
appendix for other ways of creating audio output.

Standard Reference 178

BASE OPTION conti

FORMAT

DEFINITION

EXAMPLE

REMARK

179 Standard Reference

Array Base o or 1?

An option in the ZBasic configuration routine to set the array BASE to either zero or 1.
The default is zero.

See "Configure" in the beginning of this manual for an explanation of configuring
your version of ZBasic to your preferences.

ARRAY BASE ZERO
DIM A(lDD)
DIM Tables (22)

ARRAY BASE ONE
DIM A(lDD)
DIM Tables (22)

See DIM and "Array Variables".

<-- elements 0-100 (101 elements)
<-- elements 0-22 (23 elements)

<-- elements 1-100 (100 elements)
<-- elements 1-22 (22 elements)

FORMAT

DEFINITION

EXAMPLE

REMARK

function BIN$

BIN$ (expression)

Returns a 16 character string which represents the binary (BASE 2) value of the
result of the integer expression. Sorne typical binary numbers:

0000000000000001
0000000000000011
0000000000000111
0000000011111111
0000000100000000
1111111111111111

1
3
7
255
256
-1 (65,535 unsigned)

The following program will convert a decimal number to binary or a binary number to
decimal:

"Binary Conversion"
CLS
DO

INPUT"Decimal number to convert: ";Decima1%
PRINT BIN$(Decima1%)
INPUTUBinary number to convert: ";Binary$
Binary$="&X"+Binary$
PRINT VAL(Binary$)

UNTIL Decimal% = 0

RUN

Decimal number to convert: 255
0000000011111111

Binary number to convert: 0000000000000011
3

Note that conversions are possible from any base to any other base that ZBasic
supports. &X is the inverse function of BIN$.

Also see HEX$, OCT$, UNS$ and "Numeric Conversions".

!b
Use DEFSTR LONG to set BIN$ and &X to work in Longlnteger (32bits).

Standard Reference 180

BOX statement

FORMAT

DEFINITION

EXAMPLE

REMARK

181 Standard Reference

BOX [TO] expr x1 ,expry1 [TO expr x2 , expr y2 ...]
BOX FILL [TO] exprx1 ,expry1 [TO exprx2' expr y2 ...]

Draws a BOX from the coordinates defined by the first comer (x1.y1) to the
coordinates defined by the opposite corner (x2.y2) in the current COLOR.

If BOX TO x.y is used the first comer will be the last graphic point used. If undefined
then 0.0 will be the defauH.

If the optional FILL appears directly after the command. the BOX will be painted as a
solid BOX in the current color.

The defauH screen positions are given using Device Independent Coordinates of
1024 across by 768 down.

BOX
209 465 843 987

0.0 .-"""c.L"w.'",,".!.!"w.' ~:'''''''c.L' w. c.L .. w..~.:.!.! .. w.. u, .. c.L .. w.·!.! .. w.· """.1.:' :cL' u!.! .. w.· """-!-i.'!.!.'!-' .,1023

134 1. ·~~~·~~·~·~r .~~ ·~~7············· ~

:,·:··0:
BOX FILL 843.134 TO 987.643

:/
767

The output will vary depending 01'1 the graphic capability of the host computer. Also
see CIRCLE. MODE. FILL. PLOT. RATIO and COLOR.

FORMAT

DEFINITION

EXAMPLE

REMARK

~

statement CALL

CALL number
CALL LINE line or label

CALL will execute a machine language subroutine at the address specified by
number or the address of the compiled line.

Use these examples only if you understand machine language.

REM TRS80 I & III, CALL DEBUG
CALL &H440D

REM CPM 80, CALL WARM START (Exits to DOS)
CALL 0

REM APPLE CALL TO SOUND BELL TONE
CALL -198

10 REM CALL LINE examples
20 CALL LINE 40
30 CALL LINE "LABEL"
40 MACHLG 34, 21, x%, 255, 9: RETURN
50 "LABEL": MACHLG. RETURN

CALL is useful for transferring program control to a machine language subroutine
from which a return to the ZBasic program is desired. The routine to be called must be
terminated by that machine's instruction for RETURN.

Also see MACHLG, USR, LINE and DEFUSR.

WARNING: Use of this command requires an understanding of machine language
programming and the computer hardware being used. Porting of this code may not
be possible without re-writing the machine language routines.

~.
See CALL in your appendix for enhancements.

Standard Reference 182

CASE statement ..
"' ;a "'.J'.rI' "' oI' "' ".."' ". " "' rI' "."' "' ".,.

'''''''':'''r'':'''''''''''''':''''''''''''''''''''''''''''':''''''''':'''''''''''''':'''':'''''''''''''''''''''''''''''''''''"":' ... " ... " ... " ... "":" ... " ... " ... " ... " ... " ... ":-" ... " ... " ... " ... " ... "":''':'''':'''':'''':'' ... '''':' ... '' ...

FORMAT

DEFINITION

183 Standard Reference

SELECT [CASE] [expression]
CASE [IS] relational condition I. relational condition] I. ...]

statement [:statement:...]]
CASE [IS] condition [. condition] [....]

statement [:statement:...]]
CASE boolean expression

statement [:statement:...]]
CASE ELSE

statement [:statement ...]]
END SELECT

When SELECT/CASE is encountered. the program checks the value of the
controlling expression or variable. finds the CASE that compares true and executes
the statements directly following the CASE statement. After these statements are
performed. the program continues at the line after the END SELECT statement

CASE relational

CASE condition

CASE boolean

If the expression after SELECT compares true to anyone of
a number of relational conditions. the statements following
the CASE are executed and the program continues after the
END SELECT:

SELECT 12
CASE >10

PRINT "This is the right answer"
CASE >20, <10

PRINT "This is not true"
END SELECT
program continues here ...

If the expression following the SELECT equals anyone of a
number of conditions the statements following the CASE are
executed (program continues after the END SELECT).

A=23
SELECT A

CASE 10
PRINT "This is the wrong answer"

CASE 10,23,11,10
PRINT "This would be true"

END SELECT

If an expression after SELECT is omitted. you may use a
boolean or TRUE/FALSE condition. The statements after
the first TRUE (non-zero) CASE condition will be executed.
Only one boolean statement is allowed following CASE.

A=10:B=20
SELECT

CASE (A=10 AND A>20)
PRINT "This is the correct answer"

CASE (A>B OR A=B)
PRINT "This is the wrong answer"

END SELECT

REMARK

statement CASE ... ·"."'."' "'·I'·"'·I'· .. · .. ·rlI." "'." . .I'."..·"·".r-..oI' ,,.."' • .I' ."'."'.".."..".rI'." "..,/'.J'.". "."'.".rI'."."."'.". "
"'""'""'""'""'""'"":"":"":""'""'""'""'""'""'"":""'""'""'"":"":"":"":""'"":""'""'" ":.":.":.":''':.'':''':.'':.'':.'':.'':.'':.'':~:-.'':.'':.'':.'':''':''':':.'':.'':.'':':'':.'':':.'':'.

CASE ELSE If all of the CASE statements in the SELECT CASE structure
are false the statements following the CASE ELSE are
executed.

"Start"
A$="Maybe"
SELECT A$

CASE "Yes"
PRINT "Thank you for saying Yes"

CASE "No"
PRINT "Thank you for saying No"

CASE ELSE
PRINT "You smart aleck! "<--Does this one

END SELECT

This is a powerful structured way of doing complicated IF-THEN-ELSE or LONG IF
statements especially when there are multiple lines of complicated comparisons.

This structure is also much easier to read than complicated IF statements.

See SELECT for more information.

Important Note: Never exij a SELECT CASE structure using GOTO. This will
introduce problems into the stack and cause unpredictable system errors. Always
exit the structure at the END SELECT. Be sure to enclose loops and other contructs
completely within the SELECT-CASE and CASE ELSE constructs.

!i"l -"" The Z80 versions do not support SELECT CASE. See LONG IF and IF for ways of
doing the same thing.

The Apple DOS 3.3 and ProDOS versions does not support SELECT CASE. See
LONG IF and IF for ways of doing the same thing.

Standard Reference 184

CHR$ function

FORMAT

DEFINITION

EXAMPLE

REMARK

185 StandardReference

CHR$ (expression)

Returns a single character string with the ASCII value of the result of expression. The
range for the value of expression is 0 to 255.

The inverse function of CHR$ is ASC;

"Print ASCII character set for this computer"
CLS
REM Use ROUTE 128 here to send output to printer.
FOR I=32 TO 127 STEP 8

FOR J= 0 TO 7: X =I+J
PRINT USING "###=";X;CHR$(X);"

NEXT J :PRINT
NEXT I

RUN

32= 33=!
40=(41=)
48=0 49=1
56=8 57=9
64=@ 65=A
72=H 73=I
80=P 81=Q
88=X 89=Y
96=' 97=a

104=h 105=i
112=p 113=q
120=x 121=y

PRINT CHR$ (64)
PRINT ASC("A")

RUN

A
64

34="
42=*
50=2
58=:
66=B
74=J
82=R
90=Z
98=b

106=j
114=r
122=z

35=# 36=$
43=+ 44=,
51=3 52=4
59=; 60=<
67=C 68=D
75=K 76=L
83=S 84=T
91=[92=\
99=c 100=d

107=k 108=1
115=s 116=t
123={ 124=1

";

37=% 38=&
45=- 46=.
53=5 54=6
61== 62=>
69=E 70=F
77-M 78=N
85=U 86=v
93=] 94=A

101=e 102=f
109=m 110=n
117=u 118=v
125=} 126=-

39='
47=/
55=7
63=1
71=G
79=0
87=W
95=
103;;;g
111=0
119=w
127=#

When the program above is run, the character set for that computer will be displayed.
Some of the characters above may differ from what you get on your system. Try
changing the range above from 127 to 255. Some computers have extra characters
or graphic symbols for these codes.

Characters in the range of 0-31 are usually reserved for control codes like linefeed
(10), carriage return (13) ...

If the PRINT statement is changed to lPRINT the printer's character set will be
printed. If expression is less than 0 or greater than 255, only the low order byte will
be used.

CHR$ (256)
CHR$(257)

CHR$(O)
CHR$ (1)

FORMAT

DEFINITION

EXAMPLE

REMARK

CIRCLE [FILL)
CIRCLE
CIRCLE

expr1,

expr1,
expr1,

expr2,
expr2,

expr2'

Draws a CIRCLE in the current COLOR.

statement CIRCLE

expr 5 , exprB
PLOT exprS ' exprB

If the optional FILL is used directly after the command, the CIRCLE will be filled with
the current COLOR. If TO is used, a PIE segment will be displayed (shaped like pie
slices). If PLOT is used, only the ARC segment will be displayed (a segment of the
circumference).

horizontal center
vertical center

radius (diameter of circle) in graphic coordinates
start of angle in brads (zero starts at 3:00 o'clock)

expr1

expr2

exprR
exprs
exprB Number of brads to draw ARC or PIE (counter clockwise).

126

192

o or 256

DeQrees INSIDE circle
6rods OUTSIDE circle

SEE ILLUSTRATIONS ON FOLLOWING PAGE.

CIRCLE uses the ZBasic Device Independent Graphic Coordinates of 1024 x 768.
For more details see the CIRCLE in the "Graphics" section in this manual. Also see
RATIO, MODE, PLOT, COLOR, FILL and BOX.

:!b&
MacIntosh: See COORDINATE WINDOW for pixel coordinates and toolbox for ways
of using QuickDraw for creating boxes. MSDOS: See COORDINATE WINDOW for
converting to pixel coordinates. Apple: See appendix for ways of converting to pixel
graphics.

Standard Reference 186

CIRCLE statement

EXAMPLE

187 Standard Reference

CIRCLE exprt. expr2. exprR
CIRCLE FILL exprt. expr2. exprR

CIRCLE
320 8!iD

D,D
1'11111\1'1111'1'1'111111"1'1'11'"'11111'"

~4 : C6)IRCLE3~'~4'300

~ 3OOd' CIRCLE FlLL850: 624, 50
• ra JUS

624,:""""",,,,,,,,,,,,,,,,,,,,,,., 50

674 .: " • • • . . • . • • radius
" "

767

lD23

SEGMENT OF A CIRCLE (ARC)
0,0 512 1023

" CIRCLE 512.383,320::7PLOT ~.32

: ~. · . · " · " · "
· "

383"! """""""""""U""""'"
~ CIRCLE 512.383.320 PLO~ 192.64 i

767

CIRCLE exprt. expr2' exprR TO exprs. exprB

SEGMENT OF A CIRCLE (PIE)
512

0.0 " .. " ;..................... 1023

",1 """':':<t7.
• CIRCLE 512.3B3,320TD 192.64'

767

FORMAT

DEFINITION

EXAMPLE

REMARK

CLEAR
CLEAR number
CLEAR END
CLEAR INDEX$

statement CLEAR

Used to reserve memory or clear all or specilied variables (sets the values 01 the
variables to null or zero).

CLEAR

CLEAR number

CLEAR END

CLEAR INDEX$

Sets all variables and INDEX$ to zero or null.

Sets aside number bytes lor the INDEX$ array.

CLEARS all variables which have not yet been assigned in the
program.This lorm 01 CLEAR is normally used to clear all
variables not being used when chaining. See "Chain" in the
Iront section lor more information.

Sets all elements 01 the INDEX$ array to null.

INPUT"Name: ll;Name$
PRINT Name$
CLEAR
PRINT Name$

RUN

Fred
<-----Nothing printed here since Name$ was cleared at line 3.

Only one CLEAR number is allowed in a program and must appear before any
variables are encountered. Be sure to CLEAR one extra byte lor each element in the
INDEX$ array. Also see "SpeciaIINDEX$ Array" and "CHAIN".

A CLEAR is performed at the beginning 01 each program created with RUN or RUN'.
RUN+ or warm start programs will not CLEAR variables at startup.

!l
See INDEX$ in Mac appendix lor added enhancements available on this version.

Standard Reference 188

CLOSE statement

FORMAT

DEFINITION

EXAMPLE

REMARK

189 Standard Reference

CLOSE [[#1 expression1 [, [#1 expression2 • .. ·11

This statement is used to CLOSE one or more OPEN files or other devices.

The parameter expression indicates a device number or file number.

If no file or device numbers are declared all OPEN devices will be closed.

OPEN"I",1,"FILE1",10
OPEN"I",2,"FILE2",lOO
READ#!, A$; 10
READ #2 , 3$;10
CLOSE#1,2
OPEN"R",1, "FILE3"
CLOSE

<---File 1 and 2 are closed
<---File1 may now be used again
<----AII files are closed

All files should be closed before leaving a program to insure that data will not be lost or
destroyed. If program exit is through END or STOP. all files will be closed.

FORMAT

DEFINITION

CLS
CLS expression
CLS LINE
CLS PAGE

statement CLS

These statements will clear all, or portions, of the screen of text and graphics.

CLS

CLS expression

CLS expression

CLS LINE

CLS PAGE

Clears the entire screen of text and graphics.
Cursor ends up at the top left corner of screen.

In TEXT mode this fills screen wtth the ASCII character
specified byexpression and places the cursor at the top
left comer of the screen'.

In GRAPHICS mode this will fill the screen wtth the color
specified by expression.

Clears from the cursor position to the end of
the line. Cursor will remain where it was.

Clears from the cursor position to the end of
the screen. Cursor will remain where it was.

EXAMPLE CLS

REMARK

CLS 65 <----Fills screen with A's
CLS ASC (" *") <----Fills screen with "s
LOCATE 0,10
CLS LINE <----Clears line 10 of text and graphics
LOCATE 0,12
CLS PAGE <----Clears screen from line 12 down.

See LOCATE, PRINT@, PRINT%, FILL and MODE. See your computer appendix for
possible variations.

a
CLS clears the current window (not the entire screen). CLS expression will clear the
screen with white if expression=O and black if expression ><0.

Standard Reference 190

COLOR statement

FORMAT

DEFINITION

EXAMPLE

REMARK

COLOR [= I expression

Sets the COLOR to be used by all graphic drawing commands. Color values will vff.ry
from one compuler to the next. See your computer appendix for specifics. For most
computers 0 is the background color and -1 is the foreground color.

If you have a black and while monitor, 0 is Black, -1 is white.

If your computer is incapable of graphics or you are using one of the character modes,
the expression will determine the ASCII character to be used. (With some graphics
modes, zero = space, all others = asterisk "*").

CLS: MODE 6
COLOR ASCC"*")
PLOT 0, 256
MODE=7

<---even modes are character graphics with some versions
<---Uses asterisks for graphics (nol all versions)

<--- odd modes are actual graphics
CIRCLE 768,200,50
COLOR=6 <----Sels COLOR to 6
BOX 0,0 TO 10,10
END

Also see MODE, PLOT, CIRCLE, BOX, POINT and FILL. Colors vary by mode,
graphic type, monitors and other hardware criteria. Check hardware manual and Ihe
ZBasic appendix for your computer for specific color codes.

Macintosh: NOT(O) =black, O=white. See appendix for variations especially with
Macintosh II which supports a number of colors and grey levels.

MSDOS: COLOR is also used 10 change text color, background color, blinking,
underlineelc. See appendix for specifics. See CGA colors below.

Apple: Color chart below and the Apple appendix.

TRS-SO and Kaypro: Black=O, -l=white.

EXAMPLE COLORS CODES

IBM PC and compatibles
CGA MODE 5
0= BLACK 8= GRAY
1= BLUE 9=LTBLUE
2= GREEN 10= LTGREEN
3= CYAN 11= LTCYAN
4= RED 12= LTRED
5=MAGENTA 13= LTMAGENTA
6= BROWN 14= YELLOW
7= WHITE 15= BrightWHITE

Apple /I ProDOS and DOS 3.3
MODE 5 MODES 1,3 and 7
O=BLACKI O=BLACK 8=BROWN
ldGREEN I=MAGENTA 9=ORANGE
2=VIOLET 2=DARK BLUE 10dGREY
3=WHITEl 3=PURPLE I1=PINK
4=BLACK2 4=DARK GREEN 12=GREEN
5=ORANGE 5=GREY 13=YELLOW
6=BLUE 6=MED. BLUE 14=AQUA
7=WHITE2 7-LlGHT BLUE lS=WHITE

191 Standard Reference

FORMAT

DEFINITION

EXAMPLE

REMARK

statement COMMON ... "" "'.r/' "'."..rI'."'."'.,."'.r/'."'."'."' • .".."' rI'."' . .".."' "' "'."'.11'.,/'.1'."'."' "' "' "' "'."' 01' "' "'

":"'l""":""'""'""'""'""'""'""'""'""'""'""'""'""'""'"":""'"":""'"":""'"":""'"":""'"":''':''':''':''':''':''':''':''':''':''':''':''':''':''':''':''':''':''l"''':''':''':''':'~''':'':'

COMMON variable list. ..

Identical to the ZBasic DIM statement. It is used to allocate memory for variables and
for declaring variables common to chained programs.

The order of the variables declared in COMMON is important when chaining
programs. The COMMON statement in one program must be exactly the same and in
exactly the same order in other programs being chained.

See DIM.

See DIM and "Chaining" in this manual.

This statement is added to make ZBasic compatible with other versions of BASIC .

•• Not available on the Apple" or Z80 versions of ZBasic. Use DIM.

Standard Reference 192

COMPILE command ...
... rI' rI'."'.,...rI'.rI' r/' " ,/'."."'."' r/'."'."'."'."'."'."'.r!' "' "' rI."'.". "' "' "' "' "'. -":-":-":-"'-"'-"'-"'-"'-":-":-":-":-":-":-":-":-":-":-":-":-":-":-":-"'-":-":-":-":-":-":-":-,)-"'-"'-"'-"'-"'-"'-":-":-":-"'-":-":-"'-"'-"'-":-"'-"'-":-"'-":

FORMAT

DEFINITION

EXAMPLE

REMARK

193 Standard Reference

[L I COMPILE

Compiles a program and lists all of the compile time errors that are encountered.

If optional "L" is used, the error listings are sent to the printer.

This command is essentially the same as RUN except the compiler does not stop at
the first error.

PWINT "Hello"
X=X+1
INPUT "Yes or No:"A$
GOSUB "Routine"
END

COMPILE

Syntax Error in Stmt 01 at Line 00001
00001 PWINT "Hello"

";" Expected Error in Stmt 01 at line 00003
00003 INPUT "Yes or No:"_A$

Linew Error in Stmt 01 at Line 00004
00004 GOSUB "Routine"

See RUN and the section in the front of the manual called "Errors".

II
Not supported. Use RUN.

lal!l
Not supported. Use RUN.

FORMAT

DEFINITION

EXAMPLE

REMARK

command CONFIG "' "' "'.".."' "' ".."' "'."' "."' "' "' "' "'."' "
"'""'""'"":""'""'""'"":-""'""'"":""'""'"":""'"'" " ... " ":" ... " ... " ... " ... " ... " ... " ... " ... " ... " :-""'""'""'""'""'""'""'""'"":"":""'".":""'"":"":""'""'""'"":""'""'"::"':" ":""'"
CON FIG

Invokes the configuration prompts that allow you to set preferences for a number of
items including:

Digits of precision
Default variable types
Integer or floating pOint expression evaluation
Spaces between keywords
Convert to uppercase
Number of files that can be opened
The Rounding factor for PRINT USING
Test Array bounds

and a number of special options for your computer.

See "Configure" in the front of this manual and the section in your appendix for
specific configuration options available for your version of ZBasic.

This command is not available on all versions. See below.

l!!!l
The Z80 versions of ZBasic do not offer this command. The option to configure is
offered only when you first load ZBasic.

!b
CON FIG is not offered as a command but "Configure" is always available as a menu
item. See appendix for the options specific to this version.

Standard Reference 194

COORDINATE statement

FORMAT

DEFINITION

EXAMPLE

REMARK

195 Standard Reference

COORDINATE II WINDOW] horizontal, vertical]

Allows you to change the coordinate system used for graphic functions and
statements.

ZBasic defauHs to a coordinate system of 1024 x 768. This allows programs created
on one computer work on other computers with different graphic hardware.

COORDINATE horiz, vert

COORDINATE WINDOW

PLOT 1023, 767

COORDINATE WINDOW
PLOT 100,100

COORDINATE 1000,500
PLOT 100,100

Sets the relative coordinate system to the specified
limits minus one. COORDINATE 100,100 would allow
setting the coordinates from 0 to 99 for both the
horizontal and vertical.

Sets the system to pixel coordinates. This allows you
calculate the graphic positions by the actual
resolution on the screen. While this is not
recommended for programs that will be ported to
other computers, some people prefer it for certain
applications.

<--- Puts a graphic dot at the ZBasic
default coordinates (lower right comer)

<--- Puts a graphic dot at the pixel coordinate

<--- Puts a graphic dot at the relative coordinate

Some versions do not support this statement. See below for aHernatives to changing
coordinate systems.

IB'!l
Not supported on ZSO versions although COORDINATE WINDOW may be emulated
by using this instruction: POKE&xx3F, &C9 to enable pixel graphics and
POKE&xx3F, &C3 to return to the default coordinates of 1024x76S. The value of xx
varies by version type: CP/M-SO=01, TRS-SO 1,3=52 and TRS-SO model 4=30.

~

Not supported on these versions although COORDINATE WINDOW may be
emulated using the statements below:

Apple ProDOS: POKEWORD & 85,0 for pixel coordinates for that mode of graphics.
Use MODE to set back to regular coordinates.

Apple DOS 3.3: POKE &F388, &60 for pixel coordinates of that mode. POKE
&F388, &A9 to set back to the defauH coordinates of 1024x768.

FORMAT

DEFINITION

EXAMPLE

REMARK

function COS

COS (expression)

Returns the Cosine of the expression in radians.

COS(A)=XlH, H*COS(A)=X, XlCOS(A)=H

X#=COS (X)

Using COS in an expression will force ZBasic to calculate that expression in floating
point. COS is a scientific function. You may configure BCD scientific accuracy
separately from both Double and Single Precision immediately after loading ZBasic.

Integer Cosine may be accomplished with the predefined ZBasic USR function;
USR9 (angle in Brads). This returns the integer cosine of an angle in the range ±255
(corresponding to ± 1). The angle must be in Brads. This example program will draw a
sine wave using USR9:

MODE7 :CLS
FOR 1=0 TO 255

PLOT 1«2,-USR9(1)+384
NEXT I

For more information about scientific functions and derived math functions see the
"Math" section of this manual. See CIRCLE for more about BRADS. Also see ATN,
SIN, TAN, EXP, SQR.

Standard Reference 196

CSRLIN function "' ". ". ... ".,. "' "' ". "." "' ,/'.
" ... " ... " ... " ... " ... "":" ... " ... " ... " ... "":" ... " ... " ... " ... "":" ... " ... " ... " ... "":" ... "":"":" ... "":"":"":" ... " ... " ... " ... " ... "":" ... " ... " ... " ... "":" ... " ... "":" ... " ... " ... "":" ... " ... " ... " ... " ... " ... "::

FORMAT

DEFINITION

EXAMPLE

REMARK

CSRLIN

Returns the line where the cursor is positioned.

CLS
PRINT
PRINT
PRINT CSRLIN

RUN

2

See POS to determine the horizontal cursor position.

Be!l
Not supported with the Apple II or Z80 versions of ZBasic. For Apple II use
PEEK (37) to get the current cursor line.

197 Standard Reference

FORMAT

DEFINITION

EXAMPLE

REMARK

function eVB

eVB (string)

Returns the binary floating point value of the first n characters of the condensed
number in string (depending on whether Single or Double Precision is used).

Double Precision Returns the digits of accuracy defined in configure for
double precision. (default is 8 digits i.e. the first 8 string
characters.),

Single Precision Returns the digits of accuracy defined in configure for single
precsion. (default is 4 digits i.e. the first 4 string characters.)

This function is the compliment of MKB$.

A#=12345.678: B!=12345.678

A$=MKB$(A#): B$=MKB$(B!)
PRINT LEN (A$), LEN(B$)

C#=CVB(A$): D!=CVB(B$)
PRINT CII, D!

RUN

8
12345.678

8
12345.7

This function is used with some versions of BASIC to save space on disk when
storing large amounts of numeric data in strings with FIELD. ZBasic does this
automatically but CVB is still useful for string packing, etc. Also see MKI$, CVI, MKB$,
READ# AND WRITE#. This command is not compatible with CVS or CVD.

A few things to remember concerning CVB:

Null strings or 1 character strings return 0
Two character strings will retum 2 digits accuracy. Four character strings will return
four digits. See "Floating Point Variables" for more information.

~
·See "Floating Point Variables" for detailed information on how extended double
precision variables are stored and the added range of this precision for the Mac.

Standard Reference 198

CVI function

FORMAT

DEFINITION

EXAMPLE

REMARK

199 Standard Reference

CVI (string)

Retums the binary integer value of the first 2 characters of string.

This function is the compliment of MKI$.

A$=MKI$(30000)
PRINT LEN(A$)

Z%=CVI (A$)
PRINT Z%
END

RUN

2
30000

Also see MKI$, CVB, MKB$, READ# AND WRITE#.

A few things to remember conceming CVI:
Null string retums 0
One character strings will retum the ASCII value.
Two character strings will retum an integer value.
ASC(second character) • 256 + ASC(first character)

This function was used with MBASIC to save space on disk when storing large
amounts of numeric data. ZBasic does this automatically when using WRITE# and
READ# but CVI is still useful for string packing, etc.

a
See DEFSTR LONG in the Mac appendix for using this function with Longlntegers.
When Longlntegers are used the memory requirements are four bytes instead of two
bytes. MSB and LSB are stored in reverse order for regular integers with this version.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement DATA

DATA data item [• data item [•... 11

The DATA statement is used to hold information that may be read into variables using
the READ statement. DATA items are a list of string or numeric constants separated
by commas and may appear anywhere in a program.

No other statements may follow the DATA statement on the same line.

Items are read in the order they appear in a program. RESTORE will set the pointer
back to the beginning of the first DATA statement. RESTORE n will set the pointer to
the nth DATA item.

DATA Tom, Dick, Harry, 12.32, 233
READ A$, B$, C$, Ai, B%

DEF TAB 6
PRINT "DATA items are: ";A$,B$,C$,Ai,C%

RUN

DATA items are: Tom Dick Harry

DATA Tom, Dick, Harry, 12.32, 233

RESTORE 3
READ Name$

PRINT "Third DATA item is: ";Name$

RUN

Third DATA item is: Harry

12.32 233

Alphanumeric string information in a DATA statement need not be enclosed in
quotes H the first character is not a number. math sign or decimal point.

Leading spaces will be ignored (unless in quotes) . DATA statements can be
included anywhere within a program and will be read in order.

Typical storage requirements for DATA items:

Number with zero value
Non-zero integer
Strings
Floating Point BCD
Floating Point Binary

2 bytes
3 bytes
Length of string + 2
·See Floating Point Constants"
·See Floating Point Constants·

See READ. PSTR$ DIM and RESTORE for common statements used with DATA.

Note: See PSTR$ for extremely efficient way of retrieving strings in DATA
statements.

Standard Reference 200

DATE$ function

FORMAT

DEFINITION

EXAMPLE

REMARK

201 Standard Reference

DATE$

Returns an eight character string containing the system date using the format
MM/DDNY, where MM=month, DD=day and YV=year.

DATA January, February, March, April, May, June
DATA July, August, September, October, November, December

A$=DATE$

Day$=MID$(A$,4,2)
REM If leading zero; peel off on next line
IF ASC(Day$)=ASC("O") THEN DAY$=RIGHT$(DAY$,1)

Month%=VAL (A$)
RESTORE Month%
READ Month$

Year$="19"+RIGHT$(A$,2)

<---Get month name from DATA

PRINT "Computer date: ";TAB(20);DATE$
PRINT "Human date: lf i TAB(20);Month$;" ";Day$i", niYear$

RUN

Computer date: 08/03/88
Human date: August 3, 1988

If the system does not support a date function, 00/00/00 will be returned. See your
computer appendix for more information.

Also see TIME$ and DELAY.

Macintosh: Date can only be changed from the "Control Panel DA"

MSDOS: Date may be set in program: DATE$="MM/DD/YV"

Apple: Date must be set from the system.

CP/M-80 3.0 and PLUS: DATE$ supported. CP/M 2.x does not support date.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement DEF

DEFINT letter [-letter J [, letter [-letter J, ... J
DEFSNG letter [-letter J [, letter [-letter J, ... J
DEFDBL letter [-letter J [, letter [-letter J, ... J
DEFSTR letter [-letter J [, letter [-letter J, ... J
*DEFDBL INT letter [-letter J [, letter [-letter J, ... J

These statements define which variable type ZBasic will assume when encountering
a variable name with letter as a first character and not followed by a type declaration
symbol (% integer, ! single, # double, $ string, & double integer).

DEFINT
DEFSNG
DEFDBL
DEFSTR
*DEFDBL INT

Integer
Single Precision
Double Precision
String
Longlnteger (Macintosh only)

ZBasic will assume that all variables are integers unless followed by a type declaration
symbol or defined by a DEF type statement.

See "Configure"for another way of defining the default variable type.

letter
letter - letter

Letter from A to Z. Case is not significant.
Defines an inclusive range of letters.

DEFSNG A
DEFDBL B
DEFINT F
DEFSTR Z
DEFSTR B-D, X,Y,Z
DEFDBL A, F-J, T
DEFSGL A, G, B-E

<--- A and A! are the same variable (A$ is still a string).
<--- B and B# are the same variable (B% is still an integer).
<--- F and F% are the same variable (F! is still single prec).
<--- Z and Z$ are the same variable (Z# is still double prec).
<--- B, C, D, X, Y and Z all strings
<--- A, F,G,H,I,J and T all Double precision
<--- A, G, B, C, D and E all Single Precision

Other versions of BASIC may assume all numeric variables are single precision unless
otherwise defined. See the sections on "Floating Point Variables", "Math" and
"Converting Old Programs" in the front of this manual for more information.

!l
* Also see DEFSTR LONG in appendix for way of forcing HEX$, OCT$, UNS$, CVI and
MKI$ to default to Longlnteger instead of regular integer.

Standard Reference 202

DEF FN statement

FORMAT

DEFINITION

EXAMPLE

REMARK

203 Standard Reference

DEF FN name [(variable [, variable [, ... 1 1) 1 = expression

This statement allows the user to define a function that can thereafter be called by FN
name. This is a handy way of adding functions not provided in the language.

The expression may be a numeric or string expression and must match the type the
FN name would assume if ij was a variable name.

The name must adhere to variable name syntax.

The variable used in the definition of the function is a dummy variable. When using
FN the dummy variables, other variables or expressions may be used to pass the
values to the function. The variable should be of the right type used in the function.

DEF FN e# = EXP(1.)
DEF FN Pi#= ATN(1)«2
DEF FN Sec#(x#) = 1.\COS(x#)
DEF FN ArcSin#(x#) = ATN (x# \ SQR(1 - x# * x#»

PRINT FN pit
1#=4.2312
P1anet#= FN ArcSin#(Sin(I#»* FN e#+ FN Sec#(Elipse#)

RUN

3.14159 ...

REM A Handy rounding function
REM Send the routine the number and places to round

DEF FN Round#(num#, p1aces)=INT(num#*10 A places+.5)/10 A places

PRINT FN Round#(823192.124567576,5)
X#=202031.12332
PRINT FN Round#(X#,2)
END

RUN

823192.12457
202031.12

One function may call another function as long as the function was defined first.

LONG FN is another form of DEF FN that allows multiple lines of code. It is very
powerful for creating reusable subroutines.

See "Derived Math functions", "Functions and Subroutines", LONG FN, END FN
and FN.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement DEF LEN

DEF LEN [=] number

The DEF LEN statement is used to reset the default length of string variables until
the next DEF LEN statement is encountered. The number must be from 1 to 255.

If DEF LEN is not used string length default is 255 characters each. Each string will
consume 256 bytes; 1 byte for length byte, the rest for characters.

Since strings will consume so much memory if their length is 'lot defined; it is
imperative that thought be given to string length, especially if memory is at a premium.

C$="Welcome lf

DEF LEN 20
DIM M(lO)
Greeting$="Hello"

DEF LEN 200
B$="Goodbye"

DIM 50 Z$

<---Length of C$ defaults to 255 characters.

<--A$() aliocateQ 20 characters per element.
<---Greeting$ allocated 20 characters

<---B$ allocated 200 characters

<---Z$ allocated 50 characters. See DIM

DEF LEN will allocate the specnied amount of memory to every string that is defined
after it (unless defined differently in DIM or another DEF LEN).

Strings that appear before the DEF LEN statement are not affected. For example, in
the above program, C$ is allocated the default length of 255 characters because it
appeared BEFORE the DEF LEN statement.

DIM may also be used to set the length of string variables. See DIM.

Also see "String Variables" and "Converting Old Programs" in the front section for
important information about strings and how they use memory.

Imponant Note: Always allocate one extra character for strings used with INPUT.
Never use a one character string for INPUT. The extra character position is needed
for the carriage return.

Standard Reference 204

DEF MOUSE statement "'."'."'."' "'."' "' "'."' "' "'." rl'."' rI'."' "
~-:.~.-:.-:.": ":-":-"":

FORMAT

DEFINITION

EXAMPLE

REMARK

205 Standard Reference

DEF MOUSE [=] expression

The DEF MOUSE statement is used to define the device to be used with the MOUSE
functions and statements, or the type of mouse commands to use with the program.

DEF MOUSE=O Regular ZBasic MOUSE commands for a mouse device. See
MOUSE in this reference section.

MSDOS: Uses Microsofl''M compatible mouse devices. Be
sure to "Configure" ZBasic for a mouse.

Apple II: Assumes a mouse is connected.

Macintosh: Standard MOUSE commands in this section of the
reference manual. See DEF MOUSE=1 to do
MSBASIC type mouse commands.

zao: NOT SUPPORTED.

DEF MOUSE= n Tells ZBasic that other devices are to be used instead of a
MOUSE (in the case of the Macintosh ij tells ZBasic to use
MSBASIC mouse syntax).

MSDOS: n=1 defines joystick/paddle A*
n=2 defines joystick/paddle B*
n=3 defines a lightpen device

Apple II: n=1 defines a joystick/paddle device*

*MOUSE(3) function returns button status:
0= No button pressed
1 = Button zero pressed
2= Button one pressed
3= Both buttons pressed

Macintosh: n= non-zero sets commands to MSBASIC mouse
commands. See Macintosh appendix for specifics.

zao: NOT SUPP08TED.

See the appendix for your computer for specifics.

See MOUSE in this reference section and in your appendix for specifics.

jB'!l
MOUSE or DEF MOUSE is not supported with any zao versions of ZBasic. This is
due to the fact that most zao computers do not offer this hardware device.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement DEF TAB

DEF TAB [=] expression

The DEF TAB statement is used to define the number of characters between tab
stops for use in PRINT, PRINT# or LPRINT statements

Tab stops are the number of spaces to move over when the comma is encountered in
a PRINT statement.

The expression must be a number from 1 to 255. TAB default is 16.

PRINT 1,2,3 <---Tab stop default is 16, 32, 48 .. .
DEF TAB = 8 <---Tab stops now set to 8,16,24 .. .
PRINT 1,2,3: PRINT

FOR X=1 TO 5
DEF TAB=X
PRINT 1,2,3

NEXT X

RUN

1
1 2

1 2 3
1 2 3
1 2 3
1 2 3
1 2

2
3

3

3

Also see TAB, WIDTH, WIDTH LPRINT and PAGE.

Standard Reference 206

DEF USR statement

FORMAT

DEFINITION

EXAMPLE

REMARK

207 Standard Reference

DEF USR digit expression

The DEF USR statement is used to define the addresses of up to 10 machine
language user subroutines; USRO to USR9.

Examples only. Do Not Use!

REM Calls graphic routine at memory address 5000
DEFUSR1=5000
X=USRO (45)

DEFUSR2=23445
PRINT USR2(x)

A machine language return is needed at the end of the routine to return program
control to ZBasic.

See USR, MACHLG, CALL, LINE, VARPTR, BIN$, HEX$, OCT$, UNS$, PEEK,
PEEKWORD, POKE, POKEWORD and the chapter "Machine Language".

Some other default USR functions are included in the appendix for your computer.

WARNING: Use of this command requires a knowledge of machine language and a
computer's hardware. Porting of programs with this statement may not be possible
without re-writing the routines.

statement DELAY

FORMAT DELAY expression

DEFINITION The DELAY statement will cause a program to pause a specified amount of time.

The expression sets the delay in milliseconds; thousandths of a second.

EXAMPLE CLS

REMARK

FOR I = 1 TO 5
PRINT "DELAYING "; I; "SECONDS"
DELAY I * 1000

NEXT I
END

RUN

DELAYING 1 SECONDS
DELAYING 2 SECONDS (after
DELAYING 3 SECONDS (after
DELAYING 4 SECONDS (after
DELAYING 5 SECONDS (after

FOR X=1000 TO 0 STEP -50
PRINT X
DELAY X

NEXT

(try it)

1 second)
2 seconds)
3 seconds)
4 seconds)

The <BREAK> key is not scanned during DELAY. Any negative expression will
cause delays in excess of 32 seconds (the unsigned value). Note that DELAY -1 will
delay over 65 seconds (unsigned -1 = 65,535).

There may be a slight time variation from machine to machine due to processor
speed, interupts, hardware differences, etc.

Also see DATE$ and TIME$.

!b.
Also see TIMER.

Standard Reference 208

DELETE command

FORMAT

DEFINITION

EXAMPLE

REMARK

209 Standard Reference

DEL [ETE)
DEL [ETE)
DEL [ETE)
DEL [ETE)

line
-line
line -line
line-

This command will remove a line or range of lines from a program in memory.

DELETE is used from the Standard Line Editor.

10 CLS
20 FOR I 1 TO 10
30 PRINT "NUMBER ". I
40 NEXT I
50 END

DEL 10-20

LIST

30 PRINT "NUMBER ". I
40 NEXT I
50 END

10 "FRED" PRINT "NUMBER ";1
20 PRINT "Fred was here"
30 END

DELETE "FRED"

LIST

20 PRINT "Fred was here"
30 END

Use this command with care as recovery of deleted lines is not possible.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement DIM

DIM [len] var [type] [(number [• number ..])] [•...]

The DIM statement is used to allocate memory for variables and array variables and to
define common variables for chained programs.

len Defines the length a of a string (how many characters it may hold). This is
optional and defines the length of all the following string variables in that
DIM statement or until a new length is encountered in that statement. The
default is 255 characters unless changed by a previous DEFLEN.

var The name of a variable (any variable type).

type Forces the variable to be of that type.

%=Integer
&=Longlnteger (Macintosh only)
!=Single Precision
#=Double Precision
$=String

Also see "Variables" in the front section of this manual.

number The maximum number of elements that a dimension may contain from 1 to
32,767elements (add one n array BASE option is set to zero. default=O).
Only numbers may be used, not variables.

See the following page for more information and examples.

Use care when allocating memory with the DIM statement.

See BASE OPTION, DEFLEN, "Array Variables", "String Variables", INDEX$ and
RUN+ for more important information about using DIM.

fl.
Macintosh: This version is limited to 2,147,483,648 elements in an array.
MSDOS: In order to optimize performance; integer variables and integer array
variables are limited to one 64K segment. String and BCD arrays may cross segment
borders to use up to available memory.

continued next page ...

Standard Reference 210

DIM statement

DIM continued

DETERMINING THE MEMORY NEEDS OF DIMMED ARRAYS

DIM A% (10, 10, 10), Ail (5), A! (9,7), B$ (10), 5Cool$ (20
DIM Long&(10): REM Macintosh Only

The following chart shows how to calculate the memory requirements of the arrays
dimensioned above with a BASE OPTION of zero.

Bytes per How to
ARBAY :r.me. !i1~m~DI Ci!I~I.!Ii!I~··
A%(10,10,10) Integer 2 11'11'11'2
A#(5) Double Precision 8 6*8
A! (9,7) Single Precision 4 10'8'4
B$(10) String 256 11'256
Cool$(20) String 6 21'6
Long&(10) Longlnteger 4 11'4

DEFINING STRING LENGTHS WITH DIM

DIM X$(10), 20A$, Z$(5), 45TEST$, 10MD$(20,20)

In the example above the maximum character capacities are:

X$
A$

255 (default is 255)
20

Memory
B~gl.!l[~d
266?
48
320
2816
126
44

Z$ (5)
TEST$

each element of Z$ as 20' (21'5=105 total bytes)
45

MD$(20, 20) each element of MD$(20,20) as 10.
(20 * 20 '11 =4400 total bytes of memory used)

* " no length is defined, the last given length in that DIM statement is used. In the
example each element of Z$(n) gets a length of twenty. "no length is defined in that DIM
statement then 255 characters is the default (or the last length used in DEF LEN).

"" you configure BASE OPTION 1 you will not need to add one to the dimension. To
calculate the memory required for A%(10,10,10): 10*10*10'2. See "Configure".

Note: Add one to the defined length of each string for the length byte to determine the
actual memory requirement of the string. This extra byte is the "Length byte" and it is the
first byte in the string. It is what is pointed at by VARPTR(var$).

Important Note: Unpredictable system errors may result if an attempt is made to assign
a string variable a string longer then its allocated length. It is also important to define the
length of a string at least one greater than the maximum number of characters received in
an INPUT or LlNEINPUT statement.

211 Standard Reference

FORMAT

DEFINITION

EXAMPLE

REMARK

command DIR

DIR [drivespec 1

DIR will display the directory of the disk drive specified by drivespec.

The drivespec will vary from one computer to the next. See your Computer's Disk
Operating System reference manual for syntax.

DIR <ENTER>

LEDGER. COM MAY. LED JUN. LED
JUL.LED AUG.LED

ZBasic Ready

The appearance of the directory layout will vary by computer. See appendix for further
information. This is a command so it does not operate during runtime.

See below, or your appendix, for possible ways of getting directories at runtime.

Macintosh: Syntax is OIR "rootname or foldername". To get a directory during
runtime see FILES$ in the appendix. LOIR will output the directory to a printer.

MSDOS: Use OIR •. BAS to see all the .BAS files or OIR Z·" to see all the files starting
with Z. To get a directory during runtime see FILES.

Apple ProDOS: To get a directory during runtime; OPEN"I" the directory
pathname. Example: OPEN"I",1,"ZBASIC". See directory layout in ProOOS
reference manual for more information about directory file layout. This version also
supports LOIR to list the directory to the printer. CAT may be used as well as OIR.

Apple DOS 3.3: To get a directory during runtime:

LONG FN DIR (slot,drive)
POKE &AA6A,slot
POKE &AA68, drive
CALL &A56E

END FN

Z-80: See appropriate section in appendix for your computer and ~OS. Some zao
versions do not allow getting a directory at runtime.

Standard Reference 212

DO statement

FORMAT DO

DEFINITION

UNTIL expression

The DO statement is used to define the beginning of a loop with the UNTIL statement
defining the end.

Program functions and statements appearing between the DO and UNTIL will be
executed over and over again until the expression defined at the UNTIL statement is
TRUE.

EXAMPLE DO

REMARK

213 Standard Reference

PRINT"Hi!"
UNTIL LEN(INKEY$)
END

RUN

Hi!
Hi!
Hi!
Hi!

DO
X=X+1

UNTIL X=2492
PRINTX
END

RUN

2492

<-----you press a key and it stops

The statements in a DO loop will be executed at least once. See WHILE-WEND for a
loop type that ends immediately if the condition is false.

ZBasic automatically indents text appearing between a DO and UNTIL two spaces.
This is helpful in debugging and documenting programs.

See the "Structure" and "Loops" sections of this manual for more information.

Also see FOR-NEXT-STEP and WHILE-WEND.

FORMAT

DEFINITION

EXAMPLE

REMARK

command EDIT

E fine
EDIT fine

EDIT is used from the Standard Line Editor to specify the line you wish to edit.

EDIT may be abbreviated to E. A comma will start editing at the line currently selected
by ZBasic's line pOinter. List of the EDIT sUb-commands:

SUB-COMMAND
[n]<SPACE>
[n]<BACKSPACE>
I
X
<ESC>
[n]D
[n]C key
H
[n]S key
L
A
[n]K key
<ENTER>
<BREAK>

DEFtNITION
- MOVE CURSOR RIGHT (n characters)
- MOVE CURSOR LEFT (n characters)
- Begin INSERT mode at cursor position
- Goto the end of the line and EXTEND it
- Exit INSERT mode (you will still be in line edit mode)
- DELETE characters (if n is used deletes n characters)
- CHANGE character to <key> [n) times
- HACK to end of line and enter INSERT
- SEARCH for [n)th occurrence of <key>
- LIST line being edited, home cursor
- ABORT changes, restore original line
- KILL text to [n)th occurrence of <key>
- EXIT editing with changes intact
- ABORT EDIT SESSION (no changes made)

Note: n is a number from 1 to 255. If n is not used, one is assumed.

10 FOR I 1 TO 20
20 PRINT I
30 NEXT I

EDIT 20 <---- or E20 (comma n 20 was the last line used.)

20 <---- Press spacebar or backspace to move cursor.
Use keys above to edit this line.

If you want to edit the current line, press the comma key <,> in command mode. It will
do the same as E <ENTER>.

Line numbers may be edited in ZBasic. The line being edited will remain unchanged,
the edited line with the new line number will be created.

See the "Standard Line Editor" section in the beginning of this manual.

Also see FIND, DELETE, AUTO and LIST.

~.
These versions offer full screen editors as well as the Standard Line Editor. See "Full
Screen Editor" in the appropriate appendix for details.

Standard Reference 214

ELSE statement

FORMAT

DEFINITION

IF- THEN- ELSE line or label
IF- THEN- ELSE statement(s)

ELSE is used with an IF statement to route control on a false condition.

ELSE may refer to a linenumber or label or it may be followed by one or more
statements that will be executed if the condition in the IF statement is FALSE.

EXAMPLE X=99

REMARK

215 Standard Reference

IF X = 100 THEN STOP ELSE PRINT X
END

RUN

99

IF X=100 THEN STOP ELSE "End"
END

"End"
PRINT"Stopped here."
END

RUN

Stopped here.

All statements on a line following an ELSE are conditional on that ELSE.

See "Structure", IF-THEN, LONG IF, XELSE and ENDIF.

~.
Also see SELECT CASE.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement END

END

END is used to stop the execution of a program.

END will return control to the Standard Line Editor if program was executed using
RUN, or to the operating system if the program was compiled using RUN" or RUN+.

PRINT "HELLO"
END
PRINT "THERE"

RUN

HELLO

END will close all open files.

Also see STOP and TRONB.

&
See SHUTDOWN.

Standard Reference 216

END FN statement

FORMAT

DEFINITION

EXAMPLE

REMARK

217 Standard Reference

LONG FN

END FN [= expression I

Marks the end of a LONG FN statement.

The optional expression MUST be numeric for numeric functions (#,%,&,!) and
MUST be a string ($) for string functions.

REM Removes spaces from the end of a string
LONG FN RemoveSpace$(x$)

WHILE ASC(RIGHT$(x$,1)=32
x$= LEFT$(x$, LEN(x$)-l)

WEND
END FN= x$
Name $= "ANDY
PRINT "Before:"iName$i"*"
PRINT" After:"; FN RemoveSpace$(Name$);"*"

RUN

ANDY * ANDY*

REM Example of a simple Matrix Multiplication
DIM A% (1000)

LONG FN MatrixMult%(number%, last%)
FOR temp%= 0 TO last%

A%(temp%)=A%(temp%)*number%
NEXT

END FN

A%(O)=l: A%(l)=2:A%(2)=3
FN MatrixMult%(10,3)
PRINT A%(O), A%(l), A%(2)

RUN

10 20 30

If an END FN is omitted in a LONG FN construct, a structure error will occur. You
must exit a function from an END FN otherwise problems will occur internally.

Also see "Functions and subroutines", "Structure", LONG FN, FN statement, FN
function and DEF FN.

Important Note: Loops like FOR-NEXT, DO-UNTIL or WHILE-WEND must be
entirely contained within a LONG FN-END FN. Do not exit a function except at the
END FN.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement END IF

LONG IF expression

[XELSEI

END IF

This is an end marker for the LONG IF statement.

Program execution will continue normally at the END IF after completion of a LONG IF
orXELSE.

Love$="Forever"
LONG IF Love$="Forever"

PRINT "How Romantic!"
XELSE

PRINT "How heartbreaking!"
END IF
END

RUN

How Romantic!

If an END IF is omitted in a LONG IF construct, a structure error will occur.

See "Structure", LONG IF, IF-THEN, ELSE and XELSE.

&&
Also see SELECT CASE.

Standard Reference 218

END SELECT statement ...
... ,..."'.".". " "' ". rI' "'.oI' "' "' "'.".."'."' "' "' " "'."'.".1/'."."'.",.."' "' -... -... .

FORMAT

DEFINITION

EXAMPLE

REMARK

219 Standard Reference

SELECT [CASE) [expression)
CASE [IS) relational condition1 [, relational condition) [, ...)

statement(s)
CASE [IS) condition I. condition] I. ... J

statement(s)
CASE [IS) boolean expression

statement(s)
CASE ELSE

statement [:statement ...))
END SELECT

END SELECT is the end marker for the SELECT /CASE structure.

When SELECT/CASE is encountered, the program checks the value of the
controlling expression or variable, finds the CASE that compares true and executes
the statements directly fOllowing the CASE statement. After these statements are
performed, the program continues at the line after the END SELECT statement

A=100
SELECT A

CASE >100
PRINT "A>100"

CASE 100
PRINT "A=100"

CASE ELSE
PRINT"None of the above"

END SELECT
PRINT "Program continues ... n

END

RUN

A=100
Program continues ...

Also see SELECT and CASE.

]a'!l
SELECT CASE is not supported with the Z80 versions. See IF and LONG IF for
accomplishing the same thing.

SELECT CASE is not supported with this version. See IF and LONG IF for
accomplishing the same thing.

FORMAT

DEFINITION

EXAMPLE

REMARK

function EOF -.; .. .
.......... "' ,/'."' "'.,/' ,/' "' "' "'.,."' ,/'.,."' r/'.i'.r/' "'."' "'."'.01' "' • .1' ". r/'."' "' "'.r!'.r/'.r/'

"'''''''''''''''''''':'''''''''''''''''''''''':''''''''':''''''''':'':-'':''''''''':''"''''':'''':''''''''''''''''''':'''''''''''''''''''''''''''''''''''''':l'''.
EOF (filenumber)

Returns true if an end-of-file condition exists for filenumber , returns zero if the end
of-file has not yet been reached. This function is only available on the Macintosh and
MSDOS versions of ZBasic.

OPEN"I",l,"FILE.TXT"
DO

LINEINPUTH, A$
PRINT A$

UNTIL EOF (1)
CLOSEH
END

What to do if you don't have EOF on your computer:
ON ERROR GOSUB 65535 <--- Enable disk error trapping
OPENtlI", 1, "FILE.TXT"
IF ERROR GOSUB"Error message"
DO

LINEINPUTH, A$
PRINT A$

UNTIL ERROR <>0
IF ERROR <> 257 THEN GOSUB "Error message"
ERROR=O <--- Error 257 is an end·of-file error. Reset Error here then continue.
CLOSEH
END

"Error message"
PRINT "A disk error occurred: "; ERRMSG$(ERROR)
INPUT"<C>ontinue or <S>top? ";temp$
IF temp$="C" THEN ERROR=O:RETURN
STOP

Some versions 01 ZBasic do not support EOF because of system reasons. Also see
ERROR function and statement, ON ERROR and ERRMSG$

jal!l
EOF is not supported on zao versions of ZBasic. Use the second example above to
accomplish the same thing.

II
EOF is not supported on the Apple /I ProDOS or DOS 3.3 versions of ZBasic. Use
the second example above to accomplish the same thing.

Standard Reference 220

ERRMSG$ function

FORMAT

DEFINITION

EXAMPLE

REMARK

221 Standard Reference

ERRMSG$ (expression)

Returns the error message string for the error number specified by expression. In
most cases you will use the number returned by the ERROR function when a disk
error has occurred.

OPEN "I",l, "OLDFILEI1
ON ERROR GOSUB "Error message"

"Error message"
PRINT "A disk error has ocurred!! n

PRINT "The error was: ";ERRMSG$(ERROR)
ERROR=O : REM ALWAYS SET ERROR TO ZERO AFTER ERROR OCCURS!'
RETURN

RON

A disk error has ocurred!!
The error was: File Not Found Error in File 11

FOR X=O TO 255
PRINT ERRMSG$(X)

NEXT X

RON

PRINTS ALL lHE ERROR MESSAGES FOR THAT COMPUTER.

ZBasic will display disk errors for you unless you use the ON ERROR disk trapping
options.

The ERROR function is commonly used for error trapping and display purposes. The
expression is stored as follows:

The low byte is used for the ERROR number
The high byte is used for the file number

(ERROR AND 255)
(ERROR» 8) or (ERRORl256)

See "Disk Errors", ON ERROR GOSUB and ERROR functions and statements.

ERROR statement

FORMAT

DEFINITION

ERROR [=] expression

Allows the programmer to set or reset ERROR conditions for the purpose of disk
error trapping.

~ Importanl Hoi" • ,"' do ... ,,"k ~"""""" ERROR m"" be re,. \0 >oro
after a disk error occurs or ERROR function will continue to return an error value.

EXAMPLE

REMARK

223 Standard Reference

REM This routine checks to see if a file exists. If it
REM does exist it is opened as random, if it doesn't
REM exist an error message is returned.

LONG FN Openfile%(files$, filenum%, reclen%)
ON ERROR GOSUB 65535: REM Disk error trapping on
"Open file"
OPEN"I",filenum%,file$
LONG IF ERROR

LONG IF (ERROR AND 255) <>3
PRINT@(O,O);"Could not find: ";file$;" Check drive"
INPUT"and press <ENTER> when ready";temp%
ERROR=O: GOTO "Open file"

END IF
XELSE

CLOSEt filenum%
END IF

ON ERROR RETURN: REM Give error checking back to ZBasic
OPEN"R",filenum%, fileS, reclen%
END FN

ERROR may also be used as a function. See "Disk Error Trapping", ERROR function,
ERRMSG$ and ON ERROR.

a.a
Macintosh: Also see SYSERROR in appendix.

MSDOS: See appendix for ways of doing critical error handling.

Apple ProDOS: See appendix for additional ways of trapping ProDOS errors.

FORMAT

DEFINITION

EXAMPLE

REMARK

function ERROR

ERROR

Returns the number of an ERROR condHion, if any.

Zero (0) is returned if no error has occurred.

This function is available to programmers who wish to trap disk errors using the ON
ERROR statement.

ON ERROR GOSUB 65535: REM User disk trapping enabled
OPEN n I", 1, "OLDFILE"
IF ERROR=259 GOSUB"NOT FOUND": GOTO 20
ON ERROR RETURN: REM Let ZBasic do the error checking nowl

"NOT FOUND"
REM ERROR 259 is: Rle Not Found error in Filenumber 1
PRINT" The file is not on that disk!"
PRINT" Please insert the correct disk"
PRINT" and press <ENTER>"
INPUT A$:ERROR=O:RETURN

ERROR may also be used as a statement. See ERROR statement, ERRMSG$ and
ON ERROR GOSUB.

Important Note: If you do the disk error trapping, ERROR must be reset to zero
after a disk error occurs or ERROR function will continue to return an error value.

~ ••
Macintosh: Also see SYSERROR in appendix.

MSDOS: See appendix for ways of doing crHical error handling.

Apple ProDOS: See appendix for additional ways of trapping ProDOS errors.

Standard Reference 222

FORMAT

DEFINITION

EXAMPLE

REMARK

function EXP

EXP (expression)

Returns e raised to the power of expression. This function is the compliment of LOG.
The BCD internal constant of the value of e is:

2.71828182845904523536028747135266249775724709369995957

The result will be rounded to the digits of precision configured for Double Precision
accuracy.

DEFDBL A-Z
DO

INPUT "ENTER A NUMBER ";X
PRINT "e RAISED TO X =" EXP(X)

UNTIL X=O
END

RUN

ENTER A NUMBER 1
e RAISED TO X = 2.718281828459 <---14digitaccuracy

This is a scientific function. See "Configure" for information about configuring
scientific accuracy.

For more information about scientific functions see "Math", "Math expressions",
"Floating POint Variables", COS, SIN, ATN, TAN, SQR and raise to the power "A".

Standard Reference 224

FILL statement

FORMAT

DEFINITION

EXAMPLE

REMARK

225 Standard Reference

FILL expressionx • expressiony

The purpose of FILL is to paint an area of the screen in the current COLOR. The
point defined by the two expressions are:

expressionx (horizontal position) and expressiony (vertical position).

Fill will search for the uppermost point in the contained area that has the background
color, then start filling from left to right and down. For this reason irregular shapes
may not fill completely with one fill command. It may be necessary to use a fill
statement for each appendage.

BEFORE
FILL 0, 384

.J/' 0

COLOR=l
FILL 0,284

RUN

See chart.

FILL
AFTER

FILL may not be available on machines without the capability of seeing pixels on the
screen. See computer appendix. Also see CIRCLE FILL, BOX FILL, MODE, POINT
and PLOT.

!b
BOX FILL, CIRCLE FILL and the QuickDraw routines like FILLPOL Y, FILLRGN,
FILLRECT etc. are much faster ways of filling areas.

FORMAT

DEFINITION

EXAMPLE

REMARK

command FIND

FIND
FIND #
FIND"
FIND REM
FIND DATA

commands or keywords
line
quoted string text or labels
items in REM statements
items in DA TA statements

FIND is used in the Standard Line Editor to locate text in a program.

To FIND additional occurrences, press semi-colon (;l or FIND <ENTER>.

YOU TYPE
FIND "HELLO
FIND A$

or .. .
or .. .

FIND 99
FIND #12345 (line#)
FIND X(C)

or ...
FIND PRINT
FIND "SUBS

or ...
FIND OPEN
FIND CLOSE
FIND REM This
FIND DATA 123, 232
FIND DATA "Fred"

ZBASIC FINDS
01010 A=20:PRINT"HELLO THERE"
01022 Z=l:A$=B$:PRINTA$+B$
01222 BA$="hel1o"
01333 ABA$="goodbye"
05122 F=2:X=X+2+F/999
08000 GOTO 12345
03050 A=1:T=ABS(X(C)/9-293+F)
03044 ZX(C)=4
00230 A=92:PRINTA
00345 "SUB500": CLS
03744 GOSUB "SUB500"
03400 OPEN"R",1,"FILE54",23
09900 CLOSE#2
02981 REM This is a remark
09111 DATA 123, 232
10233 DATA "Tom", "Dick", "Fred"

When finding a string inside quotes, you must supply all of the characters up to the
point that will insure the uniqueness of the string.

See "Standard Line Editor" in the beginning of this manual.

!l&
See "Full Screen Editor" in the appropriate appendix for other FIND commands.

Standard Reference 226

FIX function

FORMAT

DEFINITION

EXAMPLE

REMARK

FIX (expression)

Truncates the digits on the right side of the decimal point.

PRINT FIX (123.456),
AiI=1293.21
PRINT FIX (AJI),
PRINT FIX (.12340),
PRINT FIX (999999.455) + O.

RUN

123 1293 o 999999

FIX works the same as INT in ZBasic. They are both included to maintain compatibility
with other forms of BASIC. FIX will consider an expression floating point.

FRAC is the opposite of FIX. It retums the fraction part of the number.

See FRAC and INT.

227 Standard Reference

FORMAT

DEFINITION

EXAMPLE

REMARK

function FN

FN name [(expression1 [, expression2 [,]])]

FN calls a function by name which was previously defined by DEF FN or LONG FN.

The name of the function must follow the syntax of variable names, that is, a string FN
must have a name with a $, an integer FN must have a name with a "la, etc.

The expressions must match the variable types as defined by the DEF FN or LONG
FN. Numeric expressions are not a problem, string expressions allow only simple
strings.

FN may not be used before it is defined with DEF FN or LONG FN.

DEF FN e# = EXP(l.)
DEF FN pi#= ATN(l) « 2
DEF FN Sec#(x#) = 1.\ COS (x#)
DEF FN ArcSin#(x#) = ATN (x# \ SQR(l-x# * x#»

PRINT FN pH

RUN

3 . 14159 . .. <--- Returned in the current digits of accuracy

REM Round number to the number of places indicated_
LONG FN ROUND#(number#, places)

number#=INT(number#*10 A places+.5)/10 A places
END FN=numbed

PRINT FN ROUND # (43343.327, 2)

RUN

43343_33

This function is useful for saving program space and for making a program easier to
read.

Also see "Functions and Subroutines", "Structure", LONG FN, END FN, DEF FN,
APPEND and FN statement.

Standard Reference 228

FN statement

FORMAT

DEFINITION

EXAMPLE

REMARK

229 Standard Reference

FN name [(expression1 [, expression2 [,]])]

FN calls a function by name which has previously been defined by a DEF FN or a
LONG FN.

The expressions must match the variable types as defined by DEF FN or LONG FN.

DEF FN LastChr%(x) = PEEK(x + PEEK(x»
LONG FN RemoveSpace$(x$)

WHILE FN LastChr%(VARPTR(x$» = ASC(" ")
x$= LEFT$(x$, LEN(x$)-l)

WEND
END FN= x$
Name $ ="ANDY
PRINT Narne$;"*", FN RemoveSpace$(Name$);"*"

RUN

ANDY ANDY *

Also see "Functions and Subroutines", "Structure", LONG FN, END FN, DEF FN,
APPEND and FN function.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement FOR

FOR variable = expression1 TO expression2 [STEP expression3]

NEXT [variable] [, variable ...]

Permits the repeated execution of commands within the loop.

A FOR/NEXT loop will automatically increment variable by the amount set by STEP
and compare this to the end value, expression2, exiting the loop when var exceeds
this value alter adding STEP. Default STEP = 1.

Note the loop will be executed at least once with the value of expression1 .

FOR Counter = 0 TO 100 STEP 2
PRINT Counter;

NEXT

RUN

02468 10 12 ... 100

FOR Counter = 100 TO 0 STEP -2
PRINT Counter;

NEXT Counter

RUN

100 98 96 94 92 90 88 ... 0

FOR Counter* = 0.0 TO 1.0 STEP .01
PRINT Counter*;

NEXT Counter*

RUN

o .01 .02 .03 .04 .. , 1

ZBasic will automatically indent all of its loop structures in listings. This is helpful in
debugging and documenting programs.

See chapter called "Loops" and WHILE·WEND and DO-UNTIL.

Note: If STEP is set to zero, the program will enter an endless loop. If the variable is
an integer, do not allow the loop to exceed 32,767 or you will enter an endless loop
(unsigned integer).

Standard Reference 230

FRAC function

FORMAT

DEFINITION

EXAMPLE

REMARK

231 Standard Reference

FRAC (expression)

FRAC retums the fractional part of expression. The digits to the left of the decimal
point will be truncated.

This function is the compliment of INT and FIX.

A#=123.456
B#=99343.999
C#=3.5

PRINT A#, FRAC(A#)
PRINT B#, FRAC(B#)
PRINT C#, FRAC(C#)
PRINT 2.321, FRAC(2.321)

RUN

123.456 .456
99343.999 .999
3.5 .5
2.321 .321

This function will automatically set floating point calculation.

FIX and INT are the opposite. They retum the whole part of the number.

See FIX and INT.

FORMAT

DEFINITION

EXAMPLE

continued ...

statement GET

GET (x1,y1)-(x2,y2), variable[array(index[,index ... ,])]

Stores a graphic image from the screen into a variable or variable array so that it may
be retrieved later and put to the screen with PUT.

GET and PUT are extremely fast and useful for sophisticated graphic animation.

x1, y1
x2,y2

Coordinates of the upper-left-comer of the graphic image on the screen.
Coordinates of the lower-right-corner of the image.

Coordinates are pixel coordinates; use with COORDINATE WINDOW.

The image is normally stored in memory specified by an integer array since it is easier
to calculate how much memory is required this way (although other variables may also
be used as long as the memory set aside is correct).

To calculate the amount of ~ to DIM for a graphic image, use this equation. Bits
per-pixel (bpp) has to do with colors or grey levels available. See next page for
specifics:

6+ ((y2-y1)+1) * «x2-x1 + 1) • bpp +7) I 8)

Failure to DIM enough memory for an image will cause unpredictable system errors
so be sure to carefully calculate the memory needed.

DIM A(750)
MODE 7
COORDINATE WINDOW

CIRCLE 100,100,80

<--- Bytes above divided by two for integer array
<--- Not needed on the Macintosh version
<--- Pixel coordinates

GET (0,0)-(100,100), A(l)

FOR x= 1 TO 200 STEP
PUT (x, 90), A(l)
PUT (x, 90), A(l)

NEXT x

END

3
<--- Does twice to move the image across

the screen without disturbing the background

This routine moves a section of a circle across the screen. It is PUT to the screen
twice so the item doesn't repeat and it will appear to move across the screen without
disturbing the background (default PUT mode is XOR) .

Standard Reference 232

GET statement ..
"'1 ". ". "' ". " ,/' ". ". ".."' "'.".". J".".."..". "' ~.": " ... "":

REMARK

233 Standard Reference

Important Note: Failure to DIM enough memory for the variables storing the
graphic images may result in unpredictable system problems.

Also see DIM and PUT.

~
Macintosh: With this version of ZBasic, PUT has another, optional, parameter:
PUT (xl,yl) [- (x2,y2) l, var. The second parameter allows you to scale
the image, making it either larger or smaller by giving the rectangle size in which it is
to appear. The x2, y2 parameter is the lower-right corner of the image.

Bits-per-pixel (bpp) will vary by the type of Macintosh you have. The standard black
and white Macintoshes have one bit per pixel.

The Macintosh II may have up to 32 bits-per-pixel. Sixteen colors is 4 bpp, 256
colors is 8 bpp. Check addendum or "Inside Macintosh Volume V (Color Quickdraw)"
for the specifics of your color board.

MSDOS: Bits per pixel (bpp) will vary by the graphics adaptor board being used:

TYPE
CGA
CGA
EGA
EGA
HERCULES

J='ll

MODE(s)
5
7
16-19
16-19
20

COLORS
4
2
3-16
16
1

BITS PER PIXEL (bpp)
2
1
2 (64K or less on EGA card)
4 (More than 64K on card)
1

Z80: GET and PUT are not supported with these versions of ZBasic .

• Apple /I ProDOS and DOS 3.3: GET and PUT are not supported with these
versions. See DRAW example on ProDOS disk and the BLOAD and BSAVE
functions for possible alternatives.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement GOSUB

GOSUB line or label

GOSUB will call that part of a program starting wHh line or label and return to the next
statement following the GOSUB when RETURN is encountered.

10 GOSUB 40: PRINT "All Done!"
20 END
30
40 PRINT"He1Io"
50 RETURN

RUN

HELLO
All Done!

GOSUB "Hello Routine"
PRINT "All Done!"
END

l1Hello Routine"
PRINT"Hello"
RETURN

RUN

HELLO
All Done!

On multiple statement lines, a RETURN will return control to the next statement on
the line following the originating GOSUB.

To avoid errors, be certain there is a line with the number or label that you GOSUB. All
subroutines must be terminated with a RETURN statement.

Note: IF Zbasic encounters a RETURN wHhout a matching GOSUB, it will return to the
operating system or the editor. ZBasic does not check for stack overflow which may
cause errors if subroutines do not end with a RETURN.

See RETURN LINE, GOTO, ON GOTO and ON GOSUB.

~
See SEGMENT RETURN in appendix.

Standard Reference 234

GOTO statement

FORMAT

DEFINITION

EXAMPLE

REMARK

235 Standard Reference

GOTO line or label

GOTO will transfer control to a line or labalin a program.

Note that excessive use of this statement is considered inappropriate for structured
code because in complex programs it becomes extremly hard to read.

In most programming situations GOSUB, DO-UNTIL, WHILE-WEND, FOR-NEXT or
other programming structures are much easier to follow.

10 X~X+1
PRINT X,
20 IF X<5 THEN GOTO 10

RUN

1 2 3 4

"Loop"
X~X+1

PRINT X,
IF X<5 THEN GOTO "Loop"

RUN

1 2 3 4

A line error will occur during compile if the destination line or label cannot be found.

See "Structure", GOSUB, ON GOTO, ON GOSUB, LONG FN, FN statement, WHILE,
DO, FOR, LONG IF.

FORMAT

DEFINITION

EXAMPLE

REMARK

command HELP

HELP [number 1

HELP without a number prints the HELP menu to the screen. This menu will give you
corresponding numbers to the help topics available. This command is used from the
Standard Line Editor.

Type HELP and a number to get answers to a specific topic.

Press the SPACE BAR to continue when you see "MORE".

HELP

A menu for your version of ZBasic will be printed to the screen. To get help for an item
in the menu, type HELP and the number corresponding to that item.

HELP will return control to the Standard Line Editor upon completion of the listing.

If the help file has been deleted from the disk a File Not Found Error will occur. Check
your computer appendix for the filename of the HELP file.

&
The HELP window is brought up when you type this command or select "About
ZBasic" under the. menu. The command does not work exactly as above. Just
double click the appropriate item with the mouse.

Standard Reference 236

FORMAT

DEFINITION

HEX$ (expression)

The HEX$ function converts a numeric expression to a four character HEXadecimal
string (BASE 16). The following program will convert a Decimal number to HEX or
HEX to Decimal. Some sample HEX numbers:

Decimal
0-9
10
11
12
13
14
15

Hexadecimal
0-9
A
B
C
D
E
F

EXAMPLE DO

REMARK

237 Standard Reference

INPUT"Decimal number to convert: ";Decimal%
PRINT "Decimal";Decimal%;"= HEX ";HEX$(Decimal%)
PRINT

INPUT"HEX number to convert: ";Hx$
Hx$="&H"+Hx$
PRINT"Decimal value of "iHx$i "="VAL (Hx$)
PRINT"The unsigned Decimal value of "Hx$"=" UNS$(VAL(Hx$))

UNTIL (Decimal% =0) OR (LEN(Hx$)=2)

RUN

Decimal number to convert: 255
Decimal 255= HEX FF

HEX number to convert: F9CD
Decimal value of F9CD = -1587
The unsigned Decimal value of F9CD 63949

Floating point numbers will be truncated to integers.

See "Numeric Conversions", VAL, OCT$, BIN$ and UNS$.

&
See DEFSTR LONG in the appendix for doing Longlnteger conversions in Hex,
Octal, CVI and MKI$. In this case HEX$ would return an eight character string.

statement IF

FORMAT IF expression THEN line [or labe/J[ELSE line [or label))
IF expression THEN statement [:statement: ... J [ELSE statement [:statement: ...]]

DEFINITION The IF statement allows a program to do a number of things based on the result of
expression:

EXAMPLE

REMARK

1. Branch to a line or label after the THEN if a condition is true; expression ",0
2. Execute statement(s) after the THEN if a condition is true; expression ",0
3. Branch to a line or label after the ELSE if a condition is false; expressiorr-O
4. Execute statement(s) after the ELSE if a condition is false; expressiorr-O

X=99
IF X=99 THEN PRINT"X=99":PRINT"HELLO: ELSE STOP

IF X=99 THEN "CHECK AGAIN"
END

"CHECK AGAIN"
IF X=lOO THEN PRINT"YEP" ELSE PRINT"NOT TODAY!";:PRINT x
END

RUN

X=99
HELLO
NOT TODAY! 99

Complex strings will generate an error if used in an IF statement.

Improper
Proper

IF LEFT$(A$,2)="HI" THEN STOP
B$=LEFT$(A$,2): IF B$="HI" THEN STOP

See LONGIF, ELSE, XELSE , WHILE-WEND and DO-UNTIL for more ways of doing
program comparisons.

Note: In many cases LONG IF is easier to read.

a&
Also see SELECT CASE.

Standard Reference 238

INDEX$ statement

FORMAT

DEFINITION

EXAMPLE

REMARK

239 Standard Reference

INDEX$
INDEX$I
INDEX$D

(expression) = string expression
(expression) = string expression
(expression)

INDEX$ is a special array unique to ZBasic. Expression indicates an element number.

Statement
INDEX$(n)=simple string
INDEX$I(n)=simple string

INDEX$D(n)

INDEX$(O)="FRED"
INDEX$(l)="TOM"
INDEX$(2)="FRANK"

GOSUB"Print INDEX$"
INDEX$I(l)="HARRY"
GOSUB"Print INDEX$"

INDEX$D(O)
GOSUB"Print INDEX$"
END

Definition
Assigns a value to INDEX$(n)
Move element n (and all consecutiveelements) up
and INSERT simple string at INDEX$ element n
DELETE element n and move all consecutive
elements down to fill the space.

<---Normal assignments

<----HARRY INSERTED between FRED and TOM

<---FRED is DELETED here

"Print INDEX$": REM Routine prints contents of INDEX$
FOR X=O TO 4

PRINT X; INDEX$(X)
NEXT: PRINT
RETURN

RUN

o FRED
1 TOM
2 FRANK

0 FRED
1 HARRY
2 TOM
3 FRANK

0 HARRY
1 TOM
2 FRANK

<-- Notice how values move from one element to another
as items are inserted and deleted with INDEX$I and D.

INDEX$ provides for memory efficient string array manipulation and lends itself very
well to list management applications. See "SpeciaIINDEX$ Array", INDEX$ function,
CLEAR, CLEAR INDEX$ and MEM.

~
Allows up to ten simultaneous INDEX$ arrays. See INDEX$ in your appendix.

FORMAT

DEFINITION

EXAMPLE

REMARK

function INDEXF

INDEXF (string [.expressionj)

INDEXF is a speciallNDEX$ array function used to FIND a leading string within an
INDEX$ array quickly.

If INDEX$(1000) equaled "Hello", then X=INDEXF("Hel") would return 1000.

If X=INDEXF("IIo") X would equal-1 since "110" would not be found. The leading
characters are significant.

INDEX$(O)="FRED"
INDEX$(l)="MARY"
INDEX$(2)="TOM"

X=INDEXF ("TOM") <--- Search for TOM
PRINT x

PRINT INDEXF ("MARY") <--- Search for MARY

PRINT INDEXF ("RED") <--- Search for RED

PRINT INDEXF ("FRED" , 1) <--- Search for FRED starting at element 1

RUN

2 <----- TOM found at element two
1 <----- MARY found at element one

-1 <--- RED not found. The first characters are significant
-1 <----- FRED not found because search started at element 1

INDEX$ provides for memory efficient string array manipulation and lends itself very
well to list management and text editing applications.

See "Perpetual Sort" under "SpeciaIINDEX$ Array". Also see INDEX$, INDEX$I,
INDEX$D , CLEAR, CLEAR INDEX$ and MEM.

a
Allows up to ten simultaneous INDEX$ arrays. See INDEX$ in your appendix.

Standard Reference 240

FORMAT

DEFINITION

EXAMPLE

REMARK

241 Standard Reference

INKEY$

INKEY$ retums the character of the last key that was pressed or an empty string if no
key was pressed.

WHILE A$<>"S": REM Press "5" to Stop
DO

A$=INKEY$
UNTIL LEN(A$)
A$=UCASE$ (A$)
PRINT A$;

WEND
END

R.UN

GHUIJD, KEUG FAQCCQ OPU ... S <---When <S> is pressed program stops

REM An easy function you can use to get a key
LONG FN Waitkey$(local$)

DO
local$=INKEY$

UNTIL LEN(local$)
END FN=local$

key$=FN Waitkey$(key$)
PRINT keyS
END

R.UN

(user presses "b")

b

When using INKEY$ for character entry, avoid having the TRON function active as this
may cause pressed keys to be missed.

See INPUT, LlNEINPUT, INPUT#, ASC and CHR$. See your computer appendix for
variations or enhancements.

aa
Macintosh: See DIALOG (16) for way of doing INKEY$ during event trapping.
MSDOS: INKEY$ retums two characters for function keys. ON INKEY$ does event
checking for function keys. See appendix for specifics.

FORMAT

DEFINITION

EXAMPLE

REMARK

function INP
... . "'.".."." ". ",.."' "' "'."'." "'.". "'."' J'.J'."'."'."..". "' "' ". "..".."..".,/' ". rI' :-' ... "":' ... ' ... ':-' ... "":" ... ' ... " ... ' ... " ... " ... ' ... " ... " ... ' ... " ... "":" ... ' ... " ... ''':' ... ' ... ' ... '":''':'":''''''''''':''''':-''''''':''''''''''''"'':''''''':''':''';:''''''':''''''''"''''''''''''''''

INP (expression)

The INP function is used to read an input port. The function returns the value that is
currently at the port specified by expression.

X=INP(l)
PRINT X
PRINT INP (G-1)

RUN

o
255

Note: This function requires a knowledge of your computer hardware and may not be
portable to other computers (may not be available on your version of Z8asic or may
have an unrelated function).

See your computer appendix for specifics.

B
Not supported with this version. See INSLOT.

!l
Not supported with this version. See OPEN"e" and "Toolbox" in the appendix for
accessing hardware ports.

Standard Reference 242

INPUT statement

FORMAT

DEFINITION

EXAMPLE

REMARK

243 Standard Reference

INPUT [(@ or%)(expr x, exprY)] [;] [!] [&expr,] ["string";] var[,var ...]

The INPUT statement is used to input values (string or numeric) from the keyboard
into variables.

Multiple variables must be separated by commas (this is bad form since users often
forget commas). If no value is INPUT, a zero or null string will be retumed.

@(xprc,exprY)

% (exprc,exprY)

&expr,

"string";

var

Places cursor at text coordinate horiz,vert.

Places cursor at graphic coordinate horiz,vert.

Suppress carriage returnlline feed.

Automatic Carriage return after maximum characters
entered. User doesn't have to press <ENTER>.

Sets the maximum number of characters tobe INPUT.
Defaun is 255. Will not allow more than expr characters.

Optional user prompt will replace the question mark. If a null
string is used the question mark will be suppressed.

May be any variable type integer, single,double or string.

See examples on following pages ...

Differences in screen width may affect operation.

See LOCATE and PRINT for more information on cursor positioning. Also see
INPUT#, LlNEINPUT, LlNEINPUT# and INKEY$ for others ways of getting input.

See "Keyboard I nput" in the technical section.

Important Note: String lengths MUST be one greater than maximum INPUT length
since a CHR$(13) is temporarily added. Never define a string used in an INPUT or
LlNEINPUT as ONE.

!b
In certain cases EDIT FIELD, MENU or BUTTON may be preferable. See appendix.

statement INPUT

INPUT continued

EXAMPLES OF REGULAR INPUT

EXAMPLE
INPUTA$

INPUT"NAME: ";A$

INPUT;A$

RESULT
Wait for input from the keyboard and store the input in
A$. Quotes, commas and control characters cannot be
input. <ENTER> to finish. A carriage return is generated
when input is finished (cursor moves to beginning of
next line).

Prints "NAME: " before input. A semi-colon must follow
the last quote. A carriage return is generated after input
(cursor moves to next line).

Same as INPUT A$ above, only the semi-colon directly
after INPUT disables the carriage return (cursor stays on
the same line).

EXAMPLES OF LIMITING THE NUMBER OF CHARACTERS WITH INPUT

EXAMPLE
INPUT &10, A$

INPUT ;&3,1%

INPUT !&10,A$

INPUT;!&10,"NAME: ";A$

RESULT
Same as INPUT A$ only a maximum of ten characters may
be input. (& 10) A carriage return is generated after
input (cursor moves to the beginning of the next line).
The limit of input is set for ALL variables, not each.

Same as INPUT &10, except the SEMI-COLON following
INPUT stops the carriage return (cursor stays on line).

Same as INPUT & 10 except INPUT is terminated as soon
as 10 characters are typed (or <ENTER> is pressed).

Same as INPUT ;&10,A$ except no carriage return is
generated (semi-colon). INPUT is terminated after 10
characters(&10 and Exclamation point). and the
message "NAME:" is printed first.

LlNEINPUT;!&5,"NAME: ";A$ LlNEINPUT A$ until 5 characters or <ENTER> is
pressed. (no carriage return after <ENTER> or after the
5 characters are input. Accepts commas and quotes.)

Note 1: Wherever INPUT is used, LlNEINPUT may be substituted when commas,
quotes or some other control characters need to be input (except with multiple
variables).

Note 2: If more than one variable is INPUT, commas must be included from the user to
separate input. If all the variables are not input, the value of those variables will be null.

Standard Reference 244

INPUT statement

INPUT continued

INPUTTING FROM A SPECIFIC SCREEN LOCATION

1
2
3

V
E
R
T
I
C
A
L

o 1 2 3 4 HORIZONTAL

?!w.

N m e
INPUT@(2,1)"?";X

\
r\

\ INPUT @(O,S)"Namo: ";A$

INPUT@(H,V); A$ Wait for input at TEXT screen POSITION defined by Horizontal
and Vertical coordinates. No "?" is printed. A carriage retum is
generated.

INPUT %(gH, gV);A$ Input from a graphic coordinate. Syntax is the same as "@".
Very useful for maintaining portability without having to worry
about different screen widths or character spacing.

INPUT@(H,V);!10,"AMT: ";0# Prints "AMT:" at screen position H characters over by V
characters down. 0# is input until 1 ° characters, or <ENTER>,
are typed in, and the input is terminated without generating a
carriage retum (the cursor DOES NOT go to the beginning of
the next line).

INPUT%(H, V) ;!1 O,"AMT: ";0# Prints "AMT:" at Graphic position H positions over by V
positions down. D# is input until 1 ° characters, or <ENTER>,
are typed in, and the input is terminated without generating a
carriage return (the cursor DOES NOT go to the beginning of
the next line).

Note: Replace INPUT with LlNEINPUT whenever there is a need to input quotes, commas and
control characters (except with multiple variables).

245 Standard Reference

FORMAT

DEFINITION

EXAMPLE

REMARK

statement INPUT#

INPUT # expression, var [,var [, ... J J

This slalemenl will read INPUT from a disk or other device specified by expression
until a carriage retum. <COMMA>. End-Of-File or 255 characters are encountered.

Commas and leading spaces may be read inlo a string variable if the data on disk was
enclosed in quotes. otherwise leading spaces and line feeds will be ignored.

See LlNEINPUT# for ways of inputting commas. quotes and some control characlers.

A$="HELLO"
B$="GOODBYE"
C$="WHAT?"
XiI=12.345

OPEN"O",l,"TEST.TXT":REM OPEN FOR OUTPUT
PRINTil1, A$", "B$", "C$", "xii <--- Quoted commas important with PRINT#
CLOSEU

OPEN"I",l,"TEST.TXT":REM OPEN FOR INPUT
INPUTU, X$, Y$, Z$,AiI <---INPUT# in same order and type as PRINT#
CLOSEn

DEFTAB=10: PRINT X$,Y$,Z$,AiI
END

RUN

HELLO GOODBYE WHAT? 12.345

See OPEN. CLOSE. PRINT#. and LlNEINPUT#.

See your computer appendix for available devices.

Compatibility Note: ZBasic and MSBASIC have almost the same syntax wtth the
following exceptions:

MSBASIC ALLOWS
PRINT#n. A$. B$. X#. C%
PRINT#n. A$ B$ C$

ZBaslc REaUIRES
PRINT#n. A$ B$ X# C%
PRINT#n. A$ B$ C$

If you remember that ZBasic puts the image to the disk just as if tt were going to the
printer or to the screen you will see why the syntax is important.

Standard Reference 246

INSTR function

FORMAT

DEFINITION

EXAMPLE

REMARK

247 Standard Reference

INSTR (expression, string 1 , string 2)

Finds the first occurrence of string 2 in string 1, starting the search at the position

specified by expression.

expression
string1
string2

Starting position of the search.
String to be searched.
String to search for.

Humble$="I am cool!"
PRINT INSTR(l,Humble$,"cool")

B$="am"
PRINT INSTR(l,Humble$, B$)

X=INSTR(l, Humble$, "FRED")
PRINT X
END

RUN

6
3
o

<--- "Cool" started at the sixth position
<--- "am" started at the third position
<--- There was no "FRED" in the string.

Name$="Fred Smith"
Lastname$=RIGHT$ (Name$, LEN (Name$) -INSTR (l,Name$, " "»
PRINT "Hello there Mr.";Lastname$
END

RUN

Hello there Mr. Smith

If the string is not found, zero (0) will be returned.

See LEFT$, RIGHT$, MID$ and INDEXF.

FORMAT

DEFINITION

EXAMPLE

REMARK

function INT

INT (expression)

Truncates all digits to the right of the decimal point of expression.

DEFDBL A-Z
DEFTAB 8
PRINT" X","ABS(X) ,"INT(X) ","FRAC(X) ","SGN(X) "

FOR X = -15.0 TO +15.0 STEP 3.75
PRINT USING"-iliI.iliI";X,
PRINT USING"-U.H";ABS(X),
PRINT USING"-"."";INT(X),
PRINT US ING" -H. U" ; FRAC (X) ,
PRINT USING"-"."";SGN(X)

NEXT X
END

RUN

X ABS(X) .IlIT..OO.. FRAC(X)
-15.00 15.00 -15.00 .00
-11.25 11.25 -11. 00 -.25
- 7.50 7.50 -7.00 -.50
- 3.75 3.75 -3.00 -.75

.00 .00 .00 .00
3.75 3.75 3.00 .75
7.50 7.50 7.00 .50

11.25 11.25 11. 00 .25
15.00 15.00 15.00 .00

SGN(X)
-1. 00
-1. 00
-1. 00
-1. 00

.00
1. 00
1. 00
1. 00
1. 00

INT works the same as FIX in that expression will be restricted to the integer range of
-32,768 to +32,767 only when the expression has not been defined as floating point.

INT is simply as a function that truncates an expression to a whole number.

To get the fractional part of a number use FRAC.

See FIX, SGN, ABS and FRAC.

!b
INT range for the Macintosh is -2,147,483,648 to +2,147,483,647.

Standard Reference 248

KILL statement

FORMAT

DEFINITION

EXAMPLE

REMARK

249 Standard Reference

KILL simplestring

KILL will erase a disk file specffied by simplestring .

KILL functions either as a command or from within a program.

INPUT"File to erase:";A$
PRINT"Are you sure you want "iA$;" erased?";
INPUT B$

LONG IF B$<>"YES"
PRINT"File not erased": STOP

XELSE
KILL A$:PRINT A$;" is history."

END IF

END

RUN

File to erase: Oldfile
Are you sure you want Oldfile erased?
YES
Oldfile is history!

Use this statement with caution. When a file has been killed it is normally
unrecoverable.

See RENAME, ERROR, ON ERROR, ERRMSG$ and the "Files" section of this
manual for more information.

This page intentionally left blank.

Standard Reference 250

FORMAT

DEFINITION

EXAMPLE

REMARK

251 Standard Reference

LEFT$ (string. expression)

LEFT$ returns the left-most characters of string defined by expression. The string
will not be altered.

Quote$="Early to Bed, Early to rise •.. "

PRINT LEFT$(Quote$, 5)

Part$= LEFT$(Quote$, 12)
PRINT PartS

PRINT LEFT$(Quote$, 50);
PRINT "Makes men healthy ... at least"

RON

Early
Early to Bed
Early to Bed, Early to rise ... Makes men healthy ... at least"

Also see RIGHT$, MID$, LEN, VAL, STR$, INSTR, INDEX$, SWAP and the "String
Variable" section of this manual for more information about using strings.

FORMAT

DEFINITION

EXAMPLE

REMARK

function LEN

LEN (string)

Retums the number of characters that are stored in a string constant or string
variable. If zero is retumed it indicates a null (empty) string.

A$="FRED"
B$="SMITH"

PRINT A$;" has";LEN(A$);" characters."
PRINT B$;" has";LEN(B$);" characters."

PRINT LEN(A$)+LEN(B$)

PRINT LEN("Hello Fred")

RUN

FRED has 4 characters
SMITH has 5 characters
9
10

The maximum length of a string is 255 characters. You may set the length of strings
in ZBasic. See DIM, DEF LEN and the chapter on "String Variables· for more
information about defining string length.

Since the first character of a string stored in memory is the length byte,
PEEK(VARPTR(var$)) will also retum the length of a string.

The memory required for a string variable is the defined length + one for the length
byte (256 bytes if not defined).

Standard Reference 252

LET statement

FORMAT

DEFINITION

EXAMPLE

REMARK

253 Standard Reference

[LEn variable = expression

LET is an optional statement that may be used to assign an expression to a variable.

Numbers, strings, numeric expressions, or other variables may be used to assign
values to a variable if the types are compatible or convertable.

LET B=100
PRINT B

LET B=B+10
PRINT B

Z$="HELLO n +" THERE"
PRINT Z$

RUN

100
110
HELLO THERE

<---Notice "LET" is optional

See SWAP, "Optimize expressions for Integer", "Math Expressions" and
"Conversions Between Variable Types" for more information about assignments.

FORMAT

DEFINITION

EXAMPLE

REMARK

function LINE

LINE line number or label

Returns the starting address of a compiled line in memory. Normally used with CALL
to execute machine language subroutines created with MACHLG.

10 CALL LINE 30 <--- Example only. DO NOT RUN!
20 END
30 MACHLG 23,323,11,232,A%, 2,1,0,0,1:RETURN

"START"
PRINT"THIS IS A TEST ",1,2,3
!lEND"

A = LINE "END" - LINE "START"
PRINT "The second line is n;A;" bytes longlt

RUN

THIS IS A TEST 1 2 3
The second line is 36 bytes long

This statement is useful for calling machine language subroutines embedded in your
program or for calculating the number of bytes used by program lines.

Also see MACHLG and CALL.

!l&
Macintosh: Use Longlntegers for addresses. See CALL in the appendix.

MSDOS: See CALL in appendix.

Apple ProDOS: See MLI in ProDOS appendix.

Standard Reference 254

LINEINPUT statement

FORMAT

DEFINITION

EXAMPLE

REMARK

255 Standard Reference

LINEINPUT[(@ or %)(expr1,expr2) U; U!][&expr, U"string";]var$

The LlNEINPUT statement is used to input characters from the keyboard into a string
variable. It is different from INPUT in that quotes, commas and some control
characters may also be entered. LlNEINPUT is terminated when <ENTER> is pressed.

@(expr1,expr2)
%(expr1 ,expr2)

&expr,

"string";

vat$

Inputs from horizontal,vertical TEXT coordinate.
Inputs from horizontal,vertical GRAPHIC coordinate.

Suppresses carriage-returnlline-feed after input is complete.
(disable inputs that cause scrolling or overwriting.)

Automatically executes a carriage return after the
maximum number of characters are entered. The user
doesn't have to press <ENTER>.

Sets the maximum number of characters to be input.

Optional string prompt will replace the question mark "?"
normally shown wtth LlNEINPUT.

Only string variables may be used with LlNEINPUT.

INPUT"Last name <COMMA> First name";A$
PRINT A$

LINEINPUT"Last name <comma> First name";B$
PRINT B$

RUN

Smith
Smith, Fred

See the chapter on "Keyboard Input" in the front of this manual for more examples.

The advantage of using LlNEINPUT over INPUT is its ability to receive most of the
ASCII character set except:

<ENTER>
<CTRL C>
<BACKSPACE>
<CANCEL>
<NULL>

CARRIAGE RETURN
CONTROL "C"
DELETE or LEFT ARROW
DELETE CURRENT LINE
NO CHARACTER

Important Note: String lengths MUST be at least one greater than the number of
characters being input, otherwise a string overflow condition will destroy
subsequent variables. Never use a one character string with LlNEINPUT.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement LINEINPUT#

LlNEINPUT # expression. variable$

This statement will input ASCII or TEXT data from a disk file specified by expression
until <ENTER>, End-Of-File or 255 characters are encountered.

Useful for accepting commas, quotes and other characters that I N PUT # will not
accept. A good example of using LlNEINPUT would be for reading an ASCII or
TEXT file a line at a time (as in the example below).

REM Read a text file and print it to the screen
REM Routine compatible with all versions of ZBasic

ON ERROR GOSUB 65535: REM Error trapping on to check for EOF

OPEN"I",l,"TEXT.TXT"

Counter=O

WHILE ERROR=O: REM Read file until an EOF error
LINEINPUTU, A$
PRINT A$

WEND
IF ERROR <> 257 THEN PRINT ERRMSG$(ERROR): STOP
ERROR=O

ON ERROR RETURN: REM Give error trapping back to ZBasic
END

The advantage of using LlNEINPUT# over INPUT# is its ability to receive most of the
ASCII character set. Leading linefeeds will be ignored on some systems.

If a CHR$(O) or CHR$(26) is encountered as a leading character it may assume EOF
and set ERROR = End Of File (varies by computer).

Also see INPUT#, LlNEINPUT and "Keyboard Input" in the front section of the
manual.

&&
These versions support an EOF function that would simplify the error trapping
techniques used above. See the appropriate appendix for details about EOF:

OPEN"I",1, "TEXT.TXT"
Counter=O

WHILE EOF=O: REM Read until EOF
LINEINPUTU, A$
PRINT A$

WEND:CLOSE#l

Standard Reference 256

LIST command

FORMATS

DEFINITION

EXAMPLE

REMARK

257 Standard Reference

[L)L [1ST]
[L)L [1ST]
[L)L [1ST]
[L)L [1ST]

[+)[*)
[+)[*)
[+)[*)
[+)[*)

line or label
• line or label
line or labe/· line or label

LIST (or L) is used from the Standard Line Editor to list the current program to the
screen. LLIST will list the current program to a printer.

+ Suppress line numbers
" Highlight keywords on the screen (some versions)

you TYPE
LIST or L
LLIST
LIST 100-200
LLlST-100
LIST "SUBROUTINE"
LIST 100- or L 100-
<period>
<UPARROW>
<DOWN ARROW>
L+
LLlST+
L+-100
<SPACE>
<I> (slash key)

ZBASIC RESPONDS
Lists complete program to the screen
Lists complete program to the printer
Lists lines from 100-200
Lists lines up to 100 to printer
Lists the line with that label
Lists lines from 100 on
Lists the last line listed or edited
Lists previous line (or plus <+> key)"
Lists next line (or minus <-> key)"
Lists program without line numbers
Lists to printer without line numbers
Lists up to line 100 without line numbers
PAUSE. <ENTER> continues
PAGE AT A TIME: Lists 10 lines to the screen"

"See computer appendix for keyboard variations.

LIST automatically indents program lines two spaces between FOR-NEXT, DO-UNTIL,
WHILE-WEND, LONG IF-XELSE-END IF and LONG FN-END FN structures.

See PAGE, WIDTH, WIDTH LPRINT and the chapter; "Formatting listings".

Note: Labels may be used in place of line numbers.

!L
LLIST +" will forrnatlistings to an Imagewriter or Laserwriter with no line numbers and witt
keywords in bold. While the output in of this format is extremely attractive and easy to
read, it should be noted that listings will take about twice as long to print.

FORMATS

DEFINITION

EXAMPLE

REMARK

LOAD ["] filespec ["]
LOAD' ["] filespec ["]

command LOAD

LOAD is used from the Standard Line EdHor to load a ZBasic tokenized or a regular
ASCII text file into memory.

ZBasic does not load tokenized files from other languages; the file must first be
saved in TEXT or ASCII format.

If the program does not have line numbers they are added in increments of one.

LOAD' will strip away remarks and unnecessary spaces from an ASCII file releasing
more room for the source and object code in systems with limited memory.

LOAD PROGRAM
LOAD "SOURCE"
LOAD * THISONE

<--- Loads a regular tokenized or text file
<---Double Quotes optional
<---Strips spaces and REM's while loading

Each operating system may require specific syntax for a drivespec.

Line numbers are optional in ASCII files.

If a program was created using another form of BASIC it must be in ASCII format
before the ZBasic editor can load H.

aa
These versions of ZBasic support a Full Screen Editor that may support other forms
of LOAD. See appropriate appendix for information about full Screen Editors.

Standard Reference 258

LOC function

FORMAT

DEFINITION

EXAMPLE

REMARK

Loe (expression)

Retums the byte pointer position within the current RECORD of the filenumber
specified by expression.

OPEN"R",1,"TESTFILE",30
RECORDiIl, 6, 3
PRINT LOC (1)

READl/l, Char$;l
PRINT LOC(l)

PRINT CharS
CLOSEiIl

RUN

3
4
d

<--See illustration

FILE STRUCTURE
OPEN "R", 1, "TESTFILE", 30

~~:;~~R~E~C~O~R~D~(~S~)~W~lt~h~le~n~g~th~S~O~f~3~0~~;:~
(. ~p to 65,535

RECORD(s) In
L-L..J....J..-'-....L...J....:~.l.-L...JL..J....J..-'--'-..L....L....J......JL....J...J..-'-...J a ZBaslc fils.

c.~;:::=:;::::::;~~~~~~~h:~::;:;::::~~ Up to 65,535 r LOCATION(s) In
L:L:-1:J~.L:J-:-I-L.L..LJu....L.J.....L..L..L...LJL...J....L..I....L..L..L...L.IL...I;:;! a ZBaslc RECORD.
0123456... • ... 29

'The "d" Is at LOCATION 3 In RECORD 6

The LaC position is incremented to the next file position automatically when
READ#, WRITE#, INPUT#, LlNEINPUT# or PRINT# are used. REC(filenumber)
retums the current RECORD. LOF retums the last record in the file. Also see "Files"
section for more information.

aa
The record length limits are different for these versions. See appendix.

259 Standard Reference

FORMAT

DEFINITION

EXAMPLE

REMARK

statement LOCATE

LOCATE expr x' expr y , [expr cursor J

Positions the cursor to the coordinates given by exprx, expry and optionally turns
on or off the cursor character (zero=off, not zero=on).

exprx The horizontal coordinate (characters across)

expry The vertical coordinate (lines down)

exprcursor Zero= cursor OFF. Non-zero = cursor ON

LOCATE 0,0
LOCATE 10,0
LOCATE 0,10,0
LOCATE 0,12,1

<---- sets cursor in upper left corner
<---- sets Cursor 10 char to right at top
<---- sets Cursor 10th line down. Cursor OFF
<---- sets Cursor 12th line down. Cursor ON

This function is also useful with CLS LINE and CLS PAGE for clearing the screen to
the end of line and end of page.

See "Screen and Printer Control", PRINT@, PRINT%, INPUT@, LlNEINPUT@,
LlNEINPUT% and INPUT% for other ways of controlling the cursor positioning.

The ability to turn the cursor on or off may be limited by the hardware or software of
some computers.

!b&
These versions of ZBasic allow you swap the horizontal and vertical
coordinates under "Configure". This is handy for converting other BASIC
programs that use the vertical coordinate first (not Apple DOS 3.3).

Standard Reference 260

LOF function

FORMAT

DEFINITION

EXAMPLE

REMARK

261 Standard Reference

LOF (expression)

Retums the last valid RECORD number for the file specified by expression. LOF
stands for Last-Of-File.

Important Note: This function may not return the last record correctly on some
systems. especially if the record length of the file is different from the operating
system's internal record length or if a file is opened with a different record length
then that which it was opened originally. This is often remedied by simply selling
the record length to the system default record length or the record length of which it
was opened originally.

See "Opening files for Append" in the "Files" section in the front of this manual for
methods of gelling a pointer to the last position in a file.

LOF retums the last record in the file. The default record length is 256 and may
need to be changed to make LOF function properly.

See LOC and REC for gelling file pointer information. See "Files" and "Disk Errors"
for more information. Some systems return one for both record zero and record one.

Note to better usage: If you need to keep track of the last byte position of a
sequential file or the last record of a random file. you might consider storing the last
REC and LOC of a file in record zero before it is closed. Examples:

OPEN"O",l,"Textfile.txt"
RECORDU,l <---Set file pointer to record one (zero will store last REC and LOC)
PRINTj/l,A$", "B$", "X", "zj/ <--- Save data
RECORDU, 0<---- Position pointer to RECORD 0 to save last REC and LOC
R=REC(l) :L=LOC(l)
WRITEU, R, L <--- Save pointers for future use
CLOSEU

To add data to the end of the file later:
OPEN"R",1, "Textfile.txt"
RECORDU,O
READj/l, R, L
RECORDj/l, R,L
PRINTU, A$

<--- Get last positions of file
<----- Position pointer to append data to the end of the file.
<-- Now you can append new data to the file

Don't forget to store the LOC and REC before clOsing! You could do the same thing
with random files by saving the last record.

L
Also supports: LOF(filenumber. [recordlength]). LOF(1.1) would return the length
of filenumber one in bytes.

FORMAT

DEFINITION

EXAMPLE

REMARK

function LOG

LOG (expression)

Retums the natural logarithm of expression (LN). LOG is the compliment of EXP.

Common LOG10= LOG(n) \LOG(10)

PRINT LOG(2)
X#=LOG(3)
PRINT X#

RUN

.69314718056
1.09861228857

LOG is a scientific function. Scientific preCision may be configured by the user
differently from both single and double precision.

See "Configure" and "Math" in the beginning of this manual.

Also see COS, SIN, EXP. 'w·. ATN and TAN.

Standard Reference 262

LONG FN statement

FORMAT

DEFINITION

EXAMPLE

REMARK

263 Standard Reference

LONG FN name [(var [, var [, .•.]])]

END FN [= expression]

LONG FN is similar to DEF FN but allows the function to span over several lines. This
is usful for your own functions that you can use with ZBasic.

A re-usable, non-line-numbered function may be saved to the disk with SAVE+ and
retrieved later for use in other programs with APPEND.

The variables being passed to the function must not be arrays. The expression
must be numeric for numeric functions and string for string functions.

LONG FN RemoveSpace$(x$)
WHILE ASC(RIGHT$(x$),l)=32

x$=LEFT$(x$,LEN(x$)-l)
WEND

END FN= x$

Name$="ANDY

PRINT Name$i"*"

Name$=FN RemoveSpace$(Name$)
PRINT Name$;"*"

RUN

ANDY
ANDY*

*

REM wait until key press. Return key in keyS
LONG FN WaitKey$(key$)

DO
key$=INKEY$

UNTIL LEN(key$)
END FN=key$

Z$=FN waitKey$(Z$)
PRINT Z$

RUN

(returns key that was pressed)

Also see APPEND, SAVE+, DEF FN, FN statement, FN function and "Structure".

FORMAT

DEFINITION

EXAMPLE

REMARK

statement LONG IF

LONG IF expression

[XELSEI

ENDIF

LONG IF allows multiple line IF-THEN-ELSE structures. Very useful for breaking
down complicated IF statements into more readable, logical structures. Two things
happen based on the result of expression:

• If expression is TRUE: Executes all the statements up to the XELSE (if used)
and then exits at the END IF .

• If expression is FALSE: Executes all the statements between the XELSE and
END IF and then exits at the END IF. If XELSE is not
used it will simply exit at the END IF.

INPUT"How old are you: ";Age%
LONG IF Age% >=30

PRINT "You are Old aren't you!?"
XELSE

PRINT "You're just a baby!"
END IF

RUN

How old are you: 30
You are Old aren't you!?

LONG IF Name$="Fred"
PRINT"Hello Fred ... Long time no-see!"
PRINT"The balance you owe is";USING"$iiii.iin;Duei
PRINT"Thanks for asking."

XELSE
PRINT "I don't know you! Go away!"

END IF

RUN

Hello Fred ... Long Time no-see!"
The balance you owe is $1234.56
Thanks for asking.

No loop may be executed within a LONG IF construct unless it is completely
contained between a LONGIF and XELSE or between the XELSE and ENDIF. The
entire LONG IF construct must be completely contained within loops or nested loops
in order to compile properly.

ZBasic will automatically indent program lines between LONG IF, XELSE and END IF
two spaces. See the chapter about "Structure" for more information.

Standard Reference 264

LPRINT statement

FORMAT

DEFINITION

EXAMPLE

REMARK

265 Standard Reference

LPRINT [variables, constants, ...]

The LPRINT statement sends output to a printer.

To use LPRINT from the Standard Line Editor use a colon first (:LPRINT).

LPRINT "REPORT OF THE CORPORATION"
LPRINT
LPRINT
LPRINT "SALES:"; TAB (50) ; US,ING" $11, III, III. Ill"; Salesll (1)
LPRINT
LPRINT "PROFITS:";TAB(50);USING"$III1,III1I1,III1*.III1";Profitsll(1)

RUN

~.0'Zl.'l22.'2'3

'Z3,23',n'.03

Some systems may lock up if a printer is not connected. See your hardware manual
for required action.

See ROUTE 128, PRINT, LLlST, TAB, DEFTAB, PAGE, USING, WIDTH LPRINT
and POS(1).

a.&
Macintosh: See DEF LPRINT, PRCANCEL, DEF PAGE, PRHANDLE, TEXT and
ROUTE 128 in the appendix for more information about printing to the Imagewriter
and Laserwriter printers. See appendix for specifics.

MSDOS: To use more than one printer you may also use OPEN"I",1 ,"LPT2:" and
use PRINT#1, [variables, constants ...]. Be sure to close the printer device when
finished. See MSDOS reference manual for more information about LPT2:, LPT1:
and any other devices you may have available for your hardware.

Apple ProDOS and DOS 3.3: See DEF LPRINT for setting the printer slot.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement MACHLG

MACHLG ([bytes , ... Il-or- ([words , ...]} -or-([variables] [, ...]}

The MACHLG statement is used to insert bytes directly into a compiled program.
These bytes may be machine language programs, variables or other items.

It may be used to insert machine language into memory without using POKE.

bytes Numbers from 0 to 255

words

variables

Numbers from 0 to 65535. They are stored in standard format

Will create the address where the variable is located. See
appendix for specifics.

Note: ZBasic uses registers when calculating elements of an
array variable. Contents of these registers may be destroyed.

x = LINE "Machine Language Routine"
FOR I = 0 TO 10

PRINT PEEK(X+I);
NEXT I
END

"Machine Language Routine"
MACHLG 0,1,2,3,4,5,6,7,8,9,10

RUN

o 1 2 3 4 5 6 7 8 9 10

See LINE, CALL, USR, DEFUSR, PEEK, POKE and the chapter about "Machine
Language" in the technical section of this manual.

Important Note: Use of this statement requires knowledge of the machine
language of the computer you are using. Machine language may not be portable to
other computers.

~.s
Macintosh: Since the Macintosh is a 32 bit machine, MACHLG puts the code into
word, not byte, positions.

MSDOS: See DEF SEG in appendix.

Apple ProDOS: See section entitled Machine Language Interface in appendix.

Standard Reference 266

MAYBE function

FORMAT

DEFINITION

EXAMPLE

REMARK

267 Standard Reference

MAYBE

MAYBE is a random function that retums either a TRUE (-1) or FALSE(O) wHh equal
probabilHy.

MAYBE is faster than RND. convenient. and requires little program space.

DEFTAB = 8: DIM Coin$(l)
Coin$(O)="HEADS":Coin$(l)="TAILS"

"Flip a Coin"
DO

X=X+1
PRINT Coin$(MAYBE+l),

UNTIL X=25
END

RUN

HEADS HEADS TAILS
TAILS TAILS TAILS
TAILS TAILS HEADS
HEADS HEADS HEADS
HEADS TAILS TAILS

HEADS
HEADS
TAILS
HEADS
TAILS

TAILS
HEADS
TAILS
TAILS
HEADS

This function is useful anytime a 50% random factor is needed.

MAYBE with logical operators:

MAYBE
MAYBE AND MAYBE
MAYBE OR MAYBE

50% TRUE
25% TRUE
75% TRUE

50% FALSE
75% FALSE
25% FALSE

FORMAT

DEFINITION

command MEM

MEM[ORY)

Typing either MEM or MEMORY in command mode will retum information about
system memory use.

TEXT

MEMORY

OBJECT

VARIABLES

The number of bytes being used by the source code. The
source code is that part of the program that you type in.

The number of bytes remaining for program use (varies; see your
computer appendix for details).

The size of the object code after compiling.
Valid only immediately after RUN

The number of bytes required for variables, INDEX$ array, and
disk 110 buffers. This varies dramatically by version. See
computer appendix. Valid onlv immediately after RUN

EXAMPLE MEM

REMARK

00046
41244
00039
00388

Text
Memory
Object
Variable

(some versions may display more information)

These numbers are relative to that version of ZBasic being used. Varies significantly
by computer.

See your computer appendix for more information.

Also see MEM function, CLEAR, CLEAR INDEX$, CLEAR END, LOAD· and the
chapter about "Converting Old Programs".

Standard Reference 268

MEM function

FORMAT

DEFINITION

EXAMPLE

REMARK

269 Standard Reference

MEM

Returns the number of bytes available in the INDEX$ array.

CLEAR 1000
PRINT MEM
A= MEM
INDEX$(O)
PRINT MEM

RUN

1000
950

STRING$(49,"*")

See also INDEX$, MEM command, and CLEAR INDEX$. This function varies by
version. See appendix for specifics.

!l
MEM(index number) returns the memory available to that INDEX$ (there are ten
available on the Macintosh).

MEM (-1): Retums the maximum amount of memory available for variables. Also
forces unloading of all unlocked memory segments. Returns a Longlnteger.

INDEX$ has many enhancements with this version. See appendix .

• See appendix for various additions to the MEM function that return memory pointers
to arrays, strings, BCD variables and more.

FORMATS

DEFINITION

EXAMPLE

REMARK

command MERGE

MERGE ["] filespec ["]
MERGE> ["] filespec ["]

MERGE is used to overlay a line numbered TEXT/ASCII program from disk onto the
current program text in memory. Program being merged must be in ASCII (saved
w~h SAVE».

Incoming text with the same line number(s) as resident text will replace resident text.

The asterisk is used to strip spaces and REM's from the incoming program.

010 REM Program one
120 DO
130 I$=INKEY$
140 UNTIL LEN(I$)
SAVE * "PROGl"
NEW

10 REM Program two
20 PRINT "MAIN MENU"
30 PRINT
40 PRINT "1. Do Inventory"
50 PRINT "2. Print Inventory"
60 PRINT "3. Delete Inventory"
MERGE "PROGl"
LIST

00010
00020
00030
00040
00050
00060
00120
00130
00140

REM Program one <---- Line from first program overwrote this line
PRINT "MAIN MENU"
PRINT

Do Inventory"
Print Inventory"
Delete Inventory"

PRINT "1.
PRINT "2.
PRINT "3.
DO <--- First program merged here

I$=INKEY$
UNTIL LEN(I$)

MERGE has the same affect as manually typing in text.

Programs that were written in another BASIC must be in ASCII format before being
MERGED into ZBasic.

Also see LOAD, SAVE*, RENUM, APPEND and DELETE

Standard Reference 270

MID$ function

FORMAT

DEFINITION

EXAMPLE

REMARK

271 Standard Reference

MID$ (string , expr1 [, expr2j)

Returns the contents of string starting at posnion expr1, and expr2characters long.

string

expr1

expr2

The string from which the copy will occur.

The distance from the left that the copy will begin.

Optional parameter that determines how many characters will be
copied. If omitted, all characters from expr1 to the end of the
string will be copied.

A$="The Sun Shines Bright"

PRINT MID$(A$,5,3)

Z$=MID$ (A$, 15)
PRINT Z$

FOR Pointer = 1 TO LEN(A$)
PRINT MID$(A$,Pointer,l)

NEXT

RUN

Sun
Bright
T
h
e

S
u
n

INPUT"First and Last name p1ease:";Name$
PRINT "Thank you Mr. ";MID$(Name$,INSTR(l,Name$," ")+1)

RUN

First and Last name please: Fred Smith
Thank you Mr. Smith

See LEFT$, RIGHT$, INSTR, LEN, STR$ and the MID$ statement.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement MID$

MID$ (string1. expr1 [, expr2]) = string2

Replace a portion of string1 starting at expr1, with expr2 characters of string2.

strIng 1

strlng2

expr1

expr2

A$
B$

"SILLY
"SMART"

PRINT A$

MID$(A$,1,5)
PRINT A$

RUN

SILLY BOY
SMART BOY

Target string. String2 will be inserted or layed over this string.

String to be inserted or layed over string1 .

Distance from the left of string1 where overlay is to begin

How many characters of string2 to insert into string1. Using 255
will assure that all characters are used.

BOY"

B$

This function is very useful for altering selected portions of strings.

Also see RIGHT$, LEFT$, MID$ function, STR$, INSTR, VAL, LEN, SPACE$,
STRING$.

Standard Reference 272

FORMAT

DEFINITION

EXAMPLE

REMARK

273 Standard Reference

MKB$ (expression)

Returns a string which contains the compressed floating point value of a ZBasie BCD
expression.

This function works with either single or double precision. The amount of string
space used will vary depending on the digits of precision configured. See
"Configure".

To return the floating point values stored in strings use the cva function.

A$=MKB$(991721.645643)
PRINT "The length of A$=";LEN(A$)
X!=CVB(A$)
PRINT X!

PRINT

B$=MKB$(991721.645643)
PRINT "The length of B$=";LEN(B)
Xii=CVB (B$)
PRINT Xii

RUN

The length of A$=4
991722

The length of B$=8
991721.645643

<--- Value returned depends on configured precision

<--- Value returned depends on configured precision

Since ZBasie automatically compresses and decompresses BCD variables when
using READ# and WRITE#, this function is of primary interest to those people that
need to conserve memory for other reasons.

See also eVB, CVI, READ#, WRITE# and MKI$.

See your appendix for default accuracy and variations.

FORMAT

DEFINITION

EXAMPLE

REMARK

MKI$ (expression)

Returns a two character string which contains a two byte integer specified by
expression.

To extract the integer stored in a string wth MKI$ • use the CVI function.

A$=MKI$(12345)
PRINT"Length of A$=";LEN(A$)
B%=CVI (A$)
PRINT B%
PRINT

A$=STR$(12345)
PRINT "Length of A$=";LEN(A$)
PRINT VAL (A$)

RUN

Length of A$=2
12345 <--- MKI$ saves space ... (4 bytes compared to below)

Length of A$=6
12345 <--- Leading blank reserved for the "SIGN"

Used in older versions of BASIC to convert integers to strings for FIELD statements.
ZBasic does this automatically when using READ# and WRITE#. Nevertheless.
MKI$ and CVI are still useful for packing strings to save memory-- especially on
systems with limited memory.

See also CVI. CVB. READ#. WRITE# and MKB$.

!l
Use DEFSTR LONG to allow MKI$. CVI. HEX$. OCT$ and BIN$ to work with
Longlntegers. Use DEFSTR WORD to set back to regualr integer. Note that MKI$
returns a four byte string with Longlntegers.

Standard Reference 274

FORMAT

DEFINITION

EXAMPLE

REMARK

275 Standard Reference

expression 1 MOD expression2

MOD returns the remainder of an integer division with the sign of expression 1 .

PRINT "9 DIVIDED BY 2=";INT(9/2);"REMAINDER =";9 MOD 2

RUN

9 DIVIDED BY 2= 4 REMAINDER= 1

PRINT "-4 DIVIDED BY 2=";INT(-4/2);"REMAINDER=";-4 MOD 2

RUN

-4 DIVIDED BY 2= -2 REMAINDER= 0

MOD replaces the old BASIC routines for finding the remainder of a division and is
also much faster:

OLD BASIC:

ZBasic:

x = (X - INT(X/N) • N)

X=XMODN

FORMAT

DEFINITION

REMARK

statement MODE

MODE expression

MODE is used to set the screen graphics or text format.

Most computers offer a number of different character and/or graphic modes. Use
MODE to choose the mode most applicable to the program.

For most systems EVEN modes are character graphics and ODD modes are regular
graphics. Not all machines have graphic capability. MODE for some popular
microcomputers:

MSDOS type APPLE lie, IIc TRS-SO I, III
Mode
number Text ll::irapOiC Text lliraphlc Text uraphlc

0 40x25 character 40x 24 character 32x16 character

1 40x25 40x40 none 40x48 64x16 128x48

2 80x25 character 80x24 character 32x16 character

3 80x25 80x25 none 80x48 64x16 128x48

4 80x25 character 40x24 character 32x16 character

5 40x25 320x200 40x24 280x192 64x16 128x48

6 80x25 character 80x24 character 32x16 character

7 80x25 640x200 80x24 560x192 64x16 128x48

8 40x25 character 40x24 character 32x16 640x240?

9 40x25 40x40 Bottom 40x48 64x16 128x48

10 80x25 character 80x24 character 32x16 character

11 80x25 80x25 Bottom 80x48 64x16 128x48

12 80x25 character 80x24 character 32x16 character

13 40x25 320x200 Bottom 80x165 64x16 128x48

14 80x25 character 80x24 character 32x16 character

15 80x25 640x200 Bottom 560x165 64x16 128x48

MACINTOSH CP/M-SO Be sure to read

Text Graphic Text Graphic the appropriate

Many Font SEE Normally SEE
appendix for
exact mode styles and Macintosh 80x24 ZOO

sizes herel APPENDIX APPENDIX designations.

MODE will reset COLOR to the default, usually the darkest background and lightest
foreground, and may clear the screen with some systems.

!b&
Macintosh: MODE is ignored with the Macintosh. See the TEXT statement for
setting character styles and sizes. To emulate other computers you will probably
want to use Monaco or Courier mono-spaced fonts. TEXT font, size, face, mode.

MSDOS: Modes 16-19 support EGA modes. Mode 20 supports Hercules graphics.
See appendix for details.

Standard Reference 276

MOUSE function ..
............... "' .. j' ... • "' "' ~.":.":.":.'::'.":.":.":.":.": .. :.":.":.":.":.":.":.":.":.":.":.":.":.":.":.": " ... " ... " ... " ... " ... " ... " ... " ... " ... "":" ... "":"":" ... " ... " ... " ... " ... " ... " ... "":" ... " ... " ... " ... " ...

FORMAT

DEFINITION

EXAMPLE

REMARK

277 Standard Reference

MOUSE (expression)

Returns information concerning the position and status of a MOUSE or JOYSTICK if
one is connected to the system. The fOllowing values are returned.

MOUSE (0) Innializes the MOUSE on some systems (nialization is required
on the Apple /I ProDOS and DOS 3.3 versions).

MOUSE (1)

MOUSE (2)

MOUSE (3)

Returns the horizontal coordinate of the mouse.

Returns the vertical coordinate of the mouse.

Returns 0 if button not pressed. Non-zero if button pressed.

MODE 5 :REM GRAPHIC MODE
CLS
X= MOUSE (0)

WHILE LEN(INKEY$)=O
LONG IF MOUSE (3)

PLOT MOUSE (1),
END IF

WEND

<---Initialize mouse

<--- Press any key to stop
<--- If button down then ok to draw

MOUSE (2) <--- Plot where mouse (or joystick) is

The above example uses a mouse to draw on the screen. A joystick may also be
used (depending on the system). See your computer appendix for hardware
device specifics that may apply to these functions.

Also see DEF MOUSE.

Macintosh Note: You may use the mouse functions above or configure ZBasic for
MSBASIC Mouse compatibility using DEF MOUSE=1. See Mac Appendix.

MSDOS: Compatible with Microsoft Mouse. ZBasic has to be configured to support
a mouse. See "Configure" in MSDOS appendix. If MOUSE(O) <> 0 then a mouse is
installed. MOUSE(3) returns 0-3; Zero if both buttons up, three if both buttons
down, one or two if one button pressed. MOUSE(4) and MOUSE(5) hide and
show the mouse cursor .. DEF MOUSE=O for Mouse, 1 or 2 for joysticks, 3 for
lightpens.

Apple ProDOS and DOS 3.3: Compatible with AppleMouse or joysticks. Use
DEF MOUSE=O for AppleMouse or DEF MOUSE=1 for Joysticks. If using a joystick
MOUSE(3) returns 0-3. Zero if both buttons up, three if both buttons down, one or
two if one button pressed. See appendix for specifics.

Z80: MOUSE IS NOT SUPPORTED with Z80 versions of ZBasic.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement NAME ".."."'."'."'.".."'."." "'.".".."'."."."."."."."..". ".".".'" .".."'."' ".".."."."..".."..".."'."."'.1'."."." "'.".".".".."
-:"-:"":"":",,:",,:",,,",,:",,,",,:":--:,":-''''"'''"'':"'''"'''"'''"0::"'''"'''"'''"'':"'':"'''"'':"'':"":""'"":""'""'""'":-""'""'""'""'""'""'""'"":0:.:-" ... " ... " ... ".,,:",,:" ... ".,,:-.,,:",,:0:.":"

NAME string1 AS string2

Renames a file with a filename of string1 to string2. Same as the RENAME statement
except for syntax. This statement is provided to make ZBasic compatible with other
BASIC languages.

DIR

FRED.BAS
DICK. BAS

TOM.BAS
HARRY. BAS

NAME FRED.BAS AS GEORGE.BAS

DIR

GEORGE.BAS
DICK.BAS

TOM. BAS
HARRY. BAS

See RENAME for more information.

Bj·'!~
Not available on Apple /I or Z80 versions of ZBasic. See RENAME.

Standard Reference 278

NEW command

FORMAT

DEFINITION

EXAMPLE

REMARK

279 Standard Reference

NEW

NEW is used to clear the text buffer of the current program.

Since programs that have been erased in this manner are impossible to recover,
SAVE your program first!

LIST+

CLS
PRINT"THIS IS A PROGRAM ' ;
PRINT"WHICH IS ABOUT TO BE LOST FOREVER AND EVER
END

NEW
LIST

(Nothing listed ...)

Use this command with care. See LOAD.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement NEXT

FOR var = expression1 TO expression2 [STEP expression3 I

NEXT [variable • [variable . .. I J

The NEXT statement is used as the end marker of a FOR loop. There must be a
matching NEXT for every FOR, otherwise a Structure Error will occur at compile time.

FOR Countl= 1 TO 2
FOR Count2 = 2 TO 4 STEP 2

PRINT Countl, Count2
NEXT Count2, Countl

RUN

1
1
2
2

2
4
2
4

FOR X= 1 TO 2
FOR y= 1 TO 2

PRINT X,Y
NEXT

NEXT

RUN

1
1
2
2

1
2
1
2

The variable(s) following the NEXT statement are optional; however, if used they
must match the corresponding FOR variable(s).

A FOR-NEXT loop will execute AT LEAST ONCE!

A Structure Error will specify the line number if there is an extra NEXT; or will specify
line 65535 if a NEXT is missing. ZBasic automatically indents all loop structures
when you LIST your program. This may be used to find where the missing NEXT is
located by simply following the program listing back to the point where the extra
indent ends.

See "Loops" in the front of this manual and; WHILE-WEND, DO-UNTIL, LONGIF
XELSE-ENDIF for other loop and structure types.

Standard Reference 280

FORMAT

DEFINITION

EXAMPLE

REMARK

281 Standard Reference

NOT expression

NOT retums the opposHe of expression. True is False, False if True. This is
equivalent to changing a logical true (-1) to a logical false(O) and vice versa.

WHh Boolean (binary) operations, the NOT function will toggle all bHs in expression.
That is, all bits that are one will be changed to zero, and all bits that are zero will be
changed to one.

A$="Hello"
IF NOT A$="Bye" THEN PRINT"True, it is False"
END

RUN

True, it is False

A logical true is -1 and logical false is O. Also see XOR, OR, AND.

NOT condition

NOT
NOT 1 0
NOT 0 1

!l

TRUE(-1) if condition FALSE, else FALSE (0) if TRUE

BOOLEAN "16 Blr' LOGIC
NOT 11001100 NOT 01111011

00110011 10000100

Will also function with 32 bit Longlntegers.

FORMAT

DEFINITION

EXAMPLE

REMARK

function OCT$

OCT$ (expression)

OCT$ returns a 6 character string which represents the Octal value (base 8) of the
resuH of expression truncated to an integer. Octal digits are from 0-7.

Q.QIA1.
0-7
10
11
12
13
14
15
16
17
20

DECIMAL eaulvalent
0-7
8
9
10
11
12
13
14
15
16

The following program will convert a decimal number to Octal or an Octal number to
decimal:

CLS
DO

INPUT"Decimal number: n;Decimal%
PRINT "Octal Equivalent: ";OCT$(Decimal%)

INPUT"Octal number: ";Octal$
Octal$="&O"+Octal$
PRINT"Decimal Equivalent: ";VAL(Octal$)

UNTIL (DECIMAL%=O) OR (LEN(Octal$)=2)

RUN

Decimal number: 8
Octal Equivalent: 000010

Octal number: 100
Decimal Equivalent: 80

Conversions are possible from any base to any other base that ZBasic supports.

See the Chapter "Numeric Conversions" in the front of this manual. See also BIN$,
HEX$ and UNS$.

a
Use DEFSTR LONG if you want to use OCT$, HEX$, BIN$, UNS$, MKI$ or CVI with
Longlntegers. Use DEFSTR WORD to set back to regular integer.

Standard Reference 282

ON ERROR statement

FORMAT

DEFINITION

EXAMPLE

REMARK

283 Standard Reference

ON
ON
ON

ERROR
ERROR
ERROR

GOSUB Line or label
RETURN
GOSUB 65535

The ON ERROR allows the user to enable and disable disk errortrapping. If ON
ERROR is not used ZBasic will display disk errors as they occur and give the user the
option of continuing or stopping. Options offered with ON ERROR:

ON ERROR GOSUB 65535

ON ERROR GOSUB line

ON ERROR RETURN

Enable user disk error trapping. Errors are retumed
using the ERROR function. You must check for
errors---ZBasic will not when this parameter is set.

If a disk error occurs the program does a GOSUB to
the line or label specified.

Disable user disk error trapping. ZBasic will trap the
disk errors and give error messages at runtime.

ON ERROR GOSUB 65535: REM Enable disk error trapping
"Start"
OPEN "I" ,1, "TEST"
IF ERROR GOSUB"Disk error"
GOTO "Start"
program continues ...

"Disk error"
LONG IF (ERROR AND 255)=3: REM Check for File not found error

PRINT"Check that correct diskette is in drive: <ENTER>";
DO
UNTIL LEN{INKEY$)
ERROR=O : RETURN

XELSE
PRINT"A Disk Error has occurred:";ERRMSG${ERROR)
PRINT"<C>ontinue or <S>top?";
DO

temp$=UCASE${INKEY$)
UNTIL (temp$="C") OR (temp$="S")
IF temp$="C" THEN ERROR=O: RETURN

END IF
PRINT"P rogram aborted!"
ERROR=O
STOP

Also see ERROR and ERRMSG$ and the chapter about "Disk Error Trapping" in the
"Files" section of the manual.

See RETURN line for another way of returning from ON ERROR GOSUB line.

Important Note: Always remember to set ERROR=O after a disk error occurs when
you are doing the disk error trapping. Failure to do this will cause ZBasic to continue
to retum a disk error condition.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement ON GOSUB

ON expression GOSUB line [, line [, line . .. 11

The ON GOSUB statement is used to call one of several subroutines depending on
the value of expression.

The ON statement will call the first subroutine n the expression evaluates to one, to
the third subroutine if the expression evaluates to three and so on.

The RETURN statement at the end of a subroutine will return the program to the
statement immediately following the ON GOSUB.

"Inventory Menu"
CLS
PRINT "1. Inventory"
PRINT "2. Print Listing"
PRINT "3. Month End"
PRINT "4. EXIT
PRINT
PRINT "Enter item wanted:

DO
Item%=VAL(INKEY$)

n. ,

UNTIL (Item% >0) AND (Item% <5)

ON Item% GOSUB "Inventory", "Print", "EOM", If Exit 11

GOTO "Inventory Menu"
END

"Inventory"
RETURN

"Print n

RETURN

llEOM"
RETURN

"Exit"
END

ZBasic will truncate expression to an integer. For example, if expression equalled
1.9, the ON statement would go to the first line (INT(1.9)=1).

If expression <=0 or> (number of line numbers listed), the program will continue
on to the next statement in the program.

Standard Reference 284

ON GOTO statement

FORMAT

DEFINITION

EXAMPLE

REMARK

285 Standard Reference

ON expression GOTO line [, line [, line . .. II

The ON GOTO statement is used to branch, or jump, to one of several portions of a
program depending on the value of expression.

The ON statement will jump to the first subroutine if the expression evaluates to one,
to the third subroutine if the expression evaluates to three, and so on.

A=RND(4)
ON A GOTO "ONE", "TWO", "THREE", "Last"
END

"ONE"
PRINT 1
END

"TWOII

PRINT 2
END

"THREE"
PRINT 3
END

"Last"
PRINT 4
END

RUN

4

ZBasic will truncate expression to an integer. For example, if expression equalled
1.9, the ON statement would go to the first routine (INT(1.9)=1).

If expression <=0 or> (number of line numbers listed), the program will continue
on to the next statement in the program.

See "Structure".

FORMAT

DEFINITION

EXAMPLE

REMARK

continued ...

OPEN "I",
OPEN "0",
OPEN "R",

statement OPEN

[# I filenumber, filename [, record length I
[# I filenumber, filename [, record length I
[# I file number , filename [, record length I

The OPEN statement is used to access a data file. Once a file is opened, information
may be read from or written to the file depending on the way the file was opened.
The first argument determines access:

"R"

"I"

"0"

filenumber

filename

record length

Read/write file: Open file if it exists, create the file if it doesn't.

Read only file: Open file for input. If file doesn~ exist, a disk error
occurs (file not found error).

Write only file: Open file for output. Overwrites the old file.

The number you assign to a file which is subsequently used with
file commands like READ#, WRITE#, INPUT#, LlNEINPUT#,
PRINT#, REG, LOG and LOF.

The filename as it appears in a directory. See your DOS manual
and the appendix in this manual for information about drive
specifiers, pathnames, sub-directories or whatever syntax is
used for that computer.

Optional record length to be used with that file (default is 256).

REM Open a file for READ and WRITE
OPEN "R",1, IIINVEN", 180

REM Open a file for Input only
OPEN "1", File%, D$+"INVEN", 180

REM Open a file for Output only
OPEN "0",2, Filename$

To configure ZBasic to have more than two files open at a time; see "Configure".
Each file buffer will require between 160 and 1024 bytes of memory depending on
the Disk Operating System and your version of ZBasic. No more than 99 files may bQ
open at one time.

See your computer appendix for more information about file types, changing
directories and more. Also see INPUT#, PRINT#, READ#, WRITE#, LOC and REC.

TO INSURE DATA INTEGRITY, ALWAYS CLOSE OPEN FILES BEFORE EXITING
YOUR PROGRAM.

Standard Reference 286

OPEN statement

OPEN continued

287 Standard Reference

r!n~ Macintosh: Extra parameters included:

vofume% The number you get from FILES$ that sets the folder or root
location of the file. Much easier than pathname specifiers. See
appendix for details. Also see FILE$, EJECT, EOF, LOF, "File
size", APPEND and pathnames. Example of volumn number:

OPEN"type", fnurn, "filename", 200, vo.lume%

Additional types "R[R]", "O[R]", "I[R]", "A[R]" and "R[D]", "O[D)", "I[D)", "A[D]"
The optional "R" or "D" after the file type specifies opening the
resource fork (R) or data fork (D). The data fork is the defauK. See
appendix for specifics. The "A" type opens a file for append.
Also see APPEND for positioning the file pointer to the end.

Pathnames Pathnames are supported like: Root: Folder: Fred j. ' MSDOS: There are many ways to specifiy, create or remove diieCiories
and sUb-directories. See PATH$, CHDIR, MKDIR and RMDIR in the appendix.

Apple ProDOS: See PATH. Filenames may contain pathname
information like: PROFILE I ZBAS ICI SOURCE. See appendix for details.

Apple DOS 3.3 uses CP/M type drivespecs like: A: instead of D1, B: instead of
D2, etc. Filetype is specified by a leading exclamation mark and a number:

OPEN"-", filenumber, "n !type) [drlvespec) filename", record length

!type= 1= Text file
2= Integer BASIC
3= Applesoft BASIC
4= Binary file

5= S type file
6= Relocatable file type
7= A type file
8= B type file

Example: OPEN"-", fnurn, "!4A:Fred", 200

jal!l CP/M-80: You may use a drive specifier in the filename:
OPEN"-",n,"A:Fred.DAT", 200

TRS-80: You may use a drive specifier in the filename:
OPEN"-",n,"Fred/DAT.password:l",200

FORMAT

DEFINITION

EXAMPLE

REMARK

continued ...

statement OPEN "c"
OPEN "C",-1 or -2 [,[baud rate J[,[paritY)[,[stopbit][, word length 1111

This statement is used to set serial communication port parameters. If any of the
parameters are omitted the default will be used.

-1
-2

Serial port one
Serial port two

baud rate 110, 150, 300(default), 600, 1200, 2400, 4800, 9600

parity

stopbit

word length

o = none <-- default
1 = odd
2 = even

o = one <-- default
1 = two

0=7bits
1 = 8 bits <-- default

REM A Very Cheap Terminal Program
OPEN"C", -1, 300 <---Change parameters as needed
DO

READjf-l, A$;0
IF LEN(A$) THEN PRINT A$;

A$=INKEY$
IF LEN(A$) THEN PRINTjf-l,A$;

UNTIL A$="j"

<--- (;0) Won't "Hang" if nothing at port

<--- Set a key to stop

Serial ports may be accessed using the same statements used in disk I/O: PRINT#,
INPUT#, LINE INPUT#, READ#, and WRITE#. In all of these statements, the port is
not read or written to until the status indicates that the port is ready.

The one exception to the paragraph above is when READ# is used to read a string
of zero length. In this case, the character will be returned if ready, otherwise a null
string will be returned (similar to the INKEY$ function) (Not supported with CP/M).

A port does not have to be opened in order to be accessed. The OPEN "C"
statement is used only to set the current port parameter values. Without this
statement, the port will simply use the parameters to which it was last set.

All versions have a number of machine specific parameters. See appendix for
important details.

Standard Reference 288

OPEN "c" statement

OPEN "C" continued

289 Standard Reference

The following are examples of sending or receiving files over a modem or serial line.
Check appendix and hardware manuals for specifications.

Add your own line numbers, and modify programs as needed. Save with SAVE+ to
use later.

SENP FILES TO ANOTHER COMPUTER
"SEND FILES"
LINEINPUT"File to send: ";File$
IF LEN(File$)=0 THEN STOP: REM No file? STOP

OPEN"I",l,File$
ON ERROR GOSUB 65535: REM Catch errors

OPEN"C",-1,300: REM Change parameters as needed

DO
LINEINPUT#l, Line$
IF LEN (Line$) THEN
DO <----

READ#-l,A$;O
UNTIL ASC(A$)=l

UNTIL ERROR

IF ERROR=O
CLOSE#!

PRINT#-l, Line$
This DO loop is an example of "Handshaking" remove
this loop, and the PRINT# below, if not needed.

PRINT#-l,"*END*": REM Tell receiver "All Done!"
RETURN

RECEIVE FILES FROM ANOTHER COMPUTER
"RECEIVE FILES"
LINEINPUT"Filename to Receive: ";File$
IF LEN(File$)=0 THEN STOP: REM No File? STOP

OPEN"O",l,File$

OPEN"C",-1,300: REM Change parameters as needed

DO
LINEINPUT#-l, Line$
IF Line$<>"*END*" THEN PRINT #1, Line$
PRINT#-l, CHR$ (1) ; <--- Goes with "Handshaking" Do Loop above.

UNTIL (Line$="*END*")

CLOSE#!
RETURN

FORMAT

DEFINITION

EXAMPLE

REMARK

expression OR expression

Performs a logical OR on the two expressions for IF THEN testing and BINARY
operations. If either or both conditions are true the statement is true. See truth table
below.

In binarylboolean operations if either bit is one than a one is returned.

A$="HELLO"
IF A$="GOODBYE" OR A$="HELLO" THEN PRINT"YES"

RUN

YES

Truth table for the OR function.

condition OR condition

OR
1 OR 1 1
o OR 1 1
1 OR 0 1
o OR 0 0

TRUE(-1) if either or both is TRUE, else FALSE(0)

BOOLEAN "16 BIT" LOGIC
00000001 10000101

OR 00001111 OR 10000111
00001111 10000111

Also see AND, XOR and NOT.

&
Functions with 32 bit Longlnteger as well.

Standard Reference 290

OUT statement ...
... "'.". J" Il' "' "'." J' " "'."' "' "."' ".
"":"":"":"":"":"":"":"":"":"":"":-":""''''':'''':'''':'''':'''':'''':'''':'''':'''':'''':'''':'''':'''':'''':'''':-'':"":

FORMAT

DEFINITION

EXAMPLE

REMARK

291 Standard Reference

OUT port, data

The OUT statement sends dala to the specified port number.

OUT 1,12

A=6:B=9
OUT A,B

OUT A/2,B/3
END

This statement is microprocessor dependent and works only with Z80 and 8086
type processors.

Also see INP for a way of reading data in from the port.

!lS
Not supported with these versions.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement PAGE

PAGE

Relurns the current line position of the printer. The first line is line zero.

PAGE
PRINT PAGE
LPRINT
LPRINT
LPRINT
PRINT PAGE

RUN

a
3

<---Also see PAGE statement

This function is similar to POS except the line position is returned instead of the
character position.

Important Note: If your operating system uses forms control and checks lines per
page, you must disable the operating systems forms control or ZBasic's PAGE .

• See CSRLN in the MSDOS appendix for getting the line position of the screen
cursor.

Standard Reference 292

PAGE function

FORMATS

DEFINITION

EXAMPLE

REMARK

293 Standard Reference

PAGE [[expression11 [. [expression2 1[. [expression3 IIII

PAGE is used to format output to the printer and to control the number of actual
lines per page, printed lines per page and top margin. Following is a description of
the parameters:

PAGE

expression 1

expression2

expression3

PAGE 60,66,3

Without parameters will send a page feed to the printer. this
forces the print head to move to the defined position of the top
of the next page.

The number of printed lines per PAGE.

The number of actual lines per PAGE. Also resets line count to
zero (normally 66 lines per page).

Lines for the top margin. This number is a subset of
expression1. If the line count is zero, this many linefeeds will be
output immediately.

<--- Sets Listings to 60 lines per page
with 3 lines as top margin. Skips perforations nicely.

WIDTH LPRINT should be set to your printer's character width for proper PAGE
operation when doing LLiST.

See PAGE function.

To disable PAGE use PAGE 0.

Important Note: If your operating systems uses forms control and checks lines
per page, you must disable the operating systems forms control or Z8asic's PAGE.

FORMATS

DEFINITION

EXAMPLE

REMARK

PATH
.. '\0 ".."' "' "'." " " " "' " " ".". ". '"
"'"":"":""'"":""'""'""'"":""'""'"":"":"":"":""'""'""'""'"":""'""'""'"":""'""'""'"":" ... "":"":" ... "":" ... "":"":" ... "":" ... "":"":" ... "":"":"":"":" ... "":"":" ... " ... " ... " ... "

PATH

PATH or PATH type commands are available on many versions of ZBasic that
support multi-level directories. Rather than give the exact syntax for each machine
this page gives a general overview. See your computer appendix for specifics.

MSDOS See PATH$ function in the appendix. This allows you to get the
current path name so that you can return to that sub-directory.
Syntax is PATH$(drive number). Note: Drive A=1, B=2, ...

Pathname syntax example: C:\ZBasic\TEMP

Apple ProDOS See PATH command in the appendix. Also see the example
function on the master disk called: PREFIX.SAMPLE for ways of
getting ProDOS pathnames during runtime.

Macintosh

zao

Pathname syntax example: IPROFILElZBASIC/OBJECT

Path names not supported w~h DOS 3.3 version.

The most appropriate way of specifying where a file is located is
using the volumn number. This is recommended in "Inside
Macintosh". Volume numbers are obtained easily using the
FILES$ function. See Macintosh appendix.

Nevertheless, pathnames are supported and may be used.

Pathname syntax example: Fred:Tom:Harry

Pathnames are not supported since the operating systems for
this CPU do not currently implement sub directories.

See your appendix for examples.

This command varies significantly by computer type.

See DIR, OPEN and also be sure to see your appendix for specifics.

j·'!l
Pathnames are not supported with Apple DOS 3.3 or zao versions of ZBasic.

Standard Reference 294

PEEK function

FORMAT

DEFINITION

EXAMPLE

REMARK

295 Standard Reference

PEEK [WORD) (expression)
PEEK LONG (expression)*

Returns the contents of the memory localion(s) specified by expression:

PEEK
PEEK WORD
PEEK LONG*

X=VARPTR (A$)

POKE X, 10

Returns a one byte number (0-255)
Returns a two byte number (-32768 to 32767)
Returns a four byte number (*32 bit versions)

<---Get a safe place in memory to play wilh

POKE WORD X+1, 12000

PRINT PEEK(X)
PRINT PEEK WORD (X+1)

RUN

10
12000

See POKE, POKE WORD and POKE LONG, USR, MACHLG, CALL, LINE, HEX$,
OCT$, UNS$ and the section in the front of this manual; "Machine Language".

Important Note: This function is for people experienced with machine language
and the hardware of their computer.

aa
*Maclntosh: Always use Longlntegers for expressions to pass an address or to
retrieve a four byte Longlnteger. See appendix.

MSDOS: An extra parameter is available to determine the segment of the variable:
PEEK[WORD) (address, segment). Also see MEM and DEF SEG in the appendix.

FORMAT

DEFINITION

statement PLOT

PLOT
PLOT [TO J

exprt , expr2 [TO expr3, expr4 ... J
expr1 , expr2 [TO expr3, expr4 ... J

The PLOT statement is used to draw either one graphic point, or a line between two
or more pOints, in the current COLOR. Examples:

PLOT 10,12
PLOT 10,12 TO 100,100
PLOT 10,12 TO 10,90 TO 1,1
PLOT TO 10,12

<-- PLOT one point at position 10,12
<-- PLOT a line from 10,12 to 100,100
<-- PLOT two lines: 10,12 to 10,90, to 1,1
<-- PLOT a line from last position to 10,12

EXAMPLE CLS

REMARK

MODE 5
PLOT 209, 304

<---Set graphics mode
<--- Plots one pixel

COLOR -1 <--- Sets COLOR to foreground
REM PLOT an angle
PLOT 209,304 TO 987, 643 TO 322,742
END

RUN

See illustrations on the following page.

As with all other ZBasic graphic commands, Device Independent Graphic
coordinates of 1024 by 768 are the default. Expressions are truncated to an
integer. Character type graphics will be substituted on computers, or modes,
without graphic capabilities.

Also see CIRCLE, BOX, FILL, POINT, COLOR.

Macintosh: Use COORDINATE WINDOW to set to pixel graphics. Use
COORDINATE to set yur own relative coordinates or to set back to 1024x768. The
upper left-hand comer of a WINDOW is coordinate 0,0.

MSDOS: Use COORDINATE WINDOW to set pixel coordinates. See
COORDINATE to set relative coordinates or to set back to ZBasic coordinates.

Z80: POKE &xx3F, &C9 for pixel coordinates. POKE &523F, &C3 to set back to
ZBasic coordinates. xx= CP/M=01, TRS-80 model 1 ,3=52. TRS-80 model 4=30.

Apple /I ProDOS: POKEWORD &85, ° for pixel coordinates. Use MODE to set
back to ZBasic coordinates.

Apple II DOS 3.3: POKE &F388,&60 for pixel coordinates. POKE &F388, &A9
to set back to ZBasic coordinates.

Standard Reference 296

PLOT statement

PLOT continued

PLOT
9!l7

'" : : 1023
209

· . · . · . · . · . · .
: : PLOT 209,304
- . J
- . II>

304:0

_ PLOT 987,643 . - ,-. - "" . 643~ - .

IF

767

PLOT
209 322

0.0 .. .
1 •• 111111 11111 ,.,1.1 •••••••••• 1'1 ••• 1' •• 111111.111

9.87
1023

PLOT 209.304 TO 987.643 TO 322.742

767

297 Standard Reference

FORMAT

DEFINITION

EXAMPLE

REMARK

function POINT

POINT (expression 1 , expression2)

Point is available on many computers to inquire about the COLOR of a specific
screen graphic position. As with other commands, ZBasic Device Independent
Graphic coordinates may overlap pixels.

In the example: 0=Background (white here), 1 =Foreground (black here)

ZBeslc
coordinates POINT (h, V)
"'0123. "'!"'!"----

,
EXAMPLES'
POINT (0,0) =1
POINT (1 ,0) =1
POINT (0.2) =0
POINT (2,1) =0
POINT (2,2) =1

Screen Pixel

• Note: Point returns COLOR of cocrdinate

As with all other ZBasic graphic commands, the device independent coordinate
system of 1024 x 768 is the default.

COLOR 1
PLOT 0,0 to 900,767
PRINT POINT(O,O)

RUN

1

If the coordinate is outside screen coordinates, a -1 will be returned.

See COLOR, BOX, CIRCLE and the section; "Graphics".

See COORDINATE or PLOT for ways of converting some versions of ZBasic to pixel
coordinates that can used with POINT.

J-"l _ ...
POINT is not available for CP/M versions (including the Kaypro graphic verSions).

Standard Reference 298

POKE statement

FORMAT

DEFINITION

EXAMPLE

REMARK

299 Standard Reference

POKE [WORD] express;on%, express;on2
POKE LONG expression&, expression2&'

POKE writes the value of express;on2 into a memory location. The first expression
is the address to POKE. The express;on2 is the data to POKE.

J:Y£I:.
POKE
POKE WORD
POKE LONG"

eXPress/an2
One byte
Two bytes
Four bytes ("32 bit machines only)

x = 12345: XA = VARPTR(X)
PRINT"Byte at ";UNS$(XA);" =";PEEK(XA)

POKE XA,99
PRINT"Byte at ";UNS$(XA);" =";PEEK(XA)

POKE WORD XA,44444
PRINT"WORD at .. ;UNS$ (XA);" =" ;UNS$ (PEEK WORD (XA»
END

RUN

Byte at 59009
Byte at 59009
Word at 59009

57
99
44444

Also see PEEK, PEEK WORD, PEEK LONG, MACHLG, CALL, LINE and the
chapter "Machine Language" at the beginning of this manual.

Important Note: Indiscriminate use of this command may cause unpredictable
computer operation and loss of data or program. This statement is for experienced
machine language programmers only. Porting of programs with POKE is not
recommended.

~.
"Macintosh: Always use Longlntegers for addresses and when using POKE
LONG or PEEK LONG.

MSDOS: There is an optional parameter for segment:
POKE [WORD] address, data, segment. See MEM and DEF SEG in the appendix.

FORMAT

DEFINITION

function POS

P~S (byte expression)

Returns the current horizontal cursor position, from zero to 255, for a screen,
printer or disk file.

The expression specifies a device as follows:

POS(O)
POS(1)
POS(2)

Default device (normally the video monitor)
Printer
Disk file (limited to one file using carriage retums)

EXAMPLE CLS

REMARK

PRINT "READ and DISPLAY SCREEN pas"
FOR IOTa 30 STEP 10

PRINT TAB(I); POS(O)
NEXT
PRINT

PRINT "READ and DISPLAY PRINTER pas"
DEFTAB 5
FOR I o TO 6

LPRINT,
PRINT POS(1),

NEXT
END

RUN

READ and DISPLAY SCREEN pas
o 10 20

READ and DISPLAY PRINTER pas

30

6 12 18 24 30 36

A carriage return will set the POS value to zero. PAGE will return the current line
position for the printer.

Also see WIDTH, PAGE and WIDTH LPRINT.

While this command will work the same on all systems, it is dependent on screen
and printer widths.

Standard Reference 300

PRINT# statement

FORMAT

DEFINITION

EXAMPLE

REMARK

301 Standard Reference

PRINT # expression. list of things to print

Used to PRINT information to a disk file or other device in text format. Numbers or
strings will appear in the file or device similar to how they would look on the screen or
printer.

The expression is the file number assigned to a disk file or other device in an OPEN
statement.

INPUT# or LlNEINPUT# are normally used to read back data created with PRINT#
(although READ# may also be used).

A$="TEST":B$="TEST2":C=900

OPEN "0" ,1, "TEST.DAT"
PRINTill, "HELLO· .. ·, "A$", "B$","C <--- Quoted comma delimeters for INPUT#
CLOSE ill

OPEN"I",l,"TEST.DAT'1
INPUT#1, X$, Y$, Z$, A% <--- INPUT in same order and same type

PRINT X$, Y$, Z$, A%

CLOSE ill
END

RUN

HELLO TEST TEST2 900

While this command will work the same on all systems. it is dependent on disk
inpuVoutput capabilities. Use INPUT# or LlNEINPUT# to read back data written with
PRINT#.

Be sure to see the entry on INPUT# in this reference section for more infonnation
about using PRINT# and INPUT# together and also information about MSBASIC
syntax differences.

See ROUTE. OPEN. OPEN"C". INPUT#. LlNEINPUT#. READ#, WRITE#, LPRINT
and the section in the front of this manual called "Files" for more information.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement PRINT

PRINT [{@ I %J (expr1, expr2)] [list of things to print]

The PRINT statement is used to output information to the current device, normally
the video.

@ (expr1,expr2)
% (expr1 ,expr2)

Specifies text coordinates.
Specifies graphic coordinates.
Note: Expr1 =Horizontal. Expr2=Vertical.

o 1 2 3 4 HORIZONTAL I.
......

N a m e : ,
PRINT@(1,1)",HI";

\
\ ,

V
E
R
T
I
C
A
L

PRINT @ (O,S)",Name: ";AS

PRINT@(l,l)"Hi";
PRINT@(O,5)"Name:";A$
END

PRINT followed with a semi-colon will disable the carriage retum.

A PRINT item followed by a comma will cause the next element to be printed at the
next tab stop defined by DEF TAB.

While this command will work the same on all systems, it is dependent on hardware.

See ROUTE for ways of sending PRINT data to another device like a printer, disk file
or serial port.

See "Screen and Printer Text Control" in the front section of this manual for other
ways of formatting text.

As with all other ZBasic graphics commands, PRINT %(x,Y) defauHs to printing at the
position specified by the Device Independent Graphic coordinates of 1024 x 767.
See PLOT or COORDINATE for ways of changing some versions of ZBasic to using
other coordinates.

Standard Reference 302

PRINT USING function

FORMAT

DEFINITION

EXAMPLE

REMARK

303 Standard Reference

PRINT[# filenumber ,] USING formatstring ; numeric expression; [USING ...]

This function permits formatting numeric data in PRINT or PRINT# satements.

The last numeric digit displayed will be rounded up by adding 5 to the first digit on
the right that is not displayed.

The formatstring may be a quoted or string variable using the following symbols:

~ Definition

Holds place for a digit. More than one may be used. An example of using
this symbol to hold dollars and cents:
PRINT USING "$#U.U";A# $123.45

Insert a comma in that place. An example of using it to format numbers with
dollars and cents would be:
PRINT USING"$##,###.iliI";A# $12,345.67

Determines placement of decimal point within the format field:
PRINT USING"$iIiI, U#, ilU. U"; A# $12,345,678.90

$ Prints a dollar sign on the left of the format. See examples above.

+ Prints a floating plus or minus sign on the side of the number where the plus
sign holds the place.
PRINT USING"+UU.U";AiI +1234.56
PRINT USING"+UU. U"; -1234.56 -1234.56

Prints a minus sign only if the expression is negative.
PRINT USING"+UU.U";AiI 1234.56
PRINT USING"+ilU#. U"; -1234.56 -1234.56

* Fill the spaces before a number with asterisks. One example would be
formatting ouput when printing checks.
PRINT USING"$#iI,##iI,###.iI#";12.34 $********78.90

See examples on next page ...

When error is printed in the format field, this indicates the occurrence of an
overflow condition and replaces the number that would have been printed. An
overflow condition is when the value of the expression used would have exceeded
the bounderies of the format.

USING not available for string formatting. See LEFT$, RIGHT$, STRING$ and MID$.

!b
This version allows USING without PRINT. A$=USING"####.##";232 is acceptable.
See appendix for additions to exponential formatting with this version.

function PRINT USING

PRINT USING continued

FORMAT EXAMPLES

In all the examples A =12345.678. Note that .678 rounds up to .68.

PRINT USING FORMAT RESULT
"*$"',"',"',"'."";A **********$12,345.68

"%III.'";A/1000 %12.3

"+"',"'."";A +12,345.68
"-"',III.II";-A -12,345.68

""/"/"";A 1/23/45

"":#':"";A 1:23:45

"."',"',"',"'";1.345E-8 .000,000,013,450

".""""""";1.345E-8 .000000013450

""',"',"',"',"'";9.123E15
9,123,000,000,000,000

""'."E16";123E15*lE-16 12.30E16

PROGRAM EXAMPLE

A$="".""

PRINT USING A$;10.2,USING A$;9.237, USING A$; 4.555
PRINT 10,12,13, USING A$;12.399

PRINT@(O,10);USING A$;23.12321

PRINT%(O,295);USING "@###'#."";12.33

OPEN"O",1, "TESTFILElt

PRINT'l, USING A$;9.999
CLOSEIl

RUN

10.20 9.24
10 12

23.12 <--- at
@12.33 <--- at
10.00 <--- To

4.56
13

text position 0,10
graphic position 0,295
disk file "TESTFILE"

12.40

Standard Reference 304

PSTR$ function/statements

FORMATS

DEFINITION

EXAMPLE

REMARK

305 Standard Reference

function
PSTR$(var%)

statements
READ PSTR$(var%)
PSTR$(var%) = "quoted string constant'

The statements load the address of a string constant into var"/..

The function returns the string pointed to by var"/..

DATA Andy, Dave, Scott, Mike

DIM D (4)

FOR X=l TO 4
READ PSTR$ (D (X))

NEXT

"Print PSTR$ of D(n)"
FOR X=lT04

PRINT PSTR$(D(X))
NEXT
END

PSTR$(g%)="Hello"
PRINT PSTR$ (g%)

RUN

Andy
Dave
Scott
Mike
Hello

<---Set Pointer String to DATA items above

<--- Set Pointer String to a constant

This is a handy way to save string memory. Examples:

A$="Hi There!"
A$ will take at least 10 bytes (256 bytes if not defined). The quoted string takes
another 10 bytes. Total memory used: 20 bytes

PSTR$(A)="Hi There!"
The quoted string "Hi There!" takes 10 bytes. The integer variable "A" takes
two bytes. Total memory used: 12 Bytes

!l
Macintosh: Use var& instead of var"/..

statement PUT .. "' "."'."'."'.,/'."."."."."'."."."'."'."."."'.".1'." "."'."'."' '".1'.rI" • .I'."' "."' J"." rl'.ol' ". "'.oI'.".". . ."..I'."."."
",,,,,,,,,,,""''''''''''''''':-'':''''''''''''''''''''''''''''''''''''''':'':'''''''":"":"":""''''':''''''''''''''''''''"''':'''''''''''''''''''''''''''.:-

FORMAT PUT (x1,y1) variable [(array index I. array index [, ... J) I. mode 1

DEFINITION This statement places the graphic bit image stored in an array with the GET statement, to
the screen position at coordinates specified by x1,y1.

EXAMPLE

continued ...

If an array has been used then you MUST specify the index number of the array (some
versions of BASIC always assume an integer array. ZBasic will allow you to store bit
images in any variable type as long as enought memory is available to do so.

Memory required for pixel images is calculated using this formula (based on GET (x1,y1)
(x2,y2) where x1 and y1 deSignate the upper right-hand-comer of the image and x2 and
y2 are the pixel positions designating the lower-Ieft-hand-corner of the image) :

6+((y2-y1)+1) * ((x2-x1+1) * bpp+7)/8)

The number of bits per pixel (bpp) depends on system colors or grey levels. See next
page for specifics. Also see GET in this reference section, for detailed information about
storing the pixel image in an array.

mode XOR XORs the pixels over the background pixels. This is the most usful
for animation purposes and is also the default.

OR ORs the pixels over the existing pixels This one way to cover the
background graphics (overlays the existing graphics).

AND ANDs the picture with the background.

PRESET Similar to PSET except the reverse image is shown (negative).

PSET Draws the image over the background exactly as created.

It is recommended that COORDINATE WINDOW be used when using GET.

DIM A(10000)
MODE 7
COORDINATE WINDOW

CIRCLE 100,100,80

<---- Not needed on the Macintosh version
<--- Pixel coordinates

GET (0,0)-(100,100), A(l)

FOR x= 1 TO 200 STEP 3
PUT (x, 90), A (1) <--- Do it twice to XOR the pixels and move the image across
PUT (x, 90), A (1) the screen without disturbing the background

NEXT x

END

This routine moves a section of a circle across the screen. It is XORed to the screen twice
so the item doesn't repeat and it will appear to move across the screen without disturbing
the background (default PUT mode is XOR) .

Standard Reference 306

PUT statement ... ""
~ "' oI' rI' rI' rl' rl' "'."' J'.rl' ".."' "'.01' ".."' "' • . ~.~.":"":"":""'"":"":"":"":"":"":"":""'"":"":"":"":"":"":"":"":"":"":"":"":"":"":"":

REMARKS It is important to see entry under GET for more information.

~
Macintosh: With this version of ZBasic, PUT has another, optional, parameter:
PUT (xl, yl) [- (x2, y2) 1, var. The second parameter allows you to scale the
image, making it either larger or smaller by giving the rectangle size in which ij is to appear.
The x2, y2 parameter is the lower-right comer of the image.

Btts-per-pixel (bpp) will vary by the type of Macintosh you have. The standard black and
white Macintoshes have one bit-per-pixel.

The Macintosh II may have up to 16 bits-per-pixel (with upto 256 colors or grey-levels per
pixel). Check addendum of Macintosh II for specifics .

• MSDOS: Biis-per-pixel (bpp) will vary with the graphics adaptor board being used:

GRAPHIC TYPE
CGA
CGA
EGA
EGA
HERCULES

Ja'!l

MODE(s)
5
7
16-19
16-19
20

COLORS
4
2
3-16
16
1

BITS PER PIXEL (bpp)
2
1
2 (64K or less on EGA card)
4 (More than 64K on card)
1

Z80: GET and PUT are not supported with these versions of ZBasic.

II
Apple 1/ ProDOS and DOS 3.3: GET and PUT are not supported with this version.
See DRAW example on ProDOS disk and the BLOAD and BSAVE functions for possible
alternatives.

307 Standard Reference

FORMAT

DEFINITION

EXAMPLE

REMARK

command QUIT

QUIT

QUIT is used to exit the ZBasic Standard Line editor and retum control to the
operating system.

QUIT

DOS Ready <----DOS prompt of your system

We highly recommend saving your program prior to using QUIT.

!b&
Macintosh: You may also quit from the menu.

MSDOS: SYSTEM functions the same as QUIT.

Standard Reference 308

RANDOM statement

FORMAT

DEFINITION

EXAMPLE

REMARK

RANDOM [IZE] [expression I

Seeds the random number generator so that ZBasic produces a new sequence of
random numbers.

If expression is used, the RND function will return a repeatable series of numbers.

DEFTAB 5
RANDOM 12345
FOR I = 1 TO 5

PRINT RND(10),
NEXT I

RANDOM 12345 <--- Let's see if it repeats as above.
FOR I = 1 TO 5

PRINT RND(10),
NEXT I: PRINT

RUN

8
8

1
1

10
10

4
4

7
7

PRINT"Press any key to set random seed"
DO

R=R+1
UNTIL LEN(INKEY$)
RANDOM R

FOR I = 1 TO 5
PRINT RND (10),

NEXT I
END

RUN

Press any key to set random seed
18859

<--- Paranoid seed routine

The results of the first two passes were the same because the seed of 12345 was
the same. When a different number is used, or no number, the result will be
RANDOM.

If expression is the same, the same random pattern will be repeated with all versions
of ZBasic.

IIJ!!~l
.• The [IZEI part of RANDOM is not supported on the Apple II and Z80 versions.

309 Standard Reference

FORMAT

DEFINITION

EXAMPLE

REMARK

statement RATIO

RATIO byte expression 1, byte expression2

This statement will change the aspect ratio of graphics created with CIRCLE.

byte expression1 Horizontal ratio. A number between -128 and +127 that gives
the relationship of the width of the circle to normal (zero).

byte expression2 Vertical ratio. A number between -128 and + 127 that gives the
relationship of the height of the circle to normal (zero).

~
+127
+64
+32
o

-32
-64
-96
-128

0,0

767

Relationship to normal
2.0 times normal
1.5 times normal
1.25 times normal
o Normal proportion
0.75 times normal
0.5 times normal
0.25 times normal
o times normal (no width or height)

RATIO

~
~

RATIO -50, 127
CIRCLE h,v,r

RATIO settings are executed immediately and all CIRCLE commands, including
CIRCLE TO and CIRCLE PLOT will be adjusted to the last RATIO.

&
Also see ROUNDRECT toolbox routines for other options to creating circles with
various rations.

Standard Reference 310

READ# statement

FORMAT

DEFINITION

EXAMPLE

REMARK

311 Standard Reference

READ # filenumber, {var I var $; stringlength } [, ... I

Reads strings or numbers saved in compressed format with WRITE# and stores
them into corresponding variables. The list may consist of any type string or numeric
variables or array variables.

filenumber
vcr
var$

The filenumber to work from
Any numeric type variable
String variable

; stringlength The number of characters to load into the string variable

Imponant Note: A string variable must be followed by ;stringlength to specify
the number of characters to be read into that string.

REM The four variables below will require 18 bytes for storage
REM A$=4 bytes, A!= 4 bytes, A#=8 bytes, A%=2 bytes

A$="TEST": A!="12345.6":A#="12345.67898":A%=20000

OPEN"O",l, "DATAFILE" , 18 <--- Wr~e a file with a record length of 18
WRITE #1, A$;4, A!, A#, A%
CLOSE#1

OPEN"I" ,1,"DATAFILE", 18
READ #1 , Z$; 4, Z!, Zit, Z% <---Read in same order and type (see notes)
CLOSE# 1

PRINT Z$, Z!, Z#, Z%
END

RUN

TEST 12345.6 12345.67898 20000

Note: Do not mix variable types when using READ# and WRITE#. Reading string
data into numeric variables, and visa-versa, will create variables with incoherent data.

READ# and WRITE# store and retrieve numeric data in a compressed format. This
saves disk space and speeds program execution.

While you may load numeric data into strings and convert using CVB or CVI, ~ is best
to refrain from this since it requires more time and is less efficient.

See the chapter "Files" for more detailed information using random and sequential
files. Also see RECORD, LOC, REC, LOF and "Disk Error Trapping".

FORMAT

DEFINITION

EXAMPLE

REMARK

statement READ

READ [variable (-or- PSTR$(vat'lo) } [, ...]]

The READ statement reads strings or numbers from a DATA statement into
corresponding variables.

The variable list can consist 01 any combination of variable types (string or numeric,
including arrays).

II no variable is given the READ statement will skip one DATA item.

DIM P% (3)

DATA Joe, Smith, Harry, "@ Cost"
DATA 1234.5, 567.8, 91011.12, 1314.15

READ A$, B$, C$, D$ <--- Regular old fashioned READ
READ A!, B!, e!, D!
PRINT A$, B$, C$, D$
PRINT A!, B!, C!, D!

RESTORE <--- Set pointer back to start 01 DATA to READ again
FOR X=O TO 3

READ PSTR$ (P% (X)) <---Use pOinter string to point at DATA string constants
NEXT:PRINT
PRINT "PSTR$>";
FOR X= 0 TO 3

PRINT PSTR$(P%(X»,
NEXT

RESTORE
READ A#
PRINT A#
END

<--- Set DATA pointer to the sixth item

RUN

Joe Smith
1234.5 567.8

PSTR$> Joe

567.8

Harry @ Cost
91011.12 1314.15

Smith Harry @ Cost

Leading spaces in string data statements will be ignored unless contained in quotes.

Do not read numeric data into string variables and vice versa (no error is generated).
Don't read past the end of a data list.

See RESTORE, PSTR$ and DATA.

Standard Reference 312

RECORD statement

FORMAT

DEFINITION

EXAMPLE

REMARK

313 Standard Reference

RECORD 1#] filenumber, recordnumber I, location in record]

The RECORD statement is used to position the file pointer anywhere in a file. Once
the file pointer has been posHioned you may read or wrHe data from that position.

RECORD can position both the RECORD pointer and the location within a record.

filenumber

recordnumber

location in record

Filenumber from 1 to 99

RECORD number to point to. Default is zero.

Optional location in RECORD. Default is zero.

OPEN"R",1,"TESTFILE",30

FOR position = 0 to 29
RECORD #1, 6, position
READ#!, A$; 1 <--- Reads one character at a time from record 6.
PRINT A$;

NEXT

CLOSEn
END

RUN

Fred Stein

See illustration next page ...

The default RECORD length is 256 by1es. The maximum record length is 65,535.
The maximum number of records in a file is 65,535.

See OPEN, READ#, WRITE#, PRINT#, INPUT#, LlNEINPUT#, LOC, LOF, REC,
CLOSE, and the chapter entitled "Files".

l!l
The maximum record length and number of records in a file is 2,147,483,647.

RECORD continued

statement RECORD

FILE STRUCTURE
OPEN "R", 1, "TESTFILE", 30

up to 65,535
RECORD(s) In
a ZBaslc file.

b-:;::;;::;:~;:;:~~~~~~,i,:+:;::;::;::~::;::~~ Up to 65,535
LOCATION(s) In

L...L...L..JL....L...L..JL....I....L..JL....I.....L...I....L..1...J....L..L..l....l......L...I....I.....L..l....L..L..l....L...I a ZBaslc RECORD.
o 1 2 34 5 6... II>- ... 29

'The "d" Is at LOCATION 3 In RECORD 6

In the illustration, the name "Fred Stein" was stored in RECORD six of "TESTFILE".

To point to FILE #1, RECORD 6, LOCATION 3 use the syntax:

RECORD# 1, 6 , 3

The location within a record is optional (zero is assumed if no location is given).

If RECORD 1, 6 had been used (without the 3), the pointer would have been
positioned at the "F" in "Fred".

If RECORD is not used, reading or writing starts from the current pOinter position. If
a file has just been opened, the pOinter is positioned at the beginning.

After each read or write, the file pointer is moved to the next position in the file.

!l
The maximum record length and number of records in a file for this versions is
2,147,483,647.

Standard Reference 314

REC function

FORMAT

DEFINITION

EXAMPLE

REMARK

315 Standard Reference

REC (filenumber)

Returns the current position of the record pointer for the file specified by
expression. The first record in a file is record zero (0).

Also often used with REC is LOC which returns the poSition within the record.

OPEN "0",1, "THISPROG", 10 <--- Record length of ten

A$="01234S"

FOR I = 0 TO 3
PRINTU, A$;

<--- String length of six

PRINT "On pass";I;" file position was ".
PRINT "REC="REC(l);" and LOC=";LOC(l)

NEXT I

RECORD #1, 0, 4 <--- Position the file pointer with RECORD

PRINT "Right after the middle RECORD statement; ".
PRINT "REC="REC(l);" and LOC=";LOC(l)

CLOSEU
END

RUN

On Pass
On Pass
On Pass
On Pass

0 file
1 file
2 file
3 file

position was REC=O and LOC=6
position was REC=l and LOC=2
position was REC=l and LOC=8
position was REC=2 and LOC=4

Right after the middle RECORD statement; REC=O and LOC=4

The default record length is 256 bytes. LOC returns the position within a RECORD.

See OPEN, CLOSE, LOC, LOF, RECORD, READ#, WRITE# and the chapter
entitled "Files".

FORMAT

DEFINITION

EXAMPLE

REMARK

statement REM

REM fol/owed by programming remarks

The REM statement is used for inserting comments or remarks into a program.
ZBasic ignores everything following a REM statement.

To save time, you can type an apostrophe (') at the beginning of a line and it will be
converted into a REM statement.

REM
REM
REM

This is a comment or remark
ZBasic ignores everything following a REM
Including any commands enbedded in the remark

REM Colons are often used to make blank lines.

REM Thoughful use of REM makes a program easier to read.

RUN

ZBasic Ready_

REM statements are not compiled and do not take up any memory in the object
code.

Note: Some versions of ZBasic will not convert the apostrophe to REM.

Standard Reference 316

RENAME statement

FORMAT

DEFINITION

EXAMPLE

REMARK

317 Standard Reference

RENAME string1 {, I TO } string2

This statement is used to rename the Ii Ie string1 to the new name string2.

DrR

GOOGOO
FRE~BAS

ZBASIC.COM
OLDFILE.BAS

INPUT "FILE NAME TO CHANGE: ";Filel$
INPUT "NEW NAME FOR FILE: ";File2$
RENAME Filel$ TO File2$

RUN

FILE NAME TO CHANGE: GOOGOO
NEW NAME FOR FILE: GOONIE

DrR

GOONIE
FRED.BAS

ZBASIC.COM
OLDFILE.BAS

This command is also available in command mode. Remember that filename lormats
are different Irom system to system and may not be available lor some machines.

JIII!l
TRS-SO model 1,3: RENAME not supported with these versions.

a
Macintosh: Pathnames or volume number may be used.
Macintosh: RENAME lile1$ {TO I, } lile2$ [. volume number%]. Also see NAME.

MSDOS: See CHOIR, PATH$, RMOIR and MKOIR in the MSOOS appendix lor
controlling pathnames and directories. Also see NAME.

Apple 1/ ProDOS: Pathnames supported.

FORMAT

DEFINITION

EXAMPLE

REMARK

command RENUM

RENUM [new] [, [old]] [, increment]

Used for renumbering program lines.

new The first new assigned line number desired after renumbering is
complete. default = 10

okJ The first old line where you want renumbering to begin. default = 0
increment The increment between line numbers. default = 10 (256 maximum)

If an argument is omitted the default will be used.

This command will automatically update line references (GOTO, GOSUB, etc). If a
line reference is to a non-existent line, it will use the next existing line number.

7
74
197
567

IF I = 200 THEN 567
PRINT I

I I + 1: GOTO
END

RENUM
LIST

10
20
30
40

IF I 200 THAN 40
PRINT I
I I + L: GOTO 10
END

74

Line increments are limited to 256. If you issue a RENUM command that exceeds
the number of allowable lines (65,534) , an error will occur and your text will be
unaltered.

If you are unsure of what the results may be, SAVE your program BEFORE
renu mbering!

aD
Some versions offer options for using, or not using, line numbers with full screen
editors. Check your appendix for specifics .

• See RENUM*, UNNUM, INDENT and FIX in the MSDOS appendix for other options.

Standard Reference 318

RESET statement
... "1.
.,..". ".,..". "'."' ".."' ". "' • .,.."'."' rI',.."' • .,. "' • .,..".."'."' • .,.."..".."."."'.". • .,. • .,.."'.
"-:"":"":"":"":"":"":""''''':'''':'''':'''':'''':''''''''':'''':'''':"'':'''':'''::''''':"''''''':"'':''''''''':'''':"":"":"":""''''':''''''''::''''':"'''"'':'''':'''':'''':"'':'''':''''''''':'''':'''':"''''''':"'':"''''''':'''':"'':

FORMAT

DEFINITION

EXAMPLE

REMARK

319 Standard Reference

RESET

Closes all open files and devices. Functionally identical to CLOSE without
parameters.

OPEN"O", 1, II FRED "
OPEN"I",2,"HARRY"

IF ERROR THEN RESET

END

See CLOSE.

a.
Not supported on Apple /I or Z80 versions of ZBasic. Simply use CLOSE without a
filenumber to close all open files.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement RESTORE

RESTORE [expression 1

This statement resets the DATA pOinter to the first DATA statement or optionally to
the DATA item specified by expression.

If the expression is omitted, the first DATA item is assumed. ZBasic automatically
sets the pointer to the next item after each variable is READ.

DATA ZERO, ONE, TWO, THREE, FOUR, FIVE
DATA SIX, SEVEN, EIGHT, NINE, TEN

tlStart U

DO
INPUT"What item do you want";Item%
IF (item%<O) OR (item%>10) THEN "Start"
RESTORE Item%
READ A$
PRINT "Item number"jltem%;n is: ";A$

UNTIL Item%=O

RESTORE <--- Set to beginning of DATA
READ A$: PRINT A$

END

RUN

What item do you want: 4
Item number 4 is: FOUR

What item do you want: 9
Item number 4 is: NINE

What item do you want: 0
Item number 0 is: ZERO

ZERO

If an attempt is made to READ or RESTORE past the last DATA item, the result will
be zeros or NULL strings. No error will be returned.

Also see READ, PSTR$ and DATA.

Standard Reference 320

RETURN statement

FORMAT

DEFINITION

EXAMPLES

REMARK

321 Standard Reference

RETURN [line I

The RETURN statement is used to continue execution at the statement immediately
following the last executed GOSUB or ON GOSUB statement.

If optional line is used, the last GOSUB is POPPED off the stack and a GOTO line is
performed.

GOSUB "First"

"Second"
PRINT "RETURN comes here."
END

"First"
PRINT "This is a subroutine"
RETURN

RUN

This is a subroutine
Return comes here

GOSUB "Routine"
END

"Weird"
PRINT"Ended Here!"
STOP

"Routine"
PRINT"At 'Routine'"
RETURN "Weird"

RUN

At 'Routine'
Ended Here!

When ZBasic encounters a RETURN statement which was not called by a GOSUB, it
will retum to the program that executed it (either DOS or the ZBasic editor).

Using RETURN line WITHOUT A GOSUB or from the middle of a LONG FN will cause
unpredictable (probably disastrous) system errors.

&
Use caution when using RETURN line to exit eveht trapping routines like DIALOG
ON, MENU ON, TRON, BREAK ON ...

FORMAT

DEFINITION

EXAMPLE

REMARK

function RIGHT$

RIGHT$(string, expression)

Returns the righi-most expression characters of string.

A$="HELLO"

FOR I = a TO 6
PRINT I, RIGHT$(A$,I)

NEXT I

A$ "JOHN DOE"

SP INSTR(l,A$," ")
PRINT"LAST NAME:",
PRINT RIGHT$(A$,LEN(A$)-SP)

END

RUN

a
1 a
2 LO
3 LLO
4 ELLO
5 HELLO
6 HELLO
LAST NAME: DOE

If expression is more than the characters available, all the characters will be returned.

See LEFT$, VAL, STR$, STRING$, SPACE$, SPC, MID$ and the chapter entitled "String
Variables" in the front section of this manual.

Standard Reference 322

RND function

FORMAT

DEFINITION

EXAMPLE

Remark

323 Standard Reference

RND (expression)

The RND function returns a random integer number from 1 to expression.

RANDOM
A=9

FOR I=l TO 5
PRINT RND (A) ,
PRINT RND(10000)*.0001

NEXT I

END

RUN

3 .9201
7 .8211
1 .0912
2 .7821
9 .0108

Some versions of BASIC return a floating point random number between 0 and 1;
use RND(10000} •. 0001 to emulate this (it will slow down execution).

Also see MAYBE and RANDOM.

If the same seed number is used for RANDOM, the random numbers generated by
RND will be predictable on the all versions of ZBasic.

The largest number you may use for a RND expression is 32,767.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement ROUTE

ROUTE [#) expression

This statement is used to route PRINT statements to a specified device. The
following are the values to be used as expression.

Device number
negative numbers
o
1-99
128

ROUTE 128
PRINT "HELLO"

OPEN 110",1, "Test"
ROUTE 1
PRINT "HELLO"
CLOSE#l

OPEN"C",-1,300
ROUTE -1
PRINT "HELLO"
CLOSE#-l

ROUTE a
PRINT"HELLO"
END

RUN

HELLO

Routes PRINT statements to
I/O devices; See your appendix for specifics
Screen (default)
Disk files specified by number
Printer

<--- This HELLO goes to the printer

<--- This HELLO goes to the file "Test"

<--- This HELLO goes to a serial device

<--- This HELLO goes to the screen

You should eventually route the output back to a screen device (ROUTE 0).

See PRINT, OPEN"C" and the chapter "Files" for more information.

~
Also see ROUTE 128, CLEAR LPRINT, DEF LPRINT and DEF PAGE for more
information about routing text and graphic output to the Imagewriter and Laserwriter.
Be sure to use CLEAR LPRINT with ROUTE 128 to tell the Macintosh printer driver
to print the page.

Standard Reference 324

RUN statement

FORMAT

DEFINITION

EXAMPLE

REMARK

325 Standard Reference

RUN [filenumber 1

The RUN statement does one of two things.

RUN filenumber Loads a compiled chain program specified by filenumber and
executes it:

RUN

OPEN"I", 1, "Prog.CHN"
RUN 1

Clears all variables and pointers and restarts the current program
from the first line.

OPEN"I",2,"MENU"
RUN 2 <---Loads and RUNS CHAIN program "MENU"

TRONB
FOR X=l TO 100

PRINT X
NEXT
RUN <--- RUNS this program over and over ...

Also see the RUN command and the chapters "Running ZBasic Programs" and
"Chaining" for more information.

!L
Also see RUN filename$, volumenumber"/O in the appendix.

FORMATS

DEFINITION

EXAMPLE

REMARK

command RUN

RUN [[(+ I * })["1 filename [" II

This command is used from the Standard Line Editor to compile a program:

RUN Compiles source code in memory and executes.

RUN filename Compiles source code called filename from disk and executes.
Source code must have been saved in tokenized format with
SAVE (not as a text file).

RUN* Compiles source code in memory and saves as a stand-alone
application on disk. Asks for filename after compiling.

RUN* filename Compiles source code called filename from disk and saves as a
stand-alone application on disk. Source code must have been
saved tokenized (not as a text file). Asks for filename after
compiling.

RUN+ Compiles source code in memory and saves as a chain file to disk
(no runtime included). Asks for filename after compiling.

RUN+filename Compiles source code called filename from disk and saves as a
chain file to disk (no runtime included). Asks for filename after
compiling.

PRINT "THE PROGRAM RUNS!"

RUN

THE PROGRAM RUNS!

Compiling from disk will destroy any text currently in memory. If an error is
encountered when compiling from disk, ZBasic will load the source code and print
an error message.

After a successful compilation, typing MEM will return memory used for the object
code and variables.

See "Executing Programs" in the front of this manual for more information about
compiling large programs.

!b.
Also see COMPILE and LCOMPILE for ways of compiling a program and seeing all
the compile time errors at once (instead of one at a time as wtth RUN).

Standard Reference 326

SAVE command

FORMAT

DEFINITION

EXAMPLE

REMARK

327 Standard Reference

SAVE [[{* I +J] ["] filename ["II

SAVE is used from the Standard Line Editor to save the source code in memory.
You may save your source code in a number of formats:

SAVE

SAVE*

SAVE+

Saves program in tokenized format. This requires less room on
the disk and saving and loading is much faster than with text files.
In order to compile a file from disk a program must be saved in this
format.

Saves program in TEXT or ASCII format. This allows you to load
the program into other word processors or editors. Loads more
slowly than SAVE above.

Same as SAVE" but line numbers are removed. Be sure your
program doesn't uses label references with GOTO, GOSUB or
other commands, since when a program is re-Ioaded, line
numbers are added back in increments of one which will make
line number references incorrect.

Note: Source code is the program you type in. Object code is the machine
language program created when you compile the source code with RUN. See RUN
for more information about compiling and saving compiled programs to disk.

SAVE* PROGRAM. TXT
SAVE AR.BAS
SAVE+ FILE.TXT

<---SAVE program in ASCII (text)
<---SAVE program tokenized (condensed)
<---SAVE program in ASCII- with no line numbers

Also see LOAD, APPEND, MERGE and RUN.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement SELECT ... "" "..". ". ".."'."' ". ". ". "'."'.".."'."..1'.". ". .". "..".."'."..".". "'.".". ". "'.".".."."."."
"'"":""'"":""'"":""'""'""'"":"":"":""'""'""'""'"":""'"":""'"":""'"":"":""'""'""'" ":''':~'':''':''':',,:'

SELECT [expression or simplestring]
CASE [IS] relational condition [, relational condition] I. ...]

statements ...
CASE [IS] condition L condition]L ...]

statements ...
CASE [IS] boolean expression

statements ...
CASE ELSE

END SELECT

Provides a structured and efficient way of doing multiple comparisons with a single
expression. While IF-THEN or LONG-IF statements could be used, they are harder
to follow when reading program listings.

X=CARDTYPE:REM MSDOS Cardtype example.
SELECT X

CASE 0
PRINT"CGA CARD":MODE 7

CASE 1
PRINT"EGA CARD":MODE 19

CASE 2
PRINT"EGA with Mono": MODE 18

CASE 3
PRINT"HERCULES CARD":MODE 20

CASE 255
PRINT "Monochrome Monitor":MODE 2

CASE ELSE
PRINT"No Video card installed"

END SELECT

See CASE and END SELECT for more examples.

Important Note: Exit a SELECT structure only at the END SELECT.

lI!al!l
SELECT is not supported with the Apple or Z80 versions of ZBasic. Use IF-THEN or
LONG-IF to accomplish the same thing.

Standard Reference 328

SGN function

FORMAT

DEFINITION

EXAMPLE

REMARK

329 Standard Reference

SGN (expression)

Returns the sign of expression.

If expression is:
positive
Zero
Negative

+1 is returned.
o is returned.

-1 is returned.

DEFDBL A-Z: DEFTAB 8: WIDTH 40
PRINT" X","ABS(X)" ... INT(X) FRAC(X) .. ,SGN(X) ..

FOR X = -15.0 TO +15.0 STEP 3.75
PRINT USING"-"."";X.
PRINT USING ""."";ABS(X),
PRINT USING"-II.I''';INT(X),
PRINT USING "-'."";FRAC(X).
PRINT USING "-'."";SGN(X)

NEXT X

RUN

X ABS (X) INT(X) FRAC(X)
-15.00 15.00 -15.00 .00
-11.25 11.25 -11.00 -.25
- 7.50 7.50 - 7.00 -.50
- 3.75 3.75 - 3.00 -.75

.00 .00 .00 .00
3.75 3.75 3.00 .75
7.50 7.50 7.00 .50

11.25 11.25 11. 00 .25
15.00 15.00 15.00 .00

Also see UNS$, FRAC, INT, ABS and negation.

SGN(X)
-1. 00
-1. 00
-1. 00
-1. 00

.00
1.00
1. 00
1. 00
1. 00

FORMAT

DEFINITION

EXAMPLE

REMARK

function SIN
f' "' "
•

SIN (expression)

The SIN function returns the sine of the expression in radians,

SIN(A)=Y/H,

X#=SIN(123)
PRINT SIN(X2#)

H*SIN(A)=Y, Y/SIN(A)=H

SIN is a scientific function, The precision for scientific functions may be configured,
See "Configure" in the front of this manual for more information,

See the "Math" and "Expressions" sections of this manual and ATN, TAN, COS,
EXP,SQR, A,

INTEGER SINE: ZBasic provides a predefined USR function to do hi-speed
integer sines, This speeds up sine speed by up to 30 times:

USR8(angle) returns the integer sine of angle in the range ±255 (corresponding to
±1), The angle must be in brads, See CIRCLE for examples of brads, Example:

MODE? :CLS
FOR I=O TO 255

PLOT I«2,-USR8(I)+384
NEXT I

Standard Reference 330

SOUND statement

FORMAT

DEFINITION

SOUND frequency, duration

SOUND may be used to create sound effects or music.

frequency
duration

Frequency 120 Hz to 10,000 Hz.
Duration in 1 millisecond increments.

Note: Hz (Hertz) represents cycles-per-second.

EXAMPLE DO

REMARK

331 Standard Reference

INPUT"Tone: niTone
INPUT"Duration: "iDuration

SOUND Tone, Duration

UNTIL (Tone=O) OR (Duration=O)

Example frequencies you may use in your program to create music or sound effects.
(Choose the duration as required.) Quality of sound may vary by machine.

OCTAVES
NOTES 1 2 3 4 5 6 7
C 33 66 132 264 528 1056 2112
cb 35 70 140 281 563 1126 2253
D 37 74 148 297 594 1188 2376
Eb 39 79 158 316 633 1267 2534
E 41 82 165 330 660 1320 2640
F 44 88 176 352 704 l408 2816
Gb 46 93 187 375 751 1502 3004
G 49 99 198 396 792 1584 3168
Ab 52 105 211 422 844 1689 3379
A 55 110 220 440 880 1760 3520
Bb 57 115 231 462 924 1848 3696
B 61 123 247 495 990 1980 3960

Some computers may not have sound. See your computer appendix for more
information.

LII'!l
CP/M-SO: Sound not supported. CHR$(7) may sound a bell on some sytems.
TRS-SO model 1 ,3: Requires that a speaker be connected to the cassette port.
TRS-SO Model 4: Frequency range of internal speaker limited to 0,0 to 7,31.

!l
See appendix for using four voice sound and utilizing the sound buffer.

FORMAT

DEFINITION

EXAMPLE

REMARK

function SPACE$

SPACE$ (expression

Returns a string of spaces expression characters long (range of 0 to 255).

PRINT "ZEDCORZEDCORZE"
FOR X=7 TO 0 STEP -1

PRINT SPACE$(X);"ZEDCOR"
NEXT
PRINT"ZEDCORZEDCORZEDCOR"
END

RUN

ZEDCORZEDCORZE
ZEDCOR

ZEDCOR
ZED COR

ZED COR
ZED COR

ZED COR
ZEDCOR

ZEDCOR
ZEDCORZEDCORZEDCOR

See STRING$, MID$, RIGHT$, LEFT$, INSTR and SPC.

Standard Reference 332

SPC function

FUNCTION SPC (expression)

DEFINITION SPC prints expression spaces from 0 to 255.

Prints the number of spaces specified by expression.

EXAMPLE DO

REMARK

333 Standard Reference

PRINT"*";SPC(RND(20»;"+"
UNTIL LEN(INKEY$)

RUN

+
+

+
+

+
+

Also see SPACE$, LEFT$, STRING$, RIGHT$, MID$ and INSTR.

function SQR

FORMAT SQR (expression)

DEFINITION The SQR function returns the square root of expression.

H=SQR(X'X+ Y'Y)

EXAMPLE A=9

REMARK

PRINT SQR (A)

RUN

3

SQR is a scientific function. Scientific functions may be configured to a different
precision. See "Configure" in the front of this manual for more information.

For more information on scientific functions see the "Math" and "Expression"
sections of this manual and ATN, SIN, COS, TAN, EXP and A •

Standard Reference 334

STEP statement

FORMAT

DEFINITION

EXAMPLE

REMARK

335 Standard Reference

FOR variable = expr1 TO expr2 [STEP expr3 J

NEXT [variable J [,variable . .. J

This parameter allows you to set the increments used in a FOR-NEXT loop. If STEP
is omitted than one is assumed.

FOR X= 0 TO 10 STEP 2
PRINT X;

NEXT

FOR X = 10 TO 0 STEP -1
PRINT X;

NEXT
END

RUN

o 2 4 6 8 10
10 9 8 7 6 5 4 3 2 1 0

Also see FOR, NEXT, DO, UNTIL, WHILE, WEND and the chapter on "Loops".

IF STEP =0 an endless loop will result.

If expr1 or expr3 change while the loop is executed this change will be in effect
when NEXT is encountered.

Avoid long or complex loop expressions for expr1 or expr3 as they are evaluated
every loop and will slow execution.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement STOP

STOP

STOP halts execution of a ZBasic program and prints the line number where
execution stopped (if line numbers weren't used the lines are numbered in
increments of one).

STOP when used from ZBasic will return to the Standard Line Editor.

STOP when used from a stand-alone program will return to the operating system.

PRINT"HELLO"
STOP

RUN

Break in 00002
zBasic Ready

STOP closes all files.

END may be used when no message is desired.

See TRONB and TRONX for ways of inserting break pOints in your programs so that
<BREAK> may be used to exit a running a program.

Standard Reference 336

STR$ function

FORMAT

DEFINITION

EXAMPLE

REMARK

337 Standard Reference

STR$ (expression)

STR$ returns the string equivalent of the number represented by expression. This
is used to convert numbers or numeric variables to a string.

This function is the compliment of VAL. VAL returns the numeric value contained in
a string.

Integer% =20000
Single! =232.123
Double# = .12323295342

A$=STR$(Integer%)
A$=STR$(Single!)
A$=STR$ (Double#)

X#=VAL(A$)
PRINT X#

RUN

20000
232.123
.12323295342
.12323295342

:PRINT A$
:PRINT A$
:PRINT A$

Also see BIN$, OCT$, HEX$, MKI$, CVI, MKB$, CVB ljnd VAL.

FORMAT

DEFINITION

EXAMPLE

REMARK

function STRING$

STRING$ (expr 1 ' string)

STRING$ (expr1 , expr2)

Relurns a string of the length expr1 consisting of the characters specified by either
the ASCII equivalent of expr2 or the first character of string.

PRINT STRING$ (5,"'")
PRINT STRING$ (10,65)
PRINT STRING$ (10,CHR$(65»

A$ = STRING$(3,"*") + "TEST"+ STRING$(3,"&")
PRINT A$
END

RUN

H.H
AAAAAAAAAA
AAAAAAAAAA

***TEST&&&

STRING$ is more efficient than using an equivalent string of characters.

See SPACE$, LEFT$, RIGHT$, MID$,INSTR, VAL, STR$,INDEX$ and SPC.

Standard Reference 338

SYSTEM statement ..
....................................... ". rI" "' "' " "'."'

"":""'"":"":""'"":""'""'""'""'""'""'""'""'"":"":"":""'"":""'"":"":""'""'""'"":'"'"""'""'""'""'"":"":"":"":"":""'"":""'""'"":""'"":""'""'"":"":"":"":"":"":"":"":

FORMAT

DEFINITION

EXAMPLE

REMARK

339 Standard Reference

SYSTEM

Same as END. Provided for compatibility wnh other versions of BASIC.

PRINT"HELLO"
SYSTEM

RUN

HELLO

Functionally identical to the ZBasic END statement. See END and STOP.

•. J!!!l
Not Supported with Apple /I or zao versions of ZBasic. Use END.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement SWAP

SWAP var1 I var2

SWAP exchanges the contents of var1 and var2. The variables can be of any type
exceptlNDEX$ variables.

Var1 and var2 must be of the same type.

B$="YES"
A$="NO"
PRINT A$, B$
SWAP A$, B$
PRINT A$, B$
PRINT

A=1:B=100
PRINT A,B
SWAP A,B
PRINT A,B
END

RUN

YES
NO

1
100

NO
YES

100
1

SWAP will execute faster and take less memory than similar methods using "holding
variables" .

SWAP does not function with INDEX$.

Standard Reference 340

TAB function

FORMAT

DEFINITION

EXAMPLE

REMARK

341 Standard Reference

TAB (expression)

Tab will move the cursor to the posijions; 0 through 255, designated by expression.

Three devices may be used wnh Tab:

DEVICE
SCREEN
PRINTER
DISK

fQ.B.M
PRINT
LPRINT
PRINT#

WILL POSITION
CURSOR
PRINT HEAD
FILE POINTER

DATA Fred Smith, 12 E. First, Tucson, AZ, 85712
DATA Dana Andrews, 32 Main, LA, CA, 90231

PRINT "Name " TAB (15) "Address"TAB(30) "City"TAB(40) "State ZIP"
PRINT STRING$(50,"-")

FOR Item= 0 TO 1
RESTORE Item*5
READ N$, A$, C$, S$, Z$
PRINT N$ TAB(15) A$ TAB(30) C$ TAB(40) S$" "Z$

NEXT
END

RUN

Name

Fred Smith
Dana Andrews

Address

12 E. First
32 Main

City

Tucson
LA

State ZIP

AZ
CA

85712
90231

Tab will start numbering from the zero poSition. Also see DEFTAB, PRINT@,
PRINT%, pas, PAGE, WIDTH and WIDTH LPRINT.

FORMAT

DEFINITION

EXAMPLE

REMARK

function TAN

TAN (expression)

Returns the value of the tangent of the expression in radians.

TAN(A)=Y/X, X=Y/TAN(A), Y=TAN(A)*X

Xjf=TAN(T+Z)/3

TAN is a scientific function. Scientific accuracy may be configured differently than
single or double precision. See "Configure" at the beginning of this manual.

Also see ATN, COS, SIN, EXP, SOR and A.

For more information on scientific functions see "Math" and "Expressions" in the
front section of this manual.

Standard Reference 342

TIME$ function

FORMAT

DEFINITION

EXAMPLE

REMARK

343 Standard Reference

TIME$

Returns an eight character string which represents the systems clock value in the
format HH:MM:SS where HH=1 to 24 hours, MM= 0 to 60 minutes, SS= 0 to 60
seconds.

PRINT TIME$
DELAY 1000
A$=TIME$
PRINT A$

RUN

10:23:32
10:23:33

See DATE$ and DELAY.

This function will return a 00:00:00 if the system or version has no clock.

)-"l --
Macintosh: Set time from the Control Panel Desk Accessory. Also see TIMER for
other ways of getting seconds.

MSDOS: Set time using TIME$= hh, mm, ss. Also see TIMER.

Apple: See appendix for variations of system clocks.

zao: See appendix for your particular hardware.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement TROFF

TROFF

TROFF is used to tum off the trace statements: TRON, TRONX, TRON and TRONS.

TRON
FOR X=l TO 3
NEXT

TROFF
PRINT "Line tracing now off"

FOR X=l TO 10
NEXT

RUN

00001 00002 00003 00002 00003 00002 00003 00004 Line tracing
now off

See also TRON, TRONS, TRONB, TRONX and the chapter on "Debugging Tools".

Standard Reference 344

TRON statement ----FORMAT

DEFINITION

EXAMPLE

REMARK

345 Standard Reference

TRON[{B I S I X} 1

These statements are used for tracing program execution, single stepping through a
program, and setting break points for monitoring the <BREAK> key so that you can
break out of a program.

TRACING PROGRAM FLOW
TRON Prints the line numbers of the program as each line is executed

so you can trace program flow and check for errors.
TRON S lets you single step through a program. Program execution will

pause at the beginning of every line in the program following
TRON S (up to the end of the program or when a TROFF is
encountered). Press any key to continue or press the <CTRlZ>
key to enable/disable single-stepping. <BREAK> also works.

SETTING BREAK POINTS
TRON X Sets a break point at that line in a program and checks to see if

the <BREAK> key has been pressed.
TRON B Sets a break point at the beginning of every line in the program

following it (up to the END or until a TROFF is encountered).

Note: The <BREAK> key is checked at the beginning of a line. IF <BREAK> is
encountered in a program compiled with RUN, program exits to the Standard Line
Editor. If <BREAK> is encountered in a stand-alone program, exit is to the system.

<CTRl S> will pause execution when encountered during execution of TRONB,
TRONX or TRON. Any key will restart. <CTRl Z> will activate/deactivate single
step mode when any TRON is active. Note: INKEY$ may lose keys if TRON is used.

TRON:TRONS

PRINT "HELLO"

TROFF

RUN

00001 <KEY> 00002 <KEY> 00003 <KEY> HELLO 00004 <KEY>

Every line between a TRON and TROFF may use up to eight extra bytes per line.
Use TRON sparingly to save memory and increase execution speed. See chapter
entitled "Debugging Tools" for more information. INKEY$ may lose keys with TRON.

MacIntosh: <BREAK> is <Command Period>. Also see BREAK ON, and TRON
WINDOW in appendix for other ways of tracing program flow and variable values.
MSDOS: <BREAK> is <CTRl C>.
CP/M: <BREAK> is <CTRl C>.
Apple" ProDOS or DOS 3.3: <BREAK> is <CTRl C> or <CTRl RESET>.
TRS·aO: <BREAK> is <BREAK>.

FORMAT

DEFINITION

EXAMPLE

REMARK

function UCASE$
f' . - ., ,
~ -

UCASE$ (string)

Returns a string with all characters converted to uppercase (capital letters).

PRINT UCASE$ ("hello")

A$=IIHeLLo n

PRINT UCASE$ (A$)
END

RUN

HELLO
HELLO

DO
key$=UCASE$(INKEY$)

UNTIL LEN (key$)
PRINT keyS
END

RUN

S <---always returns an uppercase character

REM This function converts a string to Lowercase

LONG FN lcase$(string$)
FOR X=l TO LEN(string$)

A=PEEK(VARPTR(string$)+X)
IF (A>64) AND (A<91) THEN A=A+32
POKEVARPTR(string$)+X,A

NEXT
END FN=string$

PRINT FN lcase$("HELLO")

RUN

hello

This function is very useful when sorting data containing upper and lower case and
for checking user input without regard to case.

Also see LEFT$, RIGHT$, MID$, INSTR, STR$, VAL, and the chapter "String
Variables" in this manual.

Standard Reference 346

UNS$ function

FORMAT

DEFINITION

EXAMPLE

REMARK

347 Standard Reference

UNS$ (expression)

Returns a string which equals the integer value of expression in an unsigned
decimal format.

PRINT UNS$ (-1)
PRINT UNS$ (4)

PRINT
PRINT 65535

RUN

65535
00004

-1

This function is useful for displaying integers in an unsigned format (0 through
65,535 instead of -32,768 through 32,767).

See STR$, DEC$, OCT$, HEX$, VAL and the chapter on "Numeric Conversions".

!b
See DEFSTR LONG for enabling this function to work with Longlntegers.

statement UNTIL

FORMAT DO

DEFINITION

EXAMPLE

REMARK

UNTIL expression

UNTIL is used to mark the end of a DO loop.

The DO loop repeats until the expression following the UNTIL is true (non-zero).

A DO loop will always execute at least once.

DO
X=X+l

UNTIL X=100
PRINT X

"Wait for a key"
DO

I$=INKEY$
UNTIL LEN (I$)
END

RUN

100
<KEY PRESS>

Notice ZBasic will automatically indent DO loop structures fwo spaces. See the
chapter on "Formatting Program Listings" for other ways of formatting listings.

Also see FOR, NEXT, STEP, WHILE, WEND and the chapter on "Loops" in the
technical section of the manual.

WHILE,WEND may be used to exit a loop immediately if a condition is false.

Standard Reference 348

USR function

FORMAT

DEFINITION

EXAMPLE

REMARK

349 Standard Reference

USR digit (word expression)

The USR function calls the user created subroutine, defined wHh DEFUSR,
specified by a digit 0 to 9, and retums the value of integer expression in the 16 bit
accumulator.

REM EXAMPLE ONLY DO NOT USE!

DEFUSR2 = LINE "Routine two"
X=USR2 (938)
PRINT X
END

"Routine two"
MACHLG &8B,&C4,&C3:RETURN

RUN

23921

A machine language retum is necessary at the end of a USR routine.

ZBasic provides pre-defined USR functions that perform some powerful functions
like integer sine and cosine. See next page.

&&
Macintosh: Be sure to use Longlntegers whenever referencing memory
addresses. Also see CALL in the Macintosh appendix.

MSDOS: See CALL in your appendix.

Apple ProDOS: See MLI in the ProDOS appendix.

functions PRE-DEFINED USR

Predefined USR functions

These pre-defined USR functions are available for ali versions of Z8asic. See your
Computer Appendix for possible other USR functions.

USR6(expr)
Retums the last line number executed that used any of the TRON functions
(expr is not used).

TRONX
I=USR6 (0)
PRINT I

USR7(expr)
Returns Z8asic's random number seed used in the RND function (expr is not used).

FOR I=l TO 10
PRINT USR7(0)

NEXT I

USR8(angle)
Returns the integer sine of angle in the range ±255 (corresponding to ±1). The
angle must be in brads.

MODE7 :CLS
FOR I=O TO 255

PLOT I«2,-USR8(I)+384
NEXT I

USR9(angle)
Returns the integer cosine of angle in the range ±255 (corresponding to ±1). The
angle must be in brads.

MODE7 :CLS
FOR I=O TO 255

PLOT I«2,-USR9(I)+384
NEXT I

Standard Reference 350

USR statement

FORMAT

DEFINITION

EXAMPLE

REMARK

351 Standard Reference

USR digit (expression)

This statement will call the USR routine defined by DEFUSRdigit and transfer the
result of expression in the integer accumulator.

Example only DO NOT USE

DEFUSRO=LINE "Machine language"
USRO (0)
END

"Machine Language"
MACHLG &39, &C9: RETURN

The USR routine must be set by the program or be a predefined USR routine. Also
see DEFUSR, USR function, LINE, CALL, MACHLG, the chapter about "Machine
Language" in this manual, and your computer appendix.

l!w&.
Macintosh: Be sure to use longlntegers whenever referencing memory
addresses. Also see CAll in the MAcintosh appendix.

MSDOS: See CAll in your appendix.

Apple ProDOS: See MLI in the ProDOS appendix.

FORMAT

DEFINITION

EXAMPLE

REMARK

function VAL

VAL (string)

Returns the numeric numeric value of the first number in a string.

The VAL function will terminate conversion at the first non-numeric character in
string.

This function is the compliment of STR$. STR$ will convert a numeric expression to
a string.

A$="HELLO"
B$="1234.56
C$="99999"

PRINT "The value of A$="; VAL (A$)
PRINT "The value of B$=";VAL(B$)
PRINT "The value of C$=";VAL(C$)

PRINT
PRINT "The value of 9876.543=";VAL("9876.543")
END

RUN

The value of A$= 0
The value of B$= 1234.56
The value of C$= 99999

The value of 9876.543= 9876.543

The numeric value returned by VAL will be in floating point forrnat

See STR$, UNS$, HEX$, OCT$ and BIN$, INT, FRAC, ABS, FIX.

Also see the chapter on "Math" and "Expressions" in the front section of this
manual.

Standard Reference 352

VARPTR function

FORMAT

DEFINITION

EXAMPLE

REMARK

353 Standard Reference

VARPTR (variable)

Retums the address of a variable . Any variable type may be used except INDEX$.

A$="HELLO"

PRINT "Address of A$=";VARPTR(A$)
PRINT "Length of A$ =";PEEK(VARPTR(A$»

PRINT "Contents of A$= ";
FOR X=l TO LEN(A$)

PRINT CHR$(PEEK(VARPTR(A$)+X»;
NEXT
END

RUN

Address of A$= 23456
Length of A$ = 5
Content of A$= HELLO

The following paragraphs describe which address VARPTR will be pointing to with
different variable types.

INTEGER

SNG/DBL

STRING

ARRAY

Points to the 1 st byte of an integer variable

Points to the sign/exponent byte

Points to the length byte

Points to the element specified

See the sections in the front of this manaul for the variable type you interested in to
see how variables are stored in memory.

&&
Macintosh: Be sure to use Longlntegers to store addresses.

MSDOS: var=VARPTR(var) retums two values: The address of varand the
segment of var in a special variable called VARSEG. See appendix for details.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement WEND

WHILE expression

WEND

This statement is used to terminate a WHILE loop. When expression becomes false
the loop will exit at the first statement following the WEND.

"Get a YES Answer and nothing else!"
INPUT"What is your answer <Y/N>:";A$
WHILE A$ <>"Y"

INPUT"Please reconsider and say <Y>:";A$
WEND
PRINT"Thank you for seeing things my way

program continues

RUN

What is your answer <yiN>: N
Please reconsider and say <Y>: Y
Thank you for seeing things my way ...

WHILE X*X <23000
PRINT X*X,
X=X+l

WEND
END

RUN

o 1 4 9 16 ...

ZBasic will automatically indent all lines two spaces between WHILE and WEND
when you use LIST. This makes programs much easier to read.

Also see FOR, NEXT, STEP, DO, UNTIL and the chapters on "Loops" and
"Structure" in the front of this manual.

A structure error will occur if a WHILE exists without a matching WEND. To find a
missing WEND, LIST the program and track back from the last indent.

Standard Reference 354

WHILE statement

FORMAT

DEFINITION

EXAMPLE

REMARK

355 Standard Reference

WHILE expression

WEND

In a WHILE statement, expression is tested for true before the loop is executed and
will exit to the statement immediately following the matching WEND when
expression becomes false.

"GET A KEY"
WHILE LEN(Key$)=O

Key$=INKEY$
WEND
PRINT Key$
END

RUN

<key pressed>

WHILE X<lOO
X=X+l

WEND
PRINT X
END

RUN

100

ZBasic will automatically indent all lines two spaces between the WHILE and WEND
when you use LIST. This makes programs much easier to read.

Also see FOR, NEXT, STEP, DO, UNTIL and the chapters on "Loops" and
"Structure" in the front of this manual.

A structure error will occur if a WHILE exists without a matching WEND. To find a
missing WEND, LIST the program and track back from the last indent.

FORMAT

DEFINITION

EXAMPLE

REMARK

statement WIDTH

WIDTH [LPRINT] [=) byte expression

Sets the allowable number of characters on a line before generating an automatic
linefeed.

Theoptional LPRINT designates printer width.

If byte expression is set to 0, ZBasic will not send an automatic CR/LF. The range of
byte expression is 0 to 255.

10 X=X+1
20 PRINT X
30 GOTO 10

WIDTH 8
LIST

00010 X=
X+
1

00020 PR
IN
T
X

00030 GO
TO

1
a

The default setting for the screen width is zero which disables the auto CR/LF after
the limit has been reached.

To return WIDTH to normal, type WIDTH 79 (for 80 column screens) or WIDTH O.
When widths are set. listings are wrapped around nicely for easy reading.

To effect a smaller width. set byte expression to the width desired. To assure valid
results for the POS statement and to keep the line position count used by tabs
correct. be sure WIDTH is set to the actual screen width minus one.

Standard Reference 356

WRITE# statement

FORMAT

DEFINITION

EXAMPLE

REMARK

357 Standard Reference

WRITE#expr1, {var %11 var! I var# I {var$ jstring/ength 1[, ... J

Writes the contents of string or numeric variables in compressed format to a disk file
(or other device) specified by expr1. The list may consist of any variable type or
types, string or numeric, including arrays, in any order. Constants may not be used!

A string variable D1J.l6J. be followed by ;string/ength which specifies the number of
characters of that string to be written.

If the string is longer than string/ength, only those characters in range will be written.
If the string is shorter than string/ength, the extra characters will be spaces.

READ# is the statement normally used to read back data written with WRITE# and will
automatically read back the data written in compressed format.

REM The four variables below will require 18 bytes for storage
REI-! A$=4 bytes, A!= 4 bytes, AiI=8 bytes, A%=2 bytes

A$="TEST": A!="12345.6":A#="12345.67898":A%=20000

OPEN"O",l, "DATAFILE" , 18 <--- Write a file with a record length of 18
WRITE ill, A$;4, A!, Ail, A%
CLOSEU

OPEN"I" ,1,"DATAFILE", 18
READU, Z$; 4, Z!, ZiI, Z% <---Read insame order and type (see notes)
CLOSEiI 1

PRINT Z$, Z!, ZiI, Z%
END

RUN

TEST 12345.6 12345.67898 20000

Note: Do not mix variable types when using READ# and WRITE#. READ# and
WRITE# store and retrieve numeric data in a compressed format. This saves disk
space and speeds program execution.

See the chapter "Files" for more detailed information using random and sequential
files. Also see RECORD, LaC, REC, LOF and "Disk Error Trapping".

continued ...

statement WRITE# ----WRITE# continued

READ# AND WRITE# STRINGS WITH VARIABLE LENGTHS

READ# and WRITE# offer some benefits over PRINT# and INPUT# in that they will read and
write strings with ANY embedded ASCII or BINARY characters.

This includes quotes, commas, carriage returns, control codes or any ASCII characters in
the range of 0-255.

The following programs demonstrate how to save strings in condensed format, using only
the amount of storage required for each string variable.

WRITE#
OPEN"Q", 1, "NAMES"
REM LB$=LENGTH BYTE
DO

INPUT"Name: "; N$
INPUT"Age: 1I ; AGE
LB$=CHR$(LEN(NAME$»
WRITE#l,LB$;l,N$;ASC(LB$),AGE

UNTIL N$="END"
CLOSE#l
END

OPEN"I", 1, 11 NAME S II

REM LB$=LENGTH BYTE

DO
REAO#l, LB$;l, N$;ASC(LB$), AGE
PRINT N$","AGE

UNTIL N$="END"
CLOSE#l
END

The WRITE# program stores a one byte string called LB$ (length byte). The ASCII of this
string (a number from 0 to 255) tells us the length of N$.

Notice in line 4 of READ#, that LB$ is read BEFORE N$, thus allowing us to read the length
of N$ first. All data in file handling statements is processed IN-ORDER.

This illustration shows how the data is saved to the disk when string data is saved using the
variable length method. LB for "Tom" would be 3, LB for "Harry" would be 5, etc.

VARIABLE STRING LENGTH WRITE#

FILE IMAGE CREATED USING WRITE#
With VARIABLE STRING LENGTH

Condensed 2 byte -1> 23 • 45 • 17 .. 101
Integer numbers ~ ~ ~ ~

I lilTI 01 ml- I-I iii HI a I r I r I y 1- I-I § IGI i II I d I a 1- I-I§ I Kia I tI hE 1-1-1
~ Represents the Length Byte (stored as LB$ in the example)

Standard Reference 358

XELSE statement

FORMAT

DEFINITION

EXAMPLE

REMARK

359 Standard Reference

LONGIF expression

XELSE

ENDIF

This statement is used to separate the FALSE from the TRUE section of a LONG IF
structure.

The statements following the XELSE will only be executed if the statement following
the LONG IF is false.

LONGIF 10 = 0
PRINT"TRUE"

XELSE
PRINT"FALSE"

ENDIF
END

RUN

FALSE

All program lines between the LONG IF and XELSE are indented two characters
when using LIST. This makes a program easier to read.

A structure error will occur the XELSE does not have a matching LONG IF.

FORMAT

DEFINITION

EXAMPLE

REMARK

expression 1 XOR expression2

Provides a means of doing a logical EXCLUSIVE OR on two expressions for IF
THEN testing and BINARY operations.

This operator will return true if one condition is true and one condition is false. False
will be returned if both conditions are true or both conditions are false.

A$="Hello U

IF A$="Hello" XOR A$="Goodbye" PRINT "YES"
IF A$="Hello" XOR A$="Hello" PRINT "YES"

RUN

YES

XOR TRUTH TABLES

condition XOR condition TRUE(-l) if only one condition is TRUE, else FALSE(0)

XQB
1 XOR 1 0
0 XOR 1 1
1 XOR 0 1
0 XOR 0 0

FALSE XOR FALSE
TRUE XOR FALSE
FALSE XOR TRUE
TRUE XOR TRUE

BQOLEAN "16 BIT" LOGIC

XOR

FALSE
TRUE
TRUE
FALSE

00000001
fZlfZlfZlfZlllll
00001110

10000101
XOR lfZlfZlfZlfZllll

00000010

Standard Reference 360

MSDOS APPENDIX
4 .; liUW£ gwww;

A-1 MSDOSTMAppendix

MSDOS APPENDIX

ASIC
II

ZBasic MSDOSTM
Version 4.0

For MSDOSTM, PCDOSTM
and IBM® PC and compatible computers

Original code by
Scott Terry

4.0 Enhancements by
Halbert P. Liang

© Copyright 1985,1986,1987

ZEDCOR, Inc.
All Rights Reserved

TM

MSDOSTM Appendix A-2

MSDOS APPENDIX

TABLE OF CONTENTS
Getting Started A5

Enhancements to 3.02 A6
Files Included On Master Diskette A7
Special Notes A8

Loading Old 3.02 programs A8
Pathnames A8
Note to Tandy 2000 A8
Note to Zenith Z-150 A8

Additions to The Standard Line Editor A9
Optional Keys A9
Other Enhancements A9

Graphic Enhancements A 10
EGA, CGA, MDPA A 10
Hercules Graphics A 10

Executing ZBaslc from MSDOS A11
MSDOS Specific Configuration Options A 12
Memory Use With 4.0 A 14

Variables A14
Notes on the Memory Map A 15
Memory Map A 16

RS-232 Communications A17
Common Problems A 1 7
Cables Diagram A 18

Jump Tables A19
List of Alterable USR functions A21
Machine Language Examples A22
Critical Error Handling A23

Assembly Listing A23
ZBasic Listing A24

Converting BASICA and QulckBASIC programs A25

Alphabetical
BLOAD
BSAVE
CALL
CALL "DOS"
CARDTYPE
CHDIR
CINT
COLOR
COM BUFF
COM ON
COMMAND$
CON FIG
DATE$
DEFMOUSE

Reference
statement
statement
statement
statement
function
statement
function
statement
function
statement
function
command
statement
statement

A28
A29
A30
A31
A32
A33
A34
A35
A36
A38
A40
A41
A43
A42
A43

A-3 MSDOSTM Appendix

MSDOS APPENDIX
-?.;":=il ' ~:~ ~ ,' tJ. . . x' /'.

TABLE OF CONTENTS
DEF PAGE statement A44
DEFPAGEREADtWRITE statement A45
DEF SEG statement A46
DEFUSR statement A47
END statement A48
ERROR function A49
FILES statement A50
FIX command A51
FRE function A52
INDENT command A53
INKEY$ function A54
INKEY$ statement A55
KEY command A56
LOCATE statement A57
MEM function A58
MEM command A59
MKDIR statement A60
MODE statement A61
MOUSE function A63
MOUSE statement A65
ON COM ERROR statement A66
ON INKEY$ statement A67
OPEN"C" statement A69
PAGE LPRINT statement A71
PAINT statement A72
PALETTE statement A73
PATH$ function A74
PEEK function A75
PLOT USING statement A76
POKE statement A77
RENUM* statement A78
RMDIR statement A79
SCREEN function A80
SCREEN statement A81
SHELL statement A82
TFORMAT statement A83
TIME$ statement A84
TIMER function A85
UNNUM command A86
USRI (EOF) function A87
USR2 statement A87
USR3 function A88
USR4 statement A89
USR5 function A90
VARPTR function A91
VARSEG function A91
VIEW PRINT statemeni A92
WAIT statement A93

New Full Screen Editor A94
Difference between the two Editors A94
Moving the Cursor A95
Full Screen Editor Commands A96

MSDOSTM Appendix A-4

MSDOS APPENDIX
J JUM : ...

GETTING STARTED
This version of ZBasic is provided on a 180K diskette to be compatible with most
MSDOS computers. It is recommended that you make a backup of the diskette and put
the master away for safekeeping.

HOW TO MAKE A BACKUP

1. Put an MSDOS or peDOS diskette in drive A: and start the system.
2. Put a Write protect tab on the ZBasic master diskette.
3. Put the ZBasic disk in drive A: and a blank diskette in drive B:
4. Type: DISKCOPY A: B:
5. Put the master ZBasic diskette away for safekeeping.

HOW TO PUT ZBASIC ON A BOOTABlE MSDOS DISKETTE

1. Put an MSDOS diskette in drive A: and start the system
2. Put a blank diskette in drive B:
3. Type: FORMAT/S B:
4. Take the newly created diskette out of B: and pul it in drive A:
5. Put the ZBasic diskette in B:
6. Type: copy B: * . * A:

HOW TO COPY THE ZBASIC FilES TO A HARD DISK:

1. Pullhe ZBasic disk in drive A:
2. Type: Copy A:*.* C:

NECESSARY FilES
The only necessary file for running ZBasic is: ZBasic .COM.
If you are using a Hercules board then ZHERC • BAT and HERC. COM are required
when mixing text and graphics. If only graphics are used Ihese files are nol
necessary (Ihese files are not required with other graphic boards). All the other
files are optional. See "Files included on the Master Diskette" on the next page.

RUNNING ZBASIC
To run ZBasic from DOS just type: ZBAS IC. If you are using a Hercules board type;
ZHERC. For more detailed information see "Running ZBasic" in the main section of
this manual and "Executing ZBasic from MSDOS" in this appendix.

TWO EDITORS
You will see a start-up screen as described in "Getting Started" in the front section
of this manual. Press "E"lo go into the Standard Line Editor. Use the <F10> key
to toggle between the Standard Line Editor (where all direct commands are
executed) and the Full Screen Editor.

CONFIGURING ZBASIC FOR YOUR COMPUTER
You may configure many of the default settings of ZBasic to your preferences and
for your computer type. See "Configure" in the front section of this manual and
"MSDOS Specific Configuration Options" in this appendix for ways of changing the
standard settings.

A-5 MSDOSTM Appendix

MSDOS APPENDIX
",_liwfill .. _.,tl.wmBt_l.1tfB;¥itllt;;B@%\W¥ml

ENHANCEMENTS TO 3.02
When ZBasic was first introduced for MSDOS machines in late 1985 we knew it was a
great product, but we were also realistic and knew that there must have been things we
overlooked and that people would wan!. So we listened carefully to all the feedback we
received. This version of ZBasic is the culmination of that feedback. We have worked
hard to add the features you wanted (let us know what else you would like).

The following enhancements have been made to ZBasic 3.0:

UNLIMITED VARIABLE SIZE: for String and BCD arrays. Array sizes may be up to
available memory (640K on most systems). In addition, Integer variables and INDEX$
may be up to 64K (since data storage may be so large we had to change the way that
VARPTR worked. See VARPTR in this appendix for specifics).

EGA GRAPHICS: New modes have been added to take advantage of the Enhanced
Graphics Adapter. Resolution up to 640x350 in 16 colors is available. MODE 16-19 are
used for EGA modes. CGA modes may also be emulated. See MODE, SCREEN,
COLOR and PALETIE for details.

HERCULES AND HERCULES PLUS GRAPHICS: The popular "HERC" board
is now supported in MODE 20. Resolution is up to 720x348. See MODE and
"Hercules Graphics" in this appendix for details.

LOTS OF NEW COMMANDS: We have made ZBasic even more compatible with
other BASIC languages. Some of the commands added since the last version:

COORDINATE
SCREEN
BSAVE
CHOIR
CSRLN
RMDIR
KEY LIST
END SELECT

COORDINATE WINDOW
CARDTYPE
DEFSEG
COM ON
EOF
VARSEG
COM BUFF
CASE

GET(graphics)
BEEP
SHELL
COM OFF
MKDIR
KEY ON
WAIT
SELECT CASE

PUT
BLOAD
CONFIG
COMMAND$
PATH$
KEY OFF
PALETTE
CASE ELSE

FULL SCREEN EDITOR: We have included a powerful and easy to full screen editor with
ZBasic. To toggle between the Line Editor and the Full Screen Editor just press F10.
Instructions are at the back of this appendix.

IMPROVED USER INTERFACE: Both editors display function key equivalents at the
bottom of the screen. Just press the appropriate function key to do the command. LOAD
and SAVE automatically append the pathname and .BAS suffix where appropriate. If you
use another suffix just add it under "Configure".

ADVANCED COMMUNICATION FEATURES: An interrupt driven, 32K buffer has
been added that supports both communication ports. See COM ON, COM OFF,
COM BUFF and the chapter in this appendix entitled "RS-232 Communications".

NEW CONFIGURATION OPTIONS: We have added options to configure "Spaces
between Keywords" so that you can embed keywords in variables and an option to set
expression evaluation to do floating point like QuickBASIC and BASICA. See "Converting
QuickBASIC and BASICA Programs" in this appendix and "Converting Old Programs" in the
main reference section.

MSD05TM Appendix A-6

MSDOS APPENDIX
fJWi@. ill I~ •••••••• I

A-7

FILES INCLUDED ON THE MASTER DISKETTE
SYSTEM
FILES

ElLENA ME
ZBASIC ZBASIC.COM

DEMO ZDEMO.COM

HERCULES
GRAPHICS ZHERC.BAT

HERC.COM

EXAMPLE
FILES

FILE~AM!:;
HELP ZBASIC.HLP

KEYBOARD DTEST.BAS

GRAPHICS PYRAMID.BAS
HOUSE. BAS
SIEVE.BAS
COLOR. BAS
PAGEFLIP.BAS
ZROSE.BAS

GEDIT.BAS
MODE.BAS

APPLE.BAS

GAME KILLER.BAS

SORTS SORT.BAS

SHELL.APP

QUICK.APP

MATH
FUNCTIONS SCIFN.APP

MSDOSTM Appendix

DESCRIPTION
This is the main ZBasic compiler and editor. Just type ZBASIC
from the MSDOS to execute.

A limited demo version of ZBasic (public domain). Feel free to
give it away to your friends, relatives and co-workers. This and
ZBAS IC . HLP may be given away together (please do not give
away any other programs on this disk).

This batch file loads the Hercules text driver and ZBasic into
memory in the correct order. Always use it when with Hercules
Graphics boards.

This file is necessary for intermixing text and graphics in Hercules
graphics modes. If you are creating applications that may be run
on a Hercules Graphics adaptor be sure to have this file available
for the program.

D!:;SCRIPTION
This is the help file. It is not necessary for using ZBasic.

Configuration for keys.

3-D pyramid rotates in space using standard graphics.
3-D house rotates in space.
The Sieve of Erastothenes benchmark from Byte, Jan. 1983.
Shows different uses of color.
Demonstration of graphics page flipping in EGA modes.
Does a graphic "Rose" using High-speed and regular speed SIN
and COSINE routines. Change mode for different graphics
types (MODE 7 for CGA, MODE 19 for EGA, MODE 20 for
Hercules and Hercules Plus).
A powerful graphic editor. Requires a Microsoft mouse.
This program displays some of the MODE type available in
ZBasic. It does not demonstrate EGA or Hercules modes.
Extend the loop from 16 to 20 to do that.
Bar and Line Graphs in Device independent Graphics.

A simple game written in ZBasic. It is quite fun. Try it.

This routine creates random data for arrays to demonstrate the
SHELL and QUICK sort routines on this disk. Load this program
firstthen do APPEND 1000 SHELL .APP (or QUICK.APP)
The SHELL SORT that appears in the manual (under "Array
variables.) A powerful sort when less items are used.
The QUICK SORT that appears in the manual (under "Array
variables.) A powerful sort when many elements need to be
sorted.

Examples of creating your own functions with ZBasic.

MSDOS APPENDIX

SPECIAL NOTES
LOADING OLD ZBASIC 3.02 PROGRAMS

PATHNAMES

To convert old ZBasic 3.02 programs to work with ZBasic version 4.0:

1. Load programs into ZBasic 3.02
2. Use SAVE< to save them in ASCII format
3. Load them into ZBasic 4.0

Note: Be sure that "Spaces between Keywords" is set to "NO" when loading old
programs (otherwise keywords without spaces will result in syntax errors [or worse]).

The filenames in ZBasic are the standard MSOOS filenames as specified in the MSOOS
reference manual. Pathnames may not be used as filenames within OPEN statements
in this version (although by using CHOIR you may have files open in many different
directories simultaneously).

To control pathnames use one of the following: PATH$, RMOIR, MKOIR and CHOIR and
ERROR 11. See the listings for these commands in this appendix.

NOT QUITE 100% IBM PC COMPATIBLE NOTES

For many computers that are not quite 100% compatible with the IBM PC there are a
number of things you may want to do. First; be sure to read the text in the "MSOOS
Specific Configuration Options" section of this manual. Especially under IBM Text
Compatible and IBM Graphics Compatible items. You may need to set these. Other
than that you should have few problems using ZBasic on your computer.

NOTE TO TANDY 2000 OWNERS

The Tandy 2000 boots up with random characters on the screen. While this may look
like the system has crashed, it is alive and well on another page. Simply press "E" and
everything works fine from there on out. Use CON FIG from the Standard Line Editor to
configure ZBasic to your preferences.

ZBasic operates normally on all the other Tandy computers including the Tandy 1000,
1200 and 3000.

NOTE TO ZENITH Z-150 OWNERS

Zenith Z-150 computers work great with ZBasic when you use the PC emulation
program available from Zenith and Heath dealers nationally. Failure to use this program
produces a "Wild Interrupt Error".

MSDOS'M Appendix A-8

MSDOS APPENDIX
mMt. ,;,;: AU bW&i4iWMWi

ADDITIONS TO THE STANDARD LINE EDITOR
OPTIONAL KEYS

The standard reference manual describes certain keys to be used with the Standard
Line Editor. The following list of keys may also be used:

KEY
Up arrow
Down arrow
Home
End
Page down
Ctrl-Home
Cursor keys
Insert
Delete

--->
--->
--->
--->
--->
--->
--->
--->
--->

DefiNITION
List previous line
List next line
List first line
List last line
List next 10 lines
Clear the screen
Cursor movement left or right (or <SPACE> and <BKSPACE»
Enter Insert Mode (or I)
Delete Characters (or D)

Also see "Full Screen Editor" in the back of this appendix.

ADDITIONAL COMMANDS

KEY ON
KEY OFF
KEY LIST

Several new commands and some helpful screen displays have been added to make
the Standard Line Editor easier to use and more powerful.

The commands; KEY ON, KEY OFF and KEY LIST have been added to give you control
of the function key command options that you've noticed are now displayed on the
bottom of the screen. KEY OFF will "hide" the display, KEY ON will "show" the display
and KEY LIST will list the commands associated with the function keys.

See KEY in this appendix for details.

FIX [number of spaces to indent]
INDENT [number of spaces to indent]
RENUM*
UNNUM

These commands are added to allow more control over source code displays.

For those folks that don' like line numbers, the UNNUM command has been added. 11
strips the program or line numbers. RENUM* adds line numbers back. INDENT forces
the text to be indented when you go into the Full Screen Editor. FIX does both UNNUM
and INDENT at the same lime.

See FIX, INDENT, UNNUM and RENUM* in this appendix for details.

A-9 MSDOSTM Appendix

MSDOS APPENDIX

GRAPHIC ENHANCEMENTS
This new version of ZBasic supports the following graphics adaptors:

EGA: Enhanced Graphic Adaptor
CGA: Color Graphic Adaptor

MODE 16,17,18,19 (and CGA)
MODE 0-15

MDPA: Monochrome Display and Printer adaptor
HERCULES Monochrome Graphic Board
HERCULES Plus Monochrome Graphic board

MODE2
MODE 20
MODE 20

Note: See CARDTYPE statement in this appendix for determining board installed.

NEW GRAPHIC COMMANDS

In order to use graphics with the appropriate boards you will need to reference the
following statements and functions in this appendix and in the main reference section:

This Appendix
SCREEN
PALETTE
CSRLlN
MODE (15-20)

TFORMAT
CARDTYPE
PLOT USING
PAINT

Main Reference
COORDINATE
COORDINATE WINDOW
GET
PUT

HERCUlESTM and HERCULES PlUSTM
This new version of ZBasic supports the Hercules and Hercules Plus Monochrome
graphics boards when in MODE 20.

In order to use text AND graphics in MODE 20 you must load ZBasic by typing ZHERC
from the MSDOS command line. This loads the Hercules text driver below ZBasic and

~ will not interfere with other drivers.

~ .--',-- You must also include this driver with stand-alone programs you create with ZBasic if
they require text and graphics in Hercules MODE 20. Simply create a BATCH file with
the following code to do this. Change filename to the name of your program:

HERC.COM
filename.COM

This loads the Hercules character driver into memory and allows ZBasic to access it
properly.

Hercules graphics are supported without any additions. That is; if you only want to use
the 720x348 Hercules graphics without text, you may use graphics in MODE 20 withoul
loading the HERC.COM driver into memory. You may use text in the other modes with
the highest quality text in MODE 2.

TFORMAT is used to control the format for placing text on the Hercules graphics
screen. Options include Reverse, regular and XOR modes. See TFORMAT in this
appendix for specifics.

MSDOSTM Appendix A-10

MSDOS APPENDIX

A-11

EXECUTING ZBASIC FROM MSDOS

NOTE

EXAMPLES

There are basically three ways of starting ZBasic from the operating system:

1. Type: ZBASIC <ENTER>

This is the standard way to startup ZBasic. See "Getting Started" in the front of this
manual and also "MSDOS Specific Configuration Options" in this appendix.

2. Type: ZBASIC filename <ENTER>

This will force ZBasic to load the file given by filename and go directly into the ZBasic
editor, skipping the initial prompt screen. Using this procedure saves the time of going
through the initial prompt screen (note: BASICA or QuickBASIC files must have been
saved in ASCII format).

3. Type: ZBASIC filenamel filename2 [/C 1 <ENTER>

This will force ZBasic to load the file given by filename1, then compile it into the file
given by filename2. If the "/C" option is included, then the file will be saved as a ZBasic
chain file (same as using RUN+), else the file will be saved as an executable file (same as
using RUN-).

ZBasic will always return to the operating system when done compiling, making this
procedure very useful for compiling several programs at once using a batch file.

To convert old ZBasic 3.02 programs saved in tokenized format so they can be loaded
into the new version 4.0:

1. Load programs into ZBasic 3.02
2. Use SAVE- to save them in ASCII format
3. Load them into ZBasic 4.0

ZBASIC TEST.BAS TEST. COM
This compiles TEST. BAS and creates TEST. COM; an executable file.

ZBASIC TEST.BAS TEST.CHN/C
This compiles TEST. BAS and creates TEST. CHN; a chain file (runtime not included).

If there is an error during loading or compiling, the error will be displayed and ZBasic will
retum to the operating system. ZBasic will also return an exit code of 1 if there was an
error, 0 if your program compiled and saved successfully. This exit code can be
examined using the batch sub-commands IF and ERRORLEVEL.

See the MSDOS manual for more information on using batch files.

MSDOSTM Appendix

MSDOS APPENDIX

MSDOS SPECIFIC CONFIGURATION OPTIONS
ZBasic may be configured by typing "C" in the initial prompt screen. ZBasic will then ask
for the standard configuration parameters explained in the "Configure" section of the
manual (this version may also be configured directly from the editor by typing CON FIG).

Following the "Standard configuration parameters" are the MSDOS specific
configuration parameters. The additional configuration prompts are:

Default BASIC file type BAS?

Allows you to set the default suffix. If you save a program called FRED, it will be saved
as FRED.BAS. If you change BAS to ZBS, it will be saved as FRED.ZBS. Use a space
if no suffix is desired. The default is .BAS.

Default screen length 0019 00025 ?

The normal IBM screen allows 25 rows of text to be displayed. There are some MSDOS
computers, however, that cannot display this many rows of text. For these computers,
simply enter the actual screen length under this prompt and ZBasic will automatically
correct this IBM incompatibility.

DELAY 1ms time constant 012C 00300 ?

The ZBasic DELAY expression statement is designed to delay a number of
milliseconds given by expression. However, each millisecond delay is dependent on
the speed of the computer hardware.

ZBasic assumes the computer speed to be that of the IBM PC (i.e. 4.77 megahertz
clock speed using the 8088 microprocessor). If your clock-speed varies; enter a
number under this prompt corresponding to your computer's speed: For 8mhz
calculate using 8/4.77 *300=503. For 12mhz calculate using 12/4.77*300=754

This 1 ms time constant is also used in the ZBasic SOUND statement; thus, if a program
uses sound at all, it is necessary that this time constant be accurate. The time constant
can also be changed during program execution using the pre-defined user function -
USR2. See USR2 statement in this appendix for more information.

Mouse supported <yIN>. N ?

ZBasic defaults to not supporting a mouse driver. If ZBasic is configured to support the
mouse, it will assume the Microsoft mouse and will always check to see if the mouse
hardware and software are installed.

On some machines, this check is invalid and can cause unpredictable results. This is
because ZBasic checks and, if non-zero, uses interrupt H33 for the mouse interface. If
a system uses this interrupt vector for something else, problems will result.

If configured to use the mouse, make sure to test ZBasic with the mouse driver.

MSDOSTM Appendix A-12

MSDOS APPENDIX

IBM graphics compatibl.e <yiN>. Y?

Graphics in MODE 5 and MODE 7 go directly to memory and, thus, are very fast. This is
a problem, however, on systems with the graphics memory arranged differently from the
IBM PC's graphics. If this is the case, enter "N" under this prompt and ZBasic will no
longer use direct memory when implementing graphics (which will noticeable slow down
the graphics functions).

Selecting the "N" option will also allow ZBasic to handle COLOR ranges from 0 to 255
for foreground, background, and palette in MODE 5 and MODE 7 (see "COLOR" in this
appendix). This will allow the full color range on some advanced color adapters;
however, the expressions used in the COLOR statement should not exceed the
highest allowed value for the adapter, else the result will be unpredictable.

IBM text compatible <yiN>. N?

If ZBasic is configured to be IBM text compatible, then ZBasic writes text directly to
memory. This speeds up the PRINT statement by as much as ten times, depending on
what is being printed. If the machine is not a true compatible, however, ZBasic will not
operate properly.

To find out if this works on your machine, Simply type "Y" after the question mark; if the
next configuration parameter shows up normally on the screen, then the machine is IBM
text compatible. A program that is compiled to disk using 'RUN", however, cannot be
configured to be IBM text compatible. This is done as a safety measure to insure that a
compiled ZBasic program will run on different machines. A program can set itseH to this
configuration by using:

POKE &342,1
POKE &342,0

<--
<---

sets to IBM text compatible (for high speed text printing)
sets to non-IBM text compatible (prints through BIOS)

A program should allow the user to configure the program to his machine.

LOCATE order is X, y <Y,N>. Y?

ZBasic assumes an orientation of X,Y in the LOCATE statement, which corresponds to
column,row. This is different from MSBASIC. Thus, if converting a program from a
BASIC using Y,X orientation, enter "N" under this prompt and ZBasic will then use this
representation. This will not, however, change the orientation on the ZBasic
PRINT@(X,Y) statement.

LOCATE start is 0, 0 <yiN>. Y?

The LOCATE statement in IBM BASIC uses 1,1 as the upper left hand corner of the
screen, but ZBasic uses 0,0. If "N" is entered under this prompt, ZBasic will use the
same convention as IBM BASIC. Notice that both the "LOCATE start" and "LOCATE
order" configuration parameters must be changed to "N" in order for the LOCATE
statement to operate as IBM BASIC.

A-13 MSDOSTM Appendix

MSDOS APPENDIX

MEMORY USE WITH VERSION 4.0
The MSDOS version of ZBasic is designed to run on the IBM PC and most compatibles
under MSDOS 2.0 or greater.

For those Not-So-Compatible-Compatibles, see "MSDOS Specific Configuration
Options" in this appendix for ways of configuring ZBasic to work with your computer.

At least 128 k of memory is required for editing and compiling of programs, although
ZBasic compiled programs can be written to run on 64K systems. See "Memory
Considerations" in this appendix for more information.

MEMORY FOR VARIABLES

SINGLE AND DOUBLE PRECISION
This version of ZBasic offers extended capacities for Single and Double precision
arrays. Arrays are limited to available memory up to 640K. The array may be larger than
64K. See MEM BCD function for determining where the regular BCD variable segment
begins (not arrays). See FRE to determine available memory.

Regular Single and Double precision variables (not arrays) and regular string variables
are limited to 64K total.

STRING
String arrays may be larger than 64K in this version. See MEM STR function for
determining where segment begins for string arrays.

Regular Single and Double precision variables (not arrays) and regular string variables
are limited to a total of 64K.

INTEGER
Integer variables may use a maximum of 64K memory. This includes all integer arrays
and regular integer variables. If you need an integer array larger than 64K you can use
either a floating point array or use a string array and store and retrieve the integer
numbers in the string array with CVI and MKI$. This will take only 2 by1es per element.

OTHER MEMORY CONSIDERATIONS

continued ...

The MSDOS version of ZBasic has three different modes of operation concerning
memory organization -- EDIT mode, RUN mode, and RUN" mode (see memory map on
following page). At least 128k of memory is required for the EDIT and RUN modes (the
development stage of the program). However, after a program has been compiled and
saved using RUN", it can be run on as little as 64k of memory depending on the size of
the program (the RUN" mode is shown on the memory map).

MSDOSfM Appendix A-14

MSDOS APPENDIX
•• ____ J; Hi·,bStA

A-15

continued from previous page

While in EDIT mode, ZBasic will assume to own all of the existing memory available in the
machine. Thus, n another program (i.e. a .COM or .EXE file) attempts to use parts of
memory located above (higher address than) ZBasic, the contents of this memory could
be destroyed by ZBasic. A "Memory Allocation Error" may also be generated by the
operating system in this case (because a memory block created by the other program
will have been written over). Thus, n any drivers are to be resident in memory, they
should be installed before ZBasic is given control.

A program compiled by ZBasic as a .COM file only uses the amount of memory required
by the program. This means that other programs can use the memory outside of the
ZBasic compiled program. If a ZBasic program chains to another program, ZBasic will try
to re-size its current memory block to fit the chained program. If the new program is
larger and does not fit, ZBasic will not execute the chain and will return a disk error.

Note: See VARPTR for details about locating variables in memory.

NOTES ON ZBaslc MEMORY MAP:

1. The MEM type functions are used to return the address of a segment break.

MEMC
MEMO

MEME
MEMS
MEMI
MEMBCD

MEMSTR

CODE segment
Disk buffer and INTEGER variable segment. Integer variables (including
arrays) and disk buffers may use up to 64K total.
EXTRA segment
STACK segment
INDEX$ segment
The segment address for the BCD "simple" variables (non-array). Up to
64K total memory may be used (single or double precision variables).
The Segment address for the String "Simple" variables (non-array). Up to
64K total memory may be used.

MEM ARR \a,(n) The segment address for the String or BCD array specnied by var (n is a
dummy expression or number and is not used).

For more information, see "MEM function" in this appendix.

2. The ZBasic subroutines and jump tables are not saved to disk when a program is compiled
as a chain file using RUN+. Thus, chain files take about 18-19k less on disk.

3. ZBasic is not necessarily located immediately after MSDOS. There may be drivers or other
applications installed before ZBasic. ZBasic does, however, assume to own all of the
memory above it.

4. The size of the INDEX$ segment is determined by the CLEAR statement (see reference
section in main manual). The MSDOS version of ZBasic defauRs to CLEAR 1024, making
the INDEX$ segment 1k. If there is not enough memory to create a segment of the size
specified, then the largest size available will be allocated. The size of the INDEX$ memory
can be determined using the MEM function.

5. When the CALL string or SHELL string statements are used to load and execute
another program, the program is loaded just above the ZBasic INDEX$ segment (see
CALL and SHELL in this appendix.

MSDOSTM Appendix

EDIT MODE:

ZBasic

MEM ARR Y#(n)

MEM ARR XI(n)

MEM ARR S$(n)

MEM ARR A$(n)

MEM STR

MEM BCD

MEM 0, MEM E
(ES, OS)

..

Program ",About SOK' ...
Text

tac

ZBasic
Compiler

Runtime

urn ta es

DOS

I.SSS1 • Available memory

_. Segment break

MSDOS APPENDIX

RUN-

~' Top Of,':::

~
INDEX$
Segment

User Stack

Arrav Y#
Array XI

Array 8$

Arrav A$

String var
sim-ole

S~~~"'
INIt:(;t:H

Simple and
Array

Disk Buffers

I Quoted stnngs
Data

Object code

Copy Runtime

Copy of
Jump tables

ZSasic
Program
Text

Stack

ZBasic
Compiler

Runtime

Jump tables

DOS

MSDOS
MEMORY MAP

RUN" or RUN+:

pt o 64k

MEM I

MEMS

U p to available
emory M

p t o 64k

pt o 64k

MEM ARR Y#(n)

p t o 64k MEM ARR XI(n)

MEM ARR B$(n)

MEM ARR A$(n)

p t o 4B'k
MEM STR

MEM BCD

MEM C

MEM 0, MEM E
(ES, OS)

saved to
disk using

RUN+

... About18K· ...

MEMC+

INDEX$ up to 64k
Segment

MEMI
User Stack MEMS

rra
Array XI

Up to available
Array B$ Memory

Array A$

up to 64k

up to 64k

up to 64k

uoted strings
Data

Object code
Created by

ZBasic
saved to

(up to 4Bk') disk using
RUN'

Runtime

Jump tables

DOS

'Note: Object code size limitation subject to change in subsequent
releases. Check addendum (if any) for possible variations.

MSDOS'" Appendix A-16

MSDOS APPENDIX
IMlIM 1MfAt.fiijB

A-17

RS-232 COMMUNICATION
ZBasic for MSDOS supports asynchronous communication using the numbers; -1
for COM1 and -2 for COM2 within the OPEN"C" statement. Baud rate, parity, stop
bits, word length, handshaking and buffer length are all controlled in the OPEN "C"
statement.

The OPEN "C" statement has additional parameters that can be used to control the
handshaking on the RS-232 cable when writing to the port. See OPEN "C" in this
appendix and the example routines under OPEN"C" in the main reference section.

To switch the communication interrupts on or off, the commands COM ON and COM
OFF may now be used. The buffer size may be up to 32,700 bytes. See COM ON
and COM OFF in this appendix for details. To determine the status of the buffer see
COM BUFF in this appendix.

To trap communication errors see ON COM ERROR GOSUB in this appendix.

There is also a predefined user function -- USR5 -- that retums the modem and line
status for the asynchronous adapter; see USR5 function in this appendix.

COMMON COMMUNICATION PROBLEMS

continued ...

If the asynchronous communication is not working properly, try any of the following:

1. Check to make sure the baud rate, parny, stop bits, and word length settings are
the same on both sides of the communication. See ON COM ERROR GOSUB in
this appendix.

2. Examine the modem and line status. Type in the program below to observe the
status of the asynchronous port:

CLS
DO

PRINT@(O,O) BIN$(USR5(-1));: REM COM 2 is -2
UNTIL LEN (INKEY$) : REM Press a key to stop

If using COM2, then use USR5(-2). The meaning of the bits are explained in this
appendix under USR5 (bn 15 is on the left, bit 0 on the right). A Framing error or
Parity error usually means that the sender and receiver are operating at different
baud rates, parity, stop bits, or word length. An overrun error usually indicates an
improper cable or buffer length has been set to small.

3. Check for proper cable. The cable must support the standard RS-232
asynchronous interface. If the serial transfer works at a low baud rate (like 300
baud), but fails at higher baud rates, then the cable is improper. The diagrams on
the next page show the two most typical cable configurations. The top diagram
is for communication between two DTE's (Data Terminal Equipment) or two
DCE's (Data Communication Equipment). This configuration is typical for an IBM
talking to another IBM or compatible. The bottom diagram is for communication
between a DTE and a DCE. These cable configurations are not the "rule", they
are only the most typical for proper RS-232 interface.

MSDOSTM Appendix

MSDOS APPENDIX

RS-232 COMMUNICATION continued

Communication devices: DTE <----> DTE
DCE <----> DCE
(Typical for IBM to IBM communication)

CONNECTOR 1

Transmit Data

Receive Data

Request to Send

Clear to Send

Data Set Ready

Ground

Carrier Detect

Data Terminal Ready

Communication devices:

PIN

2

3
4

5
6
7

8

20

DTE
DCE

CONNECTOR 1

PIN

Transmit Data 2
Receive Data 3

Request to Send 4

Clear to Send 5

Data Set Ready 6
Ground 7

Carrier Detect 8

Data Terminal Ready 20

<----> DCE
<---> DTE

CONNECTOR 2

PIN

2 Transm~ Data

3 Receive Data

4 Request to Send

5 Clear to Send

6 Data Set Ready

7 Ground

8 Carrier Detect

20 Data Terminal Ready

CONNECTOR 2

PIN

2 Transm~ Data

3 . Receive Data

4 Requastto Sand

5 Clear to Send

6 Data Set Ready

7 Ground

8 Carrier Detect

20 Data Terminal Ready

DTE: Data Terminal Equipment
DeE: Data Communication Equipment

MSDOST" Appendix A-18

MSDOS APPENDIX

A-19

ZBasic JUMP TABLE

The MSDOS version of ZBasic makes a jump table available starting at address 0103
hex. These jumps can be altered to jump to some other routine to handle the same
function. This can be useful for implementing special hardware or for handling non
compatible DOS or BIOS.

Also included in this section are the USR function jumps, many of which are
predefined. The following is a list of all the available jump locations with a short
description of each:

LIST OF ALTERABLE JUMPS:

.Add.Ws.
&103

&106

&109

&10C

&10F

&112

&115

MSDOSTM Appendix

Description
ZBasic exil - where ZBasic jumps on a STOP or END statement.

On entry: ---
On ed: exit program ...

Video output - all characters output to the screen.
On entry: AL = character
On exit:

Printer output - all characters output to the printer.
On entry: AL = character
On exit:
Remarks: altering will disable ZBasic PAGE control

Scan keyboard - used by INKEY$ and TRON commands.
On entry:
On exit: Z flag W no character

NZ flag W character in AL
Remarks: SI must be preserved

Inil. COM port - called by the OPEN "C" statement.
On entry:
On exit:
Remarks: sets Baud,Parity,Stopbits, and Wordlength

Write COM port - used whenever filenumber is #-1 or #-2.
On entry: AL = character
On exit:
Remarks: CX,DX must be preserved

Read COM port - used whenever filenumber is #-1 or #-2.
On entry:
On exit: AX = character
Remarks: CX,DX must be preserved

MSDOS APPENDIX
LIST OF ALTERABLE JUMPS continued

~
&118

&11B

&11E

&121

&124

&127

&12A

Description
Scan COM port - used by READ #-1 ,A$;O
(same as INKEY$, but for COM).

On entry: DS:SI points to destination string
On exit: DS:SI contain string in form length,characters

SOUND frequency,duration - ZBasic statement.
On entry: AX = duration

BX = frequency
On exit: ... sound ...

MOUSE (expression) - ZBasic function (not statement).
On entry: AX = expression
On exit: AX = value returned

Write dot - sets each graphic point in MODE 5 and MODE 7 when
ZBasic is configured to not be IBM graphics compatible (see
"MSDOS CONFIGURATION" in this appendix).

On entry: AX = row number
BX = column number

On exit:
Remarks: the row and column are actual screen pixels

POINT function - reads the color of a screen point.
On entry: AX = row number

BX = column number
On exit: AX = color of point
Remarks: the row and column are actual screen pixels

Convert screen coordinates - converts ZBasic X,Y to pixel col,row.
On entry: AX = ZBasic Y (or row)

BX = ZBasic X (or column)
On exit: AX = screen row number

BX = screen column number

PLOT USING statement.
On entry: AX = row number

On exit:

BX = column number
CL = magnitude
SI points to string

Remarks: the row and column are actual screen pixels

MSDOSTM Appendix A-20

MSDOS APPENDIX
111ilttt?if • ... I

A-21

LIST OF ALTERABLE USR FUNCTION JUMPS
User functions using USRn(expression) statement.
On entry: AX = expression

~
&120
&133
&139
&13F
&145
&14B
&151
&157
&150
&163

Descriptjon
USRO - not predefined
USR1 - predefined ---> End 01 File function (same as EOF)
USR2 - predefined ---> DELAY time constant
USR3 - predefined ---> keyboard functions
USR4 - predefined ---> set break vector
USR5 - predefined ---> read COM port status
USR6 - predefined ---> last line number recorded
USR7 - predefined ---> random number generator
USR8 - predefined ---> integer sine
USR9 - predefined ---> integer cosine

NOTES ON USING THE ZBaslc JUMP TABLES:

1. All routines must exit with the segment registers DS, ES, and SS the same as
that upon entry.

2. Exiting the routine is done with a RET assembly opcode (or a RETURN ZBasic
statement).

3. The jumps are all relative to the code segment on the 8088/86 processor, so
the actual value to poke into the jump table has to be calculated. The program
below is an example of how to change a jump vector.

REM EXAMPLE TO CHANGE SOUND TO LINE 1000
Jump = &l1B
Line = LINE 1000
POKE WORD Jump+1, Line-(Jump+3), MEMC

This program can easily be modified to change any of the jump vectors to any
ZBasic line number.

4. The MSDOS version of ZBasic contains a 30 byte patch area that can be used
to contain a small routine. By using the patch utility (from the ZBasic startup
screen), a jump vector can be permanently changed to jump directly into a
routine written into the patch area.

MSDOSTM Appendix

Patch area address:

Additional patch area:

start --->
stop --->
stop --->

&169
& 187 (30 bytes)
&1B9 (49 bytes more)

This additional patch area (49 bytes) can only be used if the ON INKEY$
statement is not implemented. (For more information on ON INKEY$, see "ON
INKEY$" in this appendix.)

MSDOS APPENDIX

MACHINE LANGUAGE EXAMPLES
Following is a simple machine language example that instructs the operating system
to print a ZBasic string variable. The operating system is accessed through a DOS
function call (see DOS manual for more information on DOS function calls).

The assembly listing below is implemented using the MACHLG statement given in
the ZBasic listing. Notice how the address of the variable A$ is generated in the
MACHLG statement -- ZBasic automatically inserts the address of the variable when it
is specified.

------------------------------------- ASSEMBLY LISTING -------------------------------------

0000

0000
0000 BA 0000

0003 42
0004 B4 09
0006 CD 21

0000

0000 01

0008
0008

CSEG
ASSUME

SEGMENT PUBLIC 'CODE'
CS:CSEG, DS:DSEG

;MAKE MSDOS FUNCTION CALL TO PRINT STRING
; (must be terminated with '$')

PRINTS:

DSEG

String

DSEG
CSEG

ORG a
MOV DX,OFFSET String

;Get string address in OX

INC DX
MOV AH,9
INT 21H

;Skip length byte

;Make DOS call 9

SEGMENT PUBLIC 'DATA'

DB 256 DUP (?)

ENDS
ENDS
END

------------------------------------- ZBasic LISTING -------------------------------------

CLS
A$ = "PRINT ME"
A$ = A$ + "$" :REM Must be terminated with "$"
REM ----- MAKE CALL TO DOS TO PRINT A$ ----
MACHLG &BA,A$,&42,&B4,&09,&CD,&21

The next two pages give a more involved example of the MACHLG statement. The
example modifies interrupt 24 hex to jump to a ZBasic subroutine. This interrupt is
used for control whenever a critical error occurs within DOS (such as the disk drive
door being open during a read).

MSDOSTM Appendix A-22

I •

MSDOS APPENDIX
W@!Ul1§]. • a..

Assembly Listing of Routines to
Control the Critical Error Handler:
0000 CSEG

0000
0000 06 GETVEC:
0001 B8 3524

SEGMENT PUBLIC 'CODE'
ASSUME CS:CSEG, DS:DSEG

GET CRITICAL ERROR HANDLER VECTOR
ON EXIT _Seg:_Offset= Address of error handler

ORG a
PUSH ES ;Save ZBasic's ES
MOV AX,3524H

0004 CD 21 INT 21H ; DOS function call 35H - GET VEe:

A-23

0006 8C 06 0006 R
OOOA 89 IE 0004 R
OOOE 07

0000
0000 IE
0001 8B 16 0004 R
0005 8E IE 0006 R
0009 B8 2524
OOOC CD 21
OOOE IF

0000
0000 53
0001 51
0002 52
0003 IE
0004 06
0005 8B EC
0007 8E 5E IE
OOOA 8E 46 20
OOOD 89 3E 0000 R

0000
0000 Al 0002 R
0003 07
0004 IF
0005 SA
0006 59
0007 5B
0008 CF

0000

0000 01
0002 01
0004 01
0006 01
0008
0008 CSEG

MOV
MOV
POP

SET CRITICAL
ON ENTRY:

ORG
SETVEC: PUSH

MOV
MOV
MOV

_Seg,ES
_Offset,BX
ES

;Save current vector

ERROR HANDLER VECTOR
Seg = ZBasic's code seg

=Offset = LINE # of error handler
a
DS ;Save ZBasic's DS
DX,_Offset ;Get vector in DS:DX
DS,_Seg
AX,2524H

INT 21H ;DOS function call 25H - SET VEeT
POP DS

NEW CRITICAL ERROR HANDLER VECTOR
ORG

ERRVEC: PUSH BX ;SS,SP,DS,ES,BX,CX,DX must
PUSH CX :be preserved!
PUSH DX
PUSH DS
PUSH ES
MOV BP,SP
MOV DS, [BP+30) :Get ZBasic's DS and ES
MOV ES, [BP+32)
MOV Error, Dr :Put error code into variable

END OF NEW CRITICAL ERROR HANDLER VECTOR
ORG a
MOV AX,Response ;Put decision in AL
POP ES :Restore registers
POP DS
POP DX
POP CX
POP BX
IRET iReturn to DOS ...

DSEG SEGMENT PUBLIC 'DATA'

Error OW DUP (?)

Response DW DUP (?)

_Offset DW DUP (?)

_Seg OW DUP (?)

DSEG ENDS
ENDS
END

MSDOSTM Appendix

MSDOS APPENDIX

ZBasic Listing to Control Critical Error Handler:
REM ----- GET PREVIOUS CRITICAL ERROR VECTOR
MACHLG &06,&BB,&3524,&CD,&2l,&BC,&06
MACHLG 01d_Seg%,&B9,&lE,01d_offset%,&07

REM ----- SET CRITICAL ERROR VECTOR TO LINE 1000 ----
Seg%=MEMC : Offset%=LINE "Error routine"
MACHLG &lE,&BB,&16,Offset%,&BE,&lE,Seg%,&BB,&2524,&CD,&2l,&lF

REM ----- READ DRIVE A: WITH DOOR OPEN ----
OPEN "Rn,l,nA:HELPME"

REM ----- RESET ERROR VECTOR BEFORE EXIT TO ZBASIC ----
MACHLG &lE,&BB,&16,01d offset%,&BE,&lE
MACHLG 01d_seg%,&BB,&2524,&CD,&2l,&lF
STOP

1'Error routine"
REM START OF ERROR HANDLER ROUTINE
REM ******************************

MACHLG &53,&5l,&52,&lE,&06,&BB,&EC,&BE
MACHLG &5E,&lE,&8E,&46,&20,&B9,&3E,Error%:

REM ----- DO ANYTHING HERE EXCEPT DISK I/O

PRINT
PRINT"Error. What do you want to do"
PRINT"(Ignore, Retry, Terminate)? ";
DO

A$=INKEY$
UNTIL LEN (A$)
PRINT A$: A$=UCASE$(A$)
I%=INSTR(l, "IRT",A$) : IF 1%=0 THEN 1060
Response%=I%-l

"DO DOS"
REM ----- RETURN TO DOS -----
MACHLG &Al,Response%,&07,&lF,&5A,&59,&5B,&CF
REM * ** * * * * * ** * ** * * * ** ** * * *** * * * ** * * ** * * * * *.* **** ** * * * * * *

NOTES ON EXAMPLE

1. The ZBasic code that handles the critical error (lines between "Error routine" and
"Do DOS" above) cannot use any DOS function calls greater than 12H. ZBasic uses
these function calls on the following:

a. All RISK I/O!
b. TIME$ function and statement
c. DATE$ function and statement
d. CALL string statement
e. END = expr statement

2. See YOUR MSDOS manual for more information on the critical error handler
vector.

MSDOsnr Appendix A-24

MSDOS APPENDIX

A-25

CONVERTING OLD BASICATM or QuickBASICTM
PROGRAMS TO COMPILE WITH ZBasic™

First; Read the chapter in the front of this manual called "Converting Old Programs".

Be sure to set the the following options under "Configure" b.e!Qre.loading your old
QuickBASIC, BASICA or other MSBASIC programs:

• Default variable type:
• Convert to Uppercase YIN:
• Optimize expressions for Integer YIN:
• Spaces required after keywords YIN:
• LOCATE x,y YIN:
• LOCATE start is 0,0 YIN:

S (to increase speed: avoid doing this)
Y
N
Y
N
N

WHAT DO WE HAVE THAT THEY DON'T?

• Hercules and Hercules Plus Graphics support.
• String arrays may be greater than 64K; up to available memory.
• Floating point arrays may be larger than 64k; up to available memory.
• No String "Garbage Collection". Static and dynamic String allocation.
• INDEX$ string array and special commands: INDEX$I, INDEX$D and INDEXF.
• Direct commands from the Standard Line Editor.
• Configurable BCD math up to 54 digits of precision.
• Device independent Graphics. See COORDINATE.
• Apple II, Macintosh and zao versions.

STRING LENGTH NOTE

QuickBASIC allows up to 32k for a string length. The maximum string length in
ZBasic is 255. See notes under "Strings" in "Converting Old Programs" in the main
reference section of this manual.

COMMANDS THAT ARE DIFFERENT

continued ...

The following list of QuickBASIC commands are not completely compatible with
ZBasic. Examples of possible alternatives are given.

CAll
CDBl
CHAIN
CIRCLE
CLEAR
COLOR
COM STOP
COMMON
CSNG
CVD,CVS

DATA

Different syntax w~h ZBasic. See CAll in this appendix.
Not applicable.
See CHAIN in the main reference section.
Some variation in extra parameters.
Some syntax the same. Does not allow changing stack size.
Some syntax differences. See COLOR.
COM STOP not supported. See COM ON IOFF.
Same as ZBasic DIM. The SHARED parameter is not supported.
Automatic when the target variable is a single precision number.
ZBasic uses CVB w~h both single and double precision BCD variables.
~ is not necessary to use this with ZBasic file commands since numeric
variables may be used with READ# and WRITE# (see FIELD below).
Same except that strings beginning with numbers must be in quotes.

MSDOSTM Appendix

continued from previous page

DRAW
ENVIRON[$]
ERASE
ERDEV[$]
ERRIERL
ERROR
EXIT
FIELD

GET (files)
INPUT$
IOCTL[$]
KEYn
KEY LlST/ON,oFF

LBOUND
LINE
LOCATE
LOCK/UNLOCK
LPOS
LSET
MKD$, MKS$
ON COM
ON ERROR

ON KEY$
ON PEN
ON PLAY
ON STRIG
ON TIMER
OPEN

OPEN COM
OPTION BASE
PALETTE
PCOPY
PEN
PLAY
PMAP
PRESET
PSET
PUT (files)
REDIM
RESTOREn
RESUME
RND(x)

RUN filespec
SADD
SCREEN
SHARED
SUB,SUBEND
STATIC
STICK
STRIG
UBOUND
WINDOW

MSDOS APPENDIX

Not supported. See PLOT USING.
Not supported. See PATH$ and SHELL for alternatives.
Not supported w~h ZBasic since all arrays are STATIC.
See "Critical Error Handling" in this appendix.
Not supported.
Not the same. See ERROR in this appendix and reference section.
See END FN, END IF, END SELECT and END.
Not supported. Fielding is done automatically in the READ# and
WRITE# statements. There is no need to use MKI$, MKD$, MKS$, CVI,
CVS, CVD, LSET or RSET to store or remove data from a field. Saves
lots of time. See "Files" in the main reference section of this manual.
Not supported. See RECORD#
Not supported. See READ# filenumoor, A$;length
See USRS in this appendix.
See INKEY$ (n) statement in this appendix (ignored at runtime).
See KEY ON/OFF/LIST and ON INKEY$ in this appendix for variations.
KEY ON and OFF in program code is ignored.
Since arrays are all static this is not necessary.
Use PLOT, PLOT TO, BOX, BOX FILL
X and Yare opposite, 0,0 is start. You may configure ZBasic for this.
Not supported.
Use POS(1) instead.
See FIELD above.
See MKB$ in main reference section (BCD) and FIELD above.
See COM ON/OFF, COM BUFF and ON COM ERROR GOSUB.
Not the same. Disk errors only. See "Disk Error Trapping" in the front of
the main reference section of this manual. Also see ON COM ERROR.
See ON INKEY$ in this appendix.
See DEF MOUSE statement in this appendix.
Not supported.
See DEF MOUSE and MOUSE statement in this appendix.
See TIMER in this appendix.
The same in most respects. See OPEN in the main reference section.
Pathnames are not allowed in filenames. See PATH$, CHOIR, RMDIR
and MKDIR in this appendix.
See OPEN"C" for syntax variations
The BASE of an array may be configured under "Configure".
Same except that PALETTE USING is not supported.
Not supported.
See DEF MOUSE and MOUSE function in this appendix.
Not supported
See DEF PAGE, VIEW PRINT and COORDINATE
COLOR=background: PLOT x,Y.
COLOR=foreground: PLOT x,y
Not supported. See RECORD# and "Files" in reference section.
Not supported since ZBasic uses static arrays.
With ZBasic n restores to the nth ~em not the nth line.
Not supported. See ON ERROR GOSUB in the main reference.
ZBasic returns an integer number from 1 to x. Not a number between
zero and one. This method provides higher performance.
See RUN, SHELL and CALL in this appendix.
See VARPTR and VARSEG in this appendix.
See SCREEN, MODE and COLOR in this appendix.
See "Chaining" in the main reference.
See LONG FN, END FN and APPEND.
All arrays are already static so this is not needed.
See DEF MOUSE and MOUSE function to set for joysticks.
See DEF MOUSE and MOUSE function to set for joysticks.
Not needed with ZBasic since all variables are STATIC.
See DEF PAGE and VIEW SCREEN.

MSDOsrn Appendix A-26

MSDOS APPENDIX
"':31_": ; 4;

A-27 MSDOSTM Appendix

MSDOS APPENDIX

ASIC

ZBaslc™ VERSION 4.0 MSDOSTM
REFERENCE SECTION

The following pages contain commands, statements and functions included in the MSDOS
version of ZBasic that are not necessarily included with other versions of ZBasic.

Also be sure to see the definitions of the following new commands in the main reference section:

BEEP
CASE
COMMON
COORDINATE
COORDINATE WINDOW
CSRLlN
END SELECT
EOF
GET and PUT (graphics)
NAME
PATH
RESET
SELECT

MSDOSTM Appendix A-28

MSDOS

FORMAT

DEFINITION

EXAMPLE

REMARK

APPENDIX

BLOAD statement

BLOAD filespec [. [offset j[,segmenO]

Loads a block of memory that was saved as filespec using the BSAVE statement.

The optional offset is the position in memory to load the block and it will load into the
current segment as defined using the DEF SEG statement (or the segment option if
used).

If offset and/or the segment is omitted, the information that was stored in the file with
BSAVE is used.

REM Loads the CGA screen saved with BSAVE on the next page.

MODE 7

BLOAD "CGASCRN . MEW'
DELAY 4000

See BSAVE and DEF SEG.

Address and lengths of different graphics memory:

M..Q..Q.E.
0-15
2
20
20

IYf.L
CGA
MDPA
Hercules (pageO)
Hercules (page1)

ADDRESS
&HB800
&HBOOO
&HBOOO
&HB800

LENGTH
2048-16,384-
4,096
32,767
32,767

Note: EGA graphics are stored in memory in a different format than other graphic
cards. To save images in EGA modes (16-19) you should GET the screen. Save the
screen to disk using:

BSAVE filespec, VARPTR(var%(n», number of elements/2

BLOAD the integer array back into memory using

BLOAD filespec, VARPTR(var%(n»

and then PUT the image back to the screen (see GET and PUT in the main reference
section of the manual.

'See CGA, EGA, Hercules and MDPA technical manuals for more information.

A-29 MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX
~'i%filtEl'g$Jt.tt~IKiwfIHf"'##II?lttsi.'t1flt$f4itw.1JkI[tti.llt1+1

BSAVE statement

BSAVE filespec , offset, length L segmen~

Saves a block of memory as filespec so that it may be loaded later wtth BLOAO. It
saves an exact image of memory.

The optional offset is the position in memory to load the block and will save the
current segment as defined using the DEF SEG statement (or the segment option if
used).

If DEF SEG is not used, the DATA SEGMENT (MEMO) is used.

REM This program saves a high-res CGA screen
REM which may be loaded with BLOAD on the previous page.

MODE 7: REM Adjust MODE for your computer.

PRINT "Hello there!!"
CIRCLE FILL 512, 383, 300

BSAVE "CGASCRN.MEM",O, 16384,&HB800

See BLOAO and OEF SEG.

Address and lengths of different graphics memory:

M.Q!lE.
0-15
2
20
20

TIeL
GGA
MOPA
Hercules (pageO)
Hercules (page1)

ADDRESS
&HB800
&HBOOO
&HBOOO
&HB800

LENGTH
2048-16,384'
4,096
32,767
32,767

Note: EGA graphics are stored in memory in a different format than other graphic
cards. To save images in EGA modes (16-19) you should GET the screen. Save the
screen to disk using:

BSAVE filespec, VARPTR(var%(n», number of elements/2

BLOAD the integer array back into memory using

BLOAD filespec, VARPTR(var%(n»

and then PUT the image back to the screen (see GET and PUT in the main reference
section of the manual.

'See GGA, EGA, Hercules and MDPA technical manuals for more information.

MSDOSTM Appendix A-3~

MSDOS

FORMAT

DEFINITION

EXAMPLE

REMARK

APPENDIX

CALL statement

CALL address [, segment 1

This statement is used to execute a subroutine located in memory at the segment
given by segment with an offset of address.

If segment is not given, then ZBasic's code segment is used.

CALL LINE "Routine"
Calls a ZBasic subroutine starting at "Routine" (same as GOSUB "Routine" but takes
longer to execute).

CALL &H100, &H0BD7
Calls a subroutine located at &HBD7 with an offset of &H1 00. This is a very
dangerous use of the CALL statement.

Use caution when specifying the segment. Rarely is any subroutine loaded in the
same place every time. The operating system will load a program into the lowest
available address, which depends on other programs that may be resident in
memory.

Any subroutine that is called by specifying the segment must return from the
subroutine with a far return. Otherwise, unpredictable results will occur.

A-31 MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX

CALL statement (same as SHELL)

CALL string

The CALL statement followed by string will load and execute another program or
MSDOS command specified by string. If a null (empty) string is specified, then
MSDOS will be loaded and executed, in which case typing EXIT in DOS will return to
ZBasic.

This is identical to the "SHELL" statement and is retained to remain compatible with
older versions of ZBasic. Also see SHELL in this appendix ..

String must be either a string variable or a quoted string.

CALL "DISKCOPY A: B:"
This will perform a diskcopy as if it was typed in from the DOS command line.

CALL
Gives control to MSDOS; displays DOS prompt. Type EXIT to return to ZBasic.

CALL "ZBASIC"
This will actually load and execute ZBasic. Typing QUIT will then retum to the original
ZBasic.

A$ = "DIR A:*.BAS": CALL A$
This will get the directory of all .BAS files on the A drive.

This statement can also be very useful for executing batch files -- just use the name
of the . BAT file (batch file) for string.

There must be at least 17k of memory free to use the CALL statement.

If the "COMMAND.COM" file is not found, the message "File not found" will be
echoed to the display and control will be returned to ZBasic.

MSDOsm Appendix A-32

MSDOS

FORMAT

DEFINITION

EXAMPLE

REMARK

APPENDIX

CARDTYPE function

CARDTYPE

Returns the type of graphic hardware connected to the current system:

CARD TYPE
Color Graphics Card
Enhanced Graphics Card
EGA with Monochrome monITor
Hercules (or compatible)
Monochrome

A= CARDTYPE

SELECT CASE A
CASE 0

IYPE
CGA
EGA
EGA-Mono
HERC
MDPA

PRINT"A CGA card is installed"
MODE 7

CASE 1
PRINT"An EGA card is installed"
MODE 19

CASE 2

COQE RETIJRNED
o
1
2
3
255

PRINT"A monochrome monitor is connected to an EGA card"
MODE 18

CASE 3
PRINT"A Hercules card is installed"
MODE 20

CASE 255
PRINT"A Monochrome card (MDPA) is installed"
MODE 2

CASE ELSE
PRINT"You can't read this!"

END SELECT

RUN

A Monochrome card is installed

This command can be useful in determining the display card of any system so that
the MODE parameters in a program can be changed accordingly.

Combine this with the Device Independent Graphics that ZBasic offers and one can
write a program that will work the same way on a variety of graphics adaptors.

Also see COORDINATE, COORDINATE WINDOW and the section in this appendix
"Graphics Enhancements".

A-33 MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX

CHOIR statement
CHOIR pathname

Changes the current directory to the directory specified by pathname. This enables
ZBasic to access files in different directories.

A pathname is : drive: directory\ directory\ ...

A$ = PATH$(O): REM gets current path
CHOIR "\ZBASIC\OATA": REM changes path
OPEN "I" 1,"MYOATA.TXT ": REM opens file using new path
CHOIR A$: REM back to original path

Also see PATH$, RMDIR and MKDIR.

Note: IF an error is encountered when using CHOIR, RMDIR or MKDIR, ZBasic
returns an error eleven (11) in the ERROR function. See ERROR, ON ERROR
GOSUB and the Chapter "Disk Error Trapping" in the front of this manual.

MSDOSTM Appendix A-34

MSDOS

FORMAT

DEFINITION

EXAMPLE

REMARK

APPENDIX

CINT statement

CINT (expression)

Same as INT. The difference between INT and CINT in BASICA and QuickBASIC is
that CINT rounds up and INT rounds down.

Example:

CINT(99.5)=100 INT(99.5)=99

Use the function below to emulate the BASICA CINT statement.

REM This function emulates the BASICA CINT statement

DEF FN cint#(x#) = INT(x#+ (SGN (x#) * .5))

PRINT FN cint# (99.3), CINT(99.3)
PRINT FN cint# (99.5), CINT(99.5)
PRINT FN cint# (-99.5), CINT(-99.5)
END

RUN

99
100

-100

99
99

-99

See INT, FRAC and FIX in main reference section.

A-35 MSDOSTM Appendix

FORMAT

DEFINITION

continued ...

MSDOS APPENDIX
... '*IWB.liI.I-....... w.4MI.&l

COLOR statement

Graphics MODES:
COLOR [=] [foreground] [, [background] [, palette Iblinking]]

Character MODES:
COLOR [=] [character] [, [attribute] [, border]]

This statement controls the color of all output to the screen. All of the parameters are
optional. This statement acts quite differently between graphics and character
MODE (EGA colors in MODE 18: O=black, 1=low intensity, 2=blinking, 3=high
intensity).

Under all modes COLOR 0 will tum foreground off (black in BIW modes, space in
character modes). COLOR -1 will set it to the brightest color (white in BIW modes):

CHARACTER MODES
character = 0-255
attribute = 0-255
border = 0-15

0.2,4,6
(represents an ASCII number)
(see below and table 2 on the next page)
(use table 1)

Examples of character formats available in most modes:

Normal Intensity
Regular
Blinking
Underline
UL Blinking
Invisible

High Intensity
Regular
Blinking
Underline
UL Blinking

Reyerse (lnyerse)
Regular
Blinking

Statement
COLOR ,7
COLOR,135
COLOR,1 (Blue on some color monitors)
COLOR,129
COLOR,136 (not all systems)

Statement
COLOR,15
COLOR,143
COLOR ,9 (Blue on some color monitors)
COLOR,137

Statement
COLOR ,112
COLOR,240

GRAPHIC MODES 1,3,5,7
foreground = 0-15
background = 0-31
blinking = 0 or not 0

MODE5-
foreground = 0-3
background = 0-15
palette = 0,1

MODE7-
foreground = 0 or not 0
background = not used
palette = not used

(use table 1 [limited by memory if using an EGA card])
(not available in EGA modes)

(use table 3)
(use table 1)
(use table 3)

MSDOSTM Appendix A-36

MSDOS APPENDIX
_iJtffAVi.SJi1WWlii * ff...-.

A-37

COLOR statement continued

Be sure to see the other sections in this appendix that cover graphics and color,
including; COLOR, SCREEN, PLOT, CIRCLE, PALETTE, DEF PAGE READ/WRITE
and MODE. MODE contains a chart of the resolutions, pages, memory and SCREEN
numbers required for different boards.

TABLE 1: Border, background, and foreground colors

VALUE COLOR VALUE
0 black 8
1 blue 9
2 green 10
3 cyan 11
4 red 12
5 magenta 13
6 brown 14
7 white 15

Note: Text Borders are not used in EGA modes

TAB LE 2: Attribute byte definitions

attribute bits
76543210

IBIR G Bill R G BI

COLOR
Gray
Light Blue
Light Green
Light Cyan
Light Red
Light Magenta
Yellow
White Intensified

T I T,--_I ~::~ ~~~e~;~~nd color

. ; Background color (not EGA)

'-----------.- Blinking

TABLE 3: Foreground colors

COLOR PALLETE = 0 PALLETE= 1

o
1
2
3

background ---
Green
Red

Brown

Cyan
Magenta

White

In Hercules mode there are only two colors; Black and White. There are three
character formats: Regular, Reverse and XOR. See TFORMAT for more information.

MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

continued ...

MSDOS APPENDIX
&1 ... '.I XtJ ... wr ... f{fl

COM BUFF function

COM BUFF (port)

Returns the number of bytes storeing in the communication buffer.

.EQl1 ~
-1 COM 1
-2 COM 2

The communications buffer is a first in, first out (FIFO) buffer. To read data out of the
buffer use READ#, INPUT# or LlNEINPUT#.

To set baud rate, buffer size, parity and handshaking, see OPEN"C".

OPEN "en, -1, 300"",,32000:
OPEN "Ou,l,"File.TXT I1

program continues here ...
LONG IF COM BUFF > 1000

GOSUB"Read Buffer"
ENO IF

"Read Buffer"
DO

REM COM (-1) ON is automatic

READ#-l, A$; 0 <--- Reads even if buffer empty
IF LEN(A$) THEN WRITE#1, A$;l <---Savesincomingdatatoafile

UNTIL COM BUFF=O
RETURN
END

RUN

Prints incoming serial data to the capture file until the buffer is empty.

In this appendix see COM ON, COM OFF, OPEN"C", ROUTE and the chapter called
"RS-232 communications". Also see in the main reference section ROUTE,
OPEN"C", READ#, WRITE#, INPUT#, LlNEINPUT# PRINT# and the chapter called
"Files".

MSDOsrn Appendix A-38

MSDOS APPENDIX

COM BUFF function continued

COM BUFF determines the size of the communication buffer in the following way;
(COM END and COM START are imaginary pointers we use for illustration of how COM BUFF
determines communication port size).

COM START and COM END

I- ~
~ w
en :E
::; 0 As bytes are read from the com port into the buffer the

~ () COM END pointer is positioned to the next available cell 1 in the buffer. When it gets to the end of the buffer it wraps
.,. around to the beginning.

CB+H+f111 n 11111111111111111 rH+FifD
Communications Buffer I-

0:
<C
Ien Cl z
:E ~

As bytes are read out of the buffer using READ#. INPUT# 8 8
or LlNEINPUT#.the COM START pointer is incremented to t ~
the next available byte. When COM START =COM END then
all data has been read out of the buffer.

(]TI~H1111111111111111111111 r~HFifD
Communications Buffer

I-
0:

When either COM END or COM START get 0 ~
to the end of the buffer. they "wrap around" to ffi en
the beginning. ~ COM END ever "catches up" :E:E
to COM START (COM END=COM START minus 0 0
one) no more data is read into the buffer () U
until some is read out with READ#. INPUT# or 1 1
LlNEINPUT#. " "

(B+H~t~ 1IIIIIIIIIIIIIIIj IIII rrf+FaD
Communications Buffer

A-39 MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX
Itlfi#qltiIIWt1\W#l''I'it'lf2U.,»iI&j'XtIIMillef!f,¥gWhlJll&?!&Jlnliitlliii1

COM ON/OFF statements

COM (port) ON
COM (port) OFF

Enables or disables the interrupt driven communications for a specified port. While
program execution is taking place between these statements incoming data from the
serial device specified by port is loaded into a FIFO buffer. It may be read out of the
buffer using the READ#, INPUT# or LlNEINPUT# statments .

.EQl1 ~
-1 COM 1
-2 COM 2

COM ON is assumed when OPEN"C" is used.

OPEN "C", -1, 300"",,32000: REM COM (-1) ON is automatic.
program continues here ...

DO
READ ii-I , A$;O
PRINT A$

UNTIL COM BUFF=O

COM (-1) OFF
END

RUN

Prints incoming buffer data to the screen until the buffer is empty.

See chapters in this appendix "RS-232 Communications", OPEN"C" and COM
BUFF for other important information.

Note: The QuickBASIC or BASICA COM STOP statement is not supported. Use
COM OFF instead.

MSDOSTM Appendix A-40

MSDOS APPENDIX

A-41

FORMAT COMMAND$

DEFINITION This function retums the command line string used to start up a program from DOS
(ie. a ZBasic program saved as a .COM file).

EXAMPLE

REMARK

The string does not include the name of the program.

"Myprog"
Mes sage $ =COMMAND $
PRINT Message$
END

RUN* <--- Program saved as a stand-alone .COM file

Save as: Myprog.COM

A>Myprog Hel.l.o there fred <--- Typed from MSDOS

Hello there fred

Also see "Executing ZBasic from MSDOS" in this appendix.

MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX

DATE$ statement

DATE$ = [month) [. [day) [, year))

This statement is used to set the current date. Any of the three parameters can be
omitted, in which case the parameter will not be changed. The following values are
accepted:

month:
day:
year:

1 - 12
1 - 31
1980 - 2099

DATE$ = 8,20,1987
PRINT DATE$

DATE$=,1
PRINT DATE$

RUN

08/20/87
08/01/87

If any of the specified parameters are not in the accepted range given above, the
date will not be changed. See TIME$ statement in this appendix and the TIME$ and
DATE$ functions in the main reference section.

MSDOsm Appendix A-42

MSDOS

FORMAT

DEFINITION

EXAMPLE

REMARK

APPENDIX

DEF MOUSE statement

DEF MOUSE [=] expression

This statement sets the MOUSE function to return information from anyone of four
device drivers defined by expression:

DEF MOUSE = o
1
2
3

MOUSE
JOYSTICK A
JOYSTICK B
LIGHT PEN

If the DEF MOUSE statement is not used, the mouse driver is used as the default.

If expression is not 0 to 3, then the MOUSE(n) function will always return zero.

DEF MOUSE=O
DO

PRINT MOUSE (1) , MOUSE (2)
UNTIL MOUSE (3) <--- Press the Mouse button to stop.

If you are using a mouse device, you must configure ZBasic for a mouse under
"Configure". See "MSDOS Specific Configuration Options" for more information.

Also see MOUSE statement and MOUSE function in this appendix and in the main
reference section.

A-43 MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX
Wlffi*}%;Yflffii*$ •• 1r~1ta~._i1£i_& •• #Mliit~~I*,sm&1

DEF PAGE statement

DEF PAGE xl, yl TO x2, y2

This statement defines the size of the screen used in print operations where the
parameters are as follows:

xl,yl = the upper left character position of the screen
x2,y2 = the lower right corner of the screen

ZBasic uses the screen size in scrolling the characters on the screen and in the CLS
statement. Programmers may use this command as an aid in creating "WINDOWS".

REM Example of creating WINDOWS
MODE 7: COLOR ,255: REM CGA or EGA

"MENU BAR"
PRINT@(0,0)CHR$(2);"
PLOT 0,30 TO 1024,30

MODE FILES EDIT"

"WINDOW"
BOX 123,150 TO 910, 650
PRINT @(33,4);"ZEDCOR WINDOWS";
BOX 123,150 TO 910,121

PRINT@ (10,5) ;
DEF PAGE 10,5 TO 70,20

DO
PRINT"HELLO THERE ... ";

UNTIL LEN(INKEY$)
END

<--- Put a box around the window
<--- Window title
<--- Put a box around the title bar

<--- Put cursor to first window position

<--- Text scrolls in window.

ZBasic keeps the text within the window specified.

This will force scrolling and CLS n to operate from the 5th row and 10th column to the
20th row and the 70th column. This will leave the last four rows (rows 21 to 24) and
the last 9 columns (columns 71 to 79) unaffected by normal print operations.

This statement is most useful for displaying information and status on the screen that
will not be erased by a CLS or by scrolling characters. The area outside the defined
screen can be accessed using LOCATE or PRINT@ to locate the cursor in this area.
Then normal printing can be done, except that none of the screen will be scrolled.
When done printing in this area, a LOCATE or PRINT@ is again used to go back to
the normal area (CLS will also home the cursor inside the normal area).

Use MODE to reset the screen to normal text coordinates.

MSDOsrn Appendix A-44

MSDOS APPENDIX
titt •• ,U Wilt iM;; mw J

A-45

DEF PAGE READ/WRITE statements

FORMAT DEF PAGE READ [=) expression
DEF PAGE WRITE [=) expression

DEFINITION

EXAMPLE

REMARK

ZBasic can access the extra pages of memory available in text modes on the IBM PC
with EGA, CGA, MDPA and HERCULES graphic cards.

There are 4 pages of text when in 80 column text mode (ZBasic MODEs
2,3,4,6,10,11,12,14) and 8 pages of text when in 40 column text mode (ZBasic
MODEs 0,1,8,9 [16 when 256K is on the EGA card)). EGA MODES 17-19 allow 1, 2
or 4 pages depending on whether there is 64, 128 or 256k on the board. See
MODE for details.

ZBasic can write to and display any of the available screens. This allows the
programmer to write an entire screen full of data while a different screen is being
displayed; then display the new screen instantly. The syntax is as follows:

Set Display Page:
DEF PAGE READ [=) expression

Set Write Page:
DEF PAGE WRITE [=) expression

DEF PAGE WRITE = 1
CLS
FOR I=l TO 20

PRINT "STRING NUMBER"; I
NEXT I
PRINT "Press a key ... "
DEF PAGE WRITE=O
PRINT"Press a key ... "

*DO: UNTIL LEN(INKEY$)
DEF PAGE READ=l

*DO: UNTIL LEN(INKEY$)
DEF PAGE READ = 0

<--- Writes to page 1 while page 0 is displayed.

<--- You won't see this till you display page one
<--- Write back to page 0 to display message.

<--- Display page one.

<--- Set display back to page zero.

This example will show you the resuHs of "flipping" text pages.

When the screen being displayed is not the same as the screen being written, the
ZBasic "CLS" statement does not work. Also, the auto scrolling feature, which
occurs when writing beyond the 25th row on the screen, does not work.

However, the ZBasic "CLS expression" statement will work regardless of the
displayed page. Thus, use CLS 32 to clear on any page (32 is ASCII for" ").

Note: Hercules graphics support only page 0 and 1 (MODE 20).

MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX

DEF SEG statement

DEF SEG [=] [address]

Defines the current segment in memory. The address is an integer number between
o and 65,535 (or the signed integer numbers -32,768 to 32,767).

Any subsequent use of a BLOAD, BSAVE, CALL, PEEK or POKE definition
specifies the offset into the segment (if the ZBasic segment option is not used in
these commands).

DEFSEG = &BOOO
BLOAD "TEXT.FIL" , 80

This will load the file TEXT. F IL into monochrome display memory (which starts at
&BOOO) at an offset of 80 bytes.

See MEM, PEEK, POKE, BLOAD, BSAVE, VARPTR, VARSEG and the sections in
this appendix entitled "Memory Considerations" and "MSDOS Memory Map" for
more information.

MSD08TM Appendix A-46

MSDOS APPENDIX

A-47

DEF USR statement

FORMAT DEF USR n [=) address [, segment)

DEFINITION This statement is used to tell ZBasic where a user function is to be located in
memory.

EXAMPLE

REMARK

The difference with the regular ZBasic and the IBM version of DEF USR is in the
definition of the address. Address is used as the offset into the segment given by
segment. If the segment is not given, then ZBasic's code segment is used.

DEFUSR1 = LINE 100
This defines the subroutine at ZBasic's line 100 as user function 1.

DEFUSR1 = VARPTR(I),MEMD
This defines the address of variable I in ZBasic's data segment as user function 1.
The subroutine must end with a far return.

DEFUSR1 = &HO, &HOB7D
This defines offset zero into the segment at &HB7D as address of user function 1.
This is a very dangerous use of the USR function and is not recommended.

Use caution when specifying the segment. The subroutine must always be located
at that specific address, which is very uncommon on the IBM machines.

Any subroutine that is called by specifying the segment must return from the
subroutine with a far return. Otherwise, unpredictable resuijs will occur.

Also see CALL, MACHLG and the section in the front of this manual "Machine
Language".

MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX
tt._",llWWi*&WItllWl&1ttr;1WMWwffi..thW@j@1

END statement

END [= expression I

The END statement is the normal way to exit a ZBasic program. On the MSDOS
version, however, an error return code can be sent using the END = expression.
This value can then be interrogated by the batch subcommands IF and
ERRORLEVEL.

If the END = expression statement is not used to terminate a program, then the error
code returned is zero.

ZBasic does two things depending on how END is used.

END USED WITH
RUN
RUN+orRUN*

END = 4

RESULT
Control is returned to the Standard Line Editor.
Control is returned to MSDOS.

A program terminated by this statement could be tested by the following batch
subcommand:

IF ERRORLEVEL 4 ECHO ERROR IS AT LEAST 4

This subcommand will echo to the screen "ERROR IS AT LEAST 4".

See your MSDOS technical reference manual for more information on batch files and
the ERRORLEVEL subcommand.

Also see SYSTEM in this appendix and STOP in the main reference section.

MSD05TM Appendix A-48

MSDOS APPENDIX
Itl}l}~.''''}I~$BI?l''' •• @''''''''''''

ERROR function

A-49

FORMAT

DEFINITION

EXAMPLE

REMARK

ERROR

The same as the standard ZBasic ERROR function except that other errors are
returned:

ERROR=11 An error was encountered with RMDIR, MKDIR or CHDIR.

Errors encountered depend on the statement but usually are related to that
statement i.e. if you get an error 11 doing RMDIR either the directory didn't exist, the
wrong diskette was used, a write protect was on the disk or the wrong pathname was
used.

See ON COM ERROR GOSUB for errors returned from the communication ports.

ON ERROR GOSUB 65535
MKDIR "Mydir n

LONG IF ERROR>O
LONG IF ERROR =11

PRINT "Could not make a new directory!"
PRINT "Please check your disk drive"
INPUT "and press <ENTER> to continue";temp$
GOTO "START"

END IF
XELSE

PRINT "A disk error occurred"
PRINT ERRMSG$(ERROR)
INPUT" <C>ontinue or <S>top";temp$
IF temp$="C" THEN ERROR=O: GOTO "START"
END

END IF
Program continues

See PATH$, RMDIR, CHDIR, MKDIR, ERROR function, ON COM ERROR GOSUB,
ON ERROR GOSUB, ERROR statement and the chapter "Trapping Disk Errors" in
the main reference section.

MSDOSTM Appendix

FORMAT

DEFINITION

MSDOS APPENDIX

FILES statement

FILES [filespec I

Prints a directory of the files in the directory specified by filespec.

If filespec if not used the current directory contents are listed.

EXAMPLE CLS

REMARK

FILES "A:"
END

RUN

Fred
Harry
ZBasic
ZDEMO

4 Fi1e(s)

BAS
BAS
COM
COM

9843
23020
92020
12312

03/23/87
02/22/87
02/22/99
12/23/86

13993949 bytes free

9:45
10:32
23:12
12:34

Also see RMDIR, CHDIR, MKDIR and your MSDOS reference manual for file
specifications and pathname syntax. COMMAND.COM must be on the disk.

Note: Other ways to obtain directories during runtime:

To create a Directory file that you can read into your program (say into string arrays, so
you can manipulate them) try using; SHELLnDIR>DIR.TXT". This creates a text file
called nDIR.TXT" that will contain a listing of the current directory. This example
program should give you some ideas:

CLS
DIM 80A$ (100)

SHELL"DIR>DIR.TXT"

OPEN"I", 1, "DIR. TXT"<--- This routine opens the file and loads it into A$(x).
DO

READjfl, temp$;l
IF ASC(temp$)=13 THEN X=X+l

UNTIL EOF(l) OR X>99
X=X+1
CLOSEU
END
PRINT "There areniXi" items in this directory"

MSDOS'M Appendix A-50

MSDOS APPENDIX
.al iii:: £@ ; 3

A-51

FORMAT

DEFINITION

EXAMPLE

REMARK

FIX command

FIX (spaces to indenf)

This command is used from the Standard Line Editor to remove line numbers (that
are not referenced) and set the number of spaces to indent structures for the Full
Screen Editor (not the line editor).

Unless this command or the INDENT command is used ZBasic will not normally
indent in the full screen editor (it indents two spaces in the Standard Line Editor).

ZBasic structures are FOR-NEXT, DO-UNTIL, LONG-XELSE-END IF, WHILE-WEND,
LONG FN-END FN and SELECT CASE, CASE ELSE, END SELECT.

This is the same as doing both UNNUM and INDENT.

LIST

10 DO
20 x=x+2
25 X=X-1
30 UNTIL X=100
40 PRINT"HELLO"
50 PRINT "This is just a test"
60 GOTO 10

FIX 10

<FlO> <--- To go into the Full Screen Editor

10 DO
X=X+2
X=X-1

UNTIL X=100
PRINT "HELLO"
PRINT"This is just a test"
GOTO 10

Also see INDENT, UNNUM and RENUM'

MSDOSTM Appendix

MSDOS APPENDIX

FORMAT

DEFINITION

EXAMPLE

REMARK

FRE function

FRE (dummy argument)

Returns the amount of free memory left in the system (divided by 16). Multiply the
number returned by 16to get the amount of free memory in bytes.

All
M#

RUN

FRE(x)
A#*16

345329

<---M# contains the amount of free memory in bytes

It is imperative that these variables be double precision to get the true amount of free
memory.

Also see MEM and the sections in this appendix "Memory Considerations" and

~
•. ,.. ., "MSDOS Memory Map".

<\:c";~; .'. '<.- Since there is no "Garbage Collection" with ZBasic, this function does not compact
memory or return the remaining string space as BASICA does. String space is
allocated at compile time.

MSDOsm Appendix A-52

MSDOS APPENDIX
.IW.'@lt_._m",~

INDENT command

A-53

FORMAT

DEFINITION

INDENT (number of spaces to inden~

This command is used from the Standard Line Editor to set the number of spaces to
indent structures for the Full Screen Editor (not the line editor).

ZBasic normally does not indent in the full screen editor. It indents two spaces in the
Standard Line Editor.

ZBasic structures are; FOR-NEXT, DO-UNTIL, LONG-XELSE-END IF, WHILE-WEND,
LONG FN-END FN and SELECT CASE, CASE, CASE ELSE, END SELECT.

EXAMPLE LIST

REMARK

DO
X=X+2
X=X-l

UNTIL X=lOO
PRINT"HELLO"
PRINT "This is just a test"

INDENT lO

<FlO> <--- To go into the Full Screen Editor

DO
X=X+2
X=X-l

UNTIL X=lOO
PRINT "HELLO"
PRINT"This is just a test"

Also see FIX, UNNUM and RENUM*

MSDOSTM Appendix

MSDOS APPENDIX
li_A\\}t*#jjw\t%ltt0 •• '_1.il&w%%}lJlg(®;._*.~t1{lmg\.&*%f%SW1

INKEY$ function
(Special checks for function and other keys)

FORMAT

DEFINITION

EXAMPLE

REMARK

INKEY$

This function operates the same as described in the ZBasic reference section,
except in its handling of function keys.

Normally, the INKEY$ function will return a string whose LEN=1 if a key is available,
otherwise a null string is returned. However, on the IBM version only, the string
returned will have a LEN=2 when a function key is pressed.

The first character in the string will be a null and the second character will be the value
of the key pressed. See "ON INKEY$ statement" for the value corresponding to
each function key.

DATA F1,F2,F3,F4,F5,F6,F7,F8,F9,F10
DATA HOME, UP, PAGE UP, NONE, CURSOR LEFT, NONE, CURSOR RIGHT
DATA NONE, END, CURSOR DOWN, PAGE DOWN, INSERT, DELETE

CLS:PRINT"Key";TAB(30);"ASCII Code of 2nd char."

DO
DO

A$=INKEY$
UNTIL LEN(A$)
LONG IF LEN(A$)=2

B$=RIGHT$ (A$, 1)
LONG IF (ASC(B$»S8) AND (ASC(B$)<69)

RESTORE ASC(B$)-59
READ C$
PRINT "You pressed: ";C$;TAB(30) ;ASC(B$)

ELSE IF
RESTORE 10+ASC(B$)-71
READ C$
PRINT "You pressed: ";C$;TAB(30) ;ASC(B$)

END IF
END IF

UNTIL LEN (A$)=l
END

This example will print the function key you pressed if one is detected on the
INKEY$ function.

See ON INKEY$ and INKEY$ statement in this section for more information on how
to make full use of the function keys.

MSDOSTM Appendix A-54

MSDOS

FORMAT

DEFINITION

EXAMPLE

REMARK

APPENDIX
; '"

INKEY$ statement

INKEY$ (expression)

This statement is used to enable or disable function key interrupts.

The function keys can be used to control program flow with ON INKEY$ GOTO (see
ON INKEY$ statement in elsewhere in this appendix).

The expression in the INKEY$ statement does the following:

zero --->
non-zero --->

disables the function keys
enables the function keys

Enabling or disabling the function keys does not destroy the previous ON INKEY$
key definitions, it simply decides whether or not ZBasic should check for function
keys.

ON INKEY$(I) GOTO "FI"
ON INKEY$(2) GOTO "F2"

INKEY$ (I) <--- Function key interrupts ON

"Event Loop"
I$=INKEY$:IF I$="S" THEN STOP
GOTO "Event LOOp"

INKEY$ (0) <--- Function key interrupts OFF

"Fl"
PRINT "Fl":GOTO "Event Loop"
IIF2"
PRINT "F2":GOTO "Event Loop"
END

The ability to turn the function keys on and off is very useful when parts of a program
use function keys and other parts do not.

If a subroutine does not want to use function keys, the INKEY$(O) statement is used
at the beginning and then INKEY$(1) is used when the routine is done.

Without this statement, ON INKEY$(n) RETURN would have to be done to all
function keys at the beginning and ON INKEY$(n) GOTO line# at the end.

A-55 MSDOSTM Appendix

MSDOS APPENDIX

KEY command

FORMAT KEY ON
KEY OFF
KEY LIST

DEFINITION Controls the display of function key oplions from the standard Line Editor.

EXAMPLE

REMARK

KEY ON Shows the function key equivalents on the last row of the screen. This
is the default.

KEY OFF Hides the function key equivalents.

KEY LIST Prints a list of the function key equvalents:

KEY LIST

Fl LIST
F2 RUN
F3 LOAD
F4 SAVE
FS FIND
F6 EDIT
F7 CONFIG
F8 COMPILE
F9 KEY
FlO EDITOR

Also see INKEY$ statement and ON INKEY$ in this appendix for other ways of
controlling function keys during runtime.

Note: The keys on the bottom of the screen for the Full Screen Editor are different.
See "Full Screen Editor" at the end of this appendix for specifics.

Note: KEY ON and KEY OFF are ignored during runtime.

MSDOSTM Appendix A-56

MSDOS

FORMAT

DEFINITION

EXAMPLE

REMARK

APPENDIX

LOCATE statement

LOCATE (x, YI [,[cursor onloffl [, [start line I [, stop line III

This statement handles all of the cursor functions.

parameter
X;Y
onloff
start/ine
stop/ine

Definition
horiz, vert coordinate on screen.
0= cursor off, not O=cursor on
start line for cursor character 0-13 (cursor appearance)
stop line for cursor character 0-13

The start and stop lines for the cursor determine the size and vertical position of the
cursor; LOCATE ",0,13 makes a fat cursor. LOCATE ",13,13 makes a thin
cursor. This example illustrates the different cursor types:

DO
INPUT"Start line, Stop line",x,y
LOCATE '" x,y

UNTIL X<O OR X>13

For the monochrome adapter, the values of these two parameters can be from 0 to
13. Zero specifies the top of the character block and 13 specifies the bottom. With
the graphics adapter, 0 is top and 7 is the bottom. The cursor can be turned on and
off without the start and stop lines being affected.

LOCATE 0,20,0
This sets the cursor location at column zero of row 20. The cursor is also turned off.

LOCATE ,,1,3,4
This turns the cursor back on and sets the cursor start and stop lines to 3 and 4
(which is about the middle of the character on the graphics adapter).

Note: The X,V orientation can be reconfigured to be V,X (row,column). See
"MSDOS Specific Configuration Options" in this appendix for details.

Also note that ZBasic defaults to accessing character cells using numbers from 0 to
79 accross and 0 to 24 down. BASICA LOCATE uses 1 to 80 and 1 to 25
respectively. Vou may configure ZBasic for this under "Configure".

A-57 MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX

MEM
MEM letter
MEM STR
MEM BCD

MEM function

MEM ARR array variable name (dummy expression)

This function returns the segment address of specific portions of a ZBasic compiled
program.

The segments returned are as follows:

MEM
MEMC
MEMD
MEME
MEMS
MEMI
MEMSTR
MEMBCD
MEM ARR A$(1)

Memory remaining in INDEX$ segment
CODE segment
DATA segment
EXTRA segment
STACK segment
INDEX$ segment
Simple strings
BCD variables.
Array A$ begins.

CLEAR 2000: REM Clear room for INDEX$
DIM A$ (100), A# (200) ,A! (300)

PRINT MEM, MEMC, MEMO, MEME, MEMS, MEMl
PRINT MEM STR
PRINT MEM BCD
PRINT MEM ARR A$(O)
PRINT MEM ARR A#(200)
PRINT MEM ARR A! (300)

When using the MEM ARR function the string array is given only one dummy
argument.

For example:

DIM A$(10,10)
A = MEMARR A$(12)

Only one argument is given, even though the array is 2 dimensional. It does not
matter what the value inside the () is , it is only a dummy argument. It's 12 in this
example but could have been any number. In effect, it is the same as VARPTR
A$(O,O) and reading the segment from the variable VARSEG. See VARPTR for
further info.

Also see VARPTR, VARSEG and the chapter in this appendix entilled "Memory
Considerations" and especially the MSDOS Memory Map.

MSDOSTM Appendix A-58

MSDOS

FORMAT

DEFINITION

EXAMPLE

REMARK

APPENDIX

MEM command

MEM

The MEM command now gives some extra information about the memory usage of
variables. The following is an example of its output:

ZBasic Ready

COMPILE

ZBasic Ready

MEM

00167
64238
14364
01232
00008
00512
00001k
00392k

Text
Memory
Object
Buffer + Integer size
BCD size
String size
BCD/String size
Available

ZBasic Ready

Do not confuse the MEM command with the MEM function. The MEM command is
not a runtime feature.

The above values for Object, Buffer+lnteger size, BCD size, String Size, and
BCD/STRING (array) size will be true only after a successful COMPILE, RUN, RUN> or
RUN+.

A-59 MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX
._; %& wi@@fl%@!1[

MKDIR pathname

Creates a new directory (same as the DOS MKDIR command).

A$=PATH$
MKDIR "Mydirect"
IF ERROR=ll THEN PRINT"Disk error making directory": ERROR=O
END

Also see PATH$, CHOIR and RMDIR.

Note: If an error is encountered when doing CHOIR, RMDIR or MKDIR ZBasic returns
an error eleven (11) in the ERROR function. See ERROR function, ERROR
statement, ON ERROR GOSUB and the chapter "Disk Error Trapping" in the front of
this manual.

MSDOS'" Appendix A-60

MSDOS

FORMAT

DEFINITION

continued ...

APPENDIX

MODE statement

MODE expression

MODE sets the system screen attributes. MODE can be set in the range 0-20 and
takes advantage of all popular graphic and text devices available for IBM PC's and
compatibles.

Color Graphics Adaptor (CGA)
MODE 0-7 Same as the slandard ZBasic modes defined in the reference

section. All of these modes will use the color of the CGA card (or
EGA card when dip switches set to CGA mode) if it is available.

This card uses memory located at &HB800 and uses between
2,048 and 16,384 bytes depending on the MODE. Allows 16
colors in text and low resolution graphics modes only. Four
colors in MODE 5 and 2 colors in MODE 7.

Monochrome Display and Printer Adaptor (MDPA)
MODE 2 If a Monochrome Display and Printer Adaptor is all that is available

then only MODE 2 and 3 will be allowed. This board uses
memory at adress &HBOOO. It uses 4,096 bytes.

CGA Black and White
MODE 8-15 On the IBM. Modes 8-15 are the same as 0-7 with the exception

that only black & white is used on the screen. These modes can
be slightly faster. especially in graphics.

Enhanced Graphics Adpator (EGA)
MODE 16-19 These modes require the Enhanced Graphics Adaptor (EGA).

Hercules and
MODE 20
MODE 2 (text only)

Resolution varies depending on the amount of memory on the
board (see MODE chart). This board uses memory at &HAOOO
and uses 8.192 bytes for MODE 16 and 32,768 bytes for MODE
17,18 and 19 (in monochrome graphics modes colors are:
O=black, 1=low-intensity. 2=blinking, 3=high-intensity).

Hercules Plus Monochrome Graphics Cards
This mode allows the use of the Hercules or Hercules Plus high
resolution graphics boards (or compatibles). Text and graphics
may be intermixed if the Hercules character driver; HERe. BIN has
been loaded first. No other graphic modes will work with the
Hercules cards. It uses memory at &H8000 and uses 16.384
bytes. To utilize high-resolution text-only. use MODE 2.

Note: Also see SCREEN. COLOR, PALETTE, DEF PAGE and the section in the
main reference "Graphics".

A-61 MSDOSTM Appendix

MODE SCREEN
Number Number

0
1
2
3 0
4
5 1
6
7 2
8
9
10
11
12
13
14
15
16 7
17 8
18 10
19 9
20

MSDOS APPENDIX

MSDOS VERSION
MODE CHART

TEXT GRAPHICS
Column/Row horizon x vert

40x25 character
40x25 40x25
80x25 character
80x25 80x25
80x25 character
40x25 320x200'"
80x25 character
80x25 640x200'"
40x25 character
40x25 40x25
80x25 character
80x25 80x25
80x25 character
40x25 320x200'"
80x25 character
80x25 640x200'"
40x25 300x200·
80x25 640x200·
80x25 640x350·
80x25 640x350·
80x25 720x348··

MAX
PAGES

8
8
4
4
4
8
4
4
8
8
4
4
4
8
4
4
2/4/8
1/214
1/2
1/2
2

COLORS MONITOR
Available TYPE

16 C/RGB
16 C/RGB
16 MONO
16 C/RGB
16 C/RGB
4 C/RGB
16 C/RGB
2 C/RGB
8IW C/RGB
8IW C/RGB
8IW MONO
8IW C/RGB
BIW C/RGB
BIW C/RGB
8IW G/RG-S-
8IW C/RG8
16 C/RGB
16 C/RGB
3 MONO
4/16-- C/RGtr
2 MONO

Screen Number is the corresponding QuickBASIC equivalent and may be used instead of MODE. See SCREEN.
·The maximum number of pages for modes t 6-19 depends on the total graphic memory installed. The first number
is 64K, the second 128K and the last number is 256K See DEF PAGE READIWRITE .•• Mode 19 requires 12BK
or more to display 16 colors. C/RGB stands for Color or RGB monitor. MONO stands for monochrome monitor .
···Requires CGA or EGA. • Requires EGA. •• Requires Hercules or Hercules+ display or compatible.

REMARK To determine what board is installed on a computer see CARDTYPE function in this
appendix. Also see SCREEN, DEF PAGE READ/WRITE and COLOR in this
appendix for information on setting text types and colors and manipulating pages.

Also see PALETTE.

MSDOsm Appendix A-62

MSDOS ..
FORMAT

DEFINITION

APPENDIX

MOUSE function

MOUSE (expression)

This function returns information from the current mouse driver as defined by the
DEF MOUSE statement. Expression will determine the value retumed as follows:

MOUSE(O) ---> Resets and returns true if installed.
MOUSE(l) ---> Retums X posHion
MOUSE(2) --> Retums Y posHion
MOUSE(3) ---> Returns button status

The X and Y posHions returned are in terms of Z8asic's graphic coordinate system.

If expression is not 0 to 3, then zero will be returned. Also, MOUSE(O) is supported
only forthe mouse driver (i.e. for DEF MOUSE = 0).

EXAMPLE DO

A-63

REMARK

continued ...

PLOT MOUSE (1) , MOUSE (2)
UNTIL MOUSE (3)

This will plot on the screen the posHion of the mouse device until a button is pushed.

The MOUSE function does not operate exactly the same for all DEF MOUSE types.
Use the fOllowing for more specific information:

DEF MOUSE = 0 ---- MOUSE DRIVER

MOUSE(O)

MOUSE(1)

MOUSE(2)

MOUSE(3)

Resets the mouse hardware and software and returns 0 (false) if
hardware is not installed, otherwise returns -1 (true). Z8asic
always initially resets the mouse.

Returns the horizontal position of the mouse.

Returns the vertical poSition of the mouse.

Returns button status from 0 to 3. Zero if both buttons up, 1 or 2
if only one buttom is pushed and 3 if both buttons down.

The mouse cursor can also be shown and hidden by using the MOUSE(4) and
MOUSE(5) statements. See MOUSE Statement.

Note that the Z8asic has to be configured to support the mouse. See configuration
and DEF MOUSE.

MSDOSTM Appendix

MSDOS APPENDIX
MOUSE function continued

DEF MOUSE = 1 or 2 ---- JOYSTICK DRIVER

MOUSE(1)

MOUSE(2)

MOUSE(3)

Returns horizontal position of joystick

Returns vertical position of joystick

Returns button status from 0 to 3. Zero if both buttons up and 3
if both buttons down. ZBasic debounces the joystick buttons for
1 millisecond.

DEF MOUSE = 3 ---- LIGHT PEN DRIVER

MOUSE(1)

MOUSE(2)

MOUSE(3)

Returns last horizontal position. If pen switch is currently down,
the X and Y poSitions are updated and the new X position is
returned; else the last position is returned.

Returns last vertical position, operating the same as MOUSE(1).

Returns pen switch status from 0 to 1 (0 if light pen switch not
down/not triggered, 1 if down/triggered). If pen switch is down,
the X and Y positions are updated.

If a mouse driver is installed, the light pen driver will no longer work. The MOUSE
function will then return the mouse position and buttons instead of the light pen, still
updating position only when a button is pressed.

MSDOS'" Appendix A-64

MSDOS APPENDIX

A-65

FORMA T MOUSE (expression)

DEFINITION This statement is used to show and hide the mouse cursor.

It is only used for the mouse driver (i.e. DEF MOUSE = 0; see "DEF MOUSE
Statement" in this appendix).

The expression defines the operation as follows:

MOUSE(4)
MOUSE(5)

Show mouse cursor
Hide mouse cursor

" expression is not 4 or 5, the statement is ignored.

EXAMPLE X=I

REMARK

MODE 7
I=MOUSE(O)
NOUSE (4)

"Mouse"
DO

<--- Reset mouse hardware
<--- Let's see that mouse cursor

IF LEN (INKEY$) THEN STOP <--- Press a key to stop
PLOT MOUSE(I), MOUSE (2)

UNTIL MOUSE (3) <---Press mouse button to toggle Mouse cursor

X=X*-I <--- Toggle mouse cursor
IF X>O THEN MOUSE(4) ELSE MOUSE(5)
GOTO "Mouse"

It is important to note that the number of calls to one of the mouse statements must
be equal to the number of calls to the other to get the cursor to the same state. For
example, if MOUSE(5) is called 10 times to hide the cursor, then MOUSE(4) must be
called 10 times to show the cursor.

Also, ZBasic initially resets the mouse and leaves the cursor off (same as the
MOUSE(O) function); one call to MOUSE(4) will tum the cursor on.

This cursor can only be seen in ZBasic MODE's 5,7,13,15,16.

MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX
1I,81.i'Mt.'@11 41DfM&11ij'immljf,jtwtful]
ON COM ERROR GOSUB statement

ON COM ERROR GOSUB line

Used to cali an error routine when an error is detected while reading data from the
communications ports.

OPEN"C l1 , -1, 1200" ",,20000
ON COM ERROR GOSUB "COM Error Routine"

"COM Error Routine U

PRINT"A Conununications error has occurred!"
PRINTItThe error is: 11.

X=USR5 (-1) <--- Change to -2 if other port is being used
SELECT CASE X

CASE AND 2 A 9 <--- See USR5 for errors associated with bits 9-12
PRINT"Overrun Error"

CASE AND 2 A 10
PRINT"Parity Error"

CASE AND 2 A ll
PRINT"Framing Error"

CASE AND 2A12
PRINT"Break detect"

CASE ELSE
PRINTItUnKnown Error!1t

END SELECT
INPUT"<C>ontinue or <S>top?";temp$
temp$=UCASE$(temp$)
IF temp$="C" THEN RETURN
END

See COM BUFF, COM ON, COM OFF, OPEN "C" and USR5(-1) in this appendix for
details. Also see OPEN"C" in the main reference section for other information.

MSDOSTM Appendix A-66

MSDOS
8%UAW

FORMAT

DEFINITION

EXAMPLE

REMARK

continued ...

APPENDIX

ON INKEV$ statement

ON INKEY$(expression) GOTO line#
ON INKEY$(expression) RETURN

This statement is used to control the action when a function key is pressed. ZBasic
supports 20 of the function keys on the IBM standard keyboard. Table 1 on the next
page shows the function keys and the corresponding number associated with each.

When using the ON INKEY$ statement, expression determines which function key
is being defined according to Table 1. The function key is not actually recognized
until a ZBasic keyboard function is implemented, such as INPUT, LINE INPUT, and
INKEY$ function.

When the GOTO is used, the line# specifies where the program will continue
execution alter the function key is hit. When RETURN is used, the function key is no
longer implemented.

All function keys are disabled until the INKEY$O statement is used. See "INKEY$O
statement" in this appendix for more information.

ON INKEY$(l) GOTO "Fl"
ON INKEY$(2) GO TO "F2"

INKEY$(l)
"Event Loop"
I$=INKEY$:IF 1$="5" THEN STOP
GOTO "Event Loop"
INKEY$(O)

IfFl"
PRINT "Fl":GOTO "Event Loop"
"F2"
PRINT "F2":GOTO "Event Loop"
END

Remember to use the INKEY$(1) statement to enable the function keys; otherwise,
ZBasic doesn1 check to see if the ON INKEY$O statement was used. See
"INKEY$O" statement in this appendix.

A-67 MSDOSTM Appendix

MSDOS APPENDIX
ON INKEY$ statement continued

When a GOTO is made from a function key, the current program execution is
terminated and then restarted at the location specified in the ON INKEY$O GOTO
statement. Thus this program location cannot be nested in a subroutine' If a
RETURN is executed before a GOSUB, the program will stop and ZBasic will return to
the editor (or the operating system if in a compiled program).

The following is a list of the function keys supported by ZBasic and the numbers with
which each key is associated. The ON INKEY$ column refers to the number of each
key in the ON INKEY$(expression) statement. The INKEY$ column is the value that
the INKEY$ function will return when the function key is not implemented (see
INKEY$ function in the this appendix).

TABLE 4: Function Key Codes
KEY ON INKEY$ INKEY$

F1 1 59
F2 2 60
F3 3 61
F4 4 62
F5 5 63
F6 6 64
F7 7 65
F8 8 66
F9 9 67
F10 10 68
HOME 13 71
CURSOR UP 14 72
PAGE UP 15 73
CURSOR LEFT 17 75
CURSOR RIGHT 19 77
END 21 79
CURSOR DOWN 22 80
PAGE DOWN 23 81
INSERT 24 82
DELETE 25 83

MSDOSTM Appendix A-68

MSDOS

FORMAT

DEFINITION

continued ...

APPENDIX

OPEN "e" statement

OPEN "c" ,{ -1 I -2} (.(baud]I,(parity](.(stopbit]I,(word length](,(status](,(control](,buffer sizelllllll

The OPEN "C" statement has three additional parameters more than is provided with
the Standard ZBasic,

·Status and· Control; can be used to control the handshaking on the RS-232 cable
when writing to the port - modem status and modem control. The modem status and
modem control parameters indicate the following:

Bits :1 7 16 Is 14 13 12 11 I 0 I

II ~I LSI ! l'·'·"~ L..:; Delta Data Set Ready
Trailing Edge Ring Indicator
Delta Rx Une Signal Detect
Clear to Send (CTS) ••••
Data Set Ready (DSR)

L-_______ -i-.. Ring Indicator

'-------::-----... Receive Una Signal Detect

Modem Status

Bits :1 71 61 Sl 41 31 211 I 0 I

II ~II ! 1~'..m-,~ ~. ~:~~est to Send (RTS) • .-

Out 2
Loop
not used

L----------i~ not used '-_________ • not used

Modem Control

The default bits for these two parameters are shown by the four asterisks (••••) after
the bits set. This makes the default values &'<0011.0000 (or 48 decimal) for modem
status and &X00000010 (or 2 decimal) for modem Control.

(t

• buffer size is used for loading incoming data with COM ON and COM OFF. COM
ON is automatically executed when OPEN"C" is used.

The buffer defaults to 256 bytes but may be configured up to 32,700 bytes. Also
see ON COM ERROR GOSUB and COM BUFF.

A-69 MSDOSTM Appendix

MSDOS APPENDIX
OPEN"C" statement continued

EXAMPLE

REMARK

OPEN "C",-1,300""O

This will force ZBasic to ignore the signal lines DSR and CTS when writing to the port.
This will normally work at 300 baud.

It is important to note that all of these optional parameters affect both COM1 and
COM2.

When a character is written to the COM port, ZBasic does the following:

1) Sends an indicator to the modem control register using the value given in the
modem control parameter. This is usually a Request to Send (RTS).

2) Waits for the appropriate signals from the modem status register given in the
modem status parameter. These are usually Data Set Ready (DSR) and Clear to
Send (CTS).

3) Waits for the transmitter holding register to be empty and then sends the
character to the port.

If the default parameters do not work properly on your machine, try setting the Data
Set Ready and/or Clear to Send bits to zero and/or tuming the Data Terminal Ready
bit to one.

Also see COM ON, COM OFF, COM BUFF, ON COM ERROR GOSUB, USR5 and
the chapter in this section call "RS-232 Communications". Also see OPEN"C" in the
main reference section for other information.

MSDOf3TM Appendix A-70

MSDOS
-MAt

FORMAT

DEFINITION

EXAMPLE

REMARK

APPENDIX

PAGE LPRINT statement (Screen Dump)

PAGE LPRINT

A screen dump to the printer will occur if the PAGE LPRINT statement is executed.
This statement is the same funclion as typing "Shift-PrtSc" from the IBM keyboard.

PRINT"HELLO"
PAGE LPRINT
END

This will cause the entire screen image to be dumped to the printer.

This statement is most useful for printing screen graphics created by ZBasic.
Graphics are not normally dumped to the printer, however. The program
"GRAPHICS.COM" that comes with MSDOS must be run before using the program
in order to install the graphics printer driver.

See the MSDOS reference manual for more information.

Requires IBM PC compatible screen dump routines. May not function on not-so
compatibles.

A-71 MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX
tP.Mj ••• liiiN.* ¢IIBt#t+fh'a

PAINT statement

PAINT (x,y)

Fills a section of the screen with the current color. Same as the ZBasic FILL
statement.

PAINT will use the default coordinate system of 1024x768. If you wish to use pixel
coordinates, or your own coordinate system, use the COORDINATE ststement in
the beginning of your program (see coordinate in the main reference section).

CIRCLE 512, 383, 300
COLOR 3
PAINT (512,383)
END

See FILL, GET, PUT, PLOT, BOX FILL, CIRCLE FILL, PALETTE, MODE, COLOR (in
this appendix and in the front reference section), COORDINATE WINDOW and the
section in the front of this manual entitled "Graphics".

Note: BOX FILL and CIRCLE FILL are much faster than PAINT or FILL.

In some modes COLOR, attribute can be used to set the color of the background.
This is also much faster than FILL or PAINT when the entire background needs to
changed.

MSDOS'" Appendix A-72

MSDOS

FORMAT

DEFINITION

EXAMPLE

REMARK

APPENDIX

PALETTE statement (EGAonly)

PALETTE attribute, c%r

Changes a color in the EGA color palette. This statement will only work with PC's
equipped with an EGA card.

attribute 0-15
color 0-63

COLOR = 1
CIRCLE 100,100,50: REM draw a blue circle
DELAY 2000:
PALETTE 1,2

REM the circle will instantly change to green and all
REM subsequent writes with color =1 will show
REM as green.

This statement allows the user to select a palette of 16 colors out of 63 available
colors.

The PALETTE statement works only on systems with the Enhanced Graphics
Adaptor (EGA).

Each attribute is paired with an actual display color.

A-73 MSDOS'M Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX
1}}NfWg~I}!tt}}}1lififliJ{I,}I%_I.')iirfr*w#}$Mt_Jiifttll}}ttl}'jl.lf»1ii;(}weJiJ

PATH$ function

PATH$ (drive number)

The first format returns a string containing the current path of the specified drive.

drive number;O
drive number;1
drive number;2
drive number;3
drive number;4

A$ = PATH$ (0)

default drive,
drive A:
drive B:
drive C:
drive E:
etc.

PRINT "Current Path ";A$

RUN

Current Path; C:\ZBASIC\TEMP

This can be used to save the current directory, so that the programmer can change
to other directories (with the CHDIR statement) and have a way of retuming to the
original directory. See also CHDIR. See PATH in the main reference section.

MSDOSTM Appendix A-74

MSDOS

FORMAT

DEFINITION

EXAMPLE

REMARK

APPENDIX

PEEK function

PEEK [WORD I (address [, segment I)

This statement is used to read a particular address in memory. The address is
actually the offset into the segment given by segment. If the segment parameter is
not given, then the data segment used by ZBasic will be used as the segment.

PEEK WORD (&HOOCC, 0)
Returns the mouse interrupt vector.

PEEK (0, &HB800)
Returns the first location on the screen.

PEEK WORD (VARPTR(I»
Returns the value of the variable I.

By specifying the segment, every address available on the IBM PC can be accessed.
The PEEK is done much faster, however, when the segment is not given.

This statement is most frequently used in directly accessing screen memory
(although IBM does not recommend doing this). For this purpose, use &HBOOO for
the segment if you have the monochrome adapter, and &HB800 if you have the
color graphics adapter or EGA in CGA modes.

A-75 MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX

PLOT USING statement

PLOT USING x, Y, string [, magnification I

This statement is used to plot a set of pixels on the screen in a pattern defined by
string starting at the location X, Y. The starting location X, Y defines a point on the
screen according to the ZBasic graphic coordinate system. The simple string string
tells ZBasic where to plot each point corresponding to the one before it. The
following characters are accepted: "UDLRHIJK", which control direction, and "+" or
"-", which turn plotting on and off. The letters specify direction as follows:

H U I

L + R

K D J

PLOT USING 512,383,"UUUURRRDDDDLL"
This example plots a rectangle in the middle of the screen.

PLOT USING 512,383,"UUUU-RRR+DDDD",2
This example just plots the vertical halves of the rectangle in the previous example
and twice as big.

MODE 7
A$="UUURRRRRRDDDLLLLLL"
FOR X= 1 TO 90 STEP 5

COLOR=-l
PLOT USING 0, 767, A$,X
COLOR=O
PLOT USING 0, 767, A$,X

NEXT
END

<--- Change MODE for your system.

The PLOT USING statement only works in ZBasic graphic MODEs 5, 7, 13, 15, 16,
17,18,19 and 20 unless ZBasic is configured to not have IBM compatible graphics,
in which case the PLOT USING function is oompletely disabled.

Each pixel is plotted in the color last set by the COLOR statement; thus, a pattern
can be erased by setting COLOR = 0 and replotting.

When turning the plotting back on with a "+" imbedded in the string, note that the
pixel at that point is plotted.

Note: This statement is similar to the DRAW statement found in BASICA.

MSDOSTM Appendix A-76

MSDOS

FORMAT

DEFINITION

EXAMPLE

REMARK

APPENDIX
j; ii! UJ,,,

POKE statement

POKE [WORD I address ,data [, segment I

This statement is used to set a particular address in memory to a value determined
by data.

The address is actually the offset into the segment given by segment. If the
segment parameter is not given, then the data segment used by ZBasic will be used
as the segment.

POKE WORD &HOOCC,LINE 10,0
Sets the mouse interrupt vector to line 10 (not recommended!).

POKE O,ASC("A"),&HB800
Sets the first location on the screen to "A".

POKE WORD VARPTR(I%),0
Sets variable 1% to O.

By specifying the segment, every address available on the IBM PC can be accessed.
The POKE is done much faster, however, when the segment is not given.

This statement is most frequently used in wr~ing directly to screen memory (although
IBM does not recommend doing this). For this purpose, use &HBOOO for the
segment if you have the monochrome adapter, and &HB800 if you have the color
graphics adapter or using the EGA card in CGA mode.

A-77 MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX,.t ... ifllt£'.witI3%1t.ill
RENUM* command

RENUM* new, old, increment

Adds line numbers to programs without line numbers. The compliment of UNNUM.

FOR X=l TO 100
PRINT X

NEXT
END

RENUM*

LIST

10 FOR X=l TO 100
20 PRINT X
30 NEXT
40 END

Also see UNNUM, FIX and INDENT in this appendix and RENUM in the main
reference section.

MSDOSTM Appendix A-78

MSDOS APPENDIX

A-79

FORMAT

DEFINITION

EXAMPLE

REMARK

------RMDIR statement

RMDIR pathname

Removes a directory. Only empty directories may be removed.

RMDIR "Mydirect"
IF ERROR=11 THEN PRINT"Does not exist ! ":ERROR =0

Also see PATH$, CHDIR and RMDIR.

Note: If an error is encountered when doing CHDIR, RMDIR or MKDIR ZBasic returns
an error eleven (11) in the ERROR function. See ERROR function, ERROR
statement, ON ERROR GOSUB and the chapter "Disk Error Trapping" in the front of
this manual.

MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX
~lfwlflf.~flt_'8'Mf*.iW¥¥lfI_it_f~i •• }.}$,§o/ti*'lm

SCREEN function

SCREEN (row, column [, color])

If color is zero or is not used this function returns the ASCII code for the character on
the active screen at the specified row and column. Only valid in text modes.

If color is used and is non-zero the color of the character at the screen location
specified by row and column is returned.

lOW expression from 0-24.

column expression from 0 - 39 or 0 - 79, depending on current mode.

color an expression that evalutes to a true (not zero) or false(zero)

The upper left comer is defined the same way as the LOCATE function (see "Special
MSDOS Configuration Options" in this appendix).

The number returned when using the color parameter may be interpreted as follows:

(number MOD 16)
(((number- forground) / 16) MOD 128)

A = SCREEN (9,9)

; foreground color
; background color

REM If character at poSition 9,9 is "8", A will equal 66

A = SCREEN (2,2,1)
REM The variable A will equal the color attribute of character at position 2,2

Also see COLOR, SCREEN statement and MODE.

MSDOSTM Appendix A-80

MSDOS APPENDIX

A-81

FORMAT

DEFINITION

SCREEN statement

SCREEN mode number

Allows changing from one graphic type to another. Similar to ZBasic's MODE
statement (added for compatibility to other BASIC languages).

mode number 0,1,2,7,8,9,10.

ZBaslc MODE
2
5
7
16
17
18
19

SCREEN mode number equivalent
o
1
2
7
8
10
9

EXAMPLE CLS

REMARK

SCREEN 0
PRINT "HELLO"
END

Prints "HELLO" in monochrome mode. Same as MODE 2 using ZBasic MODE
statement.

See MODE, PALETTE, VIEW SCREEN, DEF PAGE READ, DEF PAGE WRITE,
SCREEN function, COLOR and the chapter on graphics in this section.

MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX

SHEll statement (CALL)

SHELL string

The SHELL statement followed by string will load and execute another program
specified by string. If a null (empty) string is specified. then MSDOS will be loaded
and executed. in which case typing EXIT in DOS will return to ZBasic.

This is identical to the old ZBasic CALL string statement.

String must be either a string variable or a quoted string.

SHELL "DISKCOPY A: B:"
This will perform a diskcopy as if it was typed in from the DOS command line.

SHELL
This will go directly into DOS and give the DOS prompt.

SHELL "ZBASIC"
This will actually load and execute ZBasic. Typing QUIT will then return to the original
ZBasic.

A$ = "DIR A:*.BAS": SHELL A$
This will get the directory of all .BAS files on the A drive.

This statement can be very useful for executing batch files -- just use the name of the
.BAT file (batch file) for string.

There must be at least 17k of memory free to use the SHELL statement.

If COMMAND.COM is not found. the message "File not found" will be echoed to the
display and control will be returned to ZBasic.

MSDOSTM Appendix A-82

MSDOS

FORMAT

DEFINITION

EXAMPLE

REMARK

APPENDIX
; i

TFORMAT statement
(Herculesll!> or Hercules Plusll!> graphic boards only)

TFORMAT [=] expression

The TFORMAT statement is used to set the text format when using text in the
Hercules graphics MODE 20:

The values for expression:

o Reverse video
1 normal (PSET); Overlays graphics
2 XOR mode. XOR text over background.

, Make sure ZBasic (or your program) was loaded using the
, ZHERC.BAT batch file (or your own batch file) so that the
, HERC.COM text driver is loaded into memory first.

MODE 20: REM Hercules graphics mode ONLY!

TFORMAT=l
PRINT"HELLO"

<--- Regular text

TFORMAT=O <--- Reverse text
PRINT"HELLO"
DELAY 2000
MODE 2 <--- Back to MODE 2 for editing
END

RUN

HELLO
HELLO <--- Prints in black on white

Also see MODE, and the section about "Hercules and Hercules Plus Graphics" in
this appendix.

A-83 MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX

TIME$ statement

TIME$ = [hour] [. [minute] [,second]]

This statement is used to set the current time. Any of the three parameters can be
omitted, in which case the parameter will not be changed. The following values are
accepted:

hour: 0 - 23
minute: 0 - 59
second: 0 - 59

PRINT TlME$
TlME$ = 17,0,0
PRINT TlME$
END

RUN

16:33:12
17:00:00

If any of the parameters used are not in the accepted range, the current time will not
be changed.

TIME$ = ,,0
This only sets the seconds to zero, not destroying the current hours and minutes.

See TIME$ function in the main reference section.

MSDOS'M Appendix A-84

MSDOS

FORMAT

DEFINITION

EXAMPLE

REMARK

APPENDIX

TIMER function

TIMER

Returns the number of seconds elapsed since midnight.

STARTiI = TIMER

FOR X = 1 TO 32000:NEXT

FINISHiI = TIMER

TiI= FINISHiI - START#
PRINT "The loop took ";TiI;" seconds"

RUN

The loop took 2 seconds

Since the number of seconds elapsed since midnight can be greater than 65535,
the variable must be BCD. The TIMER function can also be used to re-seed the
random number generator when used with the RANDOMIZE statement.

A-85 MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX

UNNUM command

UNNUM

Removes line numbers from lines that are not referenced elsewhere in the program
by a GOSUB line number, GOTO line number etc.

Extremely useful cosmetic command for removing unsightly line numbers from your
old BASIC programs (we should have used this sentence in our advertisements).

10 FOR X=l TO 100
20 PRINT X
30 NEXT
35 GOTO 10
40 END

UNNUM

LIST

10 FOR X=l TO 100
PRINT X

NEXT
GOTO 10
END

Also see RENUM* in this appendix and FIX and INDENT.

MSDOSTM Appendix A-86

MSDOS APPENDIX

A-87

FORMAT

DEFINITION

USR1 function (Check End Of File status)

USR1(fiIenumber)

USR1 is a predefined user function available on the IBM PC. This user function is
equivalent to the EOF(filenumber) function. The result is -1 if end of file, 0
otherwise.

Use the EOF function instead. This is retained only for compatibility with older
versions of ZBasic. See EOF in the main reference section of this manual.

USR2 statement (Set the the clock constant)

FORMAT

DEFINITION

EXAMPLE

REMARK

USR2 (expression)

USR2 is a predefined user function available on the IBM PC version. USR2 is used
to control the 1 millisecond time constant used in the DELAY statement.

The ZBasic DELAY statement should delay a specified number of milliseconds
(1/1000 of a second). This delay time is, however, very dependent on the actual
speed of the computer. The delay time constant defaults to a 1 ms delay on the IBM
PC (i.e. 4.77 megahertz clock speed using the 8088 microprocessor).

If using ZBasic on a different speed computer, then use the USR2 statement to
adjust the time constant.

IBM PC --->
faster computer --->
slower computer --->

expression = 300
use a larger expression
use a smaller expression

This delay time constant is also used in the SOUND statement to specify the
duration.

USR2(470)

This will set the time constant to 470. This is the value used on the IBM PCIAT to
correct the delay times.

This time constant can also be altered in configuration, which would change the
default value. See "MSDOS Specific Configuration Options" in this appendix.

MSDOSTM Appendix

FORMAT

DEFINITION

EXAMPLE

REMARK

MSDOS APPENDIX

USR3 function (Check keyboard status)

USR3(expression)

USR3 is a predefined user function available on the IBM PC. This user function is
used to control keyboard input and status as follows:

USR3(O)--->

USR3(1)--->

USR3(2)--->

°Bit7
OBitS
OBitS
°Bit4
Bit3
Bit2
Bit1
BilO

Returns the next character struck from the keyboard. The ASCII
code is returned in the lower 8 bits. The keyboard scan code is
returned in the upper 8 bits.

Scans the keyboard buffer. Zero is returned ~ no key was struck.
If there is a key in the buffer, the ASCII and scan codes are
returned same as USR3(O), except the character will remain in the
buffer.

Returns the current shift status. The bits returned are as follows:

Insert key active
Caps Lock key toggle
Num Lock key toggle
Scroll Lock key toggle
Alternate key depressed
Control key depressed
Left Shift key depressed
Right Shift key depressed

°Note: You can toggle the Insert, Caps Lock, Num Lock and Scroll Lock keys with
the following statement:

POKE &17, PEEK(&17,&40) XOR (2 A bit), &40

(bit= 4-7 corresponding to the keys with bits 4-7 above).

DO
UNTIL USR3(1)<>0
A$=INKEY$
This is the same as DO: A$=INKEY$: UNTIL LEN (A$) , exceptthe above
example is much faster.

DO
PRINT@(O,O) BIN$(USR3(2»;

UNTIL INKEY$="Q"
This example will print the individual status bits on the screen. Pressing the keys
specified in the list above shows the response of the status bits.

Remember that USR3(1) does not take the character out of the buffer. This can be
useful for checking the keyboard for a specific key before going into a standard input
routine, such as INPUT or INKEY$.

MSDOSTM Appendix A-88

MSDOS APPENDIX

A-89

iN

USR4 statement (Jump on CTRL C or CTRL BREAK)

FORMAT

DEFINITION

EXAMPLE

REMARK

USR4 (address)

USR4 is a predefined user function available on the IBM PC version. USR4 is used
to set the clrl-break address (or ctrl-C) when one is detected. The address specified
must be in ZBasic's code segment.

USR4(LINE 20000)
This sets the ctrl-break address to be ZBasic's line 20000. In this case, if during
program execution a ctrl-break is detected, a jump will be made to line 20000.

When USR4 is used to set the ctrl-break address, it must be understood that the
program still cannot continue normal execution after the break is detected. The
register and stack will be unpredictable; thus, the subroutine at the break address
should finish with a stop or end to exit the ZBasic program.

MSDOSTM Appendix

MSDOS APPENDIX

USR5 function (Get Communication port status)

FORMAT

DEFINITION

EXAMPLE

REMARK

USRS(-lor -2)

USR5 is a predefined user function available on the IBM PC version. USR5 is used
to return the status on either of the communication ports (see OPEN "C").

The status bits returned are defined as follows:

1I ne
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8

Modem
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0

Status
= Time Out
= Trans Shift Register Empty
= Tran Holding Register Empty
= Break Detect
= Framing Error
= Parity Error
= Overrun Error
= Data Ready

Status
= Received Line Signal Detect
= Ring Indicator
= Data Set Ready
= Clear To Send

<---
<--- These bits checked with ON COM
<--- ERROR when a communication
<--- error occurs.

= Delta Receive Line Signal Detect
= Trailing Edge Ring Detector
= Deija Data Set Ready
= De~a Clear To Send

J=USR5 (-1)
This gets the status of the communications port 1 (COM1).

This function can be useful in investigating the RS-232 control. "there is a problem
with the 232 communication (such as mismatched baud rate, parity error, time out, or
cable hookup), it can be evident by observing the status via the USR5 function.

See "RS-232 COMMUNICATION" in this appendix for more information.

Also see OPEN"C", COM ON, COM OFF, COM START, COM END and ON COM
ERROR GOSUB in this appendix. Also see OPEN"C" in the main reference section.

MSDOS'" Appendix A-90

MSDOS APPENDIX _.ff ... ilt.Mffirjii;W;!ilili::iiWiii tw:m\;;;!:::II:::M8WlWMj

A-91

FORMAT

DEFINITION

EXAMPLE

REMARK

VARPTR function
VARSEG function

VARPTR (variable)
VARSEG

This pair of functions is used to determine the memory address of a variable.
VARPTR (variable) returns the offset of the variable. VARSEG returns the segment
of variable.

DIM A$(400)
AS (400) = "HELLO"
A = VARPTR (A$(400»:
B = VARSEG:
PRINT PEEK(A,B) :
PRINT CHR$(PEEK(A+l,B»

RUN

6
H

REM gets the offset
REM gets the segment
REM print the length
REM print the first char.

Because of the enhanced variable memory capability of this version of ZBasic, the
VARPTR function is slightly different from previous versions. In earlier versions, the
variables were put in one 64K segment which began at the data segment (OS).
The address was returned in one 16-bit number.

Now in 4.0 integers, BCD's, strings and BCD/string arrays are given there own
dedicated block of memory so that more data can be stored. Therefore, two
numbers are needed; one for the offset; one for the segment.

The VARSEG function returns the segment of the last variable used with VARPTR.
Its value is valid only immediately after a VARPTR has been executed.

MSDOSTM Appendix

FORMAT

DEFINITION

MSDOS APPENDIX
~ •• *l)llal}i*.\%Wl.i.&.l§W&IIWI'I.ffl.}.&;;tMl'i4f.t.Jf,fj)l

VIEW PRINT statement

VIEW PRINT topline TO bottomiine

Used to the set scrolling bounderies.

topline
bottomline

The top line to be used for output.
The last line to be used for output.

This statement is very similar to the ZBasic DEF PAGE statement which also allows
setting the column bounderies as well.

EXAMPLE CLS

REMARK

VIEWPRINT 5 TO 10
LOCATE 0,5 <--- Set cursor to first line position
DO

PRINT"HELLO l1 i

UNTIL LEN(INKEY$)
END

Demonstrates how the text is retained within the row limits.

Also see DEF PAGE.

MSD05TM Appendix A-92

MSDOS

FORMAT

DEFINITION

EXAMPLE

REMARK

APPENDIX

WAIT statement

WAIT portnumber, AND expression [, XOR expression 1

Suspends program execution while checking the status of an input port.

portnumber
AND expression
XOR expression

numeric from 0-65535.
integer from 0-255
integer from 0-255

WAIT Port (x) , 255,255

The WAIT statement causes execution of the program to be suspended until a
specnied port produces a certain bit pattem.

The data read at the port is XORed with the XOR expression, the ANDed with the
AND expression. If the result is zero the program loops back to read the port again.

CAUTION: The computer may lock up n the required bit pattern does not appear on
the port.

A·93 MSDOSTM Appendix

MSDOS APPENDIX

ASIC
FULL SCREEN EDITOR

ZBasic 4.0 includes a powerful, yet simple, built in full screen editor for editing
program text. To toggle between the Full Screen Editor and the Standard line
Editor, use the <F10> key.

DIFFERENCE BETWEEN THE FULL SCREEN AND STANDARD LINE EDITORS

continued ...

STANDARD LINE EDITOR
This editor is provided for two reasons;

• The user may enter direct commands quite like a BASIC interpreter. You can
enter things like PRINT ASC(A) and ZBasic will return 65. Math expressions
may be entered like ?SQR(9) and 3 will be returned. See the section in the
front of this manual call "Standard line Editor" for detailed information about
this editor.

• The Standard line Editor works the same way on all versions of ZBasic
inlcuding Apple II, CPIM, Z80 and Macintosh. This allows a common interface
that someone may use that doesn't have the time to learn all the Full Screen
Editors provided.

Note: If you opt to disable line numbers you will need to do all the editing in
the Full Screen editor since EDIT requires a line number.

FULL SCREEN EDITOR
The full screen editor is provided to make entering and editing program code easy
and fast. The following two pages describe the commands used with this editor.

MSDOsrn Appendix A-94

MSDOS APPENDIX

A-95

FULL SCREEN EDITOR

Following is a list of command keys and control keys. Take a few minutes with the
editor to become familiar with what these keys do.

MOVING THE CURSOR

KEY CURSOR MOVEMENT
ft UP a line
II DOWN a line
<= LEFT one character

=> RIGHT one character

Ctrl<= LEFT A WORD
Ctrl=> RIGHT A WORD

Home BEGINNING OF LINE
End END OF LINE

Ctrl-Home TOP OF TEXT (beginning or start of program text)
Ctrl-End BOTTOM OF TEXT (end of program text)

Pg Up PAGE UP
Pg Dn PAGE DOWN

DELETING TEXT

KEY ACTION
Delete DELETE character under cursor
Ctrl-E ERASE TO END OF LINE

INSERT MODE or OVERWRITE MODE

KEY ACTION
Insert Toggles between INSERT mode and OVERWRITE mode. Insert

mode inserls text at the current cursor poSition. Overwrite mode allows
you type over the text under the cursor. (cursor is thicker in insert mode)

MSDOSTM Appendix

MSDOS APPENDIX
FULL SCREEN EDITOR COMMANDS

The Full Screen Editor commands are easy to leam. Spend a few minutes trying out
the various commands.

You will notice that the function key commands are displayed on the bottom of the
screen. When you press the AL T key the alternate set of commands is displayed.

Editor
Keys

F1

ALT F1

F2

ALT F2

F3

ALT F3

F4

ALT F4

F5

ALT F5

F6

ALT F6

F7

ALT F7

F8

ALT F8

F9

ALT F9

F10

ALT F10

FUNCTION KEY
EDITOR COMMANDS

Definitions

LOAD file

SAVE file

CUT line into buffer (for use with PASTE! REPLACE)

PASTE line from buffer to the current line

COpy line into buffer without erasing

REPLACE current line with line in buffer

INSERT a new line after current line

DELETE current line

FIND texl. See FIND in main reference section

FIND NEXT occurence

Set TAB value for indenting

AUTO TAB on/off. Toggles carriage retum positioning

RESTORE line to condition before changes made

LLiST to printer

SCROLL screen text up (does not move cursor)

SCROLL screen text down (cursor doesn't move)

FREEZE top of screen (press again to unfreeze)

FREEZE bottom of screen (press again to unfreeze)

Return to Standard Line Editor

NEW. Erases all text in text buffer

Note: Programmers that use ZBasic on both the Apple and IBM should notice that
the key sequences correspond to the open and closed Apple sequences so
switching from one machine to another is much less confusing (of course the
Standard Line Editor commands are the same).

MSDOsm Appendix A-96

zao APPENDIX
tAl: EM

8-1 Z80 Appendix

zao APPENDIX

ASIC
L-nl -'"

Zao™ Versions
TRS-80™ Models; 1, 3 and 4,

CP/MTM-80 2.2, 3.0 and
CP/MTM-80 Plus

by

Andrew Gariepy

© Copyright, 1985, 1986, 1987

ZEDCOR, INC.
All Rights Reserved

ZBasIc is a registered trademark of Zadcor. Inc.
ZSO is a registered trademark of Zilog, Inc.

TAS-SO Is a registered trademark of Tandy Corporation
CP/M [s a registered trademark of Oigltal Research Incorporated

Z80 Appendix 8-2

zao APPENDIX
M

B-3 Z80 Appendix

TABLE OF CONTENTS

Table of Contents

Flies on the Master Diskette

Getting Started
TRS-80 Model 1
TRS-SO Model 3
TRS-80 Model 4
CP/M
Kaypro

Notes on the Z80 Version
Memory
Filenames
Sound
Z80 ICON
Z8asic DEMO program
Schools
Graphics
Mouse
Help
CALL "string" (TRS-80 versions only)
COLOR
TIME$/DATE$

Z80 Disk Formats
TRS-SO
CP/M

Z80 Optional Binary Math Package

Executing ZBaslc

Z80 Specific Configuration Options
TRS-80 Specific Options
CP/M Specific Options

Using the Patch Utility

Memory Considerations
Memory Map

RS-232 Communications

Jump Tables

Default USR Routines

Using Overlays instead of Chaining
Overlay Example

Z80 MODE Chart

83

84

85
85
85
85
85
85

86
86
86
86
86
86
87
87
87
87
87
87
87

88
88
88

89

810

811
812
813

815

816
817

818

819

820

821
822

823

zao APPENDIX

FILES ON THE MASTER DISKETTE
SYSTEM
FILES

ZBASIC
FILENAME
ZBASIC.COM

DESCRIPTION
This is the main ZBasic compiler and editor. Just type ZBASIC to
execute. Note: On TRS·80 the file is called ZBASIC/CMD.

THE FILE ABOVE IS THE ONLY ONE REQUIRED TO RUN ZBASIC

THE FILES BELOW ARE OPTIONAL AND MAY BE DELETED FROM WORKING DISKETTES

EXAMPLE
FILES

DEMO

HELP

DISK I/O

GRAPHICS

SORT
ROUTINES

MATH
FUNCTIONS

FILENAME
ZBDEMO.COM

ZBASIC.HLP

DISKIO.BAS

ZROSE.BAS

CLOCK
APPLE.BAS

SORT.BAS

SHELL.APP

QUICK.APP

SCIFN.APP

DESCRIPTION
A limited demo version of ZBasic (public domain). Feel free to
give it away to your friends, relatives and co-workers. This and
ZBAS IC. HLP may be given away together (please do not give
away any other programs on this disk). Note: ZBDEM013 on the
TRS-80 model 4 version is the Model 1 ,3 demo.

This is the help file. It is not necessary for using ZBasic but is
helpful when leaming ZBasic syntax. Just type HELP from the
editor to get a menu of the help available.

Example of using ZBasic disk file handling (DTEST on some disks)

Does a graphic "Rose" using High-speed and regular speed SIN
and COSINE routines. (GTEST on some Z80 versions). Not
included with all Z80 versions (storage limitations).
Graphic clock example (most versions).
Bar and Line Graphs in Device independent Graphics.

This routine creates random data for arrays to demonstrate the
SHELL and QUICK sort routines on this disk. Load this program
firstthendoAPPEND 1000 SHELL.APP (or QUICK.APP)
The SHELL SORT that appears in the manual (under "Array
variables.) A powerful sort when less items are used.
The QUICK SORT that appears in the manual (under "Array
variables.) A powerful sort when many elements need to be
sorted.

Examples of creating your own functions with ZBasic.

NOTE TO FILENAME SUFFIX SYNTAX: Filename suffixes will vary depending
on the disk operating system being used. Syntax above is for CP/M. If you have a TRS·
80 the suffix differs: ZBASIC.COM and ZBDEMO.COM become ZBASIC/CMD and
ZBDEMO/CMD respectively. The period is changed to a slash for all the other files
above; SORT. BAS becomes SORT/BAS ...

Z80 Appendix 8-4

zao APPENDIX

GETTING STARTED
TRS-SO MODEL 1

1.
2.
3.

TRS-SO Model 3

1.

2.

3.
4.

TRS-SO MODEL 4

1.
2.
3.

Make a backup and put the original in a safe place.
Read this appendix, making notes of any variations for the Modell.
Follow the instructions under "Getting Started" in the main reference manual.

Since this diskette is in TRS-80 Model one format, you MUST use the CONVERT
utility to transfer the files on the master diskette to model 3 diskettes.
After converting the files make a backup of that diskette and put it and the master
disk in a safe place for future use.
Read this appendix, making notes of any variations for the Model 3.
Follow the instructions under "Getting Started" in the main reference manual.

Make a backup and put the original in a safe place.
Read this appendix, making notes of any variations for the Model 4.
Follow the instruction under "Getting Started" in the main reference manual.

CP/M-SO GENERIC

1. The diskette is provided on a Kaypro format Single sided-double density diskette.
You will need a program like "Uniform™" to transfer the files over to your computer's
diskette format if your drives will not read this diskette. ZBasic is also available on 8"
format for an extra charge. Use the PIP utility to transter files to your CP/M diskette.

2. Make a backup of your newly created master diskette and put it and the original in a
safe place for future use.

3. See "Special Configuration Options" in this appendix to set up ZBasic to work with
your terminal type. You will probably need your terminal or computer hardware
reference manual for control codes for Clear screen, cursor control and the sort.

4. Read this appendix, making notes of any variations for the Model 3.
5. Follow the instruction under "Getting Started" in the main reference manual.

KA YPRO® CP/M

8-5 Z80 Appendix

1. Make a backup of your master diskette and put it, and the original, in a safe place for
future use.

2. Read this appendix, making notes of any variations for the Model 3.
3. Follow the instruction under "Getting Started" in the main reference manual.

zao APPENDIX

NOTES ON THE Z80 VERSION

MEMORY

FILENAMES

SOUND

zao ICON

ZBasic 3.0 for the zao Versions is designed to run in a DOS environment (CP/M-aO
or TRSDOS). The typical programming area available in a 48k to 64k machine is
from 24k to 56k. ZBasic also has the capability of OVERLAYS which are explained
later in this Appendix (this version will only use a single bank of 64k.)

The filenames in ZBasic are the standard DOS filenames.
(Disk Operating System). Example:

TRSDOSTM
ZBASIC/CMD

CP/MTM-ao
ZBASIC.COM

PROGRAM/BAS:l

A: PROGRAM. BAS

TRSTM-ao Model 4, 4p

MYPROG/BAS. SECRET: 0

B:MYPROG.BAS

The range of frequencies for the internal speaker of the model 4 are limited to:
121,121 through 7,31.

TRSTM-80 Model 1&3
The frequency range is from 100hz to 10,000 hz and is routed out the out the
cassette port. Connect a speaker amplifier to the cassette port to get sound. See
your Radio Shack dealer for priCing (about $10).

CP/MTM-80 & Kaypro™
Since most CPIM systems do not support sound, SOUND is routed as CHR$(7)
(tone will not vary). Check your users manual for sound capabilities and porting.
Sometimes OUT (n) may be used.

JB"l --Whenever you see this icon in the main reference section of the manual take note
of it's contents. It is referring to a variation in the use of that command for one of the
zao versions.

ZBASIC DEMO PROGRAM

continued ...

There is a ZBasic demo program on your disk that may be copied and given away to
friends called ZDEMO.COM or ZDEMO/CMD. This is a limited version of ZBasic that
contains all the functions and is only limited by program size and saving object
code. Feel free to give copies of the ZDEMO program and the ZBasic.HLP program
to your friends.

zao Appendix 8-6

Notes on zao continued

SCHOOLS

GRAPHICS

MOUSE

HELP FILE

CALL "string"

COLOR number

TIME$/DATE$

B-7 Z8D Appendix

Schools may duplicate the ZDEMO/CMD program for teaching. This program is very
useful in a classroom since, in most cases, a full blown language is rarely necessary.
Note that this also cuts down the costs to schools (under no circumstances may the
actual ZBasic program be copied for distribution).

Special graphics Modes:

TRS-80™ Model 4, 4p
This version will use the Radio Shack™ Model 4, 640 x 240 high-resolution
graphics board and the Micro-Labs™ high-resolution board in MODES a through 15
only.

TRS-80™ Model 1& 3
No High resolution modes are supported.

CP/MTM-80
Graphics are not supported. All Graphics are emulated using text characters. See
COLOR and CLS for changing the character type being used.

KAVPRO II, 4, 10 SpecIal GraphIcs versIon
Kaypro 160x1 00 Graphics are supported with this special CPIM version. Your
Kaypro must have graphics for this version to work.

Does not function with this version. See "Patch" in this appendix for ways a mouse
can be patched in.

The file used in the ZBasic HELP command is called ZBASIC/HLP or ZBASIC.HLP.
This file may be deleted to allow more room on the disk. If HELP is not on the disk,
typing HELP from the editor will generate a "FILE NOT FOUND" error.

Supported only in the TRSTM-80 Versions. This passes a DOS command to the
operating system. Example: CALL "DIR".

All present zao versions use 0 (zero) as BLACK. Any other value will be WHITE or
the character.

These commands are supported on the TRS-80 only. CPIM versions
will return 00:00:00 and 00/00/00 respectively.

zao APPENDIX

Z80 DISK FORMATS
The Z80 versions of ZBasic are provided on a specific disk format depending on the
machine. The format descriptions are as follows:

TRS-80 MODEL 1 & 3

Format:

Modell
Transfer:

Model 3
Transfer:

TRS-80 MODEL 4 & 4p

Format:

Transfer:

TRSTM-80 Modell
5 1/4 inch, 35 track, Single Sided, Single Density

Modell TRSDOS 2.3
Boot ZBasic™ disk in drive O. The disk will copy all files to a formatted
TRSDOSTh' 2.3 System Disk

Model 3 (4 in 3 mode) TRSDOS 1.3
Use TRSDOSTM 1.3 or compatible CONVERT command to move files
from the model 1 formated diskette to a model 3 compatible format. See
instructions for CONVERT in your TRSDOS manual.

TRSTM-80 Model 4 & 4p TRSDOS 6.0.2
5 1/4 inch, 40 track, Single Sided, Double Density (TRSDOSTM 6 Format)

Just copy files to your system disk.

OTHER TRS-80 OPERATING SYSTEMS

ZBasic can be copied over to most TRS-80 Disk Operating Systems like MultiDos,
DosPlus, Newdos, and LDOS.

CP/M-80 VERSIONS 2.2, 3.0 or PLUS

Format:

Transfer:

CP/MTM-80 version 2.2 or 3.0
5114 inch, 40 track, Single Sided, Double Density (KayproTM II Format)

If your computer cannot copy the ZBasic files over to your format using
PIP, try using a transfer program to move files onto your disk format.
Some popular transfer programs: Interchange™, Multidisk™, Uniform™.

Once ZBasic is in your disk format it may copied like other files.

SPECIAL KA YPRO GRAPHICS VERSION

Format: KAYPROTM, CP/MTM-80 version 2.2
5 1/4 inch, 40 track, Single sided, Double Density

Transfer: Use PIP to transfer programs onto your system disk.

Z80 Appendix 8-8

zao APPENDIX .. _-_
zao OPTIONAL BINARY MATH PACKAGE

Zedcor offers an optional Binary Math package that allows you to get faster execution
times when doing floating point math. Contact Zedcor at 1-800-482-4567 if you want
this optional package.

While high speed floating math may be desirable, there are a number of trade-offs:

• Speed increase of 10x is typical.

Precision is not definable like BCD versions of ZBasic. Digits of accuracy for both single
and double precision is 6.2 digits with a range of E±38.

• Binary constants and variables require four bytes each for RAM and DISK storage.

• Binary numbers are stored in a different format that BCD numbers.

• MKB and CVB work with binary numbers only.

• Speed increases are up to 10 times the speed of the BCD version. There is the typical
binary rounding error factor (not in the regular version of ZBasic).

~
Note: Programs created with the binary math version of ZBasic cannot read files with

8-9 ZBO Appendix

BCD floating point created with the BCD version and vice-versa. The binary format is
subject to change in future and other versions of ZBasic. Do not use PEEK or POKE on
binary variables.

Note: A# and A! are dnferent variables (even though single and double are the same
precision).

zao APPENDIX

EXECUTING ZBasic™

There are basically two ways of starting ZBasic from the operating system prompt. With CP/M the
DOS prompt is A>or C> depending on the drive used. With TRSDOS ~ is DOS Ready.

1. Type: ZBASIC <ENTER>

This is the standard way to startup ZBasic. See "GETIING STARTED" in the ZBasic
standard manual. Also see "CONFIGURATION" in this appendix.

2. Type: ZWARM <ENTER>

This is a special way to startup ZBasic to recover a ZBasic text program after a crash or
reset. A version of ZBasic must be created using the <W>arm start creator option from
the ZBasic start up screen.

To Create this WARM start version configure ZBasic for your machine and save using the
<S>ave option from the ZBasic startup menu. (DO NOT use your MASTER DISK only use
a BACKUP COPY of your master diskette).

Exit ZBasic using QUIT and re-enter the just created configured ZBasic and use the
<W>arm Start Creator option to create a WARM start version of ZBasic to be called
(TRSTM-80: ZWARM/CMD ,CP/MTM-80: ZWARM.COM) which can be used to recover
ZBasic program text after a RESET or program lock-up.

Important Note: ZWARM will only recover a program if it is still intact in memory and has
not been overwritten. This will not recover from a NEW as ~ erases the program.

The ZBasic 3.0 patch option allows the user to PATCH specific addresses in ZBasic to
Change areas in the JUMP TABLE for special hardware or software and to apply fixes to
the actual program as specified by Zedcor to provide some special features. These
changes may be saved by using the <S>ave option from the start-up MENU.

Z80 Appendix 8-10

zao APPENDIX
'W.6::i:miiiii:;i •• jWMWtfM#j

zao SPECIFIC CONFIGURATION OPTIONS
After typing "C" in the initial prompt screen, ZBasic will ask for the standard
configuration parameters explained in the "Getting Started" section of the manual.
Following these standard parameters are the Z80 specific configuration parameters.
The additional prompts displayed are as follows:

NOTE: Press <ENTER> to skip options. Press <BREAK> to exit «CTRL C> with CP/M).

CONFIGURE OPTIONS ON ALL Z80 VERSIONS

continued ...

Default Clear nnnnn Size 03E8 01000 ?

This selects the default amount of memory to be set aside for strings in the INDEX$
area at compile time. The actual amount of memory in the running compiled program
can be found by using MEM function in the program. If this area becomes less than or
equal to zero due to high memory drivers a 'Not Enough Memory' error will be
displayed and the program will exit back to DOS.

LIST First Line <Key> 0019 00025

When pressed as the first key on a line will cause the editor to LIST the first program
line and make it the current line. Typical key: <Left Arrow>

LIST Last Line <Key> 012C 00300

When pressed as the first key on a line will cause the editor to LIST the last program
line and make it the current line. Typical key: <Right Arrow>

LIST Previous Line <Key> 012C 00300

When pressed as the first key on a line will cause the editor to LIST the previous
program line and make it the current line. Typical key: <Up Arrow>

LIST Next Line <Key> 012C 00300

When pressed as the first key on a line will cause the editor to LIST the next program
line and make it the current line. Typical key: <Down Arrow>

FIND Next occur. <Key> 003B 00059

When pressed as the first key on a line will cause the editor to FIND the next
occurrence of the string last used with the FIND command and make it the current line.
Typical key: <semi-colon>

Overlay Offset (see "Overlays"): 00000 00000

Allows you to set the Offset for overlay programs. See OVERLAYS in this appendix
for details.

8-11 Z80 Appendix

zao APPENDIX

SPECIAL TRS-80 CONFIGURATION OPTIONS

continued ...

TRSDOS, NEWDOS or Other <T/N/O> 012C 00300

This special Configuration is used to tell the EDITOR which type of DOS you are using
50 the DIR command will be available from the editor.

Type a 'T' if you are using TRSDOS.

Type an "N" if you are using NEWDOS (be sure to re-enable the BREAK key with
NEWDOS; see your NEWDOS manual for details).

Type an "0" for using most OTHER TRS-80 type disk operating systems.

If not configured correctly, a system crash may occur when DIR is used from the
editor. This is one of those things in machine language that was never truly
standardized by TRSDOS and other Disk Operating Systems.

DIR does not function from the editor with Model 1 TRSDOS or NEWDOS. Most other
Model 1 Disk Operating Systems like LDOS, MultiDOS etc. function properly.

DOS COMMANDS FROM THE TRS-BO VERSIONS ONLY

To use DOS commands from within your programs use CALL"DOS Command". To
do a DIR from within a ZBasic program use CALL"DIR". To find out how much disk
space is available use CALL"FREE", etc.

Note: The DOS function being called MUST NOT use memory over 5200H for Model 1
or 3 and 3000H for Model 4. This may not work with some disk operating systems.

Note: NEWDOS stops the system scan of the <BREAK> key. Use the NEWDOS:
SYSTEM BREAK ON command (or whatever command that particular version of
NEWDOS uses. See your NEWDOS MANUAL).

zao Appendix 8-12

zao APPENDIX

SPECIAL CP/M CONFIGURATION OPTIONS

continued

PRINT@ Control (Hex Code) 3D1B 15643

This Configuration question tells Z8asic which control codes for the screen will cause
the cursor to be posnioned for used with the PRINT@ or LOCATE function. The
codes for this can be found in your computer terminal technical manual. If a single
character just type the character code in decimal or Hex (precede the Hex code with a
"&").

If the code is two characters like 18 and 54, type the number in Hex in reverse order;
&5418. These codes must be correct for the Z8asic text graphics or screen PRINT@
or LOCATE functions to operate.

Clear Screen String (Hex Code) 001A 00026

This Configuration question tells Z8asic which control code for the screen will cause
the screen or terminal to be cleared of text and graphics using CLS. The correct codes
for this can be found in your computer or terminal technical manual. If a single character
just type the character code in decimal or Hex (precede a Hex code with a "&").

If the code is two characters like 18 and 54, type the number in Hex in reverse order;
&5418. These codes must be correct for the Z8asic text graphics or screen CLS
function to operate.

Clear To End of Line (Hex Code) 541B 21531

This Configuration question tells Z8asic which control code for the screen will clear the
text and graphics from the cursor position to the end of the line using CLS LINE. The
correct codes for this can be found in your computer or terminal technical manual. If a
single character just type the character code in decimal or Hex (precede a Hex number
with a "&").

If the code is two characters like 18 and 54, type the number in Hex in reverse order;
&5418. These codes must be correct for the Z8asic text graphics or screen
CLSLINE function to operate.

Clear End of page (Hex Code) 591B 22811

This Configuration question tells Z8asic which control code for the screen will clear the
screen from the cursor position to the end of the screen using CLS PAGE. The
correct codes for this can be found in your computer or terminal technical manual. If a
single character just type the character code in decimal or Hex (precede a Hex number
with a "&").

If the code is two characters like 18 and 54, type the number in Hex in reverse order;
&5418. These codes must be correct for the Z8asic text graphics or screen
CLSPAGE function to operate.

Note: Also see JUMP TA8LE and PATCH in this appendix for configuring control
strings longer then two characters.

8-13 Z8D Appendix

zao APPENDIX

Special CP/MTM-80 Configurations continued

Cursor (off) String (Hex Code) 451B 17691

This Configuration question tells ZBasic which control code for the screen will turn on
the blinking cursor using LOCATE x,y, OFF. The correct codes for this can be
found in your computer or terminal technical manual. If a single character just type the
character code in decimal or Hex (precede a Hex code with a "&").

If the code is two characters like 1 Band 54, type the number in Hex in reverse order;
&541 B. These codes must be correct for the ZBasic text graphics or screen
LOCATE x,y, OFF function to operate.

Cursor (on) String (Hex Code) 521B 21019

This Configuration question tells ZBasic which control code for the screen will turn on
the blinking cursor using LOCATE x,y, ON. The correct codes for this can be found
in your computer or terminal technical manual. If a single character, just type the
character code in decimal or Hex (precede a Hex code with a "&").

If the code is two characters like 1 Band 54, type the number in Hex in reverse order;
&541B. These codes must be correct forthe ZBasic text graphics or screen
LOCATE x,y, ON function to operate.

NOTE: IF these parameters are not set properly the corresponding functions will not
operate.

Z80 Appendix 8-14

zao APPENDIX
.. a

USING THE PATCH UTILITY
The zao versions of ZBasic™ provide a utility to Patch or modify ZBasic internal code to
allow fixes or modifications for specific Hardware or software.

To get into the PATCH mode enter ZBasic™ from DOS and use the <P>atch menu
option. You will then be prompted for an address which may be decimal (or HEX if
preceded by a '&' character). The Modifications made during the patch session may be
saved by using the <S>ave option when completed. Some example patches are
shown below.

Address:

aaaa bb?
(aaaa=hex-address)
(bb= byte at address)

Enter PATCH mode from ZBasic start-up.

Enter Address to View and/or Patch Data
<BREAK> to Abort to menu

Enler dala 10 change
<ENTER> 10 Skip
<BREAK> to Abort and go back to Address:
If Data or <ENTER> selected the next address
will be shown.

BOLDFACE text is what you type in.

• COORDINATE WINDOW Patch (enable pixel graphics)
<P>atch get into patch mode
Address: &xx3F Jump table address for x,y conversion
xx3,-C3?_ &C9 Change JP to RET
Address: <BREAK>
<BREAK>
<E>dit

• Patch to route
<P>atch

MOUSE(x) to a user routine.
get into patch mode

Address: &xx3D
xx3f C3? &C9
Address: -<BREAK>
<BREAK>
<E>dit

Jump table address for JP mouse
Change JP to RET

• Patch to Set
<P>atch

the default USR3 vector.
get into patch mode

Address: &xx61
xx3F _C3?_ &00
XX40 FF? &F0
Address: <BREAK>
<BREAK>
<E>dit

xx=01 for CP/MTM ·80

Jump table address for USR3(expr)
Change JP to address FI2lI2lI2l

xx=30 for TRS-80™ Model 4 TRSDOS/LDOS 6.2
xx=52 for TRS-80™ Model 1 and 3

8-15 zao Appendix

zao APPENDIX

MEMORY CONSIDERATIONS

The zao versions of ZBasic have three different modes of operation concerning
memory organization -- EDIT mode, RUN mode, and RUN- mode (see memory map on
following page).

At least 32k of free memory is required for the EDIT and RUN modes (the development
stage of the program). However, after a program has been compiled and saved using
RUW, it can be run on as little as 16k of free memory depending on the size of the
program (the RUW mode shown on the memory map).

NOTES ON THE zao MEMORY MAP:

The system top of memory is observed by ZBasic in both the editor and object code.
The CLEAR area in the ICMD or .COM file created by ZBasic is the only area of the
compiled program which can adjust to different sizes of high memory drivers or
machine language routines. If this area is too small when an attempt is made to execute
this program from DOS a "Not Enough Memory" error will occur and it will return to
DOS.

The ZBasic subroutines and jurnp tables are not saved to disk when a program is
compiled as a chain file using RUN+. Thus, chain files take up 10k less on disk.

ZBasic is located immediately after the DOS. There may be drivers or other
applications installed at the top of memory. ZBasic does, however, assume to own all
of the memory from DOS to the TOP of memory as defined by the DOS.

The size of the INDEX$ is determined by the CLEAR statement (see reference
section). This version defaults to CLEAR 1000, making the INDEX$ equal to 1 k. If
there is not enough memory, the largest size available will be allocated. The size of
the INDEX$ memory can be determined using the MEM function within the running
program.

When the CALL string statement is used to execute a DOS function the DOS
function must not use the area where ZBasic resides otherwise a system crash may
occur (this DOS function jump vector is located in the ZBasic jump table so it may be
re-vectored for different Disk Operating Systems).

TopRam is the highest RAM address the system will allow ZBasic to use. This address
varies from system to system and even on the same system depending on the DOS.

The INDEX$ CLEAR area is the only area of ZBasic that can adjust to this area if not
enough room is allocated. When the object code is executed, a "Not Enough
Memory" error will occur and the object code will stop and return to the operating
system. MEM will return memory for INDEX$.

Z80 Appendix 8-16

Z80 APPENDIX

RS-232 COMMUNICATION

TRS-80 Modell, 3 and 4 SERIAL INTERFACES

ZBasic for the TRS-80 Modell, III and 4 supports asynchronous communication using
the file number -1 (negative one) for the standard serial Interface.

Baud rate, parity, stop bits, and word length are all controlled in the OPEN "C"
statement (see OPEN "C" in the reference section).

CP/MTM-80 SERIAL INTERFACES

The serial interface on Kaypro™ and CP/MTM-80 attempts to use the CPIM TTY
device and the OPEN"C" does not affect parameters as these are not software
selectable.

See your CPIM terchnical reference manual for changing parameters of the n-v
device. Use the Patch option to add your own Machine language drivers to the jump
table.

SERIAL COMMUNICATION PROBLEMS

If asynchronous communication is not working, try one of the following:

• Check to make sure the baud rate, parity, stop bits, and word length settings are the
same on both sides of the communication .

• Check for proper cable wiring. The cable must support the standard RS-232
asynchronous interface. "the serial transfer works at a low baud rate (like 300 baud)
but fails at higher baud rates, the cable is probably wired improperly.

See the diagrams which shows the two most typical cable configurations in the
MSDOS appendix.

Z80 Appendix 8-18

zao APPENDIX
-;&4& iN WAU;¥!

Z80 JUMP TABLE

The Z80 versions make available a jump table that can be altered to route routines to other
addresses. This can be useful for implementing special software or for handling non-compatible
Disk Operating Systems or Serial ports (etc.).

The following is a list of all the available jump locations with a short description of each:

~ ~ Desc!ip!On Special Notes
XXOO JP SUBRTN Cold Start entry point NONE
XX03 JP WARM Warm Start entry point NONE
XX06 JP EXIT ExH to System NONE
XX09 JP CHRINP Get Keyboard Character • RETURNS KEY IN A
XXOC JP VIDOUT Output Character to display • SENDS CHAR IN A
XXOF JP LPROUT Output character to printer • SENDS CHAR IN A
XX12 JP SCANKY Get Key from kybrd no waHing • A=O NO KEY ELSE A=KEY
XX15 JP ICOMM INITIALIZE RS232 PORT Set Baud,Parity,Stop bits,Word len UAR
XX18 JP BAUD SET RS232 BAUD RATE HL=BAUD RATE 300,1200 ..
XX1B JP PARITY SET RS232 PARITY, HL=PARITY 0,1,;
XX1E JP STOPBT SET RS232 STOP BITS HL=STOP BITS 0, 1, 2 ...
XX21 JP WORDLN SET RS232 WORD LENGTH HL=WORD LEN 5, 6, 7, 8 ...
XX24 JP RSREAD READ 1 CHAR FROM RS232 'On exit A=char from RS-232 set Z flag
XX27 JP RSWRT WRITE 1 CHAR TO RS232 • A=CHAR TO SEND set Z flag on exit
XX2A JP RSSCAN GET RS232 CHR NO WAIT • A=O NO Char,Z flag set else A=CHAR
XX2D JP TIME GET TIME STRING ON Exit HL >=> 9 bytes: lenHH:MM:SS
XX30 JP DATE GET DATE STRING ON Exit HL >=> 9 bytes: lenMM/DDIYY
XX33 JP PRINTA PRINT @(X,Y) ROUTINE HL=Y,DE=X Set cursor for next characte
XX36 JP PRINTG PRINT %(X,Y) GRAPHIC Loc HL=Y,DE=X set cursor for next char
XX39 JP SOUND GENERATE SOUND HL=DURATION MS,DE=FREQ in HZ
XX3C JP MOUSE READ MOUSE STATUS HL= TYPE RETURNS IN HL
XX3F JP CONVXY CONVERT GRAPHIC POS HL=Y,DE=X RETURN IN HL, DE
XX42 JP MODE SET GRAPHICS MODE HL=MODE#
XX45 JP COLOR SET COLOR FOR GRAPHICS HL=COLOR
XX48 JP SETXY SET POINT DE,HL LOCAL COORDINATES
XX4B JP PLOTXY PLOT FROM LAST POINT TO DE, HLLOCAL
XX4E JP FILLXY FILL FROM POINT DE, HL FILL AREA around X,Y
XX51 JP POINT READ COLOR AT POINT DE,HL RETURNS HL=COLOR
XX54 JP DOSCALL CALL DOS COMMAND HL >==> STRING

'save registers

XX=01
XX=30
XX=52

8-19 zaG Appendix

for CP/MBO 2.2 & 3.0
for TRS-BO Model 4 and 4P, TRSDOS/LDOS 6.2
for TRS-BO Model 1 and 3 versions

zao APPENDIX

DEFAULT USR TABLE
USR digit (expression)

Entry:
Exit:

Address
XX57
XX5A
XX5D
XX60
XX63
XX66
XX69
XX6C
XX6F
XX72

expression >==> ZSO register HL
HL register returned in the expression contained in the USR function.

Vectors
JP USRO
JP USR1
JP USR2
JP USR3
JP USR4
JP USR5
JP USR6
JP USR7
JP USRS
JP USR9

Description Special Notes
OLD HL RETURNS HL ON COLD START ENTRY
RETURN
RETURN
RETURN
RETURN
RETURN
RETURNS LAST LINE # EXECUTED WITH TRON ACTIVE
RETURNS RAW RANDOM # 0 TO 65535
RETURNS SIN OF HL IN BRADS AS A VALUE OF +1- 256
RETURNS COS OF HL IN BRADS AS A VALUE OF +1- 256

SPECIAL STRINGS AND CONSTANTS

These Strings and constants may be changed by POKES or using the PATCH function from the MENU.

XXSO
XXS4

XXSA
XXSE
XX92
XX96
XX9A
XX9B
XX9C
XX9D

CLSSTR
PRNTAM

CUROFF
CURON
CLRLlNE
CLRPAGE
PAGED
PAGE1
PAGE2
PAGE3

4 BYTE CLEAR SCREEN STRING
6 BYTE PRINT AT CONTROL STRING <ESC>, <=>, Y+32, X+32, 0, 0
(TRS-SO versions first 2 bytes are RS232 configuration bytes)
4 BYTE CURSOR OFF STRING
4 BYTE CURSOR ON STRING
4 BYTE CLEAR TO END OF LINE STRING
4 BYTE CLEAR TO END OF PAGE STRING
1 BYTE PRINTED LINES PER PAGE (O=disabled)
1 BYTE TOP MARGIN (O=none)
1 BYTE ACTUAL PAGE LENGTH IN LINES (O=disabled)
1 BYTE PRESENT LINE (Iine#1=0, line#2=1)

OTHER IMPORTANT ADDRESSES

52AO and 52A2
XXA4 TO XXBF
XXOO +200H

------> TRSSO Model 1 , 3, 4 High resolution 240,640 in words

XX=01
XX=30
XX=52

------> User area for PATCHES (Saved with <S>ave configuration option)
------> 256 buffer (OK to use whole buffer during machine language routine)

CP/MSO 2.2 & 3.0
TRS-SO Model 4 and 4P, TRSDOS/LDOS 6.2
TRS-SO Model 1 and 3 versions

zao Appendix 8-20

zao APPENDIX

USING OVERLAYS
ZBasic 3.0 on Z80 based computers allows for Overlays to be used to make the most efficient use
of a systems available memory.

An Overlay is a program which is loaded from disk (without destroying the program in memory) and
executed. After it is executed, it will RETURN to the main program. As long as it is in memory it
may be called over and over again by RUN O(zero) until it is overwritten by another overlay or
program.

The main advantage of Overlays is they are small and will normally load up quickly. After they have
been loaded, they work like a GOSUB with the variables being chained that appear in the DIM
statements at the start of the main program and the overlay program.

Here are the steps in creating an overlay program.

1. Create the MAIN program and define the Overlay subroutine(s).

2. To determine the OFFSET for the overlay subroutine:

A Type RUN+ from the MAIN program
(type <ENTER> when it asks for a filename)

B. Type: MEM

00000 Text
00000 Memory
00000 Object
00000 Variable

<--- This is the room available for the overlay.
<--- This, plus 100, is the OFFSET amount.

Add 100 to the number in front of Object to get the offset. This what is used in the
<C>onfigure startup to create the OFFSET for the overlay program.

3. Set up all variables which will be used by the Overlay program in identical DIM statements
at the start of both the MAIN program and OVERLAY subroutines.

4. Compile and save the MAIN program using the RUN' command.

5. Compile and save the OVERLAY subroutine using RUN+.

6. When the MAIN program requires the use of the overlay the first time use:

OPEN"I",1,"Overlay Filename": RUN 1

7. After the overlay is loaded it may be executed again without reloading the OVERLAY by
using the RUN" (zero) statement.

See the OVERLAY program examples on the next page ...

8-21 zao Appendix

zao APPENDIX

OVERLAY PROGRAM EXAMPLE
To see how the overlay capabilities work try typing in these program examples
as shown. <cr> is the <ENTER> key.

MAIN Program

ZBASIC<cl">
(in configure)
OVERLAY OFFSET = a
E
ZBasic Ready

00010 CLEAR 5000: DIM E,X,Y,Z,T$
00020 PRINT "STARTING MAIN PGM"
00030 OPEWI",1 ,"PGMOVL"
00040 PRINT "GOING TO OVERLAY"
00050 E=O : RUN 1
00060 PRINT "BACK FROM OVERLAY"
00070 E=1 : RUN a
00080 E=2: Y=1 : Z=8: RUN a
00090 E=3 : RUN a
00100 PRINT "T$=M;T$;"'"
00110 STOP

RUN.-
<cr> don1 Save Objectlll
MEM
00217 Text
----- Memory
00200 Object
06000 Variable

RUN" (TRSDOS) (CPMOO)
Object File .. MAIN/CMD or MAIN.COM

MEM
00217 Text
----- Memory
11000 Object >==> (size on disk)
06000 Variable

QUIT<cr>

(Compile overlay program)

OVERLA Y Program

ZBASIC<cl">
(in configure All Else Same!)
OVERLAY OFFSET = 200+256 (aprox)=500
E
ZBasic Ready

00010 CLEAR 5000: DIM E,X,Y,Z,T$
00020 IF E=O THEN PRINT "OVERLAY"
00030 ON E GOTO "HELLO","TEST",120
00040 PRINT ""BAD COMMAND""
D0050 RETURN
00060 "HELLO"
00070 PRINT "HELLO" : RETURN
00080 "TEST"
00090 FOR X= Y TO Z
00100 PRINT X,
00110 NEXT X : PRINT: RETURN
00120 T$=STRING$(20,"X")
00130 RETURN

RUN.-
Object Filespec PGMOVL<CR>

MEM
00208 Text
----MEMORy
00150 Object >==> (size on disk)
06000 Variable

QUIT<cr>

MAIN
STARTING MAIN PGM
GOING TO OVERLAY
IN OVERLAY
"BAD COMMAND"
BACK FROM OVERLAY
HELLO
12345678
T$='XXXXXXXXXXXXXXXXXXXX'
Break in 00110

Z80 Appendix 8-22

zao APPENDIX
I A:" 1 ;tliMi&il_i

Z80 MODE CHART

ZBasic™ Graphics Mode Chart

E: CPMTM-80 KayproTM TRSTM-80 TRSTM-80

8-23 Z80 Appendix

0 Graphics Z80 ver. 2.2,3.0 With Graphics Model 1&3 Model4&4p Q.
Mode CD

Print Plot Print Plot Print Plot Print Plot

x 80 80 80 40 32 32 40 40
0 Text 24 24 24 12 16 16 24 24 Y

x 80 80 80 80 32 64 40 80 , Graphics y 24 24 24 50 16 48 24 72

x 80 80 80 60 32 32 40 40
2 Text y 24 24 24 18 16 16 24 24

x 80 80 80 120 32 64 40 80
3 Graphics y 24 24 24 72 16 48 24 72

x 80 80 80 80 64 64 80 80
4 Text y 24 24 24 24 16 16 24 24

x 80 80 80 160 64 128 80 160
5 Graphics y 24 24 24 96 16 48 24 72

x 80 80 80 80 64 64 80 80
6 Text y 24 24 24 25 16 16 24 24

x 80 80 80 160 64 128 80 160
7 Graphics y 24 24 24 100 16 48 24 72

x 80 80 80 40 32 32 40 40
8 Text y 24 24 24 12 16 16 24 24

x 80 80 80 80 32 256' 40 320'
9 Graphics y 24 24 24 50 16 192' 24 240'

x 80 80 80 60 32 32 40 40
10 Text y 24 24 24 18 16 16 24 24

x 80 80 80 120 32 256' 40 320'

'1 Graphics y 24 24 24 72 16 192' 24 240'

x 80 80 80 80 64 64 80 80
12 Text y 24 24 24 24 16 16 24 24

x 80 80 80 160 64 512' 80 640'
13 Graphics y 24 24 24 96 16 192' 24 240'

x 80 80 80 80 64 64 80 80
14 Text y 24 24 24 25 16 16 24 24

x 80 80 80 160 64 512' 80 640'
15 Graphics y 24 24 24 100 16 192' 24 240'

, Model 4 Radio Shack™ or Micro Labs™ Graphics Board Only. (Do not use Modes 8 to 11)
Note: ZBasic™ will not scale High resolution graphics correctly on the Model 4 in 3 mode.

x=Honzontal resolution, y=vertlcal resolution
NOTE: ZBasic does not support both text and graphics in MODE 13 or 15
(Micro-Lab's board does).

APPLE DOS 3.3 APPENDIX
dRUMi'll] a

Notes

C-1 Apple DOS 3.3 Appendix

APPLE DOS 3.3 APPENDIX

TM

ASIC

DOS 3.3 VerSDon
\For the Apple® lie, lie, Laser 128™ and! HGS

(lie requires the extended 80 column card)

Original version
by

David Overton

Enhancements
by

Greg Branche

© Copyright, 1985, 1986, 1987

ZEDCOR, INC.
All Rights Reserved

ZBasic is a trademark of Zedcor, Inc.

DOS 3.3 Is licensed from Apple CoTJl)uter, Inc.

Apple, lie, lie, I1GS, ProOOS and App\eSoft are a registered trademarks of Apple CorT1>uter, Inc.

Apple DOS 3.3 Appendix C-2

APPLE DOS 3.3 APPENDIX

TABLE OF CONTENTS

Table of Contents C3

Hardware Requirements C4
Apple IIc, JIGS and Laser 128 C4
Apple lie C4
Creating Programs for a)[+ C4
Using the Videx 80 Column Card C4
ProDOS C4

Flies Included on the Master Diskette C5

Getting Started C6
Set up C6
Executing ZBasic from DOS 3.3 C6
Note to main reference manual C6

Important Notes About using "MODE" C7
MODE problems C7
80 Column Card problems C7

Miscellaneous C8
~~~ ~ 
Editor notes C8 
Text and Graphics Integration C8 
Blinking Characters C8 
Apple lie Extended 80 Column Card C8 
RESET key versus CTRL-C C9 
Relative versus Pixel Coordinates C9 
Compatibility with Applesoft C9 
Using Hard Disks and/or Foreign DOS C9 

Special DOS 3.3 Configuration Options C10 
Configuring Drive specifications C10 
Configuring Printer Slots C10 
Printer Initialization Sequence C10 

Reference C12 
COLOR statement C13 
DEF LPRINT statement C14 
DEF MOUSE statement C15 

Important IIc MOUSE patch C16 
MEM command C17 

DOS 3.3 Memory Map C18 
MODE statement C18 
OPEN statement C19 
OPEN"C" statement C20 

C-3 Apple DOS 3.3 Appendix 



APPLE DOS 3a3 APPENDIX 

HARDWARE REQUIREMENTS 

APPLE lie, IIGS, LASER 128™ 

APPLE lie 

The Apple™ version of ZBasic™ 3.2 functions with a standard Apple J1c or IIGS. A 5.25" 
disk drive is required. 

An Apple™ Mouse, second Disk drive and Joystick are supported but are not required. 

The IIGS emulates the /Ie and /lc with this version. IIGS specific features are not used. 

The Apple™ version of ZBasic™ 3.2 for the Apple lie ~ an Extended SD
column card Installed In auxiliary slot 3 and 1 disk drive. 

An Apple™ Mouse wlinterface, Joystick and Super Serial Card are supported but are 
not required. 

CREATING PROGRAMS TO EXECUTE ON AN APPLE ][+ RUNNING DOS 3.3 

ZBasic requires a minimum of 128K memory to create programs, but compiled 
programs will normally function on the older machines with 64K since the Object Code 
(Machine language program) is compiled into the lower bank of 64K. 

Code can be generated which will run on an Apple™ 11+ if certain restrictions are 
observed. Avoid the use of MODE 3 or 7 as they require an extended 80 column card 
which will not function inan Apple 11+. 

The Apple 11+ MUST have a 16k memory card installed in slot # zero in order to execute 
programs created with ZBasic (total of 64K memory). 

VIDEXTM 80 COLUMN CARD 

ProDOSTM 

The Videx 80 column card works in MODE 2. You may need to clear the screen with 
CHR$ (n). See 80 column manual for value of n (usually 12). Older style 80 column 
cards mayor may not function. 

Another option is to create your programs with the 64K ProDOS version of ZBasic. Programs 
created with this version will run on any Apple /I. You may order the ProDOS version from 
Zedcor at 800-482-4567. 

Apple DOS 3.3 Appendix C-4 



APPLE DOS 3.3 APPENDIX 

FILES INCLUDED ON MASTER DISKETTE 

The following files are included on your master copy of ZBasic for Apple /I DOS 3.3: 

.EI.Jll Description 
A 002 HELLO Hello program starts up ZBasic when you boot the disk. 

*B 037 ZBASIC The ZBasic master program 

*B 003 INTERPILER Part of the main program 
*B 042 VERSION 3.2 
*B 026 COPYRIGHT 1985 
*B 011 BY 
*B 006 ZEDCOR, INC. 
*B 047 ALL RIGHTS 
*B 010 RESERVED 
*B 013 APPLE //TM128K 

The files above are required to create ZBaslc programs. 

The flies below are optional and are not required to execute ZBaslc. 

Example Flies 
*T 133 ZBASIC.HLP 

T 003 GRAPH.BAS 

T 013 DISKIO.BAS 

T 004 QUICK.APP 
T 003 SHELL.APP 
T 004 SORT.BAS 

T 003 SIEVE.BAS 

T 004 BLOAD.FUNCTION 
T 003 BSAVE.FUNCTION 
T 010 BLOAD/BSAVE DEMO 

C-5 Apple DOS 3.3 Appendix 

Description 
The ZBasic HELP file accessed from ZBasic wnh HELP. If 
file is not located you will get a File-Not-Found error. 

Example of graphs. 

Example of doing disk file handling wnh ZBasic (make sure 
"Convert to Uppercase" is set to NO under "Configure"). 

Quick sort. Append to SORT.BAS to see how it used. 
Shell sort. Append to SORT.BAS to see how it used. 
Creates random data to demonstrate the SHELL and 
QUICK sort subroutines above. 

The Infamous "Sieve of Erastothenes" benchmark. 

BLOAD function you can use in your programs. 
BSAVE function you can use in your program. 
Demo of the BLOAD and BSAVE function above. 



APPLE DOS 3.3 APPENDIX 

GETTING STARTED 
1. Before doing anything ... Make a Backup of the master diskette. See your DOS 3.3 

users manual for instructions on using the COPYA program. 

2. Put the BACKUP in a safe place. 

3. You may delete all the "T" (text) files on the disk if you need more room. If you don't 
need "HELP", the ZBasicHLP file may also be deleted. 

4. Read the "Getting Started" section of the main reference manual. 

EXECUTING ZBaslc FROM DOS 3.3 

There are two ways to load and execute ZBasic: 

1. Put the ZBasic diskette into the first drive and tum the system on. ZBasic will BOOT 
automatically from the "HELLO" program. 

2. After loading DOS 3.3 put a ZBasic diskette in the second and type: 

BRUN ZBASIC <ENTER> 

NOTE TO THE MAIN REFERENCE MANUAL 

When you are reading the main reference section of this manual always take note of this 
icon: 

It indicates a variation to this version that you will want to read (sometimes it will make note 
of the ProDOS version in which case you can ignore it). 

Apple DOS 3.3 Appendix C-6 



APPLE DOS 3.3 APPENDIX 
~ 

IMPORTANT NOTES ABOUT "MODE" 

ZBasic allows you to set different graphics and text modes. This feature lets you jump 
from one MODE to another as your program requires. 

This does introduce some unique potential problems that are easily avoided if you know 
about them. 

1. While programs compiled in the interactive method (RUN) of ZBasic will usually operate 
correctly even if the MODE is not set at the beginning of a program, a program compiled to 
disk as a stand-alone program (RUN' or RUN+) may appear to "Hang the system" if MODE 
is not set. 

To solve this problem just--->BE SURE TO SET THE MODE AT THE BEGINNING 
OF EVERY STAND-ALONE PROGRAM. 

2. Sometimes when typing programs in the editor, especially after pressing CTRL C or 
CTRL-RESET from a running program, you may experience an unresponsive screen or 
keyboard. 

What has happened here is that the MODE has been changed in the compiled program 
and needs to be reset in the editor (your keys are actually appearing on an invisible 
screen of another MODE). Just type: 

<RETURN> MODE 2 <RETURN> 

Even though you will not see the keys being typed and the screen will return to normal. 
Do not press RESET, or REBOOT the system, as you will lose the program in memory . 
The above method works just fine as long as you remember that you can't the see the 
keys being pressed until you press <RETURN>. 

CONTROL KEYS IN LISTINGS 

The 80 column card responds to certain control codes. Sometimes a REM statement or 
quoted string may contain a control character that will set the 80 column card to 40 
characters or to a different mode. Use the example above to correct the setting and 
delete the control character from the offending line. 

C-7 Apple DOS 3.3 Appendix 



APPLE DOS 3.3 APPENDIX 

MISCELLANEOUS 

LIST KEYS 

The following is important information about how standard ZBasic commands may 
vary on this version. 

ZBasic allows you to use the cursor keys for listing programs and for use in the line 
editor. The delete key or the left arrow key may be used whenever the reference 
section says <BACKSPACE>. 

FULL SCREEN EDITOR VERSUS STANDARD LINE EDITOR 

This version of ZBasic does not support a Full Screen Editor. Should you desire to 
use a Full Screen editor you may want to try the ProDOS version of ZBasic. It 
comes with a Full Screen Editor built-in. 

You may also use other editors to create your programs if you save your programs in 
ASCII using SAVE+ or SAVE'. 

TEXT AND GRAPHICS 

ZBASIC ALLOWS THE INTEGRATION OF 
TEXT AND GRAPHICS IN MODE 5 AND 7 

ZBasic allows the user to integrate text and graphics on the screen just like other 
computers. This permits porting programs over to the Apple from the IBM PC and 
many other computers! (Modes 5 and 7 only.) 

BLINKING CHARACTERS 

Blinking Characters are not supported in Graphics mode text. Inverse characters 
may be obtained by setting the high bit of the character by OR-ing the character 
with 80 Hex or adding 128 to the ASCII value. 

APPLE lie EXTENDED 80 COLUMN CARD CONTROL CODES 

All features of the Apple™ Extended 80-column card may be used by printing 
characters to the screen in modes 2,4,6. 

For example, printing a control-w will cause the screen to scroll up. See the 
ProDOS appendix for a list of the 80 column card control characters. 

Apple DOS 3.3 Appendix C-8 



APPLE DOS 3.3 APPENDIX 
5 •• ::i:ilM:@WfMMiikW. 

CONTROL-RESET VERSUS CONTROL-C 

If the computer should "Lock-Up" for some reason, or you faced with the monitor 
prompt n, you can press GTRL-RESET to re-enter the ZBasic line editor. In most 
cases your source code will remain intact. 

GTRL-RESET may also be used instead of GTRL-G to break out of programs and in 
many cases is preferable since it is much more responsive. 

RELATIVE GRAPHIC COORDINATES VERSUS PIXEL COORDINATES 

ZBasic provide the standard device independent graphic coordinate system of 
1024x768 so that programs created on other computers will also function on the 
Apple 1/ and visa·versa. Even so, should the need arise where you MUST use pixel 
coordinates use these POKEs: 

POKE &F388, &60 

POKE &F388, &A9 

Sets to Pixel coordinates of that MODE 
(see MODE chart) 

Sets back to ZBasic's standard device 
independent coordinates of 1024x768. 

See "Graphics" in the front section of this manual for more information about using 
ZBasic graphics. 

COMPATIBILITY WITH APPLESOFTTM 

ZBasic supports quite a number of the Applesoft commands. The big differences are 
in Graphics and Disk file handling. To see a listing of the commands that are not 
supported and some suggestions on converting your Applesoft programs over to 
ZBasic, see the Apple 1/ ProDOS appendix in this manual. 

USING WITH HARD DISKS ANDIOR NON-STANDARD DOS 

This version of ZBasic overwrites the area of memory that is normally occupied by the 
DOS 3.3 command interpreter to provide you with as much programming area as 
possible. ZBasic can get away with this because it does not use the command 
interpreter; it uses the DOS file manager directly. 

Because of this, foreign operating systems (such as Diversi DOS) usually will not work 
with ZBasic. 

In addition, hard drives that force the use of a modified DOS 3.3 mayor may not work. 
If you need the increased speed of a compiler and require the storage capacity of a 
hard rive, we suggest you consider the ProDOS version of ZBasic. It does not modify 
ProDOS in any way and is compatible 

e-9 Apple DOS 3.3 Appendix 



APPLE DOS 3.3 APPENDIX 

SPECIAL DOS 3.3 CONFIGURATION OPTIONS 

CONFIGURING DRIVE SPECIFICATIONS 

DRIVE A: SLOT 6 
DRIVE B: SLOT 6-
DRIVE C: SLOT 0-

DRIVE 1 
DRIVE 2 

Besides the regular configuration options that ZBasic offers, (See "Getling Started" in the 
reference section) the DOS 3.3 version allows you to configure which physical slot and drive 
will be associated with a logical drive specifier. 

ZBasic specifies drives with letters instead of numbers (similar to MS-DOS and CPIM drive 
specs). D1=A, D2=B etc. 

During configuration you will be prompted with a logical drive specifier e.g. A: , and asked 
which physical slot and drive will be associated with that logical drive spec. You are allowed to 
configure multiple logical specifiers for a single physical drive. 

For example, you can configure both drive A: and C: to access slot 6, drive 1. You may also 
configure for drives that are not present on your system. You should be careful when doing 
this, so that you do not try to access these drives. This is however, useful when developing 
software for other systems when using ZBasic™. You can configure extra drives, and access 
them if the end users have them in their systems. 

CONFIGURING PRINTER SLOTS 

PRINTER SLOT 1-7 01 00001 ? 

The printer slot may also be set during configuration. This allows you to place your printer 
interface card in any 5101. ZBasic will support any printer card that conforms to the Apple™ 
interface card standards for the ROMs. (Either Serial interfaces or Parallel.) 

This merely sets the default printer sial. The slot may be changed at any time using the special 
DEF LPRINT statemenl. 

The default printer slot is number 1. The Apple™ lie has the equivalent of a serial printer card 
in slot #1. 

SETTING UP A PRINTER INITIALIZATION SEQUENCE 

ENTER THE EXACT KEYSTROKES REQUIRED FOR YOUR PRINTER AND/OR 
INTERFACE CARD (....... TO END): 

The printer initialization string can be any sequence of up to 12 ASCII characters. 

See the ProDOS appendix under "Configure" for the details of using this option (it is exactly 
the same syntax). 

Apple DOS 3.3 Appendix C-10 



APPLE DOS 3.3 APPENDIX 

C-11 Apple DOS 3.3 Appendix 



APPLE DOS 3.3 APPENDIX 

ASIC 
APPlE® II DOS 3.3 REFERENCE 

This section describes the additional commands and differences to the standard 
ZBasic. 

You will notice there are relatively few variations from the main reference section of this 
manual. This version of ZBasic is very good for leaming programming and for creating 
programs that will work on virtually all versions of ZBasic with little or no changes. 

When converting programs to other computers you usually only have to take COLOR, 
MODE, filename variations and communication device numbers into account. 

Apple DOS 3.3 Appendix C-12 



APPLE DOS 3.3 APPENDIX 
IE 

COLOR Statement 
FORMAT COLOR = n 

DEFINITION The same as the standard ZBasic COLOR statement. The color codes are as follows: 

REMARK 

Mode 0: 
Mode 2: 
Mode 3: 
Mode 4: 
Mode 6: 

Text Characters only 
Text Characters only 
Same as Mode 1 
Text Characters only 
Text Characters only 

MODE 1,3 NUMBER 
o 
~ 
Black 
Magenta 
Dark Blue 
Purple 
Dark Green 
Grey 

Mode 5: 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

NUMBER 
o 
1 
2 
3 
4 
5 
6 
7 

Medium Blue 
Light Blue 
Brown 
Orange 
Grey 
Pink 
Green 
Yellow 
Aqua 
White 

~ 
Black1 
Green 
Violet 
White 1 
Black 2 
Orange 
Blue 
White2 

HI-RES GRAPHICS 280X192 

Mode 7: NUMBER ~ DOUBLE HI-RES 560X192 
o Black 
1 White Note: The ProDOS version of ZBasic 

supports 16 colors in this mode. 

The colors on the video display of Apple /I computers are affected by neighboring 
colors and the condition of RAM. This is a phenomena of the Apple /I hardware and is 
not correctable. 

C-13 Apple DOS 3.3 Appendix 



APPLE DOS 3.3 APPENDIX 

DEF LPRINT statement 

FORMAT DEF LPRINT [=] Slot number 

DEFINITION This command is used to configure the printer slot during runtime. Afterthis command 
is used, all printer output will be diverted to the selected slot. 

The slot number may be specified by a numeric expression but the value of Slot 
number MUST be between one and seven (1-7). 

~ ~'-.~ 
If value exceeds the range of 1 through 7, the system may hang up. 

EXAMPLE 

REMARK 

DEF LPRINT = 1 

Be sure to validate the slot if it is input from the user. Incorrect values may cause the 
system to hang up. 

This command supersedes the value set under "Configure" but does not supercede 
the printer initialization string. 

Apple DOS 3.3 Appendix C-14 



APPLE DOS 3.3 APPENDIX 
[6£ 

DEF MOUSE statement 

FORMAT DEF MOUSE [=1 expression 

DEFINITION This statement defines which device (MOUSE or JOYSTICK) will be used with the 
ZBasic MOUSE functions. 

EXAMPLE 

REMARK 

VALUE 
expression = zero 
expression = non-zero 

DEVICE 
Apple™ Mouse Interface card in slot number 4. 
Joystick/paddle port. 

DEF MOUSE=l: REM Define as a JOYSTICK 
DO 

PRINT MOUSE (1) , MOUSE (2) 
UNTIL MOUSE(3) 
END 

Program will print positions of the joystick 
until you press the joystick button. 

The defauK is to read a mouse card in slot 4. 

Older Apple™ lie systems have the equivalent of a mouse card in slot 4. Unfortunately, 
Apple changed the slot in the newer Apple IIc to slot 7. If you have a newer Apple IIc or 
want your commercial program to operate on any Apple IIc, use this routine in the 
beginning of your program. It checks to see if it is a new or old IIc board (donl use it on 
a lie, IIGS or Laser 128™) and configures itself accordingly. 

LONG IF PEEK(&FBB3)=6 AND PEEK(&FBCO)=O AND PEEK(&FBBF)=3 
POKE &D1F8, &7F 
POKE &D1FF, &7F 
POKE &D204, &7F 
POKE &D20A, &FF 
POKE &D20F, &FF 
POKE &D217, &C7 
POKE &D21C, &C7 
POKE &D21E, &70 
POKE &D222, &C7 

END IF 

Note: The ProDOS version DOES NOT require this routine. 

C-15 Apple DOS 3.3 Appendix 



APPLE DOS 3.3 APPENDIX 

MEM command 

FORMAT MEM 

DEFINITION This command is used to show the amount of memory remaining for text and object 
code and the amount of text and object code space used in each bank. 

EXAMPLE 

REMARK 

MEMORY BANK 1 
00000 Code Mem 
00000 Object 
00000 Variable 

MEMORY BANK 2 
00000 Text 
30050 Text Mem 

MEM 

00043 
29842 
00000 
00000 
00000 

Text 
Text Mem 
Code Mem 
object 
Variable 

-Code and variable space remaining. 
-Size of object code generated. 
-Amount of variable space used. 

-Shows amount of text space used. 
-Amount of text room remaining. 

See Memory map in this appendix. 

Apple DOS 3.3 Appendix C-16 



APPLE DOS 3.3 APPENDIX 
fi'l .. 

C-17 

DOS 3.3 MEMORY MAP 
Apple™ lie, lie 
Memory Map 

OBJECT CODE Editor / Compiler 
65535 65535 

System Monitor System Monitor 

63488 63488 

57344 ZBasle Subroutln., 57344 ZBasle Editor 

5"48 
53248 

Hardware Addresses Hardware Addresses 

49152 

DOS 

.3006 '3008 

COMPILED ZBASIC 
OBJECT CODE 

t 
SOURCE CODE 

TEXT 
SPACE 

VARIABLE 
STORAGE 

, .. " 
lM32 

ZBa,le Subroutines ZBa,le Complier 
16384 

'638' 
Graphics Screen 

Graphics Screen 

8192 
8192 

ZBasle Subroutines ZBasle 
Complier 

2048 

Text Screen 
System Variables Text Screen and 

System Variables 

LOWER BANK UPPER BANK 

Apple DOS 3.3 Appendix 



FORMAT 

DEFINITION 

APPLE DOS 3.3 APPENDIX 

MODE statement 

MODE n 

ZBasic uses MODE to define the characteristics of a screen. 

ZBASIC ALLOWS TEXT and GRAPHICS INTEGRATION 

That's right. ZBasic allows a program to integrate text and graphics anywhere on the 
screen in MODE 5 and 7. This feature allows ZBasic programs from an IBM PC and 
other computers to run on your Apple. 

MODE 

0 

1 

2 

3 

4 

5 

6 

7 

MODES 

DOS 3.3 version 
MODE CHART 
TEXT GRAPHICS 

40 x 24 character 

none 40 x 48 

80 x 24 character 

none 80 x 48 

80 x 24 character 

40 x 24 280 x 192 

80 x 24 character 

80 x 24 560 x 192 

8-15 are reserved for future use 

character = Text only MODE. Draws graphics using characters. 
40 x 48 = Low resolution graphics 
80 x 48 = Medium Resolution "Color" Graphics 

280 x 192 = High Resolution "Color" Graphics 
560 x 192 = Double High Resolution. Not on ][+. 

Modes 9, 11, 13 and 15 have graphics althe top olthe screen and text althe 
bottom, similar to Applesoft BASIC. 

Apple DOS 3.3 Appendix C-1B 



APPLE DOS 3.3 APPENDIX 

OPEN statement 
FORMAT OPEN "--", filenumber, "I! filetype 1 I drivespec I filename", record length 

DEFINITION This version of ZBasic has the same syntax as other versions with the exception that file 
specifications are within the filename: 

EXAMPLE 

REMARK 

lflletype is a number from 1 to 8 and sets the filetype only at the time the file is created. 
At all other times it is ignored. The types of files that may be defined: 

Iflletypes 
1) Text file (defauH) 
2) Integer BASIC file 
3) Applesoft™ BASIC file 
4) Binary File 
5) Stype file 
6) Relocatable type file 
7) A type file 
8) Btypefile 

See your Apple DOS 3.3 reference manual for specifics 
about file types. 

drlvespec is a letter A through H followed by a colon separator. The letter must be in 
upper case and specifies the physical slot and drive set in configuration. 

A: 01 
B: 02 

filename is a standard Apple OOSTM 3.3 filename of up to 30 characters. 

OPEN"O",1,"!4 A:FREO" <-- Creates a Binary file named 
"Fred" on drive A: (normally 01) 

Any type of file can be opened in ZBasic. If files are to be read from other software, they 
should be written with the correct file type and file format for that software. 

If drivespec is omitted, the last accessed drive will be used as the defauH. 

See "Files" in reference section for more information about using files. Also see the 
example program DISKIO.BAS on the master disk. 

C-19 Apple DOS 3.3 Appendix 



FORMAT 

DEFINITION 

EXAMPLE 

REMARK 

APPLE DOS 3.3 APPENDIX 

OPEN"C" statement 

OPEN"C". slot [. [baua] [. [parity] [. [ stopbm [. [word length]lll 

Same as OPEN"C" in the main reference section except that slot designates the slot 
that contains the Super Serial Card. 

The default slot number is 2. The normal slot for use with a modem is slot two. 

The Apple IIc contains the equivalent of a Super Serial Card in slot number 2. 

The IIGS must have a Super Serial Card in order to use this statement. It will not 
operate with the built-in IIGS serial port. 

slot 
-1 
-2 
-3 
-4 
-5 
-6 
-7 

OPEN"C",-2,300 

Indicates Super Serial Card in slot 1 
Indicates Super Serial Card in slot 2 
Indicates Super Serial Card in slot 3 
Indicates Super Serial Card in slot 4 
Indicates Super Serial Card in slot 5 
Indicates Super Serial Card in slot 6 
Indicates Super Serial Card in slot 7 

See the main reference section for more information and examples of using the 
OPEN "C" statement. 

Apple DOS 3.3 Appendix C-20 



APPLE DOS 3.3 APPENDIX 

C-21 Apple DOS 3.3 Appendix 





APPLE ProDOS APPENDIX 
~ 

Notes 

D-1 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 

ASIC 

ProDOS~ 8 Version 
For the Apple~ ][+, lie, lie, JIGS 

and Laser 128™ 

by 
Greg Branche 

Original DOS 3.3 version by Dave Overton 

© Copyright 1985, 1986, 1987 

ZEDCOR, INC. 
All Rights Reserved 

Z8asic is a trademark of Zedcor, Inc. 

Apple, IIGS, Imagewriter, and ProOOS are registered or licensed trademarks of Apple Computer, Inc. 
Zedcor, Inc. is not affiliated with Apple Computer. inc. 

ProDOSTM Appendix D-2 



APPLE ProDOS APPENDIX 

TABLE OF CONTENTS 

TABLE OF CONTENTS 03 

HARDWARE REQUIREMENTS 
64K Version 05 
128K Version 

FILES INCLUDED ON ZBASIC DISKETTE 
64K Versions 

06 
06 
07 128K versions 

GETTING STARTED 08 

NOTES ON THE ProDOS VERSION 09 
Boot-up Process 09 
Note to main reference section 09 
Importance of using a Ram Disk D10 
ProOOS PATHNAMES D10 
File BUFFER size (how to get an extra 2048 bytes) D10 
List Keys D11 
Help File D11 
Reset Key D11 
ProDOS Disk Error Codes D11 
Hexadecimal Constants D12 
Relative Coordinates versus Pixel Coordinates 012 
MOUSE D12 
IMPORTANT NOTES about video/system problems 013 
Using the Super Serial Card D13 
Commands not supported in this version D13 
Integration of Text and Graphics D14 
80 Column Card Control Codes D14 
INVERSE text D14 
Mouse TextCharacters D 15 
Custom Character Sets D15 

SPECIAL "CONFIGURE" OPTIONS 016 
"Printer Slot 1-7" D16 
Setting up a Printer initialization sequences D16 
LOCATE order D17 
CON FIG D17 
Note on Case Conversion D17 

D-3 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 

TECHNICAL NOTES D18 
ProDOS Machine language Interface D18 
Entry Points D18 
ZBasic to ProDOS interface D18 
Using MACHlG D19 
MEMORY Usage D19 
Zero Page Memory Map D19 
64K Memory Map D20 
128K Memory Map D21 

CONVERTING Applesoft PROGRAMS TO ZBaslc D22 
Applesoft commands and ZBasic Equivalents D23 
Applesoft file commands and ZBasic Equivalents D24 
Converting DOS 3.3 ZBasic programs to ProDOS D25 

REFERENCE 
ClS 
COLOR 
DATE$, TIME$ 
DEFlPRINT 
DEF MOUSE 
DIR 
EDITOR 
INSlOT 
MEM 
MODE 
ONLINE 
OUTSlOT 
PATH 
POINT 
RENAME 
RUN 
USR 
USR5 

command 
statement 
functions 
statement 
statement 
command 
command 
statement 
command 
statement 
command 
statement 
command 
function 
command 
command 
function 
function 

D26 
D27 
D28 
D29 
D30 
D31 
D32 
D34 
D35 
D36 
D37 
D38 
D39 
D40 
D41 
D42 
D43 
D44 
D45 

FULL SCREEN EDITOR D46 
Difference between the Full Screen Editor 

and the Standard Line Editor D46 
80 Column Editor D47 
80 column cursor movement DIAGRAM D47 
40 column Editor D48 
40 column cursor movement DIAGRAM D48 
Full Screen Editor Quick Reference Page D49 
Cursor key definitions (40 and 80 column) D50 
Editor Command definitions D51 

ProDOSTM Appendix D-4 



APPLE ProDOS APPENDIX 
l$jtt1&1;1waaw:u leA:· . tt£ZJ&WWUU 

HARDWARE REQUIREMENTS 

Apple /lc, IIGS and Laser 128 

Apple /Ie 

The 64K and 128K ProDOS versions of ZBasic function with a standard Apple /lc and 
IIGS. A disk drive is required (5.25 or 3.5 inch). ProDOS provides a tRAM disk, size 
depending on available memory. An Apple Mouse™ with interface, Joystick and Super 
Serial Card are supported but are not required. 

IIGS Note: The IIGS emulates the /Ie, /lc modes with this version of ZBasic. Super 
High-Res graphics are not supported on this version directly. 

64K Version The 64K ProDOS version runs with a standard Apple /Ie. A disk drive is required (5.25 
or 3.5 inch). An AppleMouse™ with interface, Joystick and Super Serial Card are 
supported but are not required. 

If you have an Extended 80 column card, or other memory board, ProDOS provides a 
tRAM disk, size depending on additional memory. If you have only 64K there will be 
more disk accesses and compilation will take longer. 

/lc, /Ie, /lGS Note: Code can be generated which will run on the older Apple )[+ or)[ if 
certain restrictions are observed; Avoid MODE 3 or 7 as they require an extended 80 
column card which will not function in an Apple ][+. 

128K Version The 128K version of ZBasic requires an Extended 80 Column Card and a 65C02 or 
65802 microprocessor. 

Apple ][ or Apple ][+ 

64K Version If you have an Apple )[ or ][ +, you M.USI have a 16K bank-switched memory card 
installed (giving you at least 64K memory). If you have a ProDOS compatible memory 
board that allows ProDOS to create a tRAM disk, ZBasic will take advantage of it. If you 
have only 64K there will be more disk accesses and compilation will take longer. 

A disk drive is required (5.25 or 3.5 inch). ZBasic requires a minimum of 64K memory to 
create and execute programs. An AppleMouse™ with interface, Joystick and Super 
Serial Card are supported but are not required. 

128K Version The 128K ProDOS version of ZBasic will not operate on an Apple ][ or ][+. 

OLDER 80 COLUMN CARDS 

Older style 80 column cards mayor may not function. 

The Videx 80 column card works in mode 2 although you will have to do some manual 
switching. When typing CLS from the Standard line editor ZBasic will sense the Videx 
board and clear the screen automatically. 

D-5 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 

F~lES ~NCLUDED ON THE MASTER DISKETTE 
64K VERSION 

The following files are included with the 64K ProDOS version of ZBasic: 

File 
ZBASIC. SYSTEM 

RUNTIME.OBJ 

EDITOR.OBJ 
COMPILER.OBJ 

FSEDIT. 80 .OBJ 

FSEDIT.40.0BJ 

INIT.64.0BJ 

Description 
The boot program and low-memory subroutines. 

High-memory runtime subroutines. This program MUST accompany 
stand-alone programs you create with ZBasic. 

The ZBasic command environment and Standard line editor. 
The ZBasic compiler. 

aD-column full screen editor for IIc, IIGS and aO-collle. 
May be deleted if not used. 
40-column full screen editor for 40-col lie, ]! and ][+. 
May be deleted if not used. 

Contains a stand-alone program initialization sequence. 

THE FILES ABOVE ARE REQUIRED WHEN CREATING ZBASIC PROGRAMS. 

THE FILES BELOW ARE OPTIONAL OR EXAMPLE PROGRAMS 

ZBASIC.HLP 

DISKIO.BAS 
GRAPH.BAS 

SORT.BAS 

QUICK.APP 
SHELL.APP 

SIEVE 
GRAPHICS.COLORS 

BLOAD . SAMPLE 
BSAVE.FN 
BLOAD.FN 
DHRBSAVE.FN 
DHRBLOAD.FN 
DRAW.FN 

PREFIX. SAMPLE 
PREFIX.FN 
CREATE.FN 

DATETIME.FN 

Help file accessed with the "HELP" command. 

Sample program demonstrating ZBasic file commands. 
Sample program demonstrating ZBasic graphics. 

Program to illustrate the use of the QUICK.APP and SHELL.APP sorting 
programs. Load this program first then type: 
APPEND 1000 QUICK.APP (or SHELL. APP). 
Append file containing a quicksort subroutine. 
Append file containing a shell sort subroutine. 

The SIEVE benchmark program from BYTE magazine. 
Demonstrates the colors available in each of the graphics modes. 

Demonstrates the use of the BLOAD and BSAVE functions. 
Function to simulate the ProDOS BASIC. SYSTEM BSAVE command. 
Function to simulate the ProDOS BASIC.SYSTEM BLOAD command. 
Double Hi-Res BSAVE function saves Double Hi-Res Graphic screen. 
Double Hi-Res BLOAD function loads Double Hi-Res Graphic screen. 
Function to simulate the Applesoft DRAW command. 

Sample program demonstrating the use of the PREFIX function. 
Function to set or retrieve the ProDOS default prefix at runtime. 
Function to create a ProDOS subdirectory from within a ZBasic program. 

Function to manually set the date and time. 

ProDOSTM Appendix D-6 



APPLE ProDOS APPENDIX 
."".,EffffiM&44h iW@&:lliiiirMMMifMMMf4 

FILES INCLUDED ON THE MASTER DISKETTE 
128K VERSION 

The following files are included on the 128K ProDOS version of ZBasic (flip side of the diskette): 

~ Description 
ZBASIC.SYSTEM The boot program and low-memory subroutines. 

The following three files MUST accompany stand-alone programs you create with ZBasic. 

RT.MAIN.OBJI 
RT.AUX.OBJO 
RT.AUX.OBJI 

EDITOR.OBJO 
EDITOR.OBJI 
EDITOR.OBJ2 

COMPILER.OBJO 
COMP ILER. OBJI 

INIT.128.0BJ 

High-memory runtime subroutines. 
Low auxiliary memory routines. 
High auxiliary memory routines. 

The ZBasic command environment and Standard line editor 
and Full Screen Editor. 

The ZBasic compiler. 

128K Stand-alone program initialization sequence. 

Use the example programs on the 64K side of the diskette (see previous page for details). There will 
also be a couple examples on this side of the diskette. These programs will not work with the 64K 
version. 

D-7 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 

GETTING STARTED 

1. Make a BACKUP of your master ZBasic diskette. Store the master in a safe place (refer to the 
ProDOS reference manual for backup methods). 

Note: There are two versions of ZBasic for ProDOS; a 64K version and a 128K version. On 
5.25" diskettes they occupy opposite sides. On 3.5" diskettes they are in two different sub
directories. If using 5.25" diskettes make sure to backup both sides. 

2. Due to storage limitations. the ZBasic disk does not contain the ProDOS operating system. 
Therefore you must create a ProDOS environment. There are a couple of ways to do this: 

a. BOOT FROM A ProDOS Master Disk (/USERS.DISK). Then type "B" from the 
menu to enter Applesoft BASIC. 

From the prompt (1 ). enter: "PREFIX IZBASIC". then: "-ZBASIC.sVSTEM". 

b. CREATE A ZBASIC BOOT DISK: Format a blank disk (using the FILER utility). 
Copy the file "PRODOS" from a ProDOS disk to your freshly formatted disk. Transfer 
the following files from your ZBasic Master Disk to your new copy: 

64KVERSION 
ZBASIC.SYSTEM 
RUNTIME.OBJ 
COMPILER.OBJ 

EDITOR.OBJ 
INIT.64.0BJ 

FSEDIT. SO .OBJ (use FSEDlT.40.0BJ if using a40 col Apple ][.][+. or /Ie) 

128K VERSION 
ZBASIC.SYSTEM 
RT.MAIN.OBJl 
RT.AUX.OBJO 
RT.AUX.OBJl 
EDITOR.OBJl 

COMPILER.OBJO 
COMPILER.OBJl 
INIT.12S.0BJ 
EDITOR.OBJO 
EDITOR.OBJ2 

CTRL <OPEN APPLE> RESET will now 
load and execute ZBaslc from this disk. 

3. Read this appendix. making notes of any variations. 

4. Now read "Getting Started" in the main reference section. 

ProDOSTM Appendix D-8 



APPLE ProDOS APPENDIX 
.... :miii:mil!!liim ::i:ii:::i:::liiiMiI •• ;;ii ::::::11& 

BOOT·UP PROCESS 

When the ZBASIC.SYSTEM program is loaded from ProDOS, it does several things prior to 
putting you into the editor: 

• ZBasic Title page displayed during the boot process. 
Zero page locations are initialized. 

• The low-memory runtime module is moved into place. 
• ZBasic looks for a volume with the first four characters "/RAM". If found, it will 

copy the necessary system files into the ram disk. If you do not wish to have 
ZBasic use the IRAM disk, simply rename it prior to loading ZBasic. 

• The command environment and standard line editor overlay is loaded into 
memory (to invoke the full screen editor type EDITOR or EDITOR+). 

NOTE TO THE MAIN I'IEFERENCE SECTION 

Wherever there are notable differences between the text and the Apple ProDOS version 
you will see an Apple ICON that will tell you the difference or refer you to the correct section. 
The icon looks like this: 

Occasionally the icon refers to the Apple /I DOS 3.3 version. In those instances simply 
ignore this icon. 

THE IMPORTANCE OF USING A RAM DISK 

In order to leave as much free memory as possible for program development, there is a lot 
of overlay swapping and other disk access involved while editing and running a program 
interactively (like an interpreter). 

For example, if you type "PRINT 2.345'32" from the editor command line, quite a number 
of events take place: 

• the editor saves whatever program you have in memory to the disk (/RAM disk, if enabled). 
• loads and runs the compiler from disk ( IRAM disk, if enabled). 
• compiles the command and stores the object code in memory . 
• loads and runs the runtime system (/RAM disk, if enabled). 
• the runtime executes the object code (which in this example prints 75.04). 
• then reloads and executes the editor (/RAM disk, if enabled). 
• editor reloads the temporary file (I RAM disk, if enabled) and waits for the next command. 

Phew! As I said, a lot of disk access! It should be obvious that a IRAM disk will speed up 
the whole process 10-15 times since disk access is nearly eliminated. 

0-9 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 

USING THE RAM DISK 

These versions of ZBasic require 64K and 128K of memory, respectively. If your system 
has more then the minimum amount of memory required, and the extra memory is 
configured as a ProDOS tRAM disk, ZBasic will use it to store some system files and overlays 
so that overall program development time will be reduced and system speed will be 
improved. 

In addition, a temporary file used to hold your source code is also saved to disk during the 
overlay swapping. This file is named ZTEMP.ZBS. 

If there is no tRAM volume, the ZBasic disk MUST remain in the drive for normal operation. 

If the tRAM disk is not large enough to hold ZTEMP .ZBS, ZBasic returns a DISK FULL error 
and returns to the editor. You should save the file to a diskette and compile from disk at this 
point (RUN") or exit ZBasic, disable the tRAM disk by renaming it from ProDOS, then re
enter ZBasic without rebooting. 

~.~."".'.)Ijj.\.' .. ""-'",", ,,:: ". 

''- '.:.:..:-~" 1 ') 

Warning: DO NOT RENAME THE tRAM DISK WHEN IN USE! 

ProD OS PATH NAMES 

The filenames used in ZBasic are standard ProDOS pathnames. ProDOS pathnames can 
consist of up to 64 characters, including separating slashes. Individual filenames can be up 
to 15 characters long, and can consist of alphanumeric characters and periods only. 

Pathnames may be used with OPEN, RENAME, SAVE, LOAD and all other disk commands 
and statements. See your ProDOS manual for more information about pathname syntax. 

FILE BUFFER SIZE--- OR HOW TO GET AN EXTRA 2048 BYTES 

Each file opened by a ZBasic program requires a 1024 byte file buffer. ZBasic defaults to 
two file buffers (2048 bytes). 

If you configure ZBasic for one file buffer, 1024 bytes is freed for program or variables 
(configuring for no open files would free 2048 bytes). 

See "Configure" in main manual. 

ProDOSTM Appendix D-10 



APPLE ProDOS APPENDIX 

LIST KEYS 

HELP 

The following is a list of additional keys which can be used in the command mode editor to 
list lines of source code (as well as those described in the main manual): 

UpArrow 
Down Arrow 
Left Arrow 
Right Arrow 

List previous line 
List next line 
List first line of the file 
Lis1last line of the file 

The file used by the HELP command is named "ZBASIC.HLP". If you so desire, this file can 
be deleted to allow more storage room on the disk. "ZBasic is not able to find this file in it's 
system directory, H will look in the user's currently logged directory (see the PATH 
command). If ZBasic still cannot find the help file, you will get a "File-Not-Found" error. 

CONTROL-RESET VERSUS CONTROL-C 

This version allows you to use eHher CTRL-C or CTRL-RESET to exH a running program. If 
the computer should "lock up" for some reason, or you are faced with the monitor prompt 
( * ), you can press CTRL-RESET to restart the ZBasic editor. Your source program should 
remain intact. If you press CTRL-RESET while executing a stand alone program, the 
program will be terminated, and you will be allowed to load and execute another ProDOS 
system program. If you are faced with the monitor prompt anywhere wHhin the ZBasic 
system, pressing CTRL-Y will also return you to the editor. 

ADDITIONAL DISK ERROR CODES 

In addition to the standard ZBasic disk error codes referred to in the main reference section, 
the following codes are defined and may be trapped with ON ERROR GOSUB: 

Error Code 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21-255 

Error Message 
Position Error 
No Device Connected Error 
Disk Switched Error 
Duplicate Filename Error 
Incompatible File Format Error 
Access Error 
File Already Open Error 
Directory Structure Damaged Error 
Not a ProDOS Volume Error 
Duplicate Volume Online Error 
File Structure Damaged Error 
110 Error 
Disk Error 

The actual disk error code will be the filenumber times 256 plus the number above. See 
disk error in the main reference manual for more information. 

D-11 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 

HEXADECIMAL CONSTANT INDICATORS ($ and &) 

In addition to the "&" prefix signifying a hexadecimal constant (as in &FF69). the "$" 
character may also be used (as in $FF69). This is so that Apple users will feel more at home. 
Remember that if this character is used the program will not be directly transportable to the 
Apple DOS 3.3, IBM, Macintosh, CP/M, or other versions of ZBasic. 

RELATIVE GRAPHIC COORDINATES VERSUS PIXEL COORDINATES 

MOUSE 

The standard ZBasic graphic coordinate system is great for porting programs between the 
various computers that run ZBasic or between Hi-Res and double Hi-Res. Occasionally you 
may need to switch to PIXEL coordinates. Use this statement: 

POKE WORD &85, 0 

After this statement is executed, the following screen dimensions will be in effect with the 
different graphics modes: 

MODE 1 40 x 40 
MODE 3 80 x 40 
MODE 5 280 x 192 
MODE 7 560 x 192 (not available with the Apple 1[+ or lie without an extended 80 col. card) 

MODE automatically resets to the device independent coordinate system, so you must use 
the POKE WORD &85, 0 statement immediately after setting MODE to re-enable the pixel 
coordinates above. 

If your program uses the MOUSE function to receive input from the mouse 
(DEF MOUSE=O), you MUST use a MOUSE(O) function at the beginning of the program 
prior to any other MOUSE call. 

~."-'-"" ~' -. 

MOUSE(O) forces ZBasic to scan the slots for a mouse interface card, and then initialize the 
mouse properly. If the mouse is not initialized prior to accessing it, your program may die a 
horrible death (crash)! 

In addition, ~ a mouse interface could be found and initialized properly, MOUSE(O) will 
return a value of -1 (true,) otherwise a value of zero (false) will be returned. 

ProDOS"" Appendix D-12 



APPLE ProDOS APPENDIX 

IMPORTANT NOTES ABOUT VIDEO/SYSTEM PROBLEMS 

ZBasic allows you to set many different graphics and text modes. This feature lets you jump 
from one MODE to another as your program requires. This does introduce a unique 
potential for contusing video problems that are easily mistaken for system errors. 

~ 
• While programs compiled in the interactive method (RUN) of ZBasic will usually operate 
correctly even if the MODE is not set at the beginning of a program, a program compiled to 
disk as a stand-alone program (RUN" or RUN+) may appear to "Hang the system" if MODE is 
not set. To solve this problem; BE SURE TO SET THE MODE AT THE BEGINNING OF 
EVERY STAND-ALONE PROGRAM. If using an Apple][+ (or lie without an extended 80 
column card) be sure to avoid MODE 3 and 7. 

• Sometimes when typing programs in the editor, especially after pressing CTRL-C or CTRL
RESET from a running program, you may experience an unresponsive screen or keyboard. 
Nine times out of ten what has happened here is that the MODE has been changed in the 
compiled program and needs to be reset in the editor (your keys are actually appearing on 
an invisible page of another MODE). Just type: 

<RETURN> MODE 2 <RETURN> 

Even though you will not see the keys being typed, the screen will retum to normal when 
you're finished typing. Do not REBOOT the system, as you will lose the program in memory. 
Remember: You can't see the keys being pressed until you press <RETURN>. 

• CONTROL KEYS IN LISTINGS: The 80 column card responds to certain control codes. 
Sometimes a REM or quoted string may contain a control character that may set the 80 
column card to 40 characters or to a different mode. Use the example above to correct the 
setting and delete the control character from the offending line. 

USING THE SUPER SERIAL CARD 

The file number specified in serial 110 must be the negative slot # in which an Apple Super 
Serial Card is installed. The Apple IIc has the equivalent of a Super Serial Card installed in 
slot # 2. This card would be accessed by: 

OPEN "C",-2,300 ••• 

ZBasic communication commands only support the Apple Super serial card and compatible 
serial interfaces. 

Note: The IIGS serial port is not yet supported. A Super Serial Card or compatible card or 
modem will function properly. 

COMMANDS NOT SUPPORTED IN THIS VERSION OF ZBASIC 

The following two functions are not supported: INP() and OUT( ) . See the notes at the 
bottom of the pages in the main reference section for commands that may not be fully 
compatible. 

D-13 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 

INTEGRATION OF TEXT AND GRAPHICS 

Unlike Applesoft, ZBasic allows you to integrate text and graphics on the screen. 

This permits porting programs over to the Apple from the IBM PC and many others 
(MODE 5 only on the 1[+ and 64K /Ie. MODE 5 and 7 only on the 128K /Ie and /lc). 

ao COLUMN CARD CONTROL CODES 

The Apple 80-column text card firmware supports many control codes to perform special 
operations, such as screen scrolling up and down. These control codes are available in 
modes 2 and 6. Simply print CHR$(x), where x is the code for the function you want to 
perform (see the aD-column text card manual for a listing of these codes.) 

In addition, several of these codes are available in Modes 5 and 7. The codes and the 
function they perform in MODES 5 and 7 are listed in the following table: 

CHR$ Code 
7 
8 

10 
13 
14 
15 
22 

23 
24 
27 
28 

.ElJ.n.Q1lQn 
Beep the Apple speaker 
Moves cursor position one space to the left; from left edge of window, 
moves to right end of line above 
Moves cursor position down to next line, scrolls if necessary 
Moves cursor position to left end of next line, scrolls if necessary 
Sets display format normal (white on black) 
Sets display format inverse (black on white) 
Scrolls the display down one line, leaving the cursor at the current 
position. 
Scrolls the display up one line, leaving the cursor at the current position 
Turns MouseText off 
Turns MouseText on 
Moves cursor pOSition one space to the right; from right edge of window, 
moves it to left end of line below 

Other Apple screen control codes are not implemented (as control codes) for graphics 
MODE 5 and 7. 

INVERSE TEXT 

To shift to the inverse character set, print a CHR$(15). All characters printed after this will be 
in inverse text. 

To switch back to normal text, print a CHR$(14). These are the same control codes that 
Apple's 80-column card uses to switch modes. As mentioned before, this works with the 
40-column screen also (a slight enhancement to Apple's firmware done by our software). 

ProDOSTM Appendix D-14 



APPLE ProDOS APPENDIX 
1ft ¥ 

MouseText CHARACTERS 

In addition to the MouseText characters available in 40 and 80 column modes of the new 
Apple /I machines, MouseText is available in Modes 5 & 7. To shift the character set to 
MouseText, print a CHR$(27) and a CHR$(15). 

• 0 ~ X V L'Ji!:i -....... • A B C D E F G 

~ -1- l' - ~ • ~ H I J K L M N 0 

~.: ...; ....: - L ~ I I 
p Q R 5 T U V W 

C ::. I • - .... 3 I , .. 
x v z I \" I -

To de-select MouseText, print a CHR$(14) and a CHR$(24). Since Apple's procedure for 
printing MouseText requires you to shift to inverse mode (the CHR$(15)), you might think 
that inverse MouseText isn't possible. Not so with ZBasic! If you want to experiment a lillie, 
just use a CHR$(27) to select inverse MouseText, and CHR$(24) to select normal 
alphanumerics again! 

CUSTOM CHARACTER SETS 

The character set that is included with your ZBasic system and used by the graphics 
character driver is the standard ASCII character set with the addition of the MouseText 
characters (MODE 5 and MODE 7 only). 

If you wish, you can customize the character set to your liking. Space does not permit 
gelling into the specifics of how each character is defined or used, but I can tell you how to 
change the character set to a pre-defined sel. Our character set is defined in exactly the 
same way as the character sets included on the DOS Toolkit disk, available from Apple 
Computer, Inc. To change the character set, follow these instructions: 

1. From Applesoft BASIC, with ProDOS active, insert a BACKUP COPY of your ZBasic 
master disk in the drive. 

2. Type: 64K· BLOAD" /ZBASIC/ZBASIC. SYSTEM, A$2000, TSYS" 
128K: BLOAD "/ZBASIC/RT.AUX.OBJO, A$2800" 

This loads the character set (and some other stuff) into memory. 

4. Load your character set by typing: 
BLOAD <your character set pathname>, A$3900" 

This loads your character set over our character sel. Since the DOS Toolkit character 
sets are only 768 bytes long, (characters 32-128) and only contain definitions for the 
standard ASCII characters, you will not be overwriting the MouseText (0 to 31). 

5. Re-insert your ZBasic master disk, and type: 
64K: BSAVE "/ZBASIC/ZBASIC.SYSTEM, A$2000,L$4000,TSYS" 
128K: BSAVE "/ZBASIC/RT.AUX.OBJO, A$2800" 

D-15 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 

SPECIAL ProDOS CONFIGURATION OPTIONS 
ZBasic can be configured by typing "C" at the initial prompt screen (see the "Configure" 
section of the main reference manual), or by typing "CON FIG" while in the editor (see 
"CON FIG" on the next page). In addition to the standard configuration parameters, there 
are two more parameters which you can set for the Apple II. 

PRINTER SLOT? 1-7 

This allows you specify which slot your printer interlace is in. This number must be from 1 to 
7 (slot 1 is the standard printer slot for Apples). As in the rest of the configuration 
questions, pressing <RETURN> as a response will accept the defauH and skip the 
initialization string configuration. 

If you type a number from 1 to 7, you are telling ZBasic that your printer interlace card is in 
that slot and you will be given an opportunity to specify a printer initialization string (the IIc 
has the equivalent of an Apple Super Serial Card in slot 1): 

SETTING UP A PRINTER INIALIZATION SEQUENCE 

continued ... 

ENTER THE EXACT KEYSTROKES REQUIRED BY YOUR 
PRINTER AND/OR INTERFACE CARD (nAn TO END): 

The printer initialization string can be any sequence of up to 12 ASCII characters that can be 
typed from your keyboard (end input with the 'W' symbol (caret). 

To enter the initialization string, type the EXACT keys required by your printer and/or 
interlace card. The keys will appear on the screen as you type them. Unprintable control 
characters will appear prefixed by a carettA) character on the screen. Once set, this string is 
sent to the printer prior to anything else being sent out (such as LLlST, LPRINT, or ROUTE 
12S). Be sure to see the <S>ave option under "Getling Started" in the front of this manual. 

Some common control codes may be entered from the keyboard using: 

CTRLH =S 
CTRLL =12 
CTRL \ =2S 
CTRL =31 

TAB or CTRL I =9 
RETURN =13 
CTRL) =29 
ESC or CTRL [ =27 

CTRLJ 
DELETE 
CTRL' 

=10 
=127 
=30 

See your Apple reference manual for other character sequences. 

This is most useful for those users who have an older interlace card that does not interlace 
correctly with the SO-column screen. These cards will echo characters to the screen using 
the 40-column screen firmware, instead of the SO-column firmware when the SO-column 
card is active (usually messing everything up). 

One solution is to tell the interlace card to NOT echo characters by using the following 
initialization sequence: <CONTROL I>80N 

This would instruct the interlace to turn 011 the screen, and allow up to SO characters per line 
on the printer. See your interlace card manual for more details. You can also send printer 
configuration characters to your printer for all kinds of fancy printing, if your printer is capable 
of it. Your printer manual will list printer control codes that are applicable. 

ProDOSTM Appendix 0-16 



APPLE ProDOS APPENDIX 
r ••• fI#W4IWiWE8iilii@ooli@",liiilii**i4,£QiI-

continued from previous page 

CONFIG 

LOCATE order X,Y? <yIN> Y 

This option allows you to configure the order of the coordinates in the LOCATE statement. 

Normally ZBasic expects the horizontal (X) coordinate first. By answering "N"to this 
question you can make the vertical (Y) coordinate first and the horizontal (X) coordinate 
second. 

Note: This also alters the coordinate base of the screen to make the upper-left hand corner 
character position 1,1 instead 010,0 (only affects LOCATE). 

This option is provided to maintain compatibiHy wijh the IBM/MSDOS versions of ZBasic 
which have this option so that BASICA programs are easier to convert. This makes porting 
BASIC programs from other computers much easier. 

You may re-configure the system any time from the standard line editor by using the 
CON FIG command. Use caution when doing this while working with CHAIN programs or 
programs that will be sharing data (especially floating point numbers). 

Each CHAINed program must be compiled using the same configuration as the other 
programs in the overall CHAINed system. Otherwise, you will get a chain error when 
attempting to run them. 

II you elect to (S)ave your custom configuration, ZBasic will ask you to enter the complete 
pathname 01 the ZBASIC.SYSTEM file. This will normally be "IZBASICIZBASIC.sYSTEM", 
unless you have installed ZBasic on a hard disk and/or changed the name of this file. 

If ZBasic has trouble saving your configuration, it will give you an error message and wait for 
a keypress. After pressing a key, you will be returned to the configure menu. 

If no error is encountered, you will automatically be put into the line editor. 

NOTE ON CASE CONVERSION 

During boot-up, the system checks to see if ij is running on an Apple 1[+ or a newer 
machine. If you are using a J[+ the system will automatically convert from lower to upper case 
for both keyboard input and screen output. 

If it's a newer machine, the system will skip the conversion. Upper/lower case conversion 
can be configured separately by the user from the configure menu. See "Configure" in the 
front of this manual. 

0-17 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 

THE ProDOS MACHINE LANGUAGE INTERFACE 
These versions of ZBasic have been written with the ease of direct access to ProDOS in 
mind. This section of the manual describes how a ZBasic program can talk with ProDOS 
directly. 

MLI INTERFACE 

First of all, this is NOT a tutorial on how to use the ProDOS Machine Language Interface. 
For more information on that subject, consult the ProDOS Technical Reference Manual. 

ENTRY POINTS 

All parameters for ProDOS calls that are made by ZBasic are located in a parameter block at 
$1 FOO (all addresses are in HEX). There is an 18 byte buffer here that the ZBasic system 
uses for all MLI calls (18 being the maximum length of any MLI parameter block). 

In addition, the entry point for a ProDOS call with the 64K version is at $803 ($865 for the 
128K version). One more buffer that might be useful is the file name buffer. It is located at 
$1 F12, and is 64 bytes long (the maximum length of a ProDOS pathname). 

ZBaslc TO ProDOS INTERFACE 

To use the ZBasic to ProDOS interface, first set up the parameter list for the MLI call that 
you wish to make. If you need to, you can set up the pathname pointer with: 

POKEWORD &lF01, VARPTR(name$) 

since ZBasic strings conform to the ProDOS pathname standards (a count byte followed by 
the string). Next, you must load the 6502 Accumulator with the MLI command code, and 
then JMP or JSR to location $803 ($865 for the 128K version). The ProDOS call will be 
performed, and the carry flag will have the status of the call upon return. II the carry is clear, 
then the call returned with no error. II, on the other hand, the carry is set, then there was an 
error and the error code can be retrieved from location $A2. The ProDOS error that is 
returned by the MLI is translated into the appropriate ZBasic error code, if possible. II not, 
then the actual MLI error code will be returned. If you wish to use the standard ZBasic error 
handler, then you can perform a JMP to location $809 ($87F for the 128K version) if the 
carry is set upon retum from the ProDOS interface. 

For example, to use this interface to set the ProDOS system prefix to "!ZBASIC": 

PATH$ = "/ZBASIC" 
POKE &lFOO, 1 
POKE WORD &lF01, VARPTR(PATH$) 
MACHLG &A9, &C6 &20, $803 
MACHLG &90, 3, &20, $809 
END 

<--- Sets up parameter block 

<--- 128K version change to $865 
<--- 128K version change to $87F 

Note: Either "&" or "$" may be used to denote Hex numbers (ProDOS version only). 

ProDOSTM Appendix D-18 



APPLE ProDOS APPENDIX 
_tt,a.; U it HI 

USING MACHLG 

ProDOS 

The assembly language source for the MACHLG statements would look something like this: 

SET.PREFIX EQU * 
LDA #$C6 ;MLI CODE FOR SET_PREFIX 
JSR $803 ;CALL THE INTERFACE 
BCC DONE ;NO ERROR 

ERROR JSR $809 ;LET ZBASIC HANDLE THE ERROR 
DONE EQU * 

ERROR CODES 

For the 64K version only; another location of interest is $806. This is the entry point for the 
subroutine that translates ProDOS error codes into ZBasic error codes. If you wish to 
access the MLI directly, but still want ZBasic error codes retumed, you can perform a JSR to 
this subroutine with the ProDOS error code in the accumulator. The translated error code 
will be stored in location $A2. 

For more examples of how to use the ProDOS-ZBasic interface, see the CREATE, PREFIX, 
BLOAD, and BSAVE functions included on your master diskette. 

MEMORY USAGE 

The following diagrams illustrate memory usage for the various phases of operation of the 
ZBasic system. 

Note: Memory locations 768-975 (page 3) are not used by the ZBasic system. This would 
be a good place to store short machine language subroutines. 

Zero Page Map 

ilS3 = Editor m = Compiler l1li = Runtime ~ = All 

lIB 0 1 2 3 4 ~ _S 7 8 9 A B C D E F rrnm 
Ox Ox 

j 1x 1x 

12x 2x 
13x 3x 

14x <\x 
ISx ~x 

ISx ~ ~ ~~ ~ .~ 

• 
~~ 7x 

I~II - ~ ~:: 't" ~""-~ Ax 
Bx ~~ ~ t ~~~-Cx 

D" X " __ ~ :0; Ex ~,,'C: 

Fx I I I II F. 

0-19 ProDOSTM Appendix 



5 6553 

63488 

5324 8 

4915 2 

2 3507 

1638 4 

819 2 

204 
102 

8 
4 
0 

APPLE ProDOS APPENDIX 

64K VERSION MEMORY MAP 

Edit/Compile 
System Monitor 

Applesott Roms ProDOS 

(Not used by ZBasie) 

Hardware VO 

EDITOR.CBJ 
(whllo editing) 

COMPILER.OBJ 
(while compiling) 

t 
ZBasle 

Source Program 

Hi·Res 
Graphics Page 

ZBasle 
Subroutines 

Text PaQe 
Zero Page. Staek 

& 
& F80 

& 0000 

& COOO 

& 8900 

& 4000 

& 2000 

& 

& 
& 

0800 

0400 

0000 

Runtime 
System Monitor 

Applesott Roms 
(Not used by ZBasle) 

Hardware 110 

RUNTIME.CBJ 

Variables 

~ 

t 
ZBasle 

Complied Program 

Hi·Res 
Graphics Page 

ZBasle 
Subroutine. 

Text Page 
Zero Page. Stack 

ProDOS 

<3- File B ufl.r. 
lIIe) 11K per 

(Numbers on the lett map are in decimal. numbers on the right map are in hexadecimal) 

ProDOSTM Appendix D-20 



APPLE ProDOS APPENDIX _-!Ii .. ·arnram· III. 
128K MEMORY MAP 

Main Bank Aux Bank 
65535 &FFFF 

Monitor ROM I Copy 01 Monitor ROM 

These fifes are 
EDITOR overlayed as ProOOS OBJI ~ needed 

57344 &EOOO 

I 
COMPILER 

EDITOR.OBJ2 1 ProOOS OBJI 

53248 &0000 

Hardware 110 Hardware 110 

49152 &COOO 

EDITOR RT.MAIN .-These fiies are 
OBJO OBJO 

COMPILER 
overlayed as 
needed 

RT.AUX.OBJI 

44032 OBJO 
(&ACOO) ~ File Buffers &A800 

Variables (IK per file) (43008) 

~ 

t t Pseudo St.ck 
ZB •• lc 

16364 Program Data 
Complied Program 

&4000 

Hi·Res Hi-Res 
Graphics Page Graphics Page 

8192 &2000 

ZB.slc RT.AUX.OBJO 
Subroutines 

2048 &800 

1024 Text Page &40 TextPao. 

0 Zero Page, Stack &0 Zero Paoe, Stack 

D-21 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 

CONVERTING APPLESOFT PROGRAMS 
TO WORK WITH ZBASIC 

ZBasic is an advanced version of BASIC. While it shares many of the commands and 
syntax of Applesoft, it is not exactly the same in many areas, such as graphics, disk 
file handling and such. 

CONVERTING APPLESOFT FILES FOR LOADING INTO ZBASIC. 

ZBasic source code files and Applesoft files are not compatible. To convert an 
Applesoft program so you can load it into ZBasic: 

1. Make sure you have a Backup of your Applesoft program then load the Applesoft 
program into Applesoft. Make sure your program doesn't have a line zero then add 
the following line to the program. 

0F$="FILENAME":PRINTCHR$(4) "OPEN";F$ 
:PRINTCHR$ (4) "WRITE";F$:POKE33,33:PRINT"0"; 
:LIST 1-:PRINTCHR$(4) "CLOSE":TEXT:END 

Note: The program above is one line. Enter without spaces or <RETURN>. 

2. Change "FILENAME" above to the name of the file you wish to create for loading 
into ZBasic. Then type RUN. 

3. Load ZBasic, press "E" for edit, and then load the program using LOAD. To 
compile the program type RUN. When errors occur use the chart on the next few 
pages to convert syntax to ZBasic syntax. 

CONFIGURING ZBASIC FOR COMPATIBILITY WITH APPLESOFT 

ZBasic allows you to configure the system for your preferences. To make ZBasic as 
compatible as possible to Applesoft, set the following configurations. See 
"Configure" in the front of this manual for details about setting configuration options: 

Default Variable type: S (avoid doing this whenever possible) 
Convert to Uppercase YIN: Y 
Optimize Expressions for integer YIN: N (avoid doing this whenever possible) 

STRING LENGTH NOTE 

ZBasic uses strings differently than Applesoft. See "Converting Old Programs" and 
DIM and DEF LEN in the front section of this manual for more infomnation. 

COMMANDS THAT ARE DIFFERENT 

The following commands are different and will require converting. 

The list includes hints on how to convert the various Applesoft statements to ZBasic 
equivalents. 

ProDOSTM Appendix D-22 



APPLE ProDOS APPENDIX 
wM'Wllw & 44 • 

Applesoft 
Commands 
BLOAD/BSAVE 
CALL 
CLEAR 
COLOR 
CONT 
DEFFN 
DIM 
DRAW 
FLASH 
FRE 
GET 
GR 
HCOLOR 
HGR 
HGR2 
HIMEM 
HUN 
HOME 
HPLOT 
HTAB 
IN# 
INVERSE 
LOMEM 
NORMAL 
ON ERRGOTO 
PDL 
POP 
POS(expr) 
PR# 
RECALL 
RESUME 
ROT 
RUN 
RND(n) 
SCRN 
SCALE 
SHLOAD 
SPEED 
STORE 
TEXT 
TRACE 
VLlN 
VTABy 
WAIT 
XDRAW 

ZBaslc 
Equivalent 
See the BLOAD and BSAVE functions on the master disk. 
ZBasic uses a constant as an address (not a variable). Parameters not allowed. 
See CLEAR in the main reference section for ZBasic's additional options. 
ZBasic uses this statement for all graphics modes (not just low-res). 
Not supported (ZBasic is a compiler). 
More options in ZBasic. See DEF FN and LONG FN in the main reference section. 
ZBasic only allows constants in DIM exrpressions. See DIM. 
Not available (see DRAW.FN example on the master disk). 
Not available. 
Not applicable (and not necessary since ZBasic doesn't do "Garbage collection"). 
Not available. See GET.FN on the master disk. 
Use: MODE 1 :CLS. 
Use: COLOR. 
Use: MODE 5 (also see MODE 7 for double hi-res). 
Not applicable 
Not applicable 
Use PLOTx,y TO x2,y2 
Use CLS. 
Use PLOT 
Use LOCATE x, PEEK(37) (also see PRINT@ 1% and INPUT@/%) 
Use INSLOT 
Use CHR$(15). See "Inverse Characters" in this appendix. 
Not applicable 
Use CHR$(14). See "Inverse Characters" in this appendix. 
See ZBasic's ON ERROR GOSUB statement. 
See DEF MOUSE and MOUSE in this appendix and the main reference section. 
Use RETURN nnnn instead. 
Expr=O for default device, 1 for printer and 2 for disk. 
See OUTSLOT, LPRINT, OPEN"C" and ROUTE. 
Not available. 
Use RETURN with ON ERROR GOSUB 
Not available. 
See RUN in this appendix and in the main reference section for other options. 
ZBasic returns an integer number between one and n. 
Use POINT 
Not available. 
Not available. 
Not available. 
Not available. 
Not available. Use MODE 0, 2, 4 or 6 instead. See MODE. 
Use TRON or TROFF (also see TRONX, TRONS). 
Use PLOT x,y TO x2,y2 
Use LOCATE PEEK(36), Y (see PRINT@ 1% and INPUT@.I''Io) 
Not available. 
Not available. 

Many of the commands Applesoft supports have extentions in ZBasic. For instance; ELSE is supported 
with IF THEN. RESTORE will allow you to position the DATA pointer to a specific item, PRINT USING is 
supported, etc. 

Note: When converting programs a word processor with FIND and REPLACE is very handy. 

continued ... 

D-23 ProDOSTM Appendix 



; 
APPLE ProDOS APPENDIX 

'AlII 
DIFFERENCES IN DISK FILE COMMANDS 

Applesoft File Commands 

OPEN A FILE FOR INPUT 
PRINTCHR$(4)"OPEN filename" 
PRINTCHR$(4)"READ filename" 

OPEN A FILE FOR OUTPUT 
PRINTCHR$(4)"OPEN filename" 
PRINTCHR$(4)"WRITE filename" 

OPEN A FILE FOR READ/WRITE 
PRINTCHR$(4)"OPEN filename, L100" 
PRINTCHR$(4)"OPEN filename, R10" 

CLOSE FILES 
PRINTCHR$(4)"CLOSE filename" 
PRINTCHR$(4)"CLOSE" 

ZBaslc Equivalents 

OPEN"I",filenum, '1ilename" 

OPEN"O",filenum,"filename" 

OPEN"R",filenum,"filename",100 
RECORD#filenum,10 

CLOSE#filenumber 
CLOSE 

Note: Also see "Files" in the front section of this manual for more information about ZBasic's powerful file 
handling commands. Also see: RECORD, READ#, WRITE#, DIM, PRINT#, INPUT# and L1NEINPUT#. 

PEEKS, POKES, AND SYSTEM CALLS 

Applesoft 
CALL -958 
CALL -868 
X=PEEK(-16336) 
X=PEEK(-16287), Y=PEEK(-16286) 

ZBaslc Equivalents 
CLSPAGE 
CLS LINE 
See SOUND in reference section. 
See MOUSE(3) and DEF MOUSE 

Other PEEK and POKE statements should work as expected except those dealing with Applesoft. 

Also see MACHLG, USR, CALL and LINE in the main reference section. 

ProDOS7>f Appendix 0-24 



APPLE ProDOS APPENDIX 

TRANSFERRING ZBaslc DOS 3.3 FILES TO THE ProDOS VERSIONS OF ZBaslc 

The file format for the ProDOS version of ZBasic is different than the file format for the DOS 
3.3 version of ZBasic. Therefore; follow these instructions to convert files: 

1. LOAD your program into the DOS 3.3 version of ZBasic. 

2. Use the SAVE" command to save the source code in ASCII. 

3. Exit the DOS 3.3 version of ZBasic and boot your favorite DOS 3.3 to ProDOS 
conversion program; such as CONVERTfound on your ProDOS tUSERS.DISK or 
APPLE SYSTEMS UTILITIES. 

4. Copy the file just saved in ASCII to a ProDOS formatted diskette. 

5. Execute either the 64K or 128K ProDOS versions of ZBasic and LOAD the program. 

Programs created in the DOS 3.3 version should run with few, if any, changes; aHhough 
you may want to modify the programs to take advantage of the ProDOS tRAM disk or the 16 
colors available in Double Hi-Res. 

D-25 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 

ASIC 
REFERENCE SECTION 

This section of the appendix discusses commands unique to the ProDOS version of 
ZBasic and commands that may have other meanings other than those described in the 
main reference section. 

ProDOSTM Appendix D-26 



APPLE ProDOS APPENDIX 
fflgWgf.,...,........,..,.~ 

CLS command 

FORMAT CLS [n] 

DEFINITION Clears the screen. Same as the standard CLS statement with the following variations: 

• If you are currently editing in one of the text modes, the screen will be cleared 
immediately (without going through the compiler) . 

EXAMPLE 

REMARK 

• If you are currently in one of the graphics modes, the command must first be compiled 
before it is executed by the runtime system, and takes longer. 

See CLS in the main reference section for delailed information. 

This command works correctly with the standard Apple 80-column card and Videx 80-
column cards (and compatible). Any control key typed at the keyboard that is not 
defined as an editor command will be passed through unchanged to the 80-column 
firmware. What this means is that if your card requires a CHR$(26) to clear the screen 
you can press CTRL-Z to accomplish the same thing. 

To use any of the other CLS options from within the editor, such as CLS nn, precede 
the command with a colon. e.g. : CLS ASC (" A") 

D-27 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 

COLOR statement 

FORMAT COLOR [=] n 

DEFINITION The COLOR codes for the ProDOS version of ZBasic are: 

Modes 0, 2, 4, & 6: Text Characters only, no color. 

Modes 1, 3, & 7: NUMBER 
o 
1 
2 
3 
4 
5 
6 
7 
B 
9 
10 
11 
12 
13 
14 
15 

Mode 5: NUMBER 
o 
1 
2 
3 
4 
5 
6 
7 

~ 
Black 
Magenta 
Dark Blue 
Purple 
Dark Green 
Grey 
Medium Blue 
Light Blue 
Brown 
Orange 
Grey 
Pink 
Green 
Yellow 
Aqua 
Whhe 

QQ.J..QR 
Black1 
Green 
Violet 
Whhe1 
Black 2 
Orange 
Blue 
White2 

IIGS Note: The IIGS Super Hi-Res graphics mode is not supported directly (the /Ie, /Ie 
modes are emulated). 

ProDOSTM Appendix D-28 



APPLE ProDOS APPENDIX 
lid :Wii 

DATE$, TIME$ function 

FORMAT DATE$ 
TIME$ 

DEFINITION See the main reference manual. 

EXAMPLE See the main reference manual for details of usage. 

REMARK These functions behave exactly as described in the standard reference section if your 
system has a ProDOS compatible clock installed. 

The system performs a ProDOS call to retrieve the date and time from a clock card. If no 
card is installed, then the strings that are returned will be set to whatever the current 
values are of the ProDOS date and time locations on the global page (00/00/00 and 
00:00 norrnally). 

If your system has no clock, and you wish to set the date and time manually, you can 
include the DATETIME function in your program (from your master diSk). 

Since ProDOS does not have any storage space for seconds, the TIME$ seconds field 
will always be ''~O''. 

D-29 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 

DEF LPRINT statement 

FORMAT DEF LPRINT [=) Slot number 

DEFINITION This command is used to configure the printer slot during runtime. Alter this command 
is used, all printer output will be diverted to the selected slot. 

EXAMPLE 

REMARK 

The slot number may be specified by any numeric expression but the value of Slot 
number MUST be between one and seven 

DEF LPRINT 1 

This command supersedes the configuration value, except for the initialization string. 
See the notes on configuration for more info. 

~ 
If value exceeds the range of 1-7, the number will be masked to stay in range. 

ProDOSTM Appendix 0-30 



APPLE ProDOS APPENDIX 

DEF MOUSE statement 

FORMAT DEF MOUSE [=) expression 

DEFINITION This statement defines which device (MOUSE or JOYSTICK) will be used for the 
MOUSE function call. 

EXAMPLE 

REMARK 

expression=O 
expression<>O 

APPLE MOUSE INTERFACE 
JOYSTICK 

DEF MOUSE=l: REM Define as a JOYSTICK 
DO 

PRINT MOUSE (1) , MOUSE (2) 
UNTIL MOUSE (3) 
END 

This program will print the positions of the joystick 
until you press the joystick button. 

The default is equivalent to DEF MOUSE=O. The Apple /lc has the equivalent of a 
mouse card built-in. 

If DEF MOUSE=1 is used to activate the joystick, the function MOUSE(3) will return a 
value corresponding to which joystick button was pressed. 

WR 

o 
1 
2 
3 

Meaning 

Neither button pressed 
Button 0 pressed 
Button 1 pressed 
Both buttons pressed 

D-31 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 

DIR command 

FORMAT [L]DIR [+] [pathname] 
[L]CAT [+] [pathname] 

DEFINITION These commands display a directory of a ProDOS volume, as explained in the 
reference section. DIR and CAT are interchangeable. CAT was implemented to make 
conversion easier for Applesolt programmers. 

REMARK 

When the command DIR is given by itself, ZBasic will display a directory of the currently 
logged ProDOS pathname (see the PATH command) in the standard 40 column format. 

DIR+ operates in the same way as DIR without the "+", and will produce the ProDOS 
standard BO-column display format (more information is shown). \I in 40-column mode 
the output will wrap to the second line. 

The optional pathname specifies a directory to be displayed. The pathname can be a 
full or partial ProDOS pathname. Full pathnames start with a slash ("t'), and specify the 
root volume. If a partial pathname is specified, ZBasic will append this pathname to the 
currently logged pathname, and display the contents of this sub-directory. Pathnames 
can be any legal ProDOS pathname. 

The optional "L" preceding the command will direct output to the printer. There must 
not be a space between the "L" and the "DIR". 

As you can see, the first line of the directory contains the name of the directory which 
the listing is produced from. A slash preceding the directory name (as in the example) 
signifies that this is a root (volume) directory. Sub-directory names are not preceded by 
the slash. 

The heading line is pretty much self-explanatory, except the ENDFILE (found on a DIR+ 
listing). The figures in the ENDFILE column represent the total number of bytes in that 
file. 

The TYPE column represents the ProDOS standard file types, with one exception -
ZBS. This file type is a ZBasic tokenized source file. 

An asterisk (*) preceding a file name signifies that this file is locked. It can not be 
modified in any way from within the ZBasic system. 

As with the editor "L1ST' command, the directory can be temporarily halted by pressing 
the space bar once. Pressing the space bar again will advance the directory one line. 
Pressing any other key will restart the listing. Pressing CTRL-C will abort the directory 
listing. 

To read a directory from within a running program, simply OPEN the directory file as you 
would any other, then read the necessary information from it. See the ProDOS 
Technical Reference Manual, Appendix B, for information concerning the format of 
directory files. 

Also see the special ZBasic Pro DOS command: ONLINE. 

ProDOSTM Appendix D-32 



APPLE ProDOS APPENDIX 
:: ......... 1 • 

EXAMPLE ZBasic Ready 
DIR 

!ZBASIC 
NAME TYPE BLOCKS MODIFIED 

ZBASIC.SYSTEM SYS 33 10-FEB-87 12:02 
*RAM.FILLER BIN 17 31-JAN-86 11: 40 
*RUNTIME.OBJ BIN 28 29-JAN-87 15:49 
*ZBASIC.HLP TXT 57 12-0CT-86 13:18 

DISKIO.BAS TXT 5-DEC-86 14:26 
GRAPH.BAS ZBS 6-NOV-86 10:25 
CREATE.FN TXT 20-JAN-87 11 :31 
DRAW.FN TXT 29-DEC-86 17:08 

BLOCKS FREE: 26 BLOCKS USED: 254 

ZBasic Ready 

ZBasic Ready 
DIR+ 

!ZBASIC 
NAME TYPE BLOCKS MODIFIED CREATED ENDFILE 

ZBASIC.SYSTEM SYS 33 10-FEB-87 12:02 10-FEB-87 12 :51 16384 
*RAM.FILLER BIN 17 31-JAN-86 11: 40 10-FEB-87 12: 51 9384 
*RUNTIME.OBJ BIN 28 29-JAN-87 15:49 10-FEB-87 12: 51 7644 
*ZBASIC.HLP TXT 57 12-0CT-86 13:18 10-FEB-87 12 :51 384 

DISKIO.BAS TXT 5-DEC-86 14:26 10-FEB-87 12:51 844 
GRAPH.BAS ZBS 6-NOV-86 10:25 10-FEB-87 12:51 1982 
CREATE.FN TXT 20-JAN-87 11 :31 10-FEB-87 12: 51 123 
DRAW.FN TXT 29-DEC-86 17:08 10-FEB-87 12: 51 456 

BLOCKS FREE: 26 BLOCKS USED: 254 TOTAL BLOCKS: 280 

ZBasic Ready 

NOTE: endfile numbers may not be actual. 

D-33 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 

EDITOR command 

FORMAT EDITOR [+J 

DEFINITION This command is used to enter the full screen text editor from the Standard line editor. 

REMARK 

Typing "EDITOR" on the ZBasic command line will transform any program currently in 
memory from ZBasic tokenized format to full ASCII format and enter the full screen 
editor. 

If you use the optional "+", the program currently in memory will have the line numbers 
stripped prior to entering the full screen editor. Be sure that you have not used any line 
number references in your program (such as GOTO or GOSUB). Use label references 
instead. 

See the section entitled "Full Screen Editot' in this appendix for a complete description 
of editor commands and operation. 

Note: To get back to the standard line editor press ESC (or CTRL-K CTRL-Q on U+ ). 

ProDOSTM Appendix D-34 



APPLE ProDOS APPENDIX 

INSLOT statement 

FORMAT INSLOT(Slot Number) 

DEFINITION This statement will allow you to specify the slot number of an interface card which your 
program is to receive input from. 

This is supplied so that you can use non-standard interface cards (Le. other than those 
supported directly by ZBasic, such as a graphics tablet). 

Do not use this command to access a Super Serial Card; use the OPEN"C" command 
instead. 

INSLOT(O) will Ore-attach" the keyboard for input. 

EXAMPLE CLS 

REMARK 

DO 
INPUT"Which slot is the widget?";Slot 

UNTIL (Slot>O) AND (Slot<8) 

INS LOT (Slot) 

do something with the slot here •.. 

INS LOT (0) 
END 

<--- Set the slot back to normal. 

(example only do not use) 

See your hardware technical reference manuals for details. 

Note: Any interface card that attempts to store a value into an Applesoft variable (such 
as some clock cards) will not work correctly with ZBasic since there are no "Applesoft 
variables" in ZBasic. 

Check the technical reference manual of the device to set it to some other parameters. 

D-35 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 

MEM command 

FORMAT MEM 

DEFINITION This command is used to show the amount of memory remaining for text and object 
code remaining and the amount of text and object code space used during each phase 
of operation. 

REMARK 

##### 
##### 
##### 
##### 
##### 

Text 
Text Mem 
Object 
Variable 
Code Mem 

• Shows amount of text space used 
• Amount of text room remaining 
• Size of object code generated· 
• Amount of variable space used" 
• Object and variable space remaining" 

·Values returned only correct immediately after compiling (RUN). 

See Memory map in this appendix for the 64K or 128K ProDOS versions of ZBasic. 
Also see MEM in the main reference section. 

ProDOSTM Appendix D-36 



APPLE ProDOS APPENDIX 
taU ill::IiIb 1. iii;;;' 

FORMAT 

DEFINITION 

MODE statement 

MODE [=]expression 

ZBasic uses MODE to define the characteristics of a screen. ZBasic allows a program to 
integrate text and graphics anywhere on the screen in MODE 5 and 7. This feature allows 
ZBasic programs from an IBM PC and other computers to run on your Apple. 

MODE I 
0,8 

1 

2,10 

3 

4,12 

5 

6,14 

7* 

9 

11 

13 

15* 

ProDOSTM Version 
MODE CHART 

TEXT I GRAPHICS 

40 x24 Character 

None 40 x 48 

80 x 24 Character 

None 80 x 48 

40 x 24 Character 

40 x 24 280 x 192 

80 x 24 Character 

80 x 24 560 x 192 

40 x4 40 x 40 

80 x 4 80 x 40 

40 x4 280 x 160 

80 x 4 560 x 160 

REMARK character = Graphics are defined as text characters 
= Low Resolution Color Graphics 40x48 

80x48 
280 x 192 
'560 x 192 

= Medium Resolution Color Graphics 
= High Resolution Color Graphics 
= Double High Resolution. For lie, IIc and IIGS only. 

Modes 9, 11, 13 and 15 have graphics at the top of the screen and text at the bottom, 
similar to Applesoft GR and HGR commands. 

MODE will set COLOR to default, white in most modes. See COLOR for the other colors 
available in each mode. 

'Double Hi-Res does not function in the 64K version (it requires 128k). 

D-37 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 

ON LINE command 

FORMAT ONLINE 

DEFINITION When the ONLINE command is issued in the Standard Line Editor, a list of all ProDOS 
volumes currently connected to the system will be displayed on the screen. 

EXAMPLE 

REMARK 

Each entry will display the slot, drive, and volume name of the device. 

ZBasic Ready 
ONLINE 

S6,Dl 
S3,D2 

/ZBASIC 
/RAM 

Since ZBasic will only operate on volumes by using pathnames, this is supplied so that 
you can identify a particular volume in a drive. 

ProDOSTM Appendix D-38 



APPLE ProDOS APPENDIX 
"'1111'.~ 

OUTSLOT statement 

FORMAT OUTSLOT(s/ot numbef) 

DEFINITION This command allows you to redirect output to the interface card located in the slot 
number specified. This is not intended as an altemative to the existing ZBasic 
commands (such as LPRINT or ROUTE). 

This command is supplied only to allow you to interface your program with those cards 
that ZBasic does not support directly (such as graphics tablets. etc.). 

OUTSLOT(O) will "re-attach" the screen for output. 

EXAMPLE CLS 

REMARK 

DO 
INPUT"Which slot is the widget?";Slot 

UNTIL (Slot>O) AND (Slot<8) 

OUTSLOT(Slot) 

do something with the slot here ... 

OUTSLOT(O) 
END 

<--- Set the output back to normal. 

(example only do not use) 

See INSLOT statement and your hardware technical reference manuals for details 
about using slots. 

0-39 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 
tllff,f,M'tiI'{il,lw ........ lJiMiifll •• I¥Wi%{i!11ifiq 

PATH command 

FORMAT PATH [[-] [-] ... ] [pathname] 
PREFIX [[-] [-] ... ] [pathname] 

DEFINITION The PATH command allows you to set and/or display the currently logged ProDOS 
pathname. PREFIX is also provided for compatibility reasons. 

EXAMPLE 

REMARK 

PATH without any parameters will display the current ProDOS prefix. 

"PATH pathname" will set the current ProDOS prefix, then display it as a verification that 
it was indeed set. Pathname can be either a full or partial pathname. If it starts with a 
slash ("f'), ZBasic will treat it as a full path name and reset the prefix appropriately. If you 
specify a partial pathname, ZBasic will append it to the current prefix to create the new 
prefix. 

The "-" parameter will "step-back" the current prefix by one directory. If a pathname is 
specified after the "-", ZBasicwill then set this as the current prefix. You may use more 
than one "-" parameter to specify stepping back multiple directories. 

ZBasic Ready 
PATH 
/PROFILE 

ZBasic Ready 
PATH ZBASIC/SOURCE 
/PROFILE/ZBASIC/SOURCE 

ZBasic Ready 
PATH-OBJECT 
/PROFILE/ZBASIC/OBJECT 

ZBasic Ready 

(display current prefix) 

(append ZBASIC/SOURCE ) 
(to current prefix) 

(remove SOURCE and) 
(append OBJECT) 

ZBasic will not allow you to remove the prefix entirely. The system MUST have a prefix 
set at all times. 

ProDOSTM Appendix 0-40 



APPLE ProDOS APPENDIX 
l&l_if_AW" ..... W@ :iI:i~-._ 44i1' 

POINT function 

FORMAT POINT (expression1 , expression2) 

DEFINITION This function will return either a 0, signifying that the pixel is "off," or a 1 signifying that 
the pixel is "on." 

EXAMPLE PLOT 0,0 

REMARK 

PRINT POINT(O,O) 

CLS 
PRINT POINT(O,O) 

END 

RUN 

1 
o 

In modes 5 and 7, the POINT function cannot return the color of the pixel at the 
specified coordinates, due 10 the method that the Apple uses to create colors on the 
screen. 

0-41 ProDOsm Appendix 



APPLE ProDOS APPENDIX 
'x' ~ ... , 

RENAME command 

FORMAT RENAME ["] pathname1 ["]. ["] pathname2 ['1 

DEFINITION Renames the file specified by pathname1 to the name specified by pathname2. The 
comma separating the names.lS. required. 

EXAMPLE 

REMARK 

This command is supplied as an editor command in addition to the ZBasic statement so 
that the compiler does not have to be accessed every time you wish to rename a file. 

RENAME ZBASIC.SYSTEM, ZBASIC 

See RENAME in the main reference section for more information about using 
RENAME. 

ProDOSTM Appendix D-42 



APPLE ProDOS APPENDIX 

FORMAT 

REMARK 

~!i!~'Ii~! mmmmmll 
RUN* command 

See the main reference manual for syntax. 

When saving your compiled programs to disk with the RUN" command, ZBasic will 
create a SYS type file that can be executed directly from ProDOS. 

64KVERSION 
In addition to your object file, the file "RUNTIME.OBJ" MUSTbe in the same directory. 

128K VERSION 
In addition to your object file, the following three files must be in the directory: 

RT.MAIN.OBJl 
RT.AUX.OBJO 
RT.AUX.OBJl 

As part of it's initialization, your program attempts to load the runtime modules from disk 
(you don't have to do this; the compiler will generate the necessary code automatically). 

If the required runtime files cannot be found, a ProDOS error message will be 
generated, and you will be left in the Apple system monitor. 

D-43 ProDOSTM Appendix 



FORMAT 

REMARK 

APPLE ProDOS APPENDIX 
, . 

USR function 

See the main reference manual. 

When your USR subroutine is entered, the value that was in the parentheses in the 
ZBasic program can be found at zero page locations $64 and $65. This value will be a 
16-bit integer in standard least-significant-byte/most-significant-byte order. 

If your subroutine is to pass a 16-bit value back to the ZBasic program, it should place 
the value in locations $64 and $65, again in Isb/msb order. 

128K Note: Be aware that with this version the USR routine must be located in the 
program auxiliary bank of memory. This is most easily accomplished by using" 

DEF USRx=LINE nnnn 

ProDosm Appendix D-44 



APPLE ProDOS APPENDIX 

USR5 function 

FORMAT variable = USR5(slot) 

DEFINITION This pre-defined USR function returns the status byte of an Apple Super Serial Card 
in slot number slot. 

REMARK 

The status byte will be returned in the lower 8 bits of variable. 

The variable must be an integer variable. 

If no Super Serial Card is installed in the system, the value returned will be undefined. 

See OPEN"C" for more details about using communication functions and the Super 
Serial Card reference manual for the format of the status byte. 

D-45 ProDOSTM Appendix 



APPLE ProDOS APPENDIX 

TM 

ASIC 

\FUll SCREEN EDITOR 
This version includes an easy-to-use, full screen text editor. It can be used to enter and 
edit ZBasic source program liles, or any other text file. Some of it's features include full 
screen cursor movement, long distance cursor movement, split screen operation, 
cutlcopy/paste/replace lines, global search, automatic indentation, full scrolling capabilities 
up/down and left/right, and some other goodies. 

DIFFERENCE BETWEEN THE FULL SCREEN EDITOR 
AND STANDARD LINE EDITOR 

ZBasic comes with a Standard line editor, as described in the main reference section, that 
works the same way on all versions of ZBasic. From this editor you can also do direct 
commands as described in the main reference section. You cannot do direct commands 
from the Full Screen Editor (other than those defined). 

INVOKING THE FULL SCREEN EDITOR 

To enter the full screen editor, type "EDITOR" from the Standard line editor ("EDITOR+" if 
you want to strip line numbers). If you currently have a file in memory, the file will be 
converted to a text file and transferred. If no file is in memory, you will enter the full screen 
editor without text. 

RETURNING TO THE STANDARD LINE EDITOR 

To return to the Standard line editor (command environment), press <ESC> (CTRL-K 0 in 
the 40-column editor). The file that you were editing will be re-Ioaded into the line editor 
(with line numbers added H the file did not contain any). 

ProDOSTM Appendix D-46 



APPLE ProDOS APPENDIX 
___ awl ; iilI& 

aO-COLUMN EDITOR 

If you are using an Apple lie with an 80-column text display, most of the functions are 
accessed by pressing one of the 0 or. keys in combination with one of the numeric keys. 

While the editor is waiting for you to enter a character, you have the option of using one of 
the commands available. 

HELP LINE 

When you press one of the Apple keys, a short "help" line will appear on the bottom line in 
place of the status line. This help line will remain on the screen for as long as you keep 
pressing an • or 0 key. 

The help lines are not meant to be complete descriptions of the commands available, just 
memory joggers. 

ao COLUMN CURSOR MOVEMENT KEYS 

• Beginning of File 
(j Up a Page 

Up a line 

Left 1 Character + 
(j Left 1 Word '* Beginning of Line 

D-47 ProDOSTM Appendix 

Down a Line 

(j Down a Page 

It End of File 

Right 1 character 
(j Right 1 Word 

.End of Line 



APPLE ProDOS APPENDIX 

40-COLUMN EDITOR 

Since Apple U+ users don't have Apple keys on their keyboard, control keys are used in 
place of the Apple keys. These commands have been set up to match Wordstar™, a word 
processor from MicroPro where possible. For those commands that are not a part of 
WordstarTM, we tried to make the command key match the command as logically as possible 
(the command is followed by an asterisk if it is not WordStar compatible). 

When one of the prefix keys (Ctrl-Q or Ctrl-K) is pressed a "AQ" or "AK" appears in the lower 
left corner of the screen, to remind you that one of the prefix keys has been pressed. If you 
change your mind, and don't want to access one of the commands, simply press the space 
bar to cancel the command. 

The following pages describe all of the commands and cursor movements available. Each 
one operates exactly the same way, whether the machine is a 1[+ or one of the newer 
machines. 

40 COLUMN CURSOR MOVEMENT KEYS 

NOTE: 1\ = <CTRl> 

USING THE FULL SCREEN EDITORS 

The following pages contain a complete description of the Full Screen Editor. You may 
want to Xerox the Quick Reference page. 

ProDOSTM Appendix 0-48 



APPLE ProDOS APPENDIX 
.M::: 

FULL SCREEN EDITOR 
QUICK REFERENCE PAGE 

40 Column CURSOR BO Column 

CTRL·S Left 1 Character +-
CTRL·D Right 1 Character --.. 
CTRL·A Left 1 Word d+-
CTRL·F Riqht 1 Word 0--.. 

CTRL·Q CTRL·S To Beginning of Line .+-
CTRL·Q CTRL·D To End of Line .--.. 

CTRL·E Up a Line t 
CTRL·X Down a Line 

CTRL·R Up a Page d 
CTRL·C Down a Page d 

CTRL·Q CTRL·R To Beginning of File • 
CTRL·Q CTRL·C To End of File ., 

40 Column CQMMA.ND~ BO Column 
"---' ---- -"-~ -

CTRL·K CTRL·Q Return to Line Editor ESC .... Delete Character Delete 

CTRL·Q ..- Delete to Line Start d Delete 

CTRL·Q CTRL·Y Delete End of Line • Delete 

CTRL·V Switch d .0 INSERT/Overwrite 

CTRL·K CTRL·N Clear Text Buffer 
• ·0 NEW 

CTRL·K CTRL·L LOAD File 0 ·1 

CTRL·K CTRL·S SAVE File 
• ·1 

CTRL·K CTRL·X Cut Line d ·2 

CTRL·K CTRL·V Paste Line 
• ·2 

CTRL·K CTRL·C Copy Line d ·3 

CTRL·K CTRL·R Replace Line ti ·3 

CTRL·N Insert Line d ·4 

CTRL·Y Delete Line '* ·4 
CTRL·Q CTRL·F Find d ·5 

CTRL·L Find Next Occurence 
• ·5 

CTRL·K CTRL·I Set Tab Value d ·6 

CTRL·Q CTRL·I Autotab On/Off Ii ·6 

CTRL·K CTRL·F Restore Line 0 ·7 

CTRL·K CTRL·P LLiST Ii ·7 

CTRL·Z Scroll Up d ·8 

CTRL·W Scroll Down 
• ·8 

CTRL·K CTRL·T Freeze Top d ·9 

CTRL·K CTRL·B Freeze Bottom 
• ·9 

D-49 ProDOSTM Appendix 



APPLE ProDOS APPENDIX hi"'. 5 iL [ 

CURSOR KEY 
DEFINITIONS 

This page contains the detailed descriptions of the 
cursor key movements for the Full screen ed~or: 

80 COLUMN 40 COLUMN 

UP A LINE 

Up-Arrow CTRL-E 
Moves the cursor up one line. 

UP A PAGE 

~-Up-Arrow CTRL-R 
Moves the cursor one page back in the file. A page is 
defined as the current number of lines in the editing 
window minus one. 

UP TO TOP 

Gt-Up-Arrow CTRL-Q CTRL-R 
Places the cursor at the beginning of the file. 

LEFT A CHARACTER 

Left Arrow CTRL-S 
Moves the cursor one character to the left. 

LEFT A WORD 

~-Left Arrow CTRL-A 
Moves the cursor to the beginning of the word to the left 
of the current cursor pos~ion. 

LEFT TO START OF LINE 

Ii-Left-Arrow CTRL-Q CTRL-S 
Moves the cursor to beginning of current line. 

RIGHT A CHARACTER 

Right Arrow CTRL-D 
Moves the cursor one character to the right. 

RIGHT A WORD 

~-Rlght-Arrow CTRL-F 
Moves the cursor to the beginning of the next word to 
the right of the present pos~ion. 

RIGHT TO END OF LINE 

.-Rlght-Arrow CTRL-Q CTRL-D 
Moves the cursor to the end of the current line. 

ifi' WX 

DOWN A LINE 

Down Arrow CTRL-X 
Moves the cursor down one line. 

DOWN A PAGE 

~-Down-Arrow CTRL-C 
Moves the cursor down one page in the file. 

DOWN TO END OF FILE 

a-Down-Arrow CTRL-Q CTRL-C 
Moves the cursor to the end of the file. 

ProDOSTM Appendix D-50 



APPLE ProDOS APPENDIX 

FUll SCREEN 
EDITOR COMMANDS 

This following pages contain the definitions for the full 
screen ed~or commands (cursor movement definitions 
are on the previous page). 

80 COLUMN 40 COLUMN 

DELETE CHARACTER 

DELETE Left Arrow" 
Delete~ the character to the left of the cursor. If the 
cu~sor I~ currently at the beginning of the line, then the 
edrtor will assume that the user means to delete the 
carriage. return at the end of the previous line. The 
current line and the previous line will be combined and 
the cursor will be placed at the old end of the previous 
line. 

DELETE TO BEGINNING OF LINE 

O-DELETE CTRL-Q Left Arrow" 
Deletes characters from the beginning of the line 
through the character to the left of the cursor. The 
remainder of the line will be moved to the left. 

DELETE TO END OF LINE 

Ii-DELETE CTRL-Q CTRL-Y 
Deletes characters from the current cursor position to 
the end of the line. 

QUIT THE FULL SCREEN EDITOR 

ESC CTRL-K CTRL-D 
CTRL-K CTRL-Q 

This command qu~s the Full Screen Ed~or and returns 
to the Standard line editor. Any text that is currently in 
the text buffer will be re-Ioaded into the line editor with 
line numbers added to each line if the text does n~t 
already contain line numbers. 

INSERT / OVERWRITE 

0-0 CTRL-V 
This command is another toggle, switching the editor 
between Insert and Overwrite modes of operation. The 
ed~or "wakes-up" with overwrite mode selected (as can 
be seen on the bottom status line). The overwr~e cursor 
is the underline character. While overwrite mode is 
active, any characters that you type will replace 
whatever character the cursor is currently on (except 
for the carriage return character at the end of a line). If 
the cursor is at the end of a line, then any characters 
that you type will effectively be inserted ahead of the 
terminating carriage return. 

When Insert mode is selected, the cursor character 
changes to the caret ("'") character, and any characters 
that you type will be inserted at the current cursor 
pos~ion, moving any characters at and to the right of 
the cursor over one pos~ion to the right. If you press 

D-51 ProDOSTM Appendix 

RETURN while in the middle of a line, the cursor will be 
moveddown a line and to the left margin, and the portion 
of the line at and to the right of the cursor will be brought 
down as well. 

The current setting of the Insert/Overwrite switch can 
be seen on the status line. 

NEW 
(Clear Text Buffer) 

8-0 CTRL-K CTRL-N* 
This command will clear any text from the text buffer and 
set the search string to null. It will then clear the active 
wind~w, and place the cursor in the upper left corner of 
the Window. k also removes the current file name from 
memory, and selects overwr~e mode. If no file is in 
memory when the ed~or is entered, this is the state that 
is set when the ed~or "wakes-up." 

LOAD A FILE 

0-1 CTRL-K CTRL-L" 
This commands clears any text from the text buffer and 
then will prompt you for the ProDOS path name of a file to 
load. The fil~ MUST be a TEXT type file (TXT). If it isnl, 
you Will receive an error message. 

H you have previously loaded a file, the system will 
place the file name of this file on the screen for you 
~utomaticaJJy. If this is the file that you wish to re-Ioad 
(~, for example, you really botched up the file and want 
to start over again), simply press the return key. If you 
want a d~ferent file altogether, press CTRL-X to remove 
the old file name, and enter the new file name. The left 
arr~w key or the dele!e. ~ey ca~ be used to correct any 
typing errors. H you mrtlate thiS command by accident, 
you can press CTRL-C to return to the editor with your 
current file intact. 

SAVE A FILE 

.-1 CTRL-K CTRL-S 
This command will prompt you for a ProDOS pathname 
to save the current text. If you have previously used 
the Load command to load a file into the buffer, the 
system will place the current file name on the prompt line 
for you. You have the same options here as you did 
when you loaded the file. Use caution w~h this 
command. If a file already exists on the disk w~h the 
same file name, the editor will replace whatever was 
previously in the file without any warning message. 

CUT LINE 

0-2 CTRL-K CTRL-X" 
This command will remove the current line from the text 
buff~r and place ~ o.n the. clipbo~rd Oust a temporary 
holding area). The line Will remain on the clipboard until 
you e~her Cut another line, or Copy a line. This line can 
be pasted from the clipboard back into the main text 
buffer with the Paste command. This command will only 
work w~h entire lines. There is no way to Cut in 
increments of less than, or more than, a single line. 



APPLE ProDOS APPENDIX 

(This command actually does a COPY, and then a 
DELETE.) 

PASTE LINE 

.-2 CTRL-K CTRL-V* 
This command will copy whatever line is currently on the 
clipboard into the current pos~ion within the main text 
buffer. The current line will be moved up in the buffer 
(down on the screen) to make room for the new line. 
This action does NOT remove the line from the 
clipboard. Therefore, you can paste the same line as 
often as you like, into as many places in the text as you 
like. 

COpy LINE 

0-3 CTRL-K CTRL-C* 
This command will make a copy of the current line to the 
clipboard. It does not remove the line from the main 
buffer. You are then free to paste this line to your liking. 

REPLACE LINE 

~-3 CTRL-K CTRL-R* 
This command will replace the current line w~h the line 
that is currently on the clipboard. If there is no line 
currently on the clipboard, no action will be taken. 

INSERT LINE 

0-4 CTRL-N 
This command will insert a carriage return at the current 
cursor position without moving the cursor. H the cursor 
is at the beginning of a line, then the current line will 
move down on the screen, leaving a blank line for you to 
enter a new line on. If the cursor is in the middle of a 
line, the portion of the line at and to the right of the 
cursor will be moved down to the next line, and the 
cursor will remain at the (new) end of the current line. 

DELETE LINE 

0-4 CTRL-Y 
This command deletes the current line from the text. No 
copy of the line is retained in memory. Therefore, this is 
not a reversible command. Use ~ with caution. 

FIND 

0-5 CTRL-Q CTRL-F 
This command will allow you to enter a character 
sequence of up to 30 characters. The ed~or will then 
search from the current position to the end of the file for 
the character sequence. If ~ can1 find the search 
string, a message will be displayed on the last line to 
this effect, and the cursor position will not change. If 
the string is found, the line containing the string will be 
placed at the current cursor position, and the cursor will 
be placed at the beginning of the string. 

FIND NEXT OCCURRENCE 

6-5 CTRL-L 

This command searches for the last search string that 
was entered using the FIND command. This command 
operates in exactly the same way as the find command, 
except that it does not prompt for the search string. (As 
a matter of fact, the find command prompts for the 
search string, and falls through to this command.) 

SET TAB STOP 

0-6 CTRL-K CTRL-I 
This command will allow you set the size of the tab 
stops. The editor will prompt you for the new value on 
the bottom line of the screen. The last part of the 
prompt is the current value of the tab setting, which has 
a default of 16. To leave this setting, simply press the 
RETURN key. To change ~, enter the new value. The 
editor uses the same tab value as the rest of the ZBasic 
system, so this command accomplishes the same thing 
as the DEF TAB statement in a ZBasic program. This 
also implies that ~ the value is changed here, then the 
value will be changed for the rest of the system as well. 

This tab value is used in the screen ed~or whenever you 
press the TAB key (CTRL-I for 1[+ users). The cursor will 
be pos~ioned to the next calculated tab stop on the 
screen. H the next tab stop is beyond the end of the 
line, the cursor will be placed AT the end of the line. H 
you continue to press the TAB key, the cursor will move 
to the beginning of the next line (the absolute first tab 
position on the screen), and then continue normally. 

AUTO TAB ON/OFF 

d-6 CTRL-Q CTRL-I* 
This command is simply a toggle to turn the autotab 
feature on or off. The ed~or starts with autotab on. The 
current setting of autotab can be seen on the status line 
at the bottom of the screen. Autotab is a feature that 
will allow you to enter nicely formatted source code. 
When Insert mode is on, and RETURN is pressed at the 
end of a line, the cursor will be moved down to the next 
line, and then spaces will be inserted in the new line until 
the cursor is in a position underneath the first non
space character in the line above. H Insert is off 
(Overwrite mode), autotabbing is only operable when 
you are entering text at the end of the file. This is so 
that spaces are not inserted ahead of any existing text. 

RESTORE LINE 

0-7 CTRL-K CTRL-F* 
This command will restore the line at the current cursor 
pos~ion, deleting any changes that you have made to 
the line. This will only work ~ the cursor has NOT moved 
off the line since you made the changes, and/or the 
screen has not scrolled sideways. Normally, while you 
are ed~ing a line, you are actually editing a copy of the 
line in an ed~ buffer. When the cursor is moved off the 
line, or H the screen is scrolled either left or right, this 
edit copy of the line is moved back to the main text 
buffer prior to moving the cursor. If you have made 
some changes to a line, and then change your mind, an 
old copy of the line still resides in the main buffer. A 

ProDOSTM Appendix D-52 



APPLE ProDOS APPENDIX 

copy of this old line is placed into the edit buffer over 
any changes that you might have made when you 
invoke this command. 

PRINT LINE 

,*-7 CTRL-K CTRL-P 
This command will print the contents of the text buffer to 
your printer. This command accomplishes the same 
operation as the line editor's LLiST command w~hout 
any parameters. The entire contents of the text buffer 
will be printed; no provision is provided for printing only a 
portion of the buffer. H no printer is connected in the 
slot that is currently configured, the system may "hang". 
Press CTRL-RESET to warm start the ed~or. 

SCROLL DOWN 

0-8 CTRL-W 
This command will scroll the screen down, with the 
cursor remaining in the same screen position (which 
means that ~ will be on the previous text line). H the 
cursor is currently w~hin the first page of the text, the 
screen will not scroll, but the cursor will move up a line. 
The cursor will NOT move past the first line of the file. 

SCROLL UP 

.-8 CTRL-Z 
This command will scroll the screen up, w~h the cursor 
remaining in the same screen position (which means 
that it will be on the next text line). H the cursor is 
currently within the last page of the text, the screen will 
not scroll, but the cursor will be moved down a line. The 
cursor will NOT move past the last line of the file. 

D-53 ProDOSTM Appendix 

FREEZE SCREEN FROM THAT LINE UP 

0-9 CTRL-K CTRL-T* 
This command will freeze the top of the screen. A 
separating line will be drawn at the current cursor 
pos~ion, and the portion of the screen above this line 
will be frozen. The line that the cursor is in will remain 
w~hin the new active portion of the screen (the active 
window). While the screen is frozen, the cursor will not 
move into the frozen portion, and no changes will be 
made within the frozen portion. 

Only the screen is frozen. You can still move the lines 
that are in the frozen portion into the active window and 
make changes, but these changes will not appear in the 
frozen window. 

To "thaw out" the window, press the control key 
sequence again. The separating line will be removed, 
and the screen will be refreshed, leaving the cursor at 
whatever pos~ion it was at. 

FREEZE SCREEN FROM LINE DOWN 

.-9 CTRL-K CTRL-B* 
This command freezes the bottom portion of the screen. 
A separating line will be drawn at the current cursor 
position, and the portion of the screen below this line will 
be frozen. The text line that the cursor was on will 
remain within the active window. This command is very 
much like the Freeze Top command. To "thaw out" the 
bottom window, press the command key sequence 
again. 

These two Freeze commands are entirely separate from 
each other. You can have up to two frozen windows on 
the screen: a top window and a bottom window, leaving 
a third, active window in the middle of the screen 
between the two frozen portions. 

This can be handy if you have a couple of dijferent 
subroutines in a couple of different sections of your 
program, while accessing those subroutines in a third 
portion of your program. 





For Macintosh Programmers ... 

ASIC 
CONSTRUCTION SET 

A utility that brings you a MacDraw-like environment for easily creating: 

WINDOWS 
EDIT FIELDS 

MENUS 
BUTTONS 

SCROLL BARS 

Very little typing.... just draw with the mouse. You can set up complicated 
EDIT FIELD, BUTTON, MENU and WINDOW layouts in minutes (that used to 
take many incredibly boring, tedious, hours). 

The ZBasic Construction Set creates a ZBasic Source file that you just merge 
into your programs. Created by a ZBasic programmer that got tired of spending 
a couple of days for each program JUST TO DO THE SCREEN LA YOUTS! 

Best of all the price i~n~ght: -,., 1/1 S 
$49.95 !---

plus shipping and handling: $5 U.S., $12 Canada, $25 Overseas 

The ZBasic ConstructiQn Set is available now only from Zedcor direct: 

E -1 Macintosh™ Appendix 

800-482-4567 
ZED COR 

4500 E.Speedway,#22 
Tucson, Arizona 85712 

(602) 881-8101 



MACINTOSH 

ASIC 

ZBasnc Macoll1ltoslhl™ 
Version 4.0 

For the Macintosh 512K, Macintosh Plus, 
Macintosh SE, Mac XL and LlSA® with MacWorks™ 

and the Macintosh II 

Additions and Enhancements to 4.0 
by 

Andrew Gariepy 

Original version by 
Andrew Gariepy, Dave Overton and Scott Terry 

© Copyright 1985, 1986, 1987 

ZEDCOR, Inc. 
All Rights Reserved 

APPENDIX 

MacintoshThl, Apple, FinderTld, RMaker™, MacintalkTN and AppletalkTN are registered trademarks of Apple Computer,lnc. 

Macintosh™ Appendix £-2 



MACINTOSH APPENDIX 

TABLE OF CONTENTS 
Getting Started E6 

Files Included on the Master Diskette E7 

Notes to this version E8 
Enhancements to The Old Version E8 
Executing ZBasic from the FINDER E8 
Keyboard variations in the Command Window E8 
Line Editor versus Full Screen Editor E8 
COMMAND Window E9 
EDIT Window E10 
No Line Numbers E10 
Errors E10 
HELP Window E11 
HFS versus MFS E11 
Loading Old ZBasic files E11 
Memory Available to Variables E12 
Machine Language E12 
Longlnteger E12 
Using MKI, HEX, OCT & BIN with Longlntegers E12 

File and Memory Requirements E12 
Setting Defaults to Longlnteger E12 

Floating Point enhancements E13 
10,000 digits of Accuracy? E13 
Obtaining Maximum Speed E13 
Speed versus Accuracy E14 

File Length Enhancements E15 
RS-232 Communications E15 
Determining if Old or New ROMs are installed E15 
Speed and EventTrapping E15 
Debugging Programs E15 
Breaking Out of Programs E15 

Macintosh Specific Configuration Options E16 

How To Write a Macintosh-Type Application E17 
The Macintosh Interface E17 
Things to Avoid E17 
Structure of Macintosh Programs E18 

Macintosh Memory Manager E19 
Using SEGMENT E19 
Taking Advantage of Memory Management E20 
CHAINING E20 

Clipboard E21 
Get "TEXT" and "PICT" from Clipboard E21 
Put "PICT" on the Clipboard E22 
Using INDEX$ to get and put "TEXT" E22 

Macintosh Graphics E23 
MacPAINT, Tiff and MacDrawfiles E23 
QuickDrawn.< and PostScript™ E23 

E-3 Macintosh™ Appendix 



MACINTOSH APPENDIX 

Printing E24 
Using PostScript™ E25 

Appletalk E26 

Macintalk E27 
Phoneme Table E2B 

Converting MSBASICTM programs E29 

Using RMaker™ E32 

Example of Adding Icons to your Applications E39 

ALPHABETICAL REFERENCE E42 
APPEND statement E43 
APPLE MENU statement E44 
BLOCKMOVE statement E45 
BREAK statement E46 
BUNDLE command E47 
BUTTON function E4B 
BUTTON statement E50 
CALL statement E52 
CLEAR LPRINT function E53 
COMPILE command E54 
CREATOR function E55 
CURSOR function E56 
DEFDBL INT statement E58 
DEFLPRINT function E59 
DEFMOUSE statement E60 
DEFOPEN statement E61 
DEFPAGE function E62 
DEFSTRLONG statement E63 
DEFSTRWORD statement E63 
DIALOG function E64 
DIALOG statement E68 
DIR statement E72 
EDIT FIELD statement E73 
EDIT MENU statement E75 
EDIT$ function E76 
EJECT function E77 
FILES$ function E78 
FINDERINFO function E81 
FLUSHEVENTS statement E82 
GET FILE INFO function E83 
GET VOLUME INFO function E85 
GET WINDOW statement E87 
HANDSHAKE statement E88 
INDEX$ enhancements E89 
INKEY$ alternatives E91 
KILL statement E92 
KILL PICTURE statement E93 
LCOPY statement E94 
LOF function E95 
LPRINT enhancements E96 
MEM(n) function E97 
MEMORY MONITOR Desk Accessory E98 
MENU function E99 
MENU (ON/OFF/STOP) statement E101 
MENU statement E102 
MODE statement E103 
MOUSE function E104 
MOUSE statement E106 

Macintosh™ Appendix E-4 



MACINTOSH APPENDIX 

ON BREAK GOSUB statement El07 
ON DIALOG GOSUB statement El08 
ON MENU GOSUB statement El09 
ON MOUSE GOSUB statement Ell0 
ON TIMER GOSUB statement Elll 
OPEN"new types" statement E112 
OPEN"C" statement E113 
OPEN TALK statement E114 
PAGE LPRINT statement E115 
PEN statement E116 
PICTURE function E117 
PICTURE statement E119 
PRCANCEL function E120 
PRHANDLE function E121 
PRINT USING statement E123 
PUT enhancement E124 
PUT FILE INFO statement E125 
READ FILE statement E126 
RENAME statement E127 
ROUTE 128 statement E128 
RUN enhancement E129 
SCROLL statement E130 
SCROLL BUTTON statement E131 
SEGMENT statement E134 
SEGMENT RETURN statement E135 
SHUmOWN statement E136 
SOUND function E137 
SOUND statement E138 
SYSERROR function E139 
TALK statement E140 
TEHANDLE function E141 
TEXT statement EI43 
TIMER function EI44 
TIMER statement E145 
TRON#128 statement E146 
TRONV statement E147 
TRON MONITOR Desk Accessory E148 
USR defaults function E149 
WAVE statement E151 
WIDTH [LPRINTJ-2 statement E152 
WINDOW function E153 
WINDOW statement E155 
WINDOW PICTURE statement E158 
WRITE FILE statement E159 

Macintosh Toolbox ~ E160 
Pointers and Handles E163 

A5 Global Memory Locations E166 
Useful Memory Locations E198 

Alphabetical listing of terms E199 

Alphabetical listing of Toolbox routines E204 

E-5 Macintosh™ Appendix 



MACINTOSH APPENDIX 

GETTING STARTED 
Welcome to ZBasic, the most powerful and easy to use language available for the 
Macintosh. Follow these instructions and you'll be up and running in no time. 

+ MAKE A BACKUP FIRST 

ZBasic is not copy protected. Make a copy or two for your personal backup purposes. 
Put the master diskette in a safe place for future use. It's a good idea to set the write 
protect tab on the master diske. 

+ MOVE MAIN. PROGRAMS TO AN HFS SYSTEM DISK 

ZBasic is provided on a 400K single sided diskette. The diskette is readable by any 
Macintosh. It doesn't come with a system so you'll need to copy files to a system disketle 
or hard disk. The main files to copy are: ZBasic™ and ZBasic.HLP. If you plan on using 
MacinTalk copy this file to your system folder. All other files are example programs and 
may be copied at your discretion. 

+ INSTALL PRINTER DRIVERS 

\I you haven't done so already, be sure to put a printer driver in your new system folder. 

+ USE FONT/DA MOVER TO INSTALL THE ZBASIC DESK ACCESSORIES 

Use FontiDA Mover to move the ZBasic MEMORY MONITOR and TRON MONITOR Desk 
Accessories over to your system. These DA's are very useful for debugging purposes 
(see MEMORY MONITOR and TRON MONITOR in the reference section for explanations 
and examples of use). 

+ NOTE DIFFERENCE BETWEEN THE "COMMAND WINDOW" AND "EDIT WINDOW" 

The EDIT Window is the Macintosh-type editor and will probably be the one you use the 
most. The Command Window is the "Standard Line Editor" and is the one being referred 
to in the front of this manual. Use <COMMAND E> to switch from one to the other. Be 
sure you understand the difference between these two modes before proceeding. 

~ READ "GETTING STARTED" IN THE FRONT OF THIS MANUAL 

Read "Getling Started" in the front of this manual to get the feel of ZBasic. 

~ READ THIS APPENDIX 

Read through this appendix and get an idea of the Macintosh specific information that is 
available like; the Mac specific commands in this reference section, using the Toolbox, 
Converting MSBASIC programs, . "How to write a Macintosh Application", and so on. 

~ TRY THE EXAMPLE PROGRAMS 

Try out some of the example programs we've provided on the master disk. Of special 
interest is the Thinner.BAS program by Andrew Gariepy. It illustrates how easy it is to 
create Macintosh-type applications using ZBasic. There are also example programs in the 
toolbox section you may want to type in and try . 

• CREATE YOUR OWN PROGRAMS 

Now you can start creating your own programs. Still got questions? 
Call us at (602) 795-3996 and we'll be glad to help you. 

Macintosh™ Appendix E-6 



MACINTOSH APPENDIX 

FILES INCLUDED ON THE MASTER DISKETTE 
~ 

ZBasic'" 

ZBasic™.HLP 

Macintalk™ 

MEMORY Monitor DA 
TRON Monitor DA 

ZEXAMPLE FOLDER 

HOUSE 
PYRAMID 

THINNERxxx.BAS 

SCIFN.BAS 

SORT.BAS 
QUICK.APP 
SHELL.APP 

IOTEST.BAS 
NEWFILE.BAS 
GETSCRAP.BAS 
GETPUT.BAS 
WINDOWPIC.BAS 
PICT.BAS 
SEGEXAM PLE.BAS 

The ZBasic™ BASIC Compiler (version sometimes shown). 

The Help File. Select from Apple menu or type HELP n from 
Command window. 

Macintalk file licensed from Apple. Must be in the system folder of an 
application's start-up disk. 

ZBasic desk accessory. Described in the reference section. 
ZBasic desk accessory. Described in the reference section. 

Examples of "Standard graphics". 
Examples of "Standard graphics". 

A MacPaint type program that will allow you to load, modify and save 
out Macpaint files and Digitized TIFF files. Great example of doing 
Macintosh graphics (xxx is the version number). 

A number of Scientific Math FN's you can use in your programs. 

Example program to be used with QUICK.APP and SHELL.APP 
Two sort routines you can customize for your applications. QUICK is 
good for a large sort. SHELL is good for smaller sorts. 

Example of using Windows, Edit fields and more. 
Get pathnames at runtime. 
Example of getting things off the clipboard. 
Example of doing Window refresh with GET/PUT statements. 
Example of Window refreshing with WINDOW PICTURE statement. 
Example of deleting a PICTURE handle from memory. 
Example of using SEGMENT and SEGMENT RETURN 

How to Install Icons In your Applications: Numerous examples for putting icons into your 
applications. A Complete description of how to use these files is included in this appendix: 

RMaker™: 

IOTEST.R: 

XICON.Rsrc 

ResEdit 

Resource compiler licensed from Apple Computer, Inc. 

RMake(fM source file example program for installing Icons. 

Example Icon resource. 

Not included with ZBasic ... but you may want it, or some other 
Icon editor, for adding or editing application icons. 

Note: These were the examples as of 5/87, check the disk, there may be other examples. 

E-7 Macintosh™ Appendix 



MACINTOSH APPENDIX 

NOTES TO THE MACINTOSH VERSION 
ENHANCEMENTS TO VERSIONS BEFORE 4~ 

The following items have been added to this version of ZBasic: 

SELECT CASE Structure: Makes structured programming even easier. 
TRON MONITOR Desk Accessory: Trace variables and program flow at runtime. 
NEW-VASTLY IMPROVED-EDITOR: We've eliminated Apple's EDIT and the old 
EDIT Window. Note that you can now do most commands from the editor environment. 
Now you don't need line numbers at all!! Set for no line numbers under "Configure". 
128K ROM SUPPORTED: Especially in the area of Toolbox calls and function. The 
biggest additions are with LIST MANAGER and SCSI calls. 
NEW MANUAL: You'll find the examples and syntax improvements in 
the toolbox area and the alphabetized reference section especially helpful. 
NEW COMMANDS like: TEHANDLE and GET WINDOW. See the 
reference section for details. 

EXECUTING ZBASIC FROM THE FINDER 

Insert a backup of the ZBasic™ diskette into either drive. Double-click the ZBasic icon. 

KEYBOARD VARIATIONS IN THE COMMAND WINDOW 

ICON TYPES 

The ZBasic manual makes reference to certain keys for certain purposes. The actual keys 
you will use on the Macintosh may be different. Wherever reference is made to a key that 
does not exist, use this chart to find out which key to use: 

Reference manual Key Macintosh Key 
<ENTER> <RETURN> 
<BREAK> or <CNTR C> <Command period>or <OPTION C> 
<ESC> <TAB> 
<up/down arrows> < [>, < 1 > • 
List the First/Last line in program < {>, < 1 > 
• Macintosh Plus™ cursor keys also work 

NOTE: The keys above apply to the COMMAND WINDOW only. 

When you save programs or files you will see these icons: 

~ 
frkmM,.. 
Source code saved. 
in Text format (ASCII): 
SAVE+ or SAVE". 
File type of TEXT 

alDloal1i 
lallllllalO 

ri7wwl,.. 
Source code saved 
in tokenized format 
(condensed): SAVE 
File Type of ZTKN 

~ 
tfkmM,.. 
Chain file created 
w~h RUN+ (no 
runtime included) 
File type of ZCHN 

Ii 
tfkmM,.. 
ZBasicDATA 
file created from 
a ZBasic application. 
File type of ZDAT. 

The CREATOR type of all ZBasic files is "ZBAS". See CREATOR, DIR and DEF OPEN in this appendix. 

Macintosh™ Appendix E-8 



MACINTOSH APPENDIX 

THE COMMAND WINDOW 

The "Command Window" is the standard ZBasic™ line editor (as described in the main 
section of the manual). 

Most direct and line editing commands should be typed in from this window. Some 
commands are also available under menu items: 

Open... :!CO 
Close S!:N 

Saue... l!€S 
Saue As :!CA 
Reuert to Saued 

Merge ••• :!CM 

Page Setup 
Print :!CP 

Directory :!CO 

Transfer :!CT 
Quit :!CQ 

MENU COMMANDS 

Compile & Run SER 
Compile Program 
Create Application 
Create Chain File 

LIst to Screen :!CL 

Renumber Lines SEY 

Memory Info SEI 

Configure Options 

Note that many of these menu items correspond directly to ZBasic commands: 

File Menu 
Open ... 
Close 
Save 
Save As 
Revert 
Page Setup 
Print 
Directory 

Transfer 
Quit 

ZBaslc Equivalent 
LOAD 
NEW 
SAVE (in last format) 
SAVE, SAVE+ or
(loads last version) 
Mac page set-up 
LLiST 
DIR 

Command Menu 
Compile and Run 
Compile Program 
Create Application 
Create Chain file 
List to Screen 
Renumber lines 
Memory info 
Configure options 

ZBaslc Equivalent 
RUN 
COMPILE 
RUN-
RUN+ 
LIST 
RENUM 
MEM 
CON FIG 

Execute another application directly without going to the desktop 
Exil and go 10 the Finder. 

E-9 Macintosh™ Appendix 



MACINTOSH APPENDIX 

THE EDIT WINDOW 

The EDIT window is the Mac-type editor where you'll probably be spending most of your 
time. Press <Command E> from the Command window or select "Edit window" from the 
"Edit" menu. The title bar of this window will display "Edit -- Your Filename". 

The EDIT window allows you to cut, paste and copy text with almost the same commands 
you're use to from other Macintosh editors like MacWrite. You can even select font, style 
and size to suit your preferences. 

,:JiI:i[i1l1ll 

Undo W2 
....................................................................... 

Cut WH These Editor commands 

Copy WC 
work only from the "EDIT" 

Paste WU 
Window. 

Clear 
....................................................................... 

Edit Window WE Macintosh type Editor 
Un$(~ fl:lH Wi!Hlnw Command Window ....................................................................... 
Find 6' Replace WF Same as FIND command 

,,; 

NO LINE NUMBERS 

ERRORS 

Under "Configure" there is an option to "Use Line numbers to Order Text". Disable this 
item and line numbers will not be required when editing from the Full Screen Editor. 

You will still be required to select "Save without Line numbers" the first time you save your 
program. After which ZBasic will automatically save it without line numbers when you 
select the SAVE item or press <COMMAND S>. 

When you compile a program and an error is encountered, the error is displayed in the 
Command Window and the cursor of the Edit Window will be on the line where the error 
occurred. 

For this reason it is a good idea 10 keep a portion of Ihe Command Window visible when 
compiling. You may size and position Ihe windows 10 your liking. 

Macintosh™ Appendix £-10 



MACINTOSH APPENDIX 
.••• fil· W1 

HELP WINDOW 

HELP is available as a window under the. menu and by typing HELP from the command 
window. Use the scroll bar to scroll through the window contents for the information you 
need. That's Andrew's icon there. (Yes ... he really does wear clothes like that!) 

Just select Help ITom the 
Apple Menu_ I"m always 
ready to serve __ _ 

.R... About 2Basic™ 

Chooser 
Control Panel 
Find File 
Key Caps 
Tron Monitor 

HFS versus MFS 

ZBasic works great with both MFS and HFS (MFS is the old Macintosh filing system). See 
FILES$ in this appendix for determining system type and more. 

LOADING OLD ZBaslc™ PROGRAMS 

E-11 

ZBasic tokens were changed slightly from older versions so you will need to do the 
following to convert your programs that were not saved in text (ASCII) format: 

1. Load Older version of ZBasic 
2. Load your old Program (Tokenized source code saved with SAVE). 

(A tokenized file has a desk top icon with D's and 1 's in it.) 
3. Save program with SAVE" (ASCII-TEXT format) 

------------------Program may now be loaded correctly --------------------

Failure to convert tokenized programs with this procedure may result in some of the 
keywords being wrong when you load your old programs. This will produce 
unexpected syntax errors and possibly other compiler or runtime errors. 

Macintosh™ Appendix 



MACINTOSH APPENDIX 

MEMORY AVAILABLE TO VARIABLES 

VARIABLE TYPE 
Array variables 
INDEX$ variables (10 available) 
Regular (A%, A&, A$, A!, A#) 

MACHINE LANGUAGE 

MEMORY AVAILABLE TO PROGRAM 
All available memory. 
All available memory. See MEM(-1) and INDEX$ 
A maximum of 128K total for all of these type. 

Machine language routines and calls must preserve registers; A4, AS, A6, A7. To insure 
compatibility with future versions of ZBasic for 68000 systems, registers D4, DS, D6, D7 
should also be preserved. 

USR(O) through USR(9) functions pass the argument as a longword in register D0. 
Function return parameters (function results) must be returned in D0. 

LONG INTEGER 

The Macintosh version of ZBasic provides two types of integers: 

TWO BYTE 
INTEGER (%1 
-32,768 to +32,767 

FOUR BYTE 
LONG INTEGER (&1 
-2,147,483,648 to +2,147,483,647 

Both types are supported only to remain compatible with storage requirements of 
previous versions of ZBasic. Note that "intentional" overflow errors will produce different 
results on this version since there is 32 bits instead of 16 bits and the sign will not change 
as before. 

To define specific variables as Long integer (four byte integer) use DEFDBL INT at the 
beginning of a program. You may also use "&" as a Long integer variable indicator. 
Long& would signify the variable "Long" as a four byte integer. Short% would be a two 
byte integer variable. 

FILE AND MEMORY REQUIREMENTS OF LONG INTEGERS 

When Long integer variables or numbers are written to disk or stored in memory they use 
four bytes. 

SETTING DEFAULTS TO LONG INTEGER 

In other versions of ZBasic MKI$, HEX$, BIN$ and OCT$ will only function in two byte 
integer. This version will use LONG integer functions when you use the statement: 
DEFSTR LONG 

To switch back to two byte WORD (16 bit) use: DEFSTR WORD. The default setting is 
DEFSTR WORD. Also see PEEK WORD, PEEK LONG, POKE WORD and POKE LONG. 

Macintosh™ Appendix E-12 



MACINTOSH APPENDIX 

FLOATING POINT ENHANCEMENTS 

The floating point precision for this version of ZBasic may be configured from 8 to 240 
digits of precision (we don't know of any other language that gives you this capability). 
New parameter rules: 

Accuracy Is selectable up to 240 dlalts 
Double Precision configuration starts at 8 digits 
Single Precision configu ration starts at 2 digits 
Scientific Precision configuration starts at 4 digits 

The range of double precision has been expanded to ±E-16,384 to E+16,383. Single 
precision range stays the same as other versions of ZBasic with ±E-64 to ±E+64 to 
maintain compatibility. Default storage requirements are 8 bytes and 4 bytes for Double 
and Single precision respectively. 

Note: For compatibility reasons, 12 digit double precision actually returns 14 digits of 
precision intemally and stores the values as 12 digits. 

10,000 DIGITS OF FLOATING POINT ACCURACY? 

A Secret feature: You may configure Scientific functions up to 1024 digits, and Add, 
Subtract, Multiply and Divide to 10,000 digits if you use a "TM" afterthe number used with 
Double Precision when configuring ZBasic (see "Configure"). This may cause some 
problems when printing at certain times .. 

FLOATING POINT SPEED 

INTEGER CALCULATIONS ARE ALWAYS MUCH FASTER THAN FLOATING POINT. 
Whenever speed is important, use integer math instead of floating point. 

II you use floating point numbers in the range of ± 2 million, with only 2 digits of fraction 
needed, consider using Long integers and divide by 100. Speed will be considerably 
faster. Totals or certain variables that would contain numbers outside this range should 
use single or double preCision numbers, of course. 

Also see USR for high speed integer SIN, COS and SQA. 

HOW TO GET MAXIMUM SPEED OUT OF BCD FLOATING POINT 

E-13 

To get maximum speed out of floating point calculations, set the digits of precision under 
the "Configure" menu to: 

DOUBLE PRECISION 
SINGLE PRECISION 
SCIENTIFIC PRECISION 

8 digits 
6 digits 
4 digits 

Note: The speed of Single and Double precision is the same, only the memory for 
storage on disk and RAM is different. If speed is more important than accuracy, the digits 
of preCision set for Double preCision is the deciding factor. 

When more speed is important consider using Long integers with the fixed point routines 
in the Macintosh toolbox for a high speed floating point range of ±32,767.9999. 

Macintosh™ Appendix 



MACINTOSH APPENDIX 

FLOATING POINT SPEED VERSUS ACCURACY 

The following chart will give you an idea of the performance of floating point math with 
given digits of accuracy. The more speed you need the smaller the digits of accuracy will 
have to be set (under "Configure menu"). 

The benchmark programs are: 

BENCHMARK#1 
DEFDBL A-Z 
S#=TIMER 
FOR I%= 1 TO 1000 

X=X+ABS(EXP(LOG(I%»-SQR((I%/l.) 
~2) + (2. /3.) * (I%*3. /2.) -I%) 

NEXT I% 
PRINT TIMER-S#,X 

Digits of accuracy Benchmark#1 
set under "Configure" 

DBl SNG SCI Seconds Error (X) 

8 6 4 65 10.38 
8 6 4 65 10.38 
8 6 8 88 6.7E·3 
8 6 8 88 6.7E·3 
12 6 8 105 4.52E·4 
12 10 8 105 4.52E·3 
12 10 12 130 6.75E·4 
16 14 12 183 2.55E·8 
16 14 12 190 6.54E·ll 
16 14 16 270 7.05E·15 
20 18 20 270 7.05E·15 
20 18 20 360 7.16E·19 
24 18 24 608 7.13E·27 
32 18 32 1327 7.32E·43 
48 18 48 2425 7.63E·59 
64 18 64 
96 18 96 
128 18 128 
192 18 192 33283 8.2E·187 
240 18 240 

BENCHMARK#2 
DEFDBL A-Z: X = 3.14159 
S#=TIMER 
FOR I%=l TO 1000 

X=X+I%: X=X/I% 
X=X*I%: X=X-I% 

NEXT I% 
PRINT TIMER-S#, X-3.14159 

Benchmark#2 

Seconds Error(X) 

6 .418 
6 2E-4 
6 .418 
6 2E·4 
7 .418 
7 7E·8 
7 7E·8 
8 9E·l0 
8 6E·12 
8 6E·12 
9 lE·14 
9 7E·16 
11 6E·20 
14 2E·28 
20 6E-44 
27 lE·60 
45 4E·92 
66 1.7E·123 
110 2E·188 
166 2E·236 

DBl 
SNG 
SCI 

Double Precision 
Single Precision 
Scientific Precision 

Note: Benchmarks were done on a standard 512K Macintosh™. 

Macintosh™ Appendix E-14 



MACINTOSH APPENDIX 

FILE LENGTH ENHANCEMENTS 

Unlike other versions which have are limited to 65,535 records and a record length of 
65,535, this version allows up to 2 billion records (Long Integer) and each record may be 
up to 2 billion bytes long (hardware and memory permitting, of course). 

RS-232 COMMUNICATIONS 

There are a number of enhancements to the standard OPEN"C" statement. See 
OPEN"C" and HANDSHAKE in this appendix for details. 

DETERMINING WHETHER 128K OR 64K ROMS ARE INSTALLED 

You will find that there are some statements and toolbox routines that will only operate 
with the 128K ROM which is found primarily on the Macintosh PLUS, SE and MAC" as 
well as enhanced Mac 512K. To determine which ROM is installed run this example: 

IF PEEK(&28E) AND 128 THEN PRINT "OLD ROMS" ELSE PRINT"NEN ROMS" 

SPEED AND EVENT TRAPPING 

Since ZBasic must check for an event at the beginning of each line, program execution 
will be significantly slower during event trapping. To optimize program performance, use 
event handling only when needed and do event type OFF for loops or other structures 
that require high performance. 

Event type STOP does not improve program speed ZBasic continues checking for 
events and stores them in the queue. 

DEBUGGING PROGRAMS 

This version of ZBasic offers a number of powerful debugging features including the 
TRON MONITOR, MEMORY MONITOR, TRON V statement and BREAK ON statement. 
See the reference section of this appendix for details. 

BREAKING OUT OF PROGRAMS 

E-15 

ZBasic is a compiler, therefore programs cannot be "Exited" unless you specifically tell 
ZBasic to do so. Use TRONB or TRONX (or BREAK ON) to enable the <Command (.) > 
break key (or OPTION C for OIR and LIST). This version of ZBasic adheres to the 
Macintosh standard of <Command period (.» to stop or break out of a program only if 
TRONB orTRONX is used. You may also use <Option C>. 

BREAK ON, BREAK OFF and ON BREAK may also be used from within a program to 
enable the <Command Period>. Note: BREAK ON WILL SLOW EXECUTION SPEED. 

Macintosh™ Appendix 



MACINTOSH APPENDIX 

MACINTOSH SPECIFIC CONFIGURAT;ON OPTIONS 
When you select "Configure" under the "Command" menu you will be offered a number 
of options: 

Double Precision from 0 to 240 Digits 
II: 2 I [ Configure ~ 

Single Precision from 2 to Double-2 Digits 

~( ''',,' J 
Scientific Precision Digits from 4 to Double 

MaHimum File Buffers Open o to 99 
2 Disk Options 

Rounding Number o to 99 49 

I???? I ( ) Rellert 
Default Rpplication and file 'Creator' 

Default Data FIle 'TYPE' IZORT I ( Salle ) 
Default Uariable Type: OSingle @Integer 

ODouble o Long Integer 

IZl Optimize EHpressions as Integer IZl Use Line #'5 to Order TeHt 

o Test Rrray Bounds o Space Req. Rfter Key Words 

o Test String Lengths o Conllert to Upper Case 

o Rppllcatlon Bundle Bit o Rrray Base I 

o [Hpert Programmer Mode o Locate Y,H 

Vou will recognize most of the options being offered as the same as those described 
under "Configure" in the front of this manual. Special notes to those not covered: 

• Double and Single precision may be configured up to 240 digits (10,000 if you use "TM"). 

See CREATOR and DEFOPEN for definitions of these options. 

• "Save" saves your options so they are the same next time you load ZBasic. 

• "Revert" sets all options back to the original default. 

"Longlnteger" is now allowed as a default variable type. 

• "Use Line #'s to Order Text" lets you work with or without line numbers from the "EDIT 
WINDOW". Note that line numbers are always added in the "Command Window" since it 
would not be possible to use it without them. See "SAVE AS" under File menu. 

"Space req. after Keywords" forces you to put spaces after keywords but allows you to 
embed keywords in your variables. This also makes programs a little easier to read. 

"Expert Programmer Mode" does things without asking "if you're sure". Not for the weak 
of heart. 

"LOCATE V,X" reverses the vertical and horizontal coordinates for LOCATE. 

"Optimize Expressions as Integer": See "Expression Evaluation" in "Math section of this 
manual. Used primarily for compatibilfty wfth MSBASIC (set to NO to do that). 

Macintosh™ Appendix E-16 



MACINTOSH APPENDIX 

HOW TO CREATE MACINTOSH APPLICATIONS 
The Macintosh version of ZBasic is a different animal than versions running on other 
computers. Sure, programs from other versions will run on the Mac, but unless you add 
the "Macintosh touch" to these programs your users will not be be happy. 

THE MACINTOSH INTERFACE 

ZBasic provides access to almost every part of the Macintosh Read Only Memory (ROM), 
both indirectly through the many "Mac" type statements and functions built into ZBasic 
and directly through the use of the Mac toolbox. 

To make your programs understandable to Macintosh users you must adhere to a number 
of standards and understand the following terms: 

-------- TERMS ---------
• MENUS 
• WINDOWS 

• SCROLL BARS, BUTTONS 
• TEXT, FONT, STYLE, SIZE 
• MAC STYLE TEXT EDITING 

• MOUSE 

• SAVE/LOAD FILES 
• GRAPHICS 

• RESOURCES 

• ICONS 

• PRINTING 

• CLIPBOARD 

----------- WHERE TO LOOK ------------
• MENU, APPLE MENU, MENU ON/OFF 

See WINDOW, WINDOW PICTURE 
GET WINDOW, DIALOG 

• BUTTON, SCROLL BUTTON, DIALOG 
• See TEXT in this reference and toolbox. 

EDIT FIELD, EDIT$, EDIT MENU, 
TEHANDLE, TE section of Toolbox, 
SCROLL BUTTON example program 
shows scrolling of text files in a window. 

• MOUSE, MOUSE ON/OFF, CURSOR, 
DEFMOUSE (also MOUSE in main ref.) 

• FILES$, OPEN, APPEND 
GET/PUT, PICTURE (pICT) and the 
QUICKDRAW section of the Toolbox, 
loading and saving "MacPaint files" 
in this section and Tit and PostScript. 

• See PICTURE, Resource Manager in 
Toolbox, OPEN"RO", "RI", RR", "RA". 

• See ICON example in toolbox, and ex
ample of creating an icon for your appli
cation in this appendix. 

• See section in this appendix "Printing" 
and LPRINT, ROUTE 128, DEF LPRINT 
DEF PAGE and CLEAR LPRINT. 

• See CLIPBOARD in this section. 

THINGS TO AVOID 

£-17 

You should normally avoid non-Macintosh type commands like: 

AVOID 
iNPUi, LiNEiNPUT 
INKEY$ 

Macintosh™ Appendix 

USE INSTEAD 
EDiT FiELD 
BUTTON, MENU, DIALOG (16) 



MACINTOSH APPENDIX 

STRUCTURE OF MACINTOSH PROGRAMS 

All Macintosh programs are layed-out in essentially the same way. The following simplified 
outline is of a typical Macintosh type program: 

Open Window 
Set window size, title and type 

Add MENU items and Controls 
Create MENU and It menu items, 
BUTTONS, SCROLL BARS and 
EDIT FIELDS as needed. 

Initialize Event Trapping 

DIALOG ON, ON DIALOG GOSUB 
MENU ON, ON MENU GOSUB 
MOUSE ON, ON MOUSE GOSUB 
TIMER ON, ON TIMER GOSUB 
BREAK ON (for debugging) 

Main Event Loop 

"Main Event Loop" 
GOTO "Main Event Loop" 
This is an endless loop that just waits for 
events to occur (if you don't use BREAK 
ON put a TRONX in here when debug
ging so you can break-out). 

Turn Off Events 

So they don't interfere with routines: 
DIALOG OFF, MENU OFF, MOUSE OFF, 
TIMER OFF or use STOP if you want 
events to collect in the queue for later. 

Routines to Handle Your Events 
DIALOG, MOUSE, TIMER and MENU 

End 

IT'S SUCH A PAIN TO SET-UP MENUS, BUTTONS, EDIT FIELDS AND WINDOWS!! 

Well, yes it is. That's why we offer a special ZBasic utility called the "ZBasic 
CONSTRUCTION SET". This program let's you create all your Controls, Windows and 
Menus as easily as using MacDraw and then saves your set-up as ZBasic source code that 
you can merge into your programs. Saves loads of time. Available from Zedcor at 1-800-
482-4567 for only $49.95. 

Macintosh"'" Appendix E-18 



MACINTOSH APPENDIX 

MACINTOSH MEMORY MANAGER 
USING SEGMENT 

E-19 

Since ZBasic takes advantage of the memory management routines built-in to the 
Macintosh so can you. If you segment your programs properly, you can create programs 
that are one megabyte long and execute them on a 512K machine. This is accomplished 
using the SEGMENT and SEGMENT RETURN statements. 

The Macintosh Memory Manager works a mile like virlual memory, that is; only the program 
segments actually needed to be resident in RAM at the same time. Other segments can 
be left on the disk and will be brought in as necessary: 

BEFORE 
Loading 
Program 

Application on disk is 400K (20segments) 

There obviously is not 
enough room to load a 400K 
program into 90K or memory. 

I!I!IIIIIIIIII 
Macintosh 128K Memory (RAM) 

Application on disk is 400K (20 segments) 

AFTER 
loading 
Program 

Macintosh 128K Memory (RAM) 

I Program segment that must always be 
resident. There is no SEGMENT 

, RETURN used in these segments. 

O Available memory (RAM) for 
programs, Desk Accessories etc. 

Segments are' loaded as needed. 
When another segment needs to 
be loaded, and there is not 
enough memory available, 
purgable segments are purged to 
make room for that segment. 

I Program segment ending with a 
SEGMENT RETURN which tells the 
memory manager the segment is no 
longer being used and is "Purgable". 

II System memory required for 
operating system and other linternal 
functions. 

Note: Segments may vary in size from a few bytes up to a maximum of about 30,000. 

Macintosh™ Appendix 



MACINTOSH APPENDIX 

TAKING ADVANTAGE OF MEMORY MANAGEMENT 

CHAINING 

If you anticipate a program will be used on systems with limited memory, you can build-in 
powerful memory management capabilities that will allow large programs to function in 
limited memory. 

The SEGMENT statement will force a segment break at that point in a program. It is critical 
that segment breaks do not take place in the middle of loops or structures. System errors 
may occur in these situations. 

Only programs running on computers with limited memory will show any sign of speed 
decreases due to more disk accesses. Programs running on systems with plenty of 
memory will suffer no degradation in performance. 

You may find the size of a specific segment by using the "COMPILE" command. It will 
print the end and size of each segment, allowing you to predict the sizes of segments 
being manipulated. 

Use of of the erasable INDEX$ string arrays may also be helpful in memory management. 

Use MEM(n) to find out how much memory is available during runtime. 

Important Note: If an attempt is made to load a SEGMENT larger than available memory 
and there are no more purgable blocks to be erased, a system error will occur. 

Important Note: SEGMENT control is only done during RUN' or RUN+. Executing 
programs from the editor, does not allow the use of SEGMENT or SEGMENT RETURN (a 
"Segment Overflow Error" will result). 

Also see SEGMENT, SEGMENT RETURN and COMPILE. 

Chaining on the Macintosh is different than with other versions. The memory 
management of the Macintosh limits chaining between segments (each segment is 
limited to about30K). Therefore when using the standard Chaining syntax be sure to 
limit each program to one segment. 

There are other ways of chaining and passing variables. See the example under WRITE 
FILE# in this appendix. That example runs other programs and returns with variables 
intact. Other programs can do the same thing using the READ FILE and WRITE FILE 
statements. 

Macintosh™ Appendix E-20 



MACINTOSH APPENDIX 

CLIPBOARD 
The following examples will allow you to store and retrieve "TEXT' or "PleT" type data 
from the clipboard: 

GET "TEXT" OR "PICT" FROM THE CLIPBOARD 
CLS 
DEFSTR LONG 
CP&=USR5(O) 
T&=CVI ("TEXT") 
P&=CVI ("PICT") 
L&=FN GETSCRAP (CP&,T&,D&) 
LONG IF L& > 0 

GOSUB "PRINT TEXT SCRAP" 
XELSE 

L&=FN GETSCRAP (CP&,P&,D&) 
LONG IF L& > ° 

GOSUB "DRAW PICTURE SCRAP" 
END IF 

END IF 

:REM REQUIRED FOR CVI ("XXXX") 
:REM GET HANDLE ZERO LENGTH 

:REM Check for TEXT 

:REM Check for PICT 

IF L&=-102 THEN PRINT "EMPTY Clipboard!!" 

continued ... 

"EXIT" 
X=USR6 (CP&) 
END 

"PRINT TEXT SCRAP" 
LONG IF L&>O 

PRINT STRING$(70,"-") 
ADR&=USR3 (CP&) 
FOR I& = ADR& TO ADR&+L&-l 

A=PEEK(I&) 
LONG IF A <> 13 

PRINT CHR$ (A) ; 
XELSE 

PRINT 
ENDIF 

NEXT : PRINT 
PRINT STRING$ (70, "-") 

ENDIF 
RETURN 

"DRAW PICTURE SCRAP" 
PICTURE (O,O),CP& 
RETURN 

E-21 Macintosh™ Appendix 

:REM DISPOSE OF MEMORY BLOCK! 

:REM GET ADDRESS OF MEMORY 
:REM BLOCK AND LOCK IT!!! 

:REM TEST FOR END OF LINE (CR) 
:REM Print TEXT here 

:REM CARIAGE RETURN 

:REM Draw Picture here 



MACINTOSH APPENDIX 

CLIPBOARD continued ... 

PUT A "PICT" ON THE CLIPBOARD 

CLS:PICTURE ON 
CIRCLE FILL 100,100,50 
PICTURE OFF, Picture& 
L&=PEEK WORD (PEEK LONG(Picture&») 
Scrap&=FN ZEROSCRAP 
Scrap&=FN PUTS CRAP (L&, CVI("PICT"), PEEK LONG(Picture&» 
KILL PICTURE Picture& 

PUT "TEXT" TO/FROM THE CLIPBOARD USING INDEX$ 

CLEAR 1000 
FOR I=O TO 10 : INDEX$ (I)=HEX$ (I)+STRING$ (RND(32) ,"*") 
N=10 
GOSUB "INDEX$ to Scrap" : REM Move INDEX$ to Clipboard 
GOSUB "Scrap to INDEX$" : REM Move Clipboard to INDEX$ 
FOR 1=0 TO N : PRINT INDEX$(I) : NEXT 
STOP 

NEXT I 

:REM Move ClipBoard to INDEX$ Array, Returns INDEX$ and N=# of 
Strings 

"Scrap to INDEX$" 
H&=USR5(0) : CLEAR 0 REM GET HANDLE 0 LENGTH 
L&=FN GETSCRAP (H&,CVI("TEXT"),D&) REM RESIZES IF REQUIRED 
N=O : IF L& <= 0 THEN "exit" REM Return 0 if no scrap 
CLEAR L&+512 : A&=USR3(H&) : TEMP$=.... REM Make Room,Lock Block 
FOR I& = A& TO A&+L&-l: A=PEEK(I&) REM Loop for all Bytes 
IF A<>13 THEN T$=T$+CHR$(A) ELSE INDEX$(N)=T$ : N=N+1 : T$= .... 
NEXT: INDEX$(N)=T$ 
"exit": x=USR6(H&) : RETURN 

:REM Move INDEX$ to ClipBoard ( N+1 = number of strings to move ) 

"INDEX$ to Scrap" : x=FN ZEROSCRAP : REM Zero Scrap first 
L&=MEM(20) A&=USRO(L&) IF A&=O THEN BEEP: RETURN 
T&=A& I&=MEM(40) REM T& is temp Ptr,I& points to 
INDEX$ 
FOR I=O TO N sl%=PEEK(I&) 1&=1&+1 : REM get & Skip Length 
byte 
IF (T&-A&)+sl%+l > L& THEN PRINT"Program Error...... STOP 
BLOCKMOVE I&,T&,sl% :I&=I&+sl% : T&=T&+sl% : POKE T&,13 T&=T&+l 
NEXT I : IF FN PUTSCRAP(T&-A&,CVI("TEXT"),A&) THEN BEEP BEEP 
x=USR1(A&) : RETURN : REM Dispose of Memory Block 

Macintosh™ Appendix E-22 



MACINTOSH APPENDIX 

MACINTOSH GRAPHICS 

LOAD AND SAVING MACPAINT FILES 

TIF FILES 

See the example programs for reading and writing MacPaint files under READ FILE# in 
this appendix. More intensive examples are also included in the Thinner.BAS program 
included on the ZBasic disk. 

Many users are creating ClipArt with digitizers these days. The latest file type is called 
"TIF". See the routines in Thinner.BAS for examples of loading this file type. 

MACDRAW FILES 

MacDraw graphics may be saved to the clipboard or Scrapbook and then loaded into your 
programs as a PICTURE. This graphic type is called PICT. See examples of loading and 
saving PICT graphics to resource files under the PICTURE statement in this appendix. 

QUICKDRAW ACCESSIBILITY 

In addijion to the standard graphics commands in the main reference manual and this 
reference section, this version allows you to access the Macintosh "OuickDraw" routines 
in ROM. 

The end of this appendix contains the toolbox routines and a listing of the "OuickDraw" 
routines and parameters. There are also a number of examples. 

POSTSCRIPTTM 

E-23 

See the example program under "Printing" for ways of sending PostScript™ programs to 
the LaserWriter and other devices. 

Macintosh™ Appendix 



MACINTOSH APPENDIX 

PRINTING 
The following pages describe some of the powerful features included with ZBasic that 
take advantage of the ImageWriter and LaserWriter. 

PRINT TEXT AND GRAPHICS TO THE IMAGEWRITERTM AND LASERWRITERTM 

ZBasic provides some incredibly easy to use graphics and text tools for using the 
Laserwriter™ and Imagewriter™ printers. Complete integration of text AND graphics is 
easily accomplished: 

ROUTE 128 Route Window text and graphic output to the printer. Graphics can 
be done with regular ZBasic statements like PLOT, BOX or CIRCLE, 
or by using PICTURE. Even QuickDraw routines will be routed! 

LPRINT @,% Complete control of where text is printed on the page. 
"@" controls character position 
"%" controls pixel position. 

COORDINATE Set up your own coordinate system on the page when 
using ROUTE 128. 

WIDTH LPRINT-2 Disable text wrap around to for extremely high-speed printing. 

TEXT Complete control of FONT, SIZE, MODE and STYLE. 

PEN Control pen width, patterns, styles and modes of lines created with 
PLOT, BOX and CIRCLE. Even control the patterns used in FILL. 

COLOR Allows you to set the color of the current pen and text for use with 
ImageWriter printers with color ribbons. 

DEF PAGE Standard Macintosh Page Set-up dialog box. 

DEF LPRINT Standard Macintosh Print dialog box. 

PRCANCEL Checks for DEF PAGE or DEF LPRINT cancel button. 

PR HANDLE Get pointers to number of pages, smoothing, etc., chosen with 
DEF PAGE and DEF LPRINT. 

CLEAR LPRINT Force printing of text and graphics of current page. If this isn't done 
the printer driver doesn't know you've finished drawing on the page. 

OPEN"C" Access to direct printing through the serial port. Lets you send 
control codes to the printer with PRINT# (don1 mix with LPRINT). 

See the reference section of the appropriate items for complete descriptions of use and 
example programs. 

Macintosh'" Appendix E-24 



MACINTOSH APPENDIX 

POSTSCRIPTTM 

E-25 

You can get even more control of PostScript devices like the LaserWriter'"" and 
LinoTronic™ typesetting equipment by sending them PostScript commands directly. This 
allows you to get finer line widths and much more control of text positioning and rotating. 

The following example program sends a postscript program directly to the LaserWriter: 

T=0:L=0:B=8192:R=8192: 
WINDOW#l, "PostScript" 

LONG FN PS$(string$) 
CALL DRAWSTRING(string$) 

END FN 

PICTURE ON 
CALL CLIPRECT (T) 
CALL MOVE TO (20,20) 

REM ClipRect Coordinates 

CALL DRAWSTRING("TextIsPostScript Comment") 
CALL PICCOMMENT(190,0,0): REM Start PostScript 

CALL PICCOMMENT(194,0,0): REM Following text is PostScript 
FN PS$ ("newpath") 
FN PS$("100 470 moveto") 
FN PS$("500 470 lineto") 
FN PS$("100 330 moveto") 
FN PS$("500 300 lineto") 
FN PS$("230 600 moveto") 
FN PS$("230 200 lineto") 
FN PS$("370 600 moveto") 
FN PS$("370 200 lineto") 
FN PS$("lO setlinewidth"): REM Try changing 10 to .05 
FN PS$("stroke") 
FN PS$("/Times-Roman findfont 12 scalefont setfont") 
FN PS$("230 600 moveto") 
FN PS$ (" (Hello World) show") REM This text prints upside/down 

CALL PICCOMMENT (191,0,0) REM End Postscript output 
PICTURE OFF, MyPic& 
DEF LPRINT 
ROUTE 128 
PICTURE, MyPic& 
CLEAR LPRINT 
ROUTE 0 
END 

PostScript is a Page Description language from Adobe Systems Incorporated. They have 
several books out about PostScript that are very useful and easy to read (we use them). 
They are available from most bookstores. 

POSTSCRIPT Language Reference Manual 
Published by Addison 'v'Vesiey 

POSTSCRIPT Language Tutorial and Cookbook 
Published by Addison Wesley 

Macintosh™ Appendix 



MACINTOSH APPENDIX 

APPLET ALKTM 
ZBasic offers the user access to the Appletalk network. The network lets you "Talk" to 
other computers, printers and other connected storage devices. 

The terms used in these statement and function definitions are explained in the Appletalk 
section of "Inside Macintosh". "Inside Macintosh" is essential to understanding the 
Appletalk Network system. 

OPEN NETWORK 

Initializes Appletalk and configures printer port. 

OPEN SOCKET Socket, "OBJECT", "TYPE", "ZONE" [, [TryCount] [, [Trylnterval] [, [Network] [, 
[Node] [,Socket]]]]] 

Opens a socket for purpose of getting requests from other computers or "Nodes" on the network. 

NETWORK DIRECTORY "OBJECT", "TYPE", "ZONE", Maxnames%, Network%(), Node%(), 
Sockets%(), Object$(), Type$(), Zone$() [, [count] [,interval]] 

Shows other sockets in other nodes on the network. 

GETREQUEST Socket, Synch%, Completion Routine, RequestBufferLen%, RequestBufferA, 

ATPflags%, UserData&, Network%, Node%, Socket%, BitMap%, Transaction% 

Reads a request from another node. 

SENDREQUEST Synch%, CompletionRoutine, RequestBufferLen, RequestBufferA , 

Response%, Size%(), Buffer&(), Bytesgot%(), Userdata, Network, Node, Socket, Flags%, 
Bitmap%, Transid%, [. [count%] [,interval%lJ 

Sends a request to another node and waits for a response. 

SENDRESPONSE Socket, Synch%, CompletionRoutine, A TPflags, Network, Node, Socket, 
Buffers, Buffersize%(), Bufferptr&(), Userdata&(), Transid, Userdata& 

Replies to a request from another node. 

Macintosh"" Appendix E-26 



MACINTOSH APPENDIX 

MACINTALKTM 

ZBasic supports the MacinTalk voice synthesizer software from Apple. It is included on 
the disk and should be copied to the system folder of any disk that uses this application. 

Be sure to see the following statements in the reference section of this appendix for 
details: 

OPEN TALK statement 
TALK statement 

The following information is for serious "MacinTALKERS". 

ENDING A SENTENCE 

End a sentence wijh a period (.), exclamation mark (!), or a question mark (?). 

The period causes a final fall in pitch at the end of a sentence. The question mark will 
cause a rise in pitch for yes or no questions. 

Note that the question "How much do you weigh" would not require a question mark. 
Always CLOSE Macintalk to avoid system errors. 

SPELL IT LIKE IT SOUNDS WITH THE ENGLISH TEXT READER 

If using the default English text reader, remember that certain letters may be better than 
others. 

For instance the word "bats" might sound better with Macintalk if you use "batz" instead. 
"Michael" comes out like "Mitch-Ale". Use "Mikil" instead. Listen carefully to the sound of 
words and try typing them in as they sound NOT as they're spelled. 

USING PHONEMES TO PRODUCE SPEECH 

To create more natural sounding words and sentences you may want to use Phonemes 
instead. This is accomplished by using "no Reader" when opening Macintalk with OPEN 
TALK, #n, "noReader". 

The next page contains a chart for more information about phonemes, dipthongs, stress 
and contractions. 

HOW TO GET A MACINTALK LICENSE FROM APPLE 

E-27 

If you are selling your programs, you ~ distribute the MacinTalk™ file 
without the specific written permission of Apple Computer, Inc. 

Licenses 'w·vhich parmit distiibutiny the latest MaclnTaikTI.1 soH-ware are avaiiabie for' 
a moderate annual fee. 

For details, contact Apple's Software licensing department at: (408) 973-4667 

Macintosh™ Appendix 



MACINTOSH APPENDIX 

MACINTALK 
PHONEME TABLE ("no Reader") 

VOWELS 
IY b.e.e.t 
AA h.Q.t 
ER bird 

IH bLt 
AH u.nder 
OH b.Q.rder 

EH b.e.t 
AO talk 
AX about 

AE bat 
UH lQQ.k 
IX solid 

NOTE: AX and IX should never be used in stressed syllables. 

DIPTHONGS 
EY made AY hLde 
OW I.o.w. UW cr.eY!/. 

CONSONANTS 
R red L yellow 
M men N men 
SH rush F ted 
ZH plea.s.ure V y"ery 
J i u.dg.e IH hole 
D Q.og T toy 

SPECIAL SYMBOLS 
DX pity (Tongue flap) 
RX car (postvocalic Rand L) 
ax silent vowel 

CONTRACTIONS 
UL=AXL IL=AXL 
UN=AXN IN=IXN 

STRESS MARKS (digits 1-9) 
Some typical stress values: 

5 nouns 2 pronouns 
5 adjectives 7 adverbs 
9 exclamations o articles 

OY b.Q.iI AW p.o.w.er 

W 
NX 
TH 
DH 
Ic 
G 

a 
LX 

a't:I.ay Y 
sing S 
thin Z 
then CH 
10m B 
g.uest K 

kill_en (glottal stop) 
caJI 

UM=AXM 

4 verbs 
7 quantifiers 
o prepositions 

:tellow 
.s.ail 
has. 
meck 
!lut 
~amp 

IM-IXM 

o conjunctions 1 ,2 Secondary stress 

PUNCTUATION 
Sentence terminator 
Phrase delimiter 

( ) noun phrase delimiters 

? Sentence terminator 
clause delimiter 

Macintosh™ Appendix E-28 



MACINTOSH APPENDIX 

CONVERTING MSBASICTM PROGRAMS 

CONFIGURING ZBASIC FOR EASIER CONVERSION 

Here's how to configure ZBasic to make MSBASICTM programs easier. 

Under the "Configure" menu select "Change Configuration" and set the following 
parameters: 

Spaces Required after Keywords 
Convert to Uppercase 
Optimize Expressions as Integer 
LOCATE Y,X: 
Test Array Bounds 
Test String Lengths 

YES 
YES 
NO' 
YES (ZBasic does x,y) 
YES" 
YES" 

• May slow down execution more than necessary. See "Math" in front of this manual. 
•• Enable these checks only during debug stage for best program speed and size. 

MAIN DIFFERENCES BETWEEN ZBASICTM AND MSBASICTM 

STRINGS 

GRAPHICS 

The biggest differences between ZBasic and MSBasic™ occur with graphics and disk 
commands. 

The following pages will cover most of the MSBASIC commands not supported by ZBasic 
and suggestions for conversion. It is important to note these differences because there 
are some commands that are the same but we have added certain extensions to them to 
give you more power. 

The maximum string length for ZBasic strings is 255 characters. MSBASIC allows up to 
32,767 characters so any programs using strings that exceed the 255 limit must be 
modified by the user. The usual reason for needing more than 255 is with EDIT FIELD 
and text editing applications. See ZBasic's TEHANDLE function and the Toolbox TEXT 
EDIT section for ways of overcoming this. 

ZBasic incorporates a Device Independent Graphics system. This means that graphics 
created in windows correspond to the standard coordinate system of 1024x768. Note 
that this version of ZBasic allows you to reset these coordinates. The command is 
COORDINATE Xmax, '{max. 

It is normally to your advantage to use the device independent graphics as this is what is 
used in the main ZBasic reference manual. To convert existing programs it is useful to 
revert to the MSBASIC Pixel coordinate system. This may be done for each window 
easily by using the ZBasic COORDINATE WINDOW statement. 

E-29 Macintosh™ Appendix 



MACINTOSH APPENDIX 
_ ............. 1 •• 

MSBASICTM LPRINT VERSUS ZBASICTM LPRINT 

When you use the LPRINT statement in ZBasic, text is routed through the Macintosh 
printer driver. This lets change text styles and such with the TEXT statement. Some 
versions of MSBASIC send output directly to the serial port. These programs may even 
using control codes and such which are stripped out when sent to the Macintosh printer 
driver. 

To send output directly to the printer driver use OPEN"C",-2, 9600. See example under 
OPEN"C" in this appendix (also see HANDSHAKE). 

Note that in most cases this is not needed. Just put a WIDTH LPRINT-2 at the beginning 
of your program and set the text characteristics with TEXT and away you go. Not only is 
the quality much better but the speed is nearly as good. 

You could even select DRAFT printing from the DEF LPRINT window to get faster printing 
in some cases. 

ZBASIC EVENT TRAPPING 

ZBasic checks for events at the beginning of lines that are physically between lines 
containing EVENT ON and EVENT OFF (events being: DIALOG, MENU, MOUSE, TIMER 
and BREAK). 

MSBASIC checks the events according to the program flow between the EVENT ON and 
EVENT OFF. 

THINGS TO PUT AT THE FRONT OF A MSBASICTM PROGRAMS YOU'RE CONVERTING 

COORDINATE WINDOW 

DEFMOUSE=-1 

WIDTH LPRINT-2 

WIDTH-2 

TEXT 1,12,,0 

Set to "Pixel" coordinates like MSBASIC uses. 

Set to MSBASIC mouse commands. To use ZBasic 
mouse statements see "MOUSE" in the main reference 
section. 

Disregards characterwrap to the printer. Increases 
printing speeds by 2-5 times. 

Disregards character wrap to the window and increases 
printing speed to the screen a bit. 

Sets text font, size and mode to MSBASIC defaults. 

Macintosh™ Appendix E-30 



MACINTOSH APPENDIX 

E-31 

MSBASICTM 
CALL 

CDBL(x) 
CHAIN 
CINT(x) 
CHOIR 
CIRCLE (x,y),radius 

ZBASICTM 
CALL with parameter passing is supported but libraries are not. See "For 
Machine language programmers" in the beginning of this appendix. Note 
that MSBASIC and ZBasic floating point are stored differently in memory. 
ZBasic converts for you automatically. 
See "Memory Management" in this appendix. 
See CINT function in the MSDOS appendix. 
See FILES$ and DIR in this appendix. 
CIRCLE x,y,radius Note: ZBasic uses BRADS instead of Radians for start 
and end of arcs. 

CSNG(x) ZBasic converts for you automatically. 
CVDBCD, CVSBCD See CVB 
CVS, CVD See CVB 
ERASE SEE MEM( -1), CLEAR nnnn [index#] for erasing INDEX$ arrays. 
ERL Not supported 
ERR Not supported 
FIELD See READ# and WRITE# 
FILES Use DIR and FILES$ in this appendix. 
GET #1, See READ# and RECORD#. 
IGNORE$ Meta commands not supported. 
INCLUDE$ Meta commands not supported. 
INPUT$ Not supported. See READ# 
LBOUND, UBOUND Not supported. 
LINE (x1 ,y1) PLOT TO x1 ,y1 
LINE (x1 ,y1 )-(x2,y2) PLOT x1 ,y1 TO x2,y2 
LINE (x1 ,y1 )-(x2,y2)"B BOX x1,y1 TO x2,y2 
LOF Different. Use LOF(filenumber,1) to do the same thing. See LOF 
LPOS See POS(1) 
LSET Not supported. Use: A$=STRING$(" ", length-LEN(B$))+B$ 
MERGE Command only. May not be used in a program. Use RUN+ 
MKS$, MKD$ See MKB$ 
MKSBCD$, MKDBCD$ See MKB$ 
ON ERROR DISK ERRORS ONLY with ZBasic. See DISK ERRORS under "Files". 
OPTION BASE Pull down the "CONFIGURE" menu and set to this option. 
OPTIONS$ Meta commands not supported. 
PAGE$ Meta commands not supported. 
PEEK Use Longlntegers. See also PEEKWORD and PEEKLONG 
PICTURE$ DIFFERENT. ZBasic uses PICTURE, longint& 
POKE Use Longlntegers .. See also POKEWORD and POKELONG 
PRESET (x,y),color COLOR=color:PLOT x,y. Step is not supported. 
PRINT USING Same except for string formatting. 
PSET (x,Y),color COLOR=color:PLOT x,y 
PUT#1, See WRITE# and RECORD#. 
RESTORE ZBasic positions to the DATA 1IEM instead of LINE number. 
RESUME Not supported. 
RND(x) Different. ZBasic returns a number between 1 and x, not 0 and 1. 
RSET Not supported. Use: A$=B$+STRING$(" ",Iength-LEN(B$)) 
SHARED See DIM and CLEAR END 
SUB See LONG FN, APPEND line and SAVE+ in the reference section. 
WIDTH Slightly different. See WIDTH. 
W!DTH# Not supported. See ROUTE fi:enumbei 
WINDOW OUTPUT# Not supported. Use ROUTE 128 to route all window text and most 

graphic activity to an imagewriter or laserwriter. 
WRITE# Different. Use ZBasic's PRINT# or WRITE# to convert 

Macintosh™ Appendix 



MACINTOSH APPENDIX 

USING IRMaker™ RMaker 

About this Chapter 
This chapter describes RMaker, an application licensed from Apple Computer, Inc. we've included 
wtth ZBasic™ as a convenience. ~ is used to produce and integrate resource files into your 
programs. 

About RMaker™ 
RMaker is the Macintosh 68000 Development System's (MDS) Resource Compiler. Primary use 
with ZBasic is to allow you to include resources and icons with you applications. 

RMaker takes text file(s) as input and produces a resource file. The text file contains an entry for 
each resource, as described below. These entries can specify all information necessary to define 
the resources, or they can cause existing resources to be read from other files. 

For example, during program development you'll typically use separate application and resource 
files. Once the application is finished, you should combine the files. Simply use the INCLUDE 
statement to read in the application created by ZBasic™. It is already stored as resources of type 
'CODE'. 

RMaker™ Input Flies 
An RMaker input file is a text file that may be created using MDS EDIT (or ZBasic's editor if saved in 
ASCII without line numbers). By convention, RMaker text files have the extension .R. 

RMaker ignores all comment lines and blank lines (except in some cases a blank line may be 
required). It also ignores leading and embedded spaces (except lines described as strings). 
Comment lines begin with an asterisk. To put comments at the end of other RMaker lines precede 
the comment with two consecutive semicolons (;;). 

Naming the Resource File 
The first nonblank and noncomment line of the input file specWies the name of the resource file to 
be created. If the filename has the extension .REL, a file is generated that can be linked using the 
MDS linker (normally not applicable with ZBasic). If the file is to be an application, tt should have no 
extension. If not, the file will be a resource file and should have the extension .Rsrc. The line 
following the resource's filename should either specify the file type and creator bytes for the 
FINDER or be blank. For example, the two lines 

NewResFile.Rsrc 
PNTGMPNT 

specWy the file named NewResFile.Rsrc as the output file, and the bytes PNTGMPNT as the type 
and creator bytes. These bytes tell the FINDER that the file is a 'Paint' file created by MacPaint 
(the finder will try to launch MacPaint if you select this file). 

More typically. these two lines will look like this: 

MyApplication 
APPLMYAP 

This designates the file MyApplication as the output file. The file is an application (type 'APPL') 
and creator type of 'MYAP'. If you do not set a value for these bytes they are set to 'a' (zero). 

Appending to an Existing Application 
If you wish to add the resources defined in your input file to those in a ZBasic file, simply precede 
the filename wtth an exclamation mark (I). For example 

IOldResFile.Rsrc 

tells RMaker to add the resources to the file OldResFile.Rsrc 

Macintosh™ Appendix £-32 



MACINTOSH APPENDIX 

Adding Resources 
The rest of the resource file consists of INCLUDE statements and "type statements". 

INCLUDE statements are used to read in entire resource files. An INCLUDE statement looks like 
this: 

INCLUDE filename 

Type statements consist of the word "TYPE" followed by the resource type and, below that, one or 
more resource definitions. The resource type must be capitalized to match a predefined resource 
type (as defined on the next page). This statement creates three resources of type 'STR'. 

TYPE STR 
,1 

This is a string 
,2 

Gnirts a 5i siht 
,3 

Hits is a grints 

k is not necessary for all resources of a given type to be declared together; however, all resources 
of a type must have unique resource IDs. If you specify a resource ID that is already in use, the 
new resource replaces the old one. A resource looks like this: 

[resource name], resource ID [(resource attribute byte)] 
type-specific data 

The square brackets indicate the resource name and resource attribute byte are optional. The 
comma before the resource ID is mandatory. The default attribute is '0'. Here are some resource 
definitions: 

TYPE STR 
NewStr ,4 (32) 
This resource has a name and an attribute byte!! 

,5 
This one has only a resource ID 
MyNewStr, 6 
This one has a name and a resource ID 

The type specific data is different for each resource type. The type specific data for a'STR' 
resource is simply a string. The next page describes the type-specific data for resource types 
defined by RMaker. 

Syntax of RMaker lines 
There are just a few general rules to lines read by RMaker. 

Leading and embedded blanks are ignored, except when necessary to separate 
mukiple numbers on a line, or when they are a part of a string. 

Numbers are decimal, unless specified otherwise. 

RMaker is sens~ive to line breaks. Thus, if a type description shows 4 values on a 
line, you must put 4 values on that line. 

Special Symbols 

E-33 

Two special symbols can be used in resource definrrions: The continuations symbol (++) a~d the 
enter ASCII symbol (Il 

++ goes at the end of a line that is continued on the next line. 
I precedes two hexadecimal digits. The ASCII character is entered into 

the resource definition. 

Look at the description of the STR resource type for examples of this special symbol. As 
previously mentioned, blank lines are ignored. To enter a blank line that isn~ ignored use, use 120. 

Macintosh™ Appendix 



MACINTOSH APPENDIX 

DEFINED RESOURCE TYPES 

AlRT 

BNDl 

CNTl 

RMaker has 12 defined resource types: 

AlRT 
DITl 
GNRl 
STR 

BNDl 
DlOG 
MENU 
STR# 

CNTl 
FREF 
PROC 
WIND 

The format of the type-specific data for each type is shown by example, below. The type 'GNRl' is 
used to define your resource types. It is explained later. 

Templates 
TYPE ALRT 

,128 " Resource 1D 
50 50 250 250 It top left, bottom right 
1 If resource 1D of item list 
7FFF " stages word in hexadecimal 

Application Bundle 
TYPE BNDL 

,128 " Resource ID 
MPNT a " bundle owner (Macpaint) 
ICN# " resource type 
a 128 129 " local ID 0 maps to resource 128; to 129 
FREF " 

resource type 
a 128 129 " local ID 0 maps to resource 128; to 129 

Control Template 
TYPE CNTL 

,130 " 
resource ID 

Stop " title 
244 40 260 80 " 

top left, bottom right 
Invisible " see note 
a " PracID (control definition ID) 

" Ref Con (reference value) 
1 0 " 

minimum maximum value 

Note: Controls can be defined to be Visible or Invisible. Only first character (V or I) is signfficant. 

DlOG Dialog Template 
TYPE DLOG 

,3 
This is a Dialog box. 
100 100 190 250 
Visible GoAway 
o 
o 
129 

" resource 10 
II message 
" top left, bottom right 
II box status ( see note) 
It procID (dialog identification 1D) 
" ref Con (reference value) 
II 10 of item list ('DITL', above) 

Note: A Dialog box can be Visible or Invisible. GoAway and NoGoAway determine whether 
or not the Dialog box has a close box. Only the first characters (V, I G, N) are signrricant. 

Macintosh™ Appendix E-34 



MACINTOSH APPENDIX 

DITL Dialog or Alert Item list 

FREF File 

MENU 

E-35 

TYPE DITL 
,129 

StaticText 
20 20 32 100 
Whooppie 

EditText 
20 120 32 200 
Default message 

RadioButton 
40 40 60 150 
Hello 

Checkbox Disabled 
75 40 95 150 
Goodbye 

Button 
75 160 95 200 
Hi! 

II resource ID 
" 5 items in list 

,0 static text dialog item (see note) 
" top left, bottom right 
" message 

" Editable text dialog item (see note) 
" Top left, bottom right 
" message 

" radio button dialog item (see note) 
II top left, bottom right 
II message 

II disabled dialog item (see note) 
" top left, bottom right 
" message 

" button dialog item (see note) 
II top left, bottom right 
" message 

Note: RMaker recognizes the following words as DITL items: 

Btnltem 
Ctrl 
Icon Item 
Radloltem 
StatText 

Button 
Ctrlltem 
Pic 
ResCltem 
User 

Check 
Edit 
Plcltem 
ResCtrl 
Userltem 

Checkbox 
EdltText 
Radio 
Stat 

Chkltem 
Icon 
RadloButton 
StatlcText 

These Hems are assumed to be enabled. Otherwise you must specijy the entire word 'Disabled'. 

Reference 
TYPE FREF 

,128 .. resource ID 
APPL 0 .. file type, local ID of icon 

,129 .. resource 10 

TEST 127 myFile .. file type, local ID of icon, filename 

Note: If there is no filename H can be omitted. 

TYPE MENU 
,3 

Transfer 
Edit 
Asm 
Link 
(-

Exec 

Macintosh™ Appendix 

.. .. 
" .. .. .. .. .. 

resource 1D 
menu title 
item 1 
item 
item ::: 
item (draw a line) 
item 5 
MUST be followed by a blank line!l 



MACINTOSH APPENDIX 

PROC Procedure 

STR Strings 

TYPE PRoe 
.128 

MyProcedure 
II resource 10 
II filename 

This type is to create resource that contain code. It reads the first code segment from an 
application file (the 'CODE' resource with ID=I), strips the first four bytes off of it (used by the 
segment loader), and saves H as a resource of type 'PROC'. It is useful for defining code types 
such as 'DRVR', 'WDEF', and 'PACK'. An example is given below in the section for creating your 
own resource types. 

TYPE STR 
.1 

this is a string 

.23 
This is a string++ 
that shows the 1ine++ 
continuation characters . 

• 25 (32) 
live got attributes! 

.27 
Testing. \31. \32. \33 

II 'STR I (space required at end STR_, 
" resource 1D 
II and a string 

II resource 10 
II and a long string 

II resource ID, optional attribute byte 
" and a string 

II resource 10 
II 'Testing, 1,2,3 1 the hard way 

STR# A Number Of Strings 
TYPE STR# 

.1 II resource ID 

This is string one 
string two 
and string three 
and the last number 

WIND Window Template 
TYPE WIND 
.128 
Wonder Window 
40 80 120 300 
Invisible GoAway 
o 
o 

It number of strings 
" and the strings .•• 

" Window title 
" top left, bottom right 
II Window Status (see note) 
" ProcID (Window definition 10) 
" Ref Con (reference value) 

Note: A window can be Visible or Invisible; GoAway or NoGoAway determine whether or not 
the window has a close box. Only the first character of each option is signnicant Col. I. G. N). 

Creating Your Own Types (GNRL) 
There are two ways to create your own resource types. The first is to equate a new type to an 
existing type. For example. you can create a resource of type 'DRVR' like this: 

TYPE DRVR=PRoe 
.17 (32) 

MyDriver 

" Type 'DRVRI is just like 'PROC' 
" resource 10, Attribute byte 
" filename 

The file MyDriver should be a single-segment application created by ZBasic. Recall that the 
'PROC'type reads in the resource of type 'CODE' wHh ID= 1; then strips off the header bytes. 

The other way to create your own type is to equate the new type to 'GNRl' and then to specny the 
precise format of the resource. A set of element type designators lets you define the type of each 
element that is to be placed in the resource. 

Macintosh'" Appendix E-36 



MACINTOSH APPENDIX 

Here are the element type designators: 

• P Pascal string (same as ZBasic strings) 
• S String without length byte 
.1 Decimal Integer 
• L Decimal Longinteger 
• H Hexadecimal 

• R Read resource from file .. R is followed by: filename type ID 

For example, to define a resource of type 'CHRG' consisting of the integer 57 followed by by the 
Pascal string 'Finance charges', you could use the following type assignment: 

TYPE CRRG~GNRL 
,200 
.r 
57 
.P 
Finance charges 

" define type 'CHRG' 
" resource ID 
I' decimal integer 

" a Pascal string (same as ZBasic strings) 

A more practical example: An application that has its own Icon must define an icon list and 
reference n as 'FREF' (described above). Such an icon list can be described as follows: 

TYPE rCN#~GNRL 
" icon list for application 

,128 " resource ID 
.R " enter two icons in hexadecimal 
0001 0002 0003 0004 " each is 32 bits by 32 bits 

0070 007E 007F 0080 " for 128 words total 

The .R type designator is used to include an existing resource as part of a new resource type. For 
example, to read an existing 'FONT' resource into a new resource of type 'FONT', use the following 
resource definition: 

TYPE FONT~GNRL 
,268 

.R 
System FONT 268 

" define a new type 
" resource ID 
" read from the System File 
II the 'FONT' resource with IO 26B 

Using RMakerl>! 

E-37 

Once you have created the input file to RMaker, the hard work is done. Simply select and open the 
application 'RMaker'. The standard file selection window is automatically opened. Select the file 
you want to compile and off it goes. 

By defau~, the standard file selection window displays all the text files on the disk. "you want to 
display only .R files, cancel the selection window and, choose .R Fi~er from file menu, then chose 
Compile from the the file menu to re-display the file selection window. 

When RMaker is compiling a file, the name of the source file is displayed in the upper left of the 
window, and the name of the output file is displayed in the upper right. 

As the file is compiled, the current size of the resource data, the size of the resource map, and 
the total size are tracked on the right haff of the screen. In addition, as each line is compiled, it is 
displayed on the screen. 

H there are no errors in the RMaker file, a resource file with the specified name is created. 

Macintosh™ Appendix 



MACINTOSH APPENDIX 

RMakerTM ERROR MESSAGES 

H an error occurs, the line containing the error is the last line on the screen. RMaker then displays 
a box wtth an error message in it. A brief description of the error message is included for those that 
are not self explanatory: 

An Input/Output error has occurred 
Bad attributes parameter 
Bad bundle definition 
Bad format number 
Bad format resource designator in GNRl type 
Bad ID number 
Bad nem type 
Bad object definition 
Bad type or item declaration 
Cant add to the file--- disk protected or full? 
Cant create the output file 
Cant load INCLUDE file 
Cant open the output file 
Out of memory 
Syntax error in source file 
Unknown type 

User-defined resource type error. 

Happens if specified file is of wrong type. 

The specified resource type is not defined. 

Error note: When an alert occurs, the last line displayed usually contains the error. H a type 
declaration is wrong, a second line is displayed. 

OTHER NOTES ON RMaker™ 

Bundle bit RMaker will automatically set the Bundle Bit on the output file if it has processed a BNDl resource 
from the source file. 

Restrictions In Resource File Names 

New Flags: 

RMaker will not accept resource names that contain a comma (,) or the substring 'TYPE'. These 
are treated as reserve words in RMaker resource files. 

fQult and fNoScroll 
Two new flags, fQuit and 1N0Scroll, have been added to RMaker. 

The fQun flag is provided when the normal Exec process is not used. If a fQun flag is encountered, 
RMaker will qun to the Finder after finishing the file rather than waning for another file to be 
selected. 

Use the fQun flag when the source file is passed via the application parameters without the path 
manager (for example, opening RMaker with an RMaker source file from the Finder). If RMaker is 
called as part of the Exec, the fQuit flag is unnecessary, since the Exec will continue to execute 
after RMaker is finished. 

The 1N0Scroll flag suppresses scrolling in the left pane of the window. To speed the compile, only 
Type lines are displayed. H an error is found, the line that contains the error is displayed. 

The fNoScroll and fQun flags must be the first lines in the file, before the destination filename. 
Therefore, you cannot name an output file fQun or fNoScrol1. 

MenuKey Equivalents 
MenuKey equivalents are supported and can be changed wnh a reSOurce editor, n desired. NOT 
FOR USE WITH ZBASIC. 

Macintosh™ Appendix E-38 



MACINTOSH APPENDIX 

~ 

ZBasic""' 

~. 

o 
...... 

HOW TO PUT ICONS IN YOUR ZBaslcTh< APPLICATIONS 

A lot of you have requested a simple, by the number, example of installing icons in your 
applications. 

This example sequence is easy and everything you need, except your program, is 
included. We've even included an icon resource file with icons for your application and 
your applications data files. 

1 . Write your program. Don't worry about creating your own icons until your program is 
running flawlessly. 

2. From ZBasic load your program. Sect the "Configure" menu and select "Change 
Configuration". 
Set the "Application Bundle bit" to "YES". This tells the Finder that your program will 
have its own lcon(s). Set file Creator to "MIKE". This tells the finder that MIKE is the 
CREATOR. Set Default Data File Type to "ANDY". This will be the application FILE TYPE. 
Of cource you may change these names but we will refer to them again as MIKE and 
ANDY. 

Note: If your application is to be commercialized you should get approval for (and 
reserve) your Creator and Data type from Apple Computer, Inc. at (408) 973-4667. 

3. Now Compile your program by typing in RUN" or RUN+. Give your program the desired 
filename. 

Res Edit 

£-39 

4. "QUIT" ZBasic and load Res Edit, IEDIT or some other resource/icon editor. There are 
qu~e a few of them available in the public domain. Load "XICON.RSRC" ino your icon 
ed~or and modify our default icons according to your preference. The example is a simple 
question mark icon that you can modify for your needs. You may also add new icons to 
this file for use in your menus or windows. Notice in our example program, "IOTEST.R", 
that Icon numbers 128 and 129 are the only ones specified. If you add new icons with 
different numbers, make the changes in the "IOTEST.R" file. 

Edit the icon as you like using your icon editor and save it out using the same or another 
filename with .RSRC at the end of it. The RSRC is the convention for resource files. 

Macintosh™ Appendix 



MACINTOSH APPENDIX 

ANY TEXT EDITOR 

5. Load the example RMaker source file: IOTEST.R into the text editor of your choice. 

You will want to change boldfaced items: 

* EXAMPLE RMAKER FILE 
* Illustrates how to add resources to your applications. 

* 
!IOTEST 

INCLUDE XICON. RSRC 

TYPE FREF 
,128 

APPL 0 
,129 

ANDY 1 

TYPE BNDL 
,128 

MIKE 0 
ICN# 
o 128 1 129 
FREF 
o 128 1 129 

II Your filename with If!" in front 

; ; Use your resource/icon filename 

, , FILE REF INFO 
, , APPL FILE ICON# IN XICON.RSRC 
, , APPL IS TYPE 0 
, , DATA FILE ICON# IN XICON.RSRC 
, , Use your Data type if applicable 

" Use your CREATOR type 
" TYPEO=ICON#128, TYPE1=ICON#129 
" ICON # DEFINITIONS 
" TYPEO=ICON#128, TYPE1=ICON#129 
" FILE REF DEFINITIONS 

* NOTE: Change icon numbers if yours are different. 

TYPE MIKE= GNRL 
,0 

.P 

MODIFY AS NEEDED 

CHANGE: 
"!I0TEST" 
"XICON.RSRC" 
"ANDY" 

TO: 
Your application filename with an "!" in front of it. 
The filename of your icon reources 
Your DATA file type 

RMaker 
6. 

"MIKE" 
128 
129 
Icon numbers 

Your CREATOR file type 
Your icon number if applicable 
Your icon number if applicable 
If you are using more than two icons. 

Save the edited "IOTEST.R" using SAVE AS: "ICONTEST.R" , or whatever filename you 
prefer. 

Load RMaker. Load modified "ICONTEST.R" above or whatever filename you chose. 
RMaker will compile the resources and add them to your application. Your program will 
now have its own icon(s). That's all there is to it! 

Macintosh™ Appendix E-40 



MACINTOSH APPENDIX 

Notes 

E -41 Macintosh™ Appendix 



MACINTOSH 

ASIC 
Macintosh™ 

Reference Section 

An alphabetical listing of the 
statements, functions, desk accessories and commands 

that are not in the Standard Reference section 
or have added or different syntax. 

APPENDIX 

Macintosh™ Appendix E-42 



MACINTOSH APPENDIX 

APPEND statement 

FORMAT APPEND [#] file number 

DEFINITION Moves the file pOinter to the end of the file specified by filenumber so that subsequent 
PRINT#, WRITE# or ROUTE# data may be appended to that file. 

EXAMPLE 

REMARK 

The file specified by filenumber must already be open. 

DEFOPEN "TEXT" 
FOR 1=1 TO 4 

PRINT I 
OPEN"R",l,"Testfile" 
APPEND #1 
PRINT '1, "HELLO", I 
CLOSE 1 

NEXT 

Always use this statement BEFORE you do any writes. 

See OPEN"A", CLOSE, READ, WRITE, PRINT#, INPUT# and the section called "Files". 

Note: This statement is not related to the standard ZBasic APPEND command. See 
APPEND command in the main reference section for details. 

E -43 Macintosh™ Appendix 



MACINTOSH APPENDIX ....... 
APPLE MENU statement 

FORMAT APPLE MENU simplestring 

DEFINITION Allows you to put a menu item under the • menu. simplestring sets the name of the menu 
item. If MENU ON is active and the item is selected, the program will branch to the routine 
specified by the line number or label used in ON MENU GOSUB. 

EXAMPLE 

REMARK 

To determine if the at menu has been chosen, the MENU(0) function will return 255 and 
MENU(1) will return 1. Both functions must be used and in that order. 

WINDOWJfl, "TEST": TEXT ,24:CLS 
APPLE MENU "Program Help" 

FLUSHEVENTS:BREAK ON: ON BREAK GOSUB "END" 
MENU ON: ON MENU GOSUB"Menu" 

"Main Event Loop" 
GOTO "Main Event Loop" 

MENU OFF:BREAK OFF 
"Menu" 
X=MENU(O) :Y=MENU(l) 
IF X=255 THEN PRINT TAB(12);"You need Help!" 
MENU: RETURN 
"END": TEXT ,9: END 

'0 
program Help 

-~ 
nppolntment Diary 
"rtlsta 
Ctloiculator 
Camerll 
Chooser 
[ontrol PORel 
URFoRI 
find file 
Inside Mac 
Key [Cps 
Smart Alllnns 
SmllrtScrop'" 
The Clipper-'" 
Tron Monitor 

TI51= 

You need Help! 

Meta-characters may be used to format the appearance of the item or to include icons. 
See the MENU statement and function for more information about meta-characters and 
using the Apple Menu. 

Also see SCROLL BUTTON for an example of scrolling through text files which you might 
want to use for help or instructions from this menu item. See PICTURE for ways of saving 
PICTURE handles that may be used from your Apple Menu. 

Note: APPLE MENU may only be executed once in a program. You cannot change the. 
menu contents once it is executed except with the toolbox. 

Macintosh™ Appendix E-44 



MACINTOSH APPENDIX 

BLOCK MOVE statement 

FORMAT BLOCK MOVE source&. destination&. byte 

DEFINITION Allows you to move large blocks of memory from one place to another. Note that Source& 
and Destination& parameters require Longlnteger numbers or variables (byte will require a 
Longlnteger variable if the value is greater than 32.767). 

EXAMPLE1 REM Program will load and display a MACPAINT file 
DIM X% (1) ,71 X$ (719) : X% (0) =576 : X% (1) =720 

A$=FILES$(1,"PNTG""V%): IF A$=· .. • THEN STOP 
OPEN"I",1,A$,1,V% : FL&=LOF(1)-512 : RECORD #1,512 

A&=VARPTR(A$) : Y&=VARPTR(X$(O)) : X&=A& : N=256 
FOR I=1 TO 720 : REM Lines in a MACPAINT Picture 

LONG IF N>180 
BLOCKMOVE X&,A&,256-N : X&=A& 
IF N>FL& THEN NX=FL& ELSE NX=N 
READ FILE #1,A&+256-N,NX : FL&=FL&-NX 

END IF 
REM Puts bit image in memory. 
CALL UNPACKBITS(X&,Y&,72) :N=X&-A& 

NEXT 
CLOSE#! 
PUT (O,O),X%(O),PSET: REM PUT PAINT picture on screen. 
END 

EXAMPLE2 REM Blockmove the contents of one variable into another 
A$="HELLon:B$=nn 

REMARK 

BLOCKMOVE VARPTR(A$), VARPTR(B$), LEN(A$)+1 
PRINT B$ 

RUN 

HELLO 

Warning: Indescriminate use of this statement is guaranteed to produce system bombs. 

E -45 Macintosh™ Appendix 



MACINTOSH APPENDIX 

BREAK statement 

FORMAT BREAK ON 
BREAK OFF 
BREAK STOP 

D EFI N ITION Allows the user to enable or disable checking for <COMMAND PERIOD>. This allows a 
user to <BREAK> out of a program and return to the ZBasic edit modes (or to the system 
if encountered in a stand-alone application). 

EXAMPLE WINDOWU, "TEST" 

REMARK 

PRINT"Press <COMMAND PERIOD> to exit this program" 

FLUSHEVENTS: BREAK ON:ON BREAK GOSUB "Break out" 

tlMain Event Loop" 
GOTO "Main Event Loop" 

BREAK OFF 

"Break out" 
END 

Also see TRON and TROFF in the main reference section and TRON#128, TRONV and 
TRON MONITOR in this appendix for other important debugging tools. 

Note: With ZBasic; BREAK STOP and BREAK OFF have the same affect. 

Important Note: Events are trapped physically between the BREAK ON and the BREAK 
OFF at the beginning of each line. Any lines of codes lying outside of this area do not 
check for BREAK events. Note that the following line would result in an endless loop and 
BREAK would not function since the line never gets back to the beginning of the line: 

BREAK ON: 
*FOR X= 0 TO 10 STEP O:NEXT 

END 

Note: ON BREAK GOSUB is optional. If it is not used with BREAK ON an END will be 
done when the <COMMAND PERIOD> keys are pressed between the BREAK ON and 
BREAK OFF (except as noted in example). 

Macintosh™ Appendix E-46 



MACINTOSH APPENDIX 
8'11181 

BUNDLE command 

FORMAT BUNDLE status 

DEFINITION Used to set the bundle bit for stand-alone applications you create. This must be set to 
allow icons to be added or for use with FINDERINFO. 

EXAMPLE 

REMARK 

This is useful for determining what to do with files that your application must execute, print 
or load when the status is passed from the finder with FINDERINFO to a stand-alone 
application. 

STATUS 
o 
NOT 0 

Function 
Clears the BUNDLE bit 
Sets the bundle bit to ON 

REM********************************************************** 
REM* Example FINDERINFO program created 5/10/87 A.G. * 
REM* For This example to work the bundle bit must be ON * 
REM* and the file TYPE and CREATOR must be Valid & Unique * 
REM* Program creates programs which can be double-clicked * 
REM* and will cause this program to execute & load them. * 
REM********************************************************** 
DEFSTR LONG: DIM 31 FileName$(9) ,Volume%(9) ,Type&(9) 
Count%=10 : REM MAX t OF FILES ACCEPTED 
Boolean%=FINDERINFO(Count%,FileName$(0),Type&(0),Vo1ume%(0» 
IF Boolean% THEN PRINT "Print File ..... ELSE PRINT "Load File ..... 
LONG IF Count% 

PRINT "File Name",uFile Type", "Volume in 
FOR 1=1 TO Count% 

Type$=MKI$ (Type& (1-1» 
PRINT .. • .. ;FileName$(I-1); .. • .. ,Type$,Vo1ume%(I-1) 

NEXT 
XELSE 

INPUT "No Files received, Create some? Y/N:";C$ 
C$=UCASE$(C$) : IF C$="N" OR C$= .... THEN STOP 
FOR 1=1 TO 3 : REM Create 3 Different Files 

F$="Test File "+STR$(I) : OPEN"O",l,F$ 
PRINTt1,F$;" Created:",TIME$,DATE$ : CLOSE 1 
PRINT "Created: ";F$ 

NEXT 
END IF 
PRINT"HIT ANY KEY TO RETURN TO FINDER" 
DO : UNTIL LEN (INKEY$) : END 

BUNDLE may also be set under the "Configure" menu item. Since most most stand
alone programs you create will require this to be set you may want to set this option and 
save that configuration. 

Also see FINDERINFO, DEF OPEN, the sections under "RMake(TM", "Using ICONS" and 
CREATOR for more information. 

E -47 Macintosh™ Appendix 



MACINTOSH APPENDIX 

BUTTON function 

FORMAT BUTTON (button numbeF) 

DEFINITION The BUTTON function returns the status of a specific BUTTON or SCROLL BUTTON 
(specified by the button number) from the current output window. Note that the number 
used for BUTTON and SCROLL BUTTON statements must never coincide. 

EXAMPLE 

continued ... 

USING THE BUTTON FUNCTION WITH BUTTON 
The following values are returned for BUTTONs created with the BUTTON statement. The 
values returned are in the range of 0to 2: 

o Not active (gray) 
1 Active but not currently selected 
2 Active and selected 

USING THE BUTTON FUNCTION WITH SCROLL BUTTON 
The following values are returned for Scroll bars created with the 
SCROLL BUTTON statement. The value returned depends on the action taken with that 
scroll bar. The range of values is determined in the SCROLL BUTTON statement by min 
value and max value. To determine what has occurred you will need to compare the old 
value with the new value: 

Scroll Arrow clicked New value =Old value plus or minus one 
(depending on which arrow was pressed) 

Scroll Box moved New value = relative position between arrows. min-max 
determine result. For instance; if the min value is 0 and the 
max value is 1000 and the box is positioned about 75% of 
the way over, the value returned will be about 750. 

Scroll Bar clicked between 
the box and the arrow New value=Old Value plus/minus page up/down value 

(see page up/down under SCROLL BUTTON). 

See the examples on next page, under the BUTTON statement and SCROLL BUTTON 
statement and also the example program SCROLL.BAS on the master disk for ways of 
opening text files and scrolling them in a window. 

Macintosh™ Appendix E-48 



MACINTOSH APPENDIX 

BUDON function continued ... 

EXAMPLE 

REMARK 

flO 

(( 

COORDINATE WINDOW : REM * THIS IS REQUIRED * 

REM Function to HiLight a Button 
REM (i.e. make a thick black box around it) 

REM This function called by HiLiteButton function (BELOW) 
LONG FN HiLite(x,y,x1,y1) : REM Pass rectangle size of button 

x=x-6 : xl=xl+6 : y=y-5 : yl=yl+5 
CALL PENSIZE(4, 4) : r=(y1-y»>1 
CALL SETRECT(t$,x,y,xl,yl) 
CALL FRAMEROUNDRECT(t$,r,r) 
CALL PENNORMAL 

END FN 

REM Function to Open a new HiLi ted Button 
REM bn=Button number, bc=button condition 
REM T$=button title, x,y = upper left corner 
REM xl, y1=Lower right corner of button 
LONG FN HiliteButton(bn,bc,t$,x,y,xl,y1) 

BUTTON bn,bc,t$, (x,y)-(xl,y1),1 
FN HiLite(x,y,xl,yl) 

END FN 

WINDOW #1, "HILITE BUTTON" 
FN HiliteButton(I,2,"Hi",lO,lO,480,30) 
FN HiliteButton(2,2,"Big",lO,50,80,270) 
FN HiliteButton(3,2,"Bigger",lOO,50,470,260) 

"LOOP" : BREAK ON 
GO TO "LOOP" 

HILITE BUTTON 

Hi 

0_ 

)) 

~ r '" 
Big Bigger 

V ~ ~ 
II2J 

Also see SCROLL BUDON, BUDON and DIALOG for more information about using 
buttons and scroll buttons. Also see the section in this appendix "WINDOWS" for more 
information about scrolling 

E -49 Macintosh™ Appendix 



MACINTOSH APPENDIX 

BUTTON statement 

FORMAT BUTTON [#] button number, condition [,title$, (x1,y1)-(x2,y2) [, type]] 
BUTTON CLOSE l#] button number 

DEFINITION ZBasic allows you to position buttons and other controls within a window for making "Mac" 
type programs. You will need to assign a number to each Button for identification 
purposes. Be sure that the SCROLL BUTTON and BUTTON statements do not use the 
same number. 

continued ... 

The BUTTON statement displays a button in the output window at the position specified 
by x1 ,y1 in the type described in the BUTTON statement. The BUTTON CLOSE 
statement removes the button from the output window. 

button number 

condition 

title$ 

(x 1 ,y1 )-(x2,y2) 

type 

The number used to identify a specific button. Numbers are 
integer and must be one or greater with a maximum of 32,767. This 
number must be unique and not coincide with SCROLL BUTTON 
numbers. 

o Button is not active (gray) 
1 Button is active but not selected 
2 Button is active and selected. 

A button will remain active until: 
• Another button statement is executed 
• The window is closed 
• That button is closed with the BUTTON CLOSE statement 

The string or text identifier used for the button. The 
title$ will be centered in type 1, and right-justified 
for types 2 and 3. 

Where to position the button in the output window. (x1 ,y1) is the 
upper-left corner and (x2,y2) is the lower-right corner. Uses the 
ZBasic coordinates of 1024 x 768 or those defined by the 
COORDINATE statement. Values of X and Y default to 0. Use 
COORDINATE WINDOW for pixel coordinates. 

There are three types of buttons: 
1 Simple box-type button with text in the center 
2 Check box with text to the right 
3 Radio button with text to the right 

(Button) Type one 
o Check Box 

Type two [8J Check Box 

o Radio Button 
Type three 

@ Radio Button 

Macintosh™ Appendix E-50 



MACINTOSH APPENDIX 

BUTTON statement continued 

EXAMPLE 

REMARK 

Buttons are a very easy way of getting input from a user (at least as far as the user is 
concerned). 

To determine if a button has been pressed, use DIALOG ON and get the button event 
from the DIALOG(O) function. 

WINDOW 1, "BUTTON WINDOW", (0,40)-(512,345),1 
COORDINATE WINDOW: .TEXT ,12 
X1=20:Y1=30 

FOR H=O TO 2:Y1=30 
FOR X =1 TO 5 

Y1=Y1+20:Y2=Y1+15:X2=X1+40:A$=STR$(H*5+X) 
BUTTON H*5 + X, RND (3), A$, (Xl, Y1) - (X2, Y2), H+1 

NEXT:X1=X1+100 
NEXT: BUTTON 16, 1, "QUIT", (20,200)-(100,230),1 
FLUSHEVENTS:DIALOG ON: ON DIALOG GOSUB"Dia1og Check" 
PRINT@(2,2);"TYPE 1"TAB(17) "TYPE 2"TAB(31) "TYPE 3"; 

"Main Event Loop" 
GOTO "Main Event Loop" 

DIALOG OFF 

"Dialog Check" 
B = DIALOG(O) :B1=DIALOG(1) 
IF B= AND B1=16 THEN END: REM Push Quit button to stop 
BB=BUTTON (B1): BUTTON B1,3- BB 
PRINT @(50,10);:CLS PAGE:PRINT "Dialog(O)="B; 
PRINT @(50,11); "Button'''B1; 
PRINT @(50,12); "Condition was:";BB 
IF BB=3 THEN PRINT@(50,13)"Disabled"; 
RETURN 

When buttons are used, automatic text scrolling is disabled. Also see DIALOG, 
COORDINATE WINDOW, BUTTON function and EDIT FIELD for more information. 

Note: Buttons will not function if a window is not opened with a ZBasic WINDOW 
statement. 

Important Note: Do not close a window during a button event. If the system does not find 
the window for a button event a system error will occur. 

E -51 Macintosh™ Appendix 



MACINTOSH APPENDIX 

CALL statement 

FORMA T CALL variable& [(expression, [expression, ... ])] 

DEFINITION This enhancement to the standard ZBasic CALL is used to pass parameters to a machine 
language routine. The data is pushed onto the stack. The last value pushed onto the 
stack is the return address (Longlnteger). 

EXAMPLE 

REMARK 

variable 

expression 

The routine at the address contained in variable is called with the 
optional parameter list. No strings or arrays are allowed. 

The expression is pushed onto the stack as a Longlnteger (4 byte) 
except word variables (var% 2 byte integer) which are pushed as 
words. Floating point variables are truncated and converted to long 
integer (±2 billion). 

To push an address, use VARPTR (variable). This will push the 
Longlnteger address of that variable. 

Strings pass the address of the string with a leading one byte length 
followed by 0-255 characters. String variables or quoted strings are 
used only for string parameters (no string expressions). 

Pascal procedures may be called with this type. Use VARPTR for any 
VAR;Parameter. 

REM Call a machine language program stored in A$ 
REM This is a fictional example . Do NOT use. 

X&=VARPTR (A$) 
CALL X& (10, 2000000, 300000, LINE "Continue") 
"Continue" 
program continues ... 

The routine being called MUST remove aU parameters from the stack. i.e. If your routine 
requires 10 parameters it must pop 10 parameters off the stack. Otherwise a system error 
will occur ("Crash!#&@!"). 

Register conventions MUST be observed: A4, AS, A6 and A7 MUST be preserved. For 
compatibiliy with future versions do not use D4-D7. All others may be used. 

WARNING: This command is for experienced, knowledgeable, 68000 machine 
language programmers. 

Macintosh™ Appendix E-52 



MACINTOSH APPENDIX 
; . ~, 1. 

CLEAR LPRINT statement 

FORMAT CLEAR LPRINT 

DEFINITION Forces the Macintosh Print Manager to print the current PAGE. 

EXAMPLE 

REMARK 

More than one CLEAR LPRINT may be used when printing a document. 

WINDOWill, "TEST" 
BREAK ON 

REM Example of Printing Text and Graphics 

DEF PAGE: IF PRCANCEL THEN STOP 
DEF LPRINT: IF PRCANCEL THEN STOP 

COORDINATE 500,1000: 
ROUTE 128: 

FOR X=l TO 5 

REM Set Printer Coordinate system 
REM Route stuff to the printer 

PEN""RND(36)+1: REM Change patterns of circle 
CIRCLE FILL RND(300)+100, RND(500)+250, RND (200) 

NEXT 
TEXT 3,24,9 
PRINT%(250,500);"BYE"; 
CLEAR LPRINT: REM Tell printer driver "All Done" 
TEXT 2,12,0: REM Set text back to normal 
ROUTE 0: REM Route output back to the screen 
END 

A CLEAR LPRINT is automatically executed belore a DEF LPRINT or DEF PAGE so that 
any text or graphics remaining in the buffer is released. 

If this statement is omitted the last page (or none) of the printing will not occur untillhe 
program ends. 

Also see WIDTH LPRINT-2, LPRINT, LPRINT%, LPRINT@, DEF LPRINT, DEF PAGE, 
ROUTE, COORDINATE, PRCANCEL, PRHANDLE, TEXT and PEN. 

E -53 Macintosh™ Appendix 



MACINTOSH APPENDIX 

COMPILE command 

FORMAT [L]COMPILE 

DEFINITION Compiles the resident program and lists all compile time errors and memory segment 
partition data. 

EXAMPLE 

REMARK 

This command is used primarily to detect more of the errors in one pass (will only show 
one error per line). 

LCOMPILE 

COMPILE 

ZBasic Ready 

COMPILE 

Compiles the resident program and lists all the errors and segment 
partition information to the printer. 

Compiles the resident program and lists all errors and segment partition 
information to the active output window. 

If compiling is accomplished without errors, you may type RUN and execution will be 
immediate (not RUW or RUN+). 

Note: COMPILE will cease if an Out-of-Memory error occurs. COMPILE is normally used 
from the Command Window but is also available under the Command menu. 

Also see COMPILE in the main reference section of this manual. 

SEGMENT PARTITION INFORMATION 

COMPILE is also useful for determining SEGMENT information. Information returned: 

Segment li. ends In Stmt u at LIne n.n.n.aa: Size Is mmmmm bytes. 

s 

xx 

nnnnn 

mmmmm 

Segment number. Segments are contiguous and 
numbered 128, 129, 130 ... 

Last statement in last line of segment. 

Line number where segment ends. 

Length of SEGMENT in bytes. 

See SEGMENT, SEGMENT RETURN and MEM (-1) for more information about controlling 
segments and memory managment. 

Macintosh™ Appendix E-54 



MACINTOSH APPENDIX 
r.&lflJl,%i .......... ,4 •• ' •• ., .. 

CREATOR command 

FORMAT CREATOR[=] """" 

DEFINITION Sets four character "creator" information during program creation. For use during RUN'. 

EXAMPLE 

REMARK 

The "Creator" characters tell the FINDER what program "Created" certain files and will look 
for the creator file when one of it's files is double clicked. 

A good example is when you double click a ZBasic Source Code file, the FINDER is nice 
enough to load ZBasic and ZBasic then loads your file. The FINDER knows that H is a 
ZBasic file because the Creator type is "ZBAS". 

A ZBasic application is passed the information about what file it is to load (or print or 
whatever) through the FINDERINFO function. 

ZBasic Ready 

CREATOR="ZBAS" 

The CREATOR may also be set from the "Configure" menu and from DEF OPEN. 
BUNDLE bit is also required. 

This command must be executed from the Command Window. 

If you are planning on marketing your product you may wish to contact Apple Computer to 
get your CREATOR and FILE types approved; (408) 973-4667. 

Also see BUNDLE and FINDERINFO. 

E -55 Macintosh™ Appendix 



MACINTOSH APPENDIX 

CURSOR statement 

FORMAT CURSOR[=] expression 

DEFINITION The MOUSE controlled cursor appearance may be changed to a number of pre-defined 
system. or user defined resource cursor types using this statement. 

Standard cursor numbers (in system file): 

CURSOR 0 ~ 

CURSOR 1 r 
CURSOR 2 + 
CURSOR 3 t,'9 

CURSOR 4 ~ 

EXAMPLE1 WINDOW#l, "CURSOR" 

continued ... 

"loopn 
INPUT"Cursor type";type 
IF type<O or type>4 then STOP 
CURSOR=type 

GOTO "loop" 

Macintosh™ Appendix E-56 



MACINTOSH APPENDIX 

CURSOR continued ... 

CREATE YOUR OWN MOUSE CURSORS 

You may create customized mouse cursors using these toolbox calls: 

CALL SETCURSOR (integer array%) 
Creates a cursor image. The cursor consists of a 16 by 16 bit image. An integer variable 
array may contain the image for the cursor in the following format: 

elements 0-15 
elements 16-31 
element 32 
element 33 

cursor data 
mask data 
vertical coordinate of the "HOT SPOT" 
horizontal coordinate of the "HOT SPOT" 

The "HOT SPOT" is the pointer position of the cursor. The normal arrow cursor "HOT 
SPOT" is the bit in the upper left corner of the cursor. This determines the point where 
the cursor is pOinting to. To show the cursor, be sure to use CALL SHOWCURSOR. 

See the "Toolbox" section of this appendix and "'nside Macintosh" for more information. 

CALL INITCURSOR 
CALL HIDECURSOR 
CALL SHOWCURSOR 
CALL OBSCURECURSOR 
CHndl= FN GETCURSOR (id) 
CALL SHIELDCURSOR (Rect, Point) 

Reset cursor to the arrow shape. 
Hide cursor 
Show cursor 
Hide cursor until mouse is moved 
Gets Handle to Resource Cursor ID 
Hide Cursor if in Rectangle area. 

EXAMPLE2 CLS: BREAK ON 
DIM A%(40) 
DO 

REMARK 

CALL SETCURSOR(A%(O» 
X=X+1 : IF X=16 THEN X=O 
TRONX 
DELAY 20 
A%(O)=-l : A%(15)=-1 
FOR 1=1 TO 14 

A%(I)=(l«X) OR 32769 
NEXT 
IF MOUSE(3) THEN PLOT TO MOUSE (1) ,MOUSE (2) 

UNTIL LEN(INKEY$) 

You may also add or change cursor types as resources with ResEdit or RMaker. See 
CURSOR in the toolbox section of this manual. 

E -57 Macintosh™ Appendix 



MACINTOSH APPENDIX 

DEFDBL INT statement 

FORMAT DEFDBL INT alpha, alpha range -alpha range 

DEFINITION Defines selected variables as Longlnleger variable type and variables. 

EXAMPLE 

REMARK 

This variable type offers an enhanced integer range of -2147,483,648 to 
+2,147,483,647 (versus -32,768 to 32,767 for regular integer variables.) 

DEFDBL INT A-G 
A=100000*2:?A 

RUN 

200000 

Longlntegers are also set by using the "&" symbol. See "Longlnteger" in this appendix 
and DEF var in the main reference section. 

Also see DEFSTR LONG and DEFSTR WORD for using Longlntegers with MKI$, CVI, 
HEX$, UNS$, OCT$, BIN$, DEFSTR, DEFSNG, DEFDBL and DEFINT. 

Macintosh™ Appendix E-58 



MACINTOSH APPENDIX E.--._ ........ _irjJ 
DEF LPRINT statement 

FORMAT DEF LPRINT 

DEFINITION Brings up the printer formatting window and initializes the Macintosh printer driver. Allows 
the user to change the print to draft, standard or high quality output. The default is the last 
one used. See PRHANDLE function for way of getting the parameters set by the user. 

Be sure to use CLEAR LPRINT to clear out the last printer buffer page. 

I mageWriter 
Quality: 
Page Range: 
Copies: 
Paper Feed: 

o Best 
@AII 

D 
@ Automatic 

v2.5 

@ Faster 0 Draft 

o From: D To: D 
o Hand Feed 

( cancel) 

LaserWriter <LaserWriter Plus> v3.3 n OK B 
cOPies:I._1 Pages: @ All 0 From:UTo:U (Cancel) 

Couer Page: @ No 0 First Page 0 Last Page ( HelP) 

Paper Source: @ Paper Cassette 0 Manual Feed 

EXAMPLE WINDOW#1, "DEF LPRINT" :WIDTH LPRINT-2 
DEF PAGE: REM Do printer set-up first! 
DEF LPRINT 

REMARK 

IF PRCANCEL THEN PRINT"Printing Aborted":STOP 
LPRINT"HELLO!" 

ROUTE 128: REM This routes screen output to the printer 
CIRCLE FILL 200,200,200 
PRINT"GOODBYE" 
CLEAR LPRINT 
ROUTE 0: REM This routes output back to the screen. 
END 

To determine if the "Cancel" button has been pressed use the PRCANCEL function. 

To finish the printing the current page use the CLEAR LPRINT statement. <COMMAND 
PERIOD> will abort printing in progress. 

Also see LPRINT% and LPRINT@ for use wtlh text output to printers and for faster printing 
use WIDTH LPRINT -2. See ROUTE 128 and the section in the front of this manual for 
details about using the Imagewriter and LaserWriter printers. 

E -59 Macintosh™ Appendix 



MACINTOSH APPENDIX 

DEF MOUSE statement 

FORMAT DEF MOUSE [=] n 

DEFINITION This is used to define ZBasic or MSBASIC type MOUSE syntax. If this statement is not 
used the default is ZBasic syntax (DEF MOUSE=O). 

EXAMPLE 

REMARK 

To use the MSBASICTM MOUSE syntax use DEFMOUSE=-1. 

The values of n are: 

ZBasic compatible mouse syntax. Same as 
the main reference manual (default). 

Defines the MOUSE statements and functions to use the 
MSBASICTM type MOUSE syntax (see MOUSE in this appendix). 

WINDOW#l:COORDINATE WINDOW 
DEF MOUSE=l: REM All subsequent MOUSE commands will be MSBASIC syntax 
program continues ... 

NOTE: If MOUSE ON is used DEFMOUSE MUST be used or a crash will resuH! 

MSBASIC MOUSE versus ZBASIC MOUSE STATEMENTS 

While we have attempted to make the MOUSE commands as completely compatible as 
possible, there are certain circumstances that will cause different results. 

ZBasic checks events only at the beginning of each line physically between a MOUSE 
ON and MOUSE OFF statement. An interpreter will check for mouse events even when a 
GOSUB is made between MOUSE ON and a MOUSE OFF statements. ZBasic will not. 

ZBasic does not check for events at each statement in a multiple statement line ONLY AI 
THE BEGINNING OF EACH LINE. 

The event checking does not take effect until the next line following the MOUSE ON 
statement. Therefore the following program line would never check for a MOUSE event: 

MOUSE ON: ON MOUSE GOSUB 1000: MOUSE OFF 

In addition, we recommend that you put multiple Event ON structures on the same line for 
efficiency. Like this: 

MOUSE ON: DIALOG ON: BREAK ON 

As with all other event types, we recommend that you execute a MOUSE OFF statement 
whenever time critical calculations or functions are being performed. ANY: events left 
active will slow down program execution Significantly (not tumed OFF). 

Also see COORDINATE WINDOW in the main reference section and "Converting 
MSBASIC programs" in this appendix. 

Macintosh'" Appendix E-60 



MACINTOSH APPENDIX 
rnrM£II ....... _* •• i.l_izif ...... 

DEF OPEN statement 

FORMAT DEF OPEN [=] "ffffcccc" 

DE FIN ITI ON ffff sets the four character "FILE" type of files that are opened in subsequent program 
lines. File types are used with the Macintosh™ to inform the system of several things. 

For instance, if you wanted to create a file that could be loaded into MacWrite™ or 
Microsoft Word™, you would give it a filetype of "TEXT" (uppercase mandatory). 

cccc sets the "CREATOR" type to be used. This is primarily for files your application 
creates. This informs the Macintosh system to use your application to execute that file. 

ZBasic source code files have a CREATOR type of "ZBAS". If someone clicks a file with a 
ZBAS "Creator type", FinderTM will load ZBasic so that it can execute or load that file. 
Other examples of "TYPE" and "CREATOR": 

APPLICATION 
MacPaint 
MacDraw 
Font DAlMover 
System 
Finder 
ZBasic™" 

TYPE 
PNTG 
DRWG 
DFIL 
ZSYS 
FNDR 
APPL 

CREATOR 
MPNT 
MDRW 
DMOV 
MACS 
MACS 
ZBAS 

The default data FILE TYPE is "ZDAT'. To see examples of file types see DIR. 

EXAMPLEl DEF OPEN "DATATHNG" 
OPEN O,l,"SAMPLE DATA" 
FOR I = 1 TO 100 

REMARK 

PRINT Jf1,I 
NEXT 
CLOSE 1 

This program above creates a data file called "SAMPLE DATA" with the file type of DATA 
and a creator of THNG. 

In command mode type CREATOR "THNG" and then type in this program and use RUN'. 
This identifies this application program as ''THNG''. It doesn1 matter what the actual 
filename is (but for this example call it "FRED") when you save it with RUN'. 

When double clicking the data file "SAMPLE DATA" created in the first program above, 
the Macintosh Finder'"" sees that the creator of this file was ''THNG'' and will load "FRED" 
because it's "creator" was defined as ''THNG''. Use RMAKER to define Icons, FREFS and 
version data. 

NOTE: If you are creating a program that is going to be marketed, you may want your file 
type or creator type approved by Apple Computer, Inc. (408) 973-4667 

E -61 Macintosh™ Appendix 



MACINTOSH APPENDIX 

DEF PAGE statement 

FORMAT DEF PAGE 

DEFINITION Brings up the page formatting dialog box. Allows the user to set parameters for printing. 
To determine what the user chose see PRHANDLE. 

ImageWriter v2.5 ( OK J 
Paper: @ US Letter o A4 Letter 

o US Legal o International Fanfold ( Cancel 1 o Computer Paper 

Orientation Special Effects: o Tall Adjusted 

.~ 
o 50 % Reduction 
o No Gaps Between Pages 

LaserWriter v3.3 ~ OK ~ 
Paper: @ US Letter o A4 Letter Reduce or looml OJo ( Cancel ) o US Legal o B5 Letter Enlarge: 

Orientation Printer Effects: 

.~ [gI Font Substitution? 
[gI Smoothing? 

EXAMPLE WINDOWil1, "DEF PAGE" :WIDTH LPRINT-2 

REMARK 

DEF PAGE: IF PRCANCEL THEN PRINT"CANCEL PRESSED":STOP 
DEF LPRINT: IF PRCANCEL THEN PRINT"CANCEL PRESSED":STOP 
FOR X=l TO 10 

LPRINT@(RND(30,30))"HELLO" 
NEXT X 
CLEAR LPRINT 
END 

See "Using the LaserWriter and Imagewriter" in the front of this appendix for more 
information. Also be sure to see DEF LPRINT, ROUTE 128, PRCANCEL, PRHANDLE 
and WIDTH LPRINT -2. 

Be sure to use CLEAR LPRINT to print the current and last page of a document. 

Macintosh™ Appendix £-62 



MACINTOSH APPENDIX 
rllW* •• ,&DMlJ1*i-It;G,8tlilllltl-" •• i$._111 

DEFSTR LONG statement 
DEFSTR WORD statement 

FORMAT DEFSTR LONG 
DEFSTR WORD 

DEFINITION Since the Macintosh version of ZBasic supports both regular and Long Integer variables 
these statements are used to define the current type: 

EXAMPLE 

REMARK 

DEFSTR LONG 
DEFSTRWORD 

Four byte 
Two byte 

Longlnteger 
Regular integer 

These statements affect the following ZBasic commands: 

HEX$ UNS$ 
OCT$ BIN$ 
MKI$ 

range ±2 billion) 
range ±32,767) 

Longlntegers require four bytes and regular integers require two bytes. 

DEFSTR WORD 
X$=MKI$(23021) 
PRINT LEN (X$) 

DEFSTR LONG 
X$=MKI$(2032102) 
PRINT LEN (X$) 
END 

RUN 

2 
4 

Also see "Defining Variable Types" in the main reference section and the sections on 
"Long Integer" and DEFDBL INT in this appendix. 

E -63 Macintosh™ Appendix 



MACINTOSH APPENDIX 

DIALOG function 

FORMAT DIALOG (expression) 

DEFINITION Returns the next event in the buffer (queue). After reading, the event it is removed from 
the buffer (First-in, First-out buffer [FIFO]). If no events are in the buffer a zero is returned. 

To determine what DIALOG event has occurred use event% =DIALOG(0). To determine 
more detailed information about that event use; DIALOG( event% ): 

DIALOG (0) Using DIALOG(0) tells you the type of event that has occurred. This lets 
you branch to that part of your program. 

For instance if DIALOG(0)= zero there are no events in the queue. If 
DIALOG(0)=4, a close-window box has been clicked and you should put 
away the window specified by DIALOG(4). 

DIALOG TYPES ······················DIALOG(0) RETURNS····························· 

NONE 

BUTTON 

EDIT FIELD 

Inactive WINDOW 

CLOSE BOX 

Window UPDATE 

continued ... 

2 

3 

4 

5 

No dialog event has occurred. 

A BUTTON event has occurred. DIALOG(1) retums the number of 
the button that was pressed. 

Movement from one EDIT FIELD to another has occurred. Use 
DIALOG(2) to find out what EDIT FIELD was selected. There must be 
more than one edit field in the window for this function to work. 

An INACTIVE WINDOW has been clicked. To find out what window 
number was clicked use DIALOG(3). You will probably want to 
activate that window. See the chapter "WINDOWS" and the 
WINDOW statement and function for more information. 

The CLOSE WINDOW BOX has been clicked. The window number 
to close is returned in DIALOG(4). See the chapter 'WINDOWS" and 
the WINDOW CLOSE statement for more information. 

A portion of the current ACTIVE WINDOW has been ERASED by a 
dialog window, Desk Accesory or something else and will need to be 
refreshed. The window number that needs to be refreshed is 
retumed in DIALOG(5). Except for menu action, you must re-draw 
the window whenever parts of it are erased. ZBasic does not re-draw 
the window automatically. See the chapter in this appendix 
"WINDOWS" for ways of doing this. Also see WINDOW PICTURE. 

Macintosh™ Appendix E-64 



MACINTOSH APPENDIX 

DIALOG function continued 

o IALOG TYPES ---------------------- 01 ALOG( 0) RETU R N 5-----------------------------

--------------------- Only when EDIT FIELD is active ----------------------

RETURN KEY 6 The RETURN key was pressed in an active window that is using EDIT 
FIELDS. You may want to accept this as a message to accept the 
input as "OK" or as the default (highlighted). 

TAB KEY 7 The TAB key was pressed. This may signify a move to the next field 
or button when EDIT FIELD is used. Also see events 10-16 below. 

ZOOM-IN 8 The ZOOM-IN box has been clicked by the user. Get the WINDOW 
number from DIALOG(8) (window type 9 only). 

ZOOM-OUT 9 The ZOOM-OUT box has been clicked. Get the WINDOW number 
from DIALOG(9) (window type 9 only). 

--------------------- Only when EDIT FIELD is active ----------------------

SHIFT-TAB 10 SHIFT-TAB has been pressed while using EDIT FIELD. This is often 
used to signify a BACK-UP to the last EDIT FIELD. The current EDIT 
FIELD number is returned in DIALOG(1 0). Also see LEFT-ARROW. 

CLEAR KEY 11 The CLEAR key has been pressed while using EDIT FIELD. This 
often signifies an ERASE FIELD. The current EDIT FIELD number is 
returned in DIALOG(11). 

LEFT-ARROW 12 The LEFT-ARROW cursor was pressed while using EDIT FIELD. This 
may signify a BACK-UP to the previous EDIT FIELD directive. The 
current EDIT FIELD number is returned in DIALOG(12). 

RIGHT-ARROW 13 The RIGHT-ARROW cursor was pressed while using EDIT FIELD. 
This signifies a MOVE-AHEAD to the next EDIT FIELD directive. The 
current EDIT FIELD number is returned in DIALOG(13). 

UP-ARROW 14 The UP-ARROW cursor was pressed while using the EDIT FIELD. 
This often signifies a MOVE-UP to the EDIT FIELD above directive. 
The current EDIT FIELD number is returned in DIALOG(14). 

00 WN -A R RO W 1 5 The DOWN-ARROW cursor was pressed while using EDIT FIELD. 
This often signifies a MOVE-DOWN to the EDIT FIELD below 
directive. The current EDIT FIELD number is returned in DIALOG(1S). 

-------------------- Only when EDIT FIELD is NOT active ------------------

EVENT INKEY$ 16 A KEY was pressed. The key pressed is returned in DIALOG(16) as 
the ASCII value of the key. 

continued ... 

E -65 Macintosh™ Appendix 

Since INKEY$ function conflicts with event trapping, this is the best 
way to trap keys when doing: DIALOG ON, BREAK ON, MENU ON, 
TIMER ON and any other events (TRON conflicts with DIALOG(16». 



MACINTOSH APPENDIX 

DIALOG function continued 

continued ... 

The following functions are paired with the DIALOG (0) function. If DIALOG(O) returns a 
one then check DIALOG(1). If DIALOG(0) returns a five, then check DIALOG(5). The 
lines between the types signify like functions. 

DIALOG 
FUNCTION •••••••••••••••••••••••••••• RETURNS 

DIALOG(1) NUMBER of BUTTON CLICKED. Use to determine which button 
has been clicked. 

DIALOG(2) NUMBER of EDIT FIELD CLICKED. Normally used to "check" the 
contents of the previous entry. Function requires more than one EDIT 
FIELD in the active window in order to function. 

DIALOG(3) NUMBER OF AN INACTIVE WINDOW THAT HAS BEEN 
CLICKED. II a window behind or to the side of the active window is 
clicked it usually means the user wants to activate this window. 

DIALOG(4) WINDOW NUMBER WHOSE CLOSE BOX WAS CLICKED. The 
Close box is the box in the upper left hand comer of window types 1 and 
5 and when clicked usually means the user wants to "exit" the program or 
close that window. 

DIALOG(5) NUMBER OF WINDOW THAT HAD A PORTION ERASED. 
When a window erase event occurs you will need to refresh (re-draw) the 
contents of that window. 

--------------------- Only when EDIT FIELD is active -------------------

DIALOG(6) EDIT FIELD number where the RETURN key was pressed. 

DIALOG(7) EDIT FIELD number where the TAB key was pressed. 

------------------ Onlywfth 128K ROM -----------------

DIALOG(8) Window number whose ZOOM·IN box was clicked. 

DIALOG(9) Window number whose ZOOM·OUT box was clicked. 

Macintosh™ Appendix E-66 



MACINTOSH APPENDIX 

DIALOG function continued 

FUN CTI ON ---------------------------- RETURNS 

---------------------- Only when EDIT FIELD is active ---------------------

DIALOG(10) EDIT FIELD number where the SHIFT-TAB keys were pressed. 

DIALOG(11) EDIT FIELD number where the CLEAR key was pressed. 

DIALOG(12) EDIT FIELD number where the LEFT-ARROW key was pressed. 

DIALOG(13) EDIT FIELD number where the RIGHT-ARROW key was pressed. 

DIALOG(14) EDIT FIELD number where the UP-ARROW key was pressed. 

DIALOG(15) EDIT FIELD number where the DOWN-ARROW key was pressed. 

----------------------- Only when EDIT FIELD is NOT active ---------------------

DIALOG(16) Returns the ASCII code of the last key pressed durIng event 
trappIng. If 65 is returned than the "A" was pressed (CHR$(65)=A). 
Use this instead of INKEY$ when event trapping is enabled since INKEY$ 
will not function properly during event trapping. 

THE EVENT QUEUE (BUFFER) 

Up to 64 Events are stored in the DIALOG function queue (a FIFO holding buffer). 

For instance, if you click a BUTTON 4 times DIALOG (0) would contain 4 levels of the 
number 1. You would have to execute DIALOG(0) five times before DIALOG(0) would 
equal zero. 

Sometimes you may want to "flush out" old events. For example when you open a 
window there is usually a WINDOW refresh event that needs to flushed or ignored. Use 
FLUSH EVENTS. 

Also see section on "WINDOWS" in this appendix and EDIT FIELD, EDIT$, WINDOW 
statements and functions, BREAK ON and "Writing a Macintosh Program" in this 
appendix. 

See DIALOG Statement for example program. 

E -67 Macintosh™ Appendix 



FORMAT DIALOG ON 
DIALOG OFF 
DIALOG STOP 

MACINTOSH 

DIALOG statement 

ON DIALOG GOSUB line or label 

APPENDIX 

DEFINITION DIALOG ON Enables event trapping for EDIT FIELD, BUTTON and 

EXAMPLE1 

WINDOW activity. To determine which event has taken place use 
DIALOG(0). If DIALOG(0) =0 then no event has taken place. 
The event is checked at the beginning of each line, not between 
statements. 

DIALOG OFF Discontinue checking and storing DIALOG events. 

DIALOG STOP Temporarily stops scanning the event buffer until a DIALOG ON 
statement is encountered. Events will be stored until the events 
are checked again. 

Event trapping will significantly slow execution speed. When high speed is an important 
factor be sure to execute a DIALOG OFF statement. 

REM ZBasic Dialog Example 
REM ©MacTutor 1987 
REM By Dave Kelly (Thanks for letting us use this Dave! mg) 
WINDOW OFF 
COORDINATE WINDOW:REM Set window to pixel coordinate system 
False=O:True=NOT False 
IF PEEK(&28E) AND 128 THEN Wtype=l ELSE Wtype=9:REM Which ROM? 

MENU 1,O,l,"File l1 

MENU 1,1,l,"Quit" 
WINDOW 1,"Window 1", (10,50)-(250,200),Wtype 
TEXT 4,9,0,0 
BUTTON 1,1,"Button 1", (20,20)-(100,50) 
BUTTON 2,1,"Button 2", (20,60)-(100,90) 
WINDOW 2,"Window 2", (275,50)-(500,200),Wtype 
TEXT 4,9,0,0 
EDIT FIELD 1, .... , (10,10)-(100,35),1,1 
EDIT FIELD 2, .... , (10,40)-(100,65),1,1 
WINDOW 3,"Dia1og Event (Window #3)", (10,250)-(500,340),28 
TEXT 4,9,0,0 
ON DIALOG GOSUB "DialogEvent" 
ON BREAK GOSUB "BreakEvent" 
ON MENU GOSUB "MenuEvent" 
DIALOG ON:BREAK ON:MENU ON 

llMainloop": 
GOTO "Mainloop" 

DIALOG STOP : BREAK STOP MENU STOP 

Macintosh™ Appendix E-68 



MACINTOSH APPENDIX 
·Ui··~~ .. 

"MenuEvent" 
Menunumber=MENU(O) : Itemnumber=MENU (1) 
IF Menunumber=l AND Itemnumber=l THEN END 
RETURN 
"BreakEvent" 
STOP 
nDialogEvent" 
D = DIALOG(O) :REM check to see what event occured 
"DEvent" 
Currentwindow = WINDOW(O) 
Windowselection = WINDOW(l) 
DIALOG OFF: BREAK OFF: MENU OFF 
WINDOW OUTPUT 3 
IF D 1 GOSUB "Buttonevent" 
IF D 2 GOSUB "EditEvent" 
IF D 3 GOSUB "InactiveWindow" 
IF D 4 GOSUB "C1osebox" 
IF D 5 GOSUB "Refresh" 
IF D 6 GOSUB "Returnkey" 
IF D 7 GOSUB "Tabkey" 
IF D 8 GOSUB "Zoomin" 
IF D 9 GOSUB "Zoomout" 
IF D =10 GOSUB "Shifttab" 
IF D =11 GOSUB "Clearkey" 
IF D =12 GOSUB "LeftArrow" 
IF D =13 GOSUB "RightArrow" 
IF D =14 GOSUB "UpArrow" 
IF D =15 GOSUB "DownArrow" 
IF D =16 GOSUB "Keypress" 
PRINT @ (50,3) "DIALOG (0) : ";D 
PRINT @(50,4) "Active Window #";Currentwindow 
PRINT @(50,5) "Output Window #";Windowselection 
WINDOW OUTPUT Outwindow:WINDOW Windowselection 
RETURN 
"Buttonevent" 
Buttonclicked=DI~LOG(l) 

Bstatus=BUTTON(Buttonc1icked) : BUTTON Buttonc1icked,3-Bstatus 
B=B+1:PRINT@(1,1) "Button clicked: ";Buttonclicked;B 
RETURN 
"EditEvent": 
EditField=DIALOG(2) 
PRINT@(1,2) "Edit Field 
RETURN 
"InactiveWindow" 
Windowselection=DIALOG(3) 
PRINT@(1,3) "Inactive Window 
RETURN 
"Closebox": 
C1osedWindow=DIALOG(4) 
IF ClosedWindow=3 THEN END 
PRINT@(1,4) "Closed Window 
RETURN 

E -69 Macintosh™ Appendix 

";EditField 

U;Windowselection 

";C1osedWindow 



continued ... 

MACINTOSH APPENDIX 

"Refresh": 
ErasedWindow=DIALOG(5) 
REM WINDOW OUTPUT DIALOG(5) : CLS : WINDOW OUTPUT 3 
PRINT @(1,5) "Erased Window: ";ErasedWindow 
RETURN 
"Returnkey1f: 
Returnpress=DIALOG(6) 
PRINT @(25,1) "Return press 
RETURN 

U;Returnpress 

"Tabkey": 
Tabpress=DIALOG(7) 
PRINT @(25,2) "Tab press: 
RETURN 
"Zoomin": REM NEW ROMS ONLY 
Zin=DIALOG(B) 
WINDOW Zin 

I1;Tabpress 

PRINT@(l,l) "Thank you for zooming in window";Zin 
PRINT @(25,3) "Zoom in window: ";zin 
RETURN 
"Zoomout ll : 

Zout=DIALOG(9) 
WINDOW Zout 
PRINT@(l,l)"Thank you for zooming out window";Zout 
PRINT @(25,4) "Zoom out window: ";Zout 
RETURN 
"Shifttab": 
CurrentEdit=DIALOG(lO) 
PRINT @(25,5) "Current Edit Field:";CurrentEdit 
RETURN 
"Clearkey ": 
CurrentEdit=DIALOG(ll) 
PRINT @(25,S) "Current Edit Field:";CurrentEdit 
RETURN 
"LeftArrow": 
CurrentEdit=DIALOG(12) 
PRINT @(25,5) "Current Edit Field:";CurrentEdit 
RETURN 
"RightArrow": 
CurrentEdit=DIALOG(13) 
PRINT @(2S,S) "Current Edit Field:";CurrentEdit 
RETURN 
"UpArrow": 
CurrentEdit=DIALOG(14) 
PRINT @(25,S) "Current Edit Field:";CurrentEdit 
RETURN 
"DownArrow": 
CurrentEdit=DIALOG(15) 
PRINT @(2S,S) "Current Edit Field:";CurrentEdit 
RETURN 
I1Keypress": 
ASCIIkey=DIALOG(16) 
PRINT @(SO,l) "ASCII key pressed :";ASCIIkey;" 
PRINT @(7S,1) " ":PRINT @(7S,1) CHR$(ASCIIkey) 
RETURN 
END 

Macintosh"" Appendix E-70 



MACINTOSH APPENDIX 
&lw._"illtU, , •••• MMtilfi_;_ 

DIALOG statement continued ... 

EXAMPLE2 REM +-----------------------------------------------------------+ 
REM + Event Handling Template Example ZBasic 4.0 or Greater + 
rem + By Andrew Gariepy, 5/B7 (ON MASTER DISK) + 

REM +-----------------------------------------------------------+ 
WINDOW OFF : COORDINATE WINDOW : WIDTH -2 : DEF MOUSE 1 
WINDOW #1, "Example""9 : APPLE MENU "Help "111 : MENU 1,O,1,"File" 
MENU 1,1,1, I1 0pen/O;Save/S; (-;Page Setup; (-;Print/P; (-;Quit/Q" 
EDIT MENU 2 : MENU 2,7, 1," (-;Bold<B;Italic<I;Outline<O;Shadow<S" 
SCROLL BUTTON 1,0,0,100,10,,1: SCROLL BUTTON 2,0,0,100,10,,2 
ON DIALOG GOSUB "Dialog": REM Vector to DIALOG routine 
ON MENU GOSUB "Menu" 
ON BREAK GOSUB "Break" 
ON TIMER(S) GOSUB IITimer" 
ON MOUSE GOSUB "Mouse" 
REM Main Event Loop 

REM Vector to MENU 
REM Vector to BREAK 
REM Vector to TIMER 
REM Vector to MOUSE 

routine 
routine 
routine (Seconds) 
routine (DEF MOUSE 1) 

FLUSHEVENTS: DIALOG ON: MENU ON: TIMER ON: MOUSE ON: BREAK ON 
DO REM Just a loop While waiting for events 
UNTIL ° : REM DO FOREVER ..... 
DIALOG OFF: MENU OFF:, TIMER OFF : MOUSE OFF: BREAK OFF 
REM Dialog Event a\ndler 
"Dialog" : DO~DIALOG(OI : DN~DIALOG(DOI : REM Get Event. Value 
ON DO GOTO IIButton", "Edit", "Activate", "Close", "UpDate", IIReturn" 
ON 00-6 GOTO "Tab Key", "Zoom-In", "Zoom-Out","ShiftTab", "ClearKey" 
ON 00-11 GOTO "Left Key", "RightKey", "Up Key","Down KeY","OtherKey" 
PRINT "Un-Defined Dialog #-";DO;"With a Value=";DN : RETURN 
"Activate":REM ---------- Window iDN clicked -----------
WINDOW #DN : RETURN : REM *** Typical Activate Event *** 
"Close II :REM ---- Close Box of Window #DN Clicked ----
WINDOW CLOSE #DN : RETURN : REM Typical Window Close Event 
"UpDate" REM --- Part of Window #DN Needs Updating ---
"Button" REM ------ Button Event for Button #ON ------
"Edit" REM -------- Edit Field #DN Selected --------
"Return" REM ---- Return/Enter in Edit Field #ON -----
IITab Key": REM --- Tab Key Pressed in Edit Field #ON ---
"'Zoom-In": REM ----- Zoom in Event for Window icON 
"2oom-Out":REM ---- Zoom Out Event for Window :/tDN 
"ShiftTab":REM Shift-Tab in Edit Field tDN 
"ClearKey":REM ------ Clear Key in Edit Field tDN 
"Left Key":REM ------ Left Key in Edit Field #DN ------
"RightKeyll:REM ----- Right Key in Edit Field tON ------
"Up Key" :REM ------- Up Key in Edit Field iON -------
"Down Key":REM ------ Down Key in Edit Field iON ------
"OtherKey":REM ------- Other Key, Key$~CHR$(DN) -------
PRINT "Event #";DO;"with value ofll;DN;"Not Handled!":RETURN 
REM Menu Event Handler 
"Menu": MO~MENU(O): M1~MENU(l) : REM Get Menu and Item 
IF MO=255 THEN PRINT "Apple Menu Help Selectedll 
ON MO GOSUB "File Menu","Edit Menu" : REM Menu Title Vectors 
MENU : RETURN : REM *** Un-Hi Light Menu Title & Return **** 
"File Menu" : REM *** All file Menu items come here ***** 
ON M1 GOTO "Open", "SaveJl,"Z", "Setup", "Z", "Print", "Z", "Break" 
"Open" PRINT "Open File Menu Selected" RETURN 
"Save" PRINT "Save File Menu Selected" : RETURN 
"Setup" DEF PAGE RETURN 
"Print" DEF LPRINT : LeOPY : RETURN 
"2" RETURN : REM Just Return Entry 
"Edit Menu" : RETURN : REM ** Your Edit Menu items ** 
REM Break, Timer , Mouse Event Handlers 
I1Break": BEEP: BEEP: BEEP: BEEP: STOP: REM Debug 
"Timer": PRINT I1Timer, Active Window=";WINDOW(O) : RETURN 
"Mouse": MO=MOUSE(O) : PRINT "Mouse Event" : RETURN 

E -71 Macintosh™ Appendix 



MACINTOSH APPENDIX l1li1 _____ _ 

DIR command 

FORMAT [L] D1R [pathname] 

DEFINITION This version offers enhancements to the standard disk directory command. To pause the 
directory press <SPACE>. Any other key will continue the listing. <COMMAND 
PERIOD> to abort the listing. 

EXAMPLE 

REMARK 

DIR 
LDIR 

Lists the folders and files in the current directory 
Lists directory to the printer 

DIR Harddisk 
LDIR Harddisk:Examples 

Lists the directory of the Root volume called Harddisk. 
Lists directory of the folder "Examples" in the root 
directory called "Mydisk", to the printer. 

DIR:: BACKS-OUT of a folder to the previous folder level. 

ZBasic Ready 
DIR 

**ZBASIC(O) HFS(l) 220 k Free (2) 

(3) (4) (5) (6) (7) 
Desktop FNDR ERIK 16457 16896 
System ZSYS MACS 228948 230912 
BAS Examples Folder 
ZBasic APPL ZBAS 85214 86016 
ZEXAMPLES Folder 

(0) The Current disk volume or folder name 
(1) Type of System: HFS or MFS 
(2) Amount of free space on disk 
(3) File or Folder name 
(4) Type. ZBasic application types are APPL. Help file types are 

ZHLP. Data files are ZDAT. ASCII files are TEXT. 
(5) Creator. The program that created the file. For instance, 

when you click a paint document it loads Macpaint automatically. 
The ZBasic creator name is ZBAS. 

(6) Actual end of file (in bytes) 
(7) Amount of disk space allocated in bytes. 
(8) I=invisible file. L=locked file. P=protected file. 

(8) 
I 

NOTE: It is important to note that if you want the directory of another folder other than 
the current one, you will need to give the complete pathname starting with the root 
volume or you will need to BACK-OUT to the main volume using" DIR :: ". 

Folder and filenames MUST be spelled correctly in order for this command to work. If the 
pathname is not valid no directory will be displayed. 

Also see FILE$, KILL, DEF OPEN, EJECT, CREATOR, and BUNDLE and in this 
appendix and DIR in the main reference section. 

Macintosh™ Appendix E-72 



MACINTOSH APPENDIX 

EDIT FIELD statement 

FORMAT EDIT FIELD field number[,simplestring[, (x1,y1)-[(x2,y2)[,[type][.formatllJll 
EDIT FIELD CLOSE field number 

DEFINITION EDIT FIELD is used to allow a user to enter text at a specific region in the current output 
window. This statement is handy for creating easy Macintosh type edit input for the user. 

EXAMPLE 

continued ... 

field number 

simplestring 

(x1,y1)-(x2,y2) 

type 

format 

An integer number. This number may be an expression. It identifies 
the edit field within the current window. 

A string that will appear in the edit field. "H may be used to specify no 
string field. 

Specifies the rectangle in which the editing is to occur. x1,y1 
specifies the upper left corner, x2,y2 specifies the lower right. 

Tells ZBasic how to format the edit field: 
1 Enclosed in a Box. RETURN key ignored. 

See DIALOG(6). 
2 Enclosed in a Box. "RETURN" allowed. 
3 No Box. RETURN ignored. See DIALOG(6) 
4 No Box. RETURN allowed. 

Tells ZBasic how to format the text in the edit field: 
1 Left Justify 
2 Center 
3 Right Justify 

EDIT FIELDS are specific to the window being used. SeeEDIT$ function to see how to 
retrieve the data typed into the edit field. 

Use EDIT MENU with this statement to allow the user to do pasting, culling and copying. 
Also see TEHANDLE for ways of manipulating text in EDIT FIELDS larger than 255 
characters. 

EDIT FIELD CLOSE field number Closes the edit field specified by field number. 

COORDINATE WINDOW:DEFMOUSE=l 
WINDOW 1, "EDIT FIELD", (41,51)-(469,306),1 
TEXT 0,12,0 

BUTTON 1,1,"QUIT", (278,173)-(376,197),1 
EDIT MENU 2:REM Allow CUT and PASTE 
EDIT FIELD 1,"Edit Field 1", (39,42)-(205,58),1 
EDIT FIELD 2,"Edit Field 2", (210,42)-(376,58),1 
EDIT FIELD 3,"Edit Field 3", (39,74)-(205,90),1 
EDIT FIELD 4,"Edit Field 4", (210,74)-(376,90),1 
EDIT FIELD 5,"Edit Field 5", (39,106)-(205,122),1 
EDIT FIELD 6,"Edit Field 6", (210,106)-(376,122),1 

FLUSHEVENTS: DIALOG ON:BREAK ON 
ON DIALOG GOSUB "Dialog Events" 

E -73 Macintosh™ Appendix 



REMARK 

MACINTOSH APPENDIX 

"Main Event Loop" 
GOTO "Main Event Loop" 

DIALOG OFF:BREAK OFF 
"Dialog Events" 
Event=DIALOG(O) :What=DIALOG(Event) 
IF Event=l THEN "End": REM Push button=End 
SELECT Event: REM Check DIALOG 6,7,10,11,12,13,14,15 

CASE 6,7,13: REM Move to next field 
LONG IF What<6 

EDIT FIELD# What+1 
XELSE: REM Move to First if at Last 

EDIT FIELD#! 
END IF 

CASE 10,12: REM Move back to last field 
LONG IF What>l 

EDIT FIELD# What-1 
XELSE 

EDIT FIELD#6: REM Move to Last if at First 
END IF 

CASE 14: 
SELECT What 

CASE 3,4,5,6 
EDIT FIELD#What-2 

CASE 1,2 
EDIT FIELD#What+4 

END SELECT 
CASE 15: 

SELECT What 
CASE 1,2,3,4 

EDIT FIELD#What+2 
CASE 5,6 

EDIT FIELD#What-4 
END SELECT 

CASE ELSE 
EDIT FIELD#What 

END SELECT 
RETURN 

11 End" 

REM Move UP 

REM Move DOWN 

BEEP:BEEP:CLS:PRINT"FINAL Contents of Edit Fields:" 
FOR X=l TO 6 

PRINT TAB(25); EDIT$(X) :EDIT FIELD CLOSE#X 
NEXT: DELAY 5000: END 

Note: The EDIT FIELD does not stop and wait for the user, you must trap EDIT FIELD 
events using DIALOG. DIALOG functions 2,6,7,10,11,12,13,14 and 15 return EDIT 
FIELD event and key information. Use EDIT MENU to enable CUT, COpy and PASTE. 

Be sure to see the DIALOG statement and function and EDIT$ for more information. See 
TEHANDLE for using edit fields greater than 255 characters. 

Note: EDIT FIELD events will not function in the ZBasic default window. You will have to 
open your own window before the event is detected properly. 

Macintosh™ Appendix E-74 



MACINTOSH APPENDIX 
•• t&r ..... ,._1J1$It4t.ttt,1~.#,ItIIfEti(f •• 

EDIT MENU statement 

FORMAT EDIT MENU menu number 

DEFINITION This statement is used to bring up the standard Macintosh "EDIT" menu items specifically 
for use with EPIT FIELPS 

EXAMPLE 

REMARK 

This allows the user to CUT, COPY, PASTE and CLEAR text editing activity automatically 
and saves the programmer the hassle of having to write special routines to do this. 

The EDIT menu number should normally be assigned number two (File is normally menu 
number one). 

See example under EDIT FIELD statement. 

.. S MENUI mI Menu three 

o C<Hl't IJNrlO 

Cut 
Copy 
Paste 
Clear 

Use this EDIT MENU when you use EDIT FIELDS 

lICH 
lICC 
8€U 

to make te"t editing as easy as using MacWrlte'M 

EDIT MENU 0 disables the menu item. 

Note that UNDO is not supported directly. If you add items to this menu or enable UNDO, 
item 1 it will return the item selected other than CUT, COPY PASTE and CLEAR. 

E -75 Macintosh™ Appendix 



MACINTOSH APPENDIX 
bAli 

EDIT$ function 

FORMAT EDIT$ (number) 

DEFINITION Returns the current text in the EDIT FIELD specified by number. 
Use EDIT FIELD to set up the input field size and default input. 

EXAMPLE See example under EDIT FIELD statement. 

REMARK Closing the edit field will delete the contents. 

See TEHANDLE for example of using an EDIT FIELD with up to 32000 characters. 

Macintosh"" Appendix E-76 



MACINTOSH APPENDIX 

EJECT statement 

FORMAT EJECT {[-]1 or [-]2} 

DEFINITION Ejects the diskette in the specified drive: 

EJECT number 
EJECT 1 

EJECT -1 

EJECT 2 and -2 

EXAMPLE CLS 
EJECT 1 

REMARK Also see SHUTDOWN. 

E -77 Macintosh™ Appendix 

RESULT 
Ejects the diskette in the internal drive. Disk volume is retained 
so programs accessing that volume number will result in the 
system asking for you to insert that diskette (no fun). 

Ejects the diskette in the internal drive. Disk volume is not 
retained; a file-not-found error will result if you attempt to access 
that volume again. Note that the volume number may change if 
the diskette is inserted again after having been ejected in this 
way. 

Same as above except for external drive. 



MACINTOSH APPENDIX 

FILES$ function 

FORMAT FILES$ (0. "prompt" [. "default filename" ] [. volume%j) 
FILES$ ( 1. "type list .. [. volume%j) 
FILES$ (-9999 ........... volume%) 
FILES$ (-expression •..... "Root Volume".volume%) 

DEFINITION Returns the filename and volume number of a file selected by the user for saving (0) or 
loading (1). The beginning number (or expression) designates what information is being 
requested: 

continued ... 

-9999 

-expression 

Examples: 

SAVE A FILE 

Returns informalion about a file to be saved. You may designate the 
"default filename" by using that option above. The volume number of 
where the file is to be saved is also returned (use it!). 

Returns information about the file to be loaded. You may allow the user 
to select only certain types of file by using '1ype list". For example; ~ you 
only wanted to load "TEXT" type files you would designate "TEXT". The 
volume number of the file is also retumed and must be used in the OPEN 
statement if other than the current directory is chosen. 

Returns whether the current root volurne is HFS or MFS. HFS is the most 
current type of system. MFS was the system used on older Macintoshes. 

Returns the files and folders located in the "Root volume" designated. 
Volume number is also returned. 

A$=FILES$ (0,"Save File as WHAT?", "Default filename",volume%) 

I=warp 91 
=Warp 9 

Driue 

Saue File as WHAT? Saue 

UHtlM11l1m§H,HU· Cancel 

Macintosh™ Appendix E-78 



MACINTOSH APPENDIX 

FILES$ continued .... 

EXAMPLE1 

LOAD A FILE 
A$~FILES$ (l,"type", volume%) 

I=warp 91 
=Warp 9 

D Copy of Mac Reference C .. 
D CURSOR 
D DeskTop 
D EDIT FIElD 
D FILES$ EHAMPLE 
D FILES$ EHAMPLE2 
D Graphics 
D Mac A endiH (new) 

REM Example of LOAD and SAVE using FILES$ 

WINDOWJll, "FILES$" 
DO 

Driue 

Open 

Cancel 

LOCATE O,O:CLS LINE:INPUT"<S>ave or <L>oad example of FILES$?";A$ 
A$~UCASE$ (A$) 
IF A$~"S" THEN GOSUB"SAVE A FILE EXAMPLE" 
IF A$~"L" THEN GOSUB "LOAD A FILE EXAMPLE" 

UNTIL (A$<>"S") AND (A$<>"L"): 
STOP 

"SAVE A FILE EXAMPLE" 
Filename$~FILES$(O,"Save File as WHAT?","Default filename",volume%) 
SELECT Filename$ 

CASE "n 

CLS:LOCATE 0,5:PRINT "Null string so SAVE cancelled!":BEEP 
DELAY 2000 

CASE ELSE 
CLS:LOCATE 0,5:PRINT"Filename to SAVE:";Filename$ 
PRINT"The Volume number to save to:";volume% 
PRINT"File would be saved using:" 
PRINT TAB(30)" OPEN'A, 0 or R',l,Filename$"volume%" 

END SELECT 
RETURN 

"LOAD A FILE EXAMPLE" 
Filename$=FILES$(l, .... "volume%) 

continued ... 

E -79 Macintosh™ Appendix 



MACINTOSH APPENDIX 

FILES$ continued .... 

EXAMPLE2 

REMARK 

SELECT Filename$ 
CASE 

CLS:LOCATE 0,5:PRINT "Null string so LOAD cancelled!":BEEP 
DELAY 2000 

CASE ELSE 
CLS:LOCATE 0,5:PRINT"Filename to LOAD is:";Filename$ 
PRINT"The Volume number where file is:'';volume% 
PRINT"File would be loaded using OPEN'I or R',l,Filename$"volume%" 

END SELECT 
RETURN 

REM Example of getting pathnames and System types 
REM Returns all the files and a complete PATH LIST 
REM in INDEX$ 
CLEAR 10000 : L~O : L2~0 : REM STORAGE FOR VOLUMES 
FOR I~l TO 1000 
A$~FILES$(-I,"""V%) :REM Get the Root volume 
LONG IF V%=O OR A$="" 

I=1000:REM Quit looking for root volumes 
XELSE 

PRINT 
XFS$=FILES$(-9999,"","",V%) 
PRINTSTRING$(30,"*");" FILE SYSTEM ";XFS$;" ";STRING$(30,"*") 
PRINT "PATH NAME:";STRING$(56-POS(0),".");"FILE NAME" 
INDEX$(L)=A$ : L=L+1 : L2=L 
DO 

IF L > L2 THEN L2=L2+1 : A$=VOL$(L2-1) 
FOR J=l TO 1000 

TRONX 
B$=FILES$(-J,"",A$,V%) :REM Get folders/files in Root A$ 
LONG IF B$="" 

J=1000 
XELSE 

PRINT A$;STRING$(56-POS(0),".");B$ 
X$=RIGHT$(B$,l) 
LONG IF X$=":" 

INDEX$(L)=A$+B$ 
ENDIF 

L=L+1 

ENDIF 
NEXT 

UNTIL L2 >= L 
ENDIF 

NEXT : PRINT 
PRINT STRING$(33,"*");" PATH LIST ";STRING$(33,"*") 
FOR 1=0 TO L-1 

PRINT I,INDEX$(I) : REM Contains all Pathnames(not filenames) 
REM These pathnames could be used to search for filenames 
REM with their complete pathname. 

NEXT 

Inside Macintosh recommends that volume number be used whenever possible. This may be the 
only way to find a complete pathname. 

Macintosh™ Appendix E-80 



MACINTOSH APPENDIX 
•• f ....... li •• ti .. -s'.lIi®lltf.IfI'#:£.J_ 

FINDERINFO function 

FORMAT FINDERINFO (count%, var$ ((nJl, type& ((nJl, volume% [(n)]) 

DEFINITION Returns system information from the Finder to your application program so the program 
can do whatever is necessary wtth that file. This is useful when a user double clicks a file 
created with your application. The finder will load your application and pass it the 
information in FINDERINFO so you can determine if should be printed or loaded. 

EXAMPLE 

REMARK 

Example: 

A%=FINDERINFO (count%, var$(n), type&(n), volume%(n» 

If A%=0 the file is to be "Loaded". If A%=non-zero the file is to be printed. 

count% Returns the number of files to be passed to your application. Sometimes 
people will click several files to be printed. The example program shows 
how to read them in. This also sets the maximum number of files 
accepted. 

var$(n) A string variable that returns the filename(s) of the files being passed. A 
string array would be used if you wished to handle all the files being 
passed (each element MUST be defined as 31 chararacter length). 

type&(n) The long word CVI of the file type(s). If a text file was being passed it 
would equal the CVI(TEXT). The type is created with DEF OPEN or 
CREATOR. 

volume% (n) The disk volume numbers(s) where the filename(s) is located. If you 
wished to allow more than one file to be passed this would be an array. 

DIM 31NAME$(1) , VOL%(l), TYPE&(l) 
DEFSTR LONG 
COUNT% = 2 
A% =FINDERINFO(COUNT%,NAME$(O),TYPE&(O),VOL%(O» 
LONG IF COUNT% AND A% 

FOR C = 1 TO COUNT% 
OPEN I,#l,NAME$(C)"VOL%(O) 

DO 
LINE INPUT #l,A$ 
PRINT A$ 

UNTIL EOF (1) 
NEXT C 

ENDIF 

Note: String variable(s) must be defined as 31 in length. Also see DEF OPEN, BUNDLE 
and CREATOR. 

E -81 Macintosh™ Appendix 



MACINTOSH APPENDIX 

FLUSHEVENTS statement 

FORMAT FLUSH EVENTS 

DEFINITION Deletes the contents of all the Event trapping FIFO buffers for DIALOG, BREAK, MENU 
MOUSE and TIMER. 

EXAMPLE WINDow#l 

REMARK 

FLUSHEVENTS 
DIALOG ON:BREAK ON:MOUSE ON: MENU ON:TIMER ON 
program continues ... 

It is recommended that you flush the events out of the queue BEFORE enabling event 
trapping. 

Macintosh™ Appendix E-82 



MACINTOSH APPENDIX 
E_ _ .. 

GET FILE INFO function 

FORMA T GET FILE INFO variable$ 

DEFINITION Returns system information about a file. See example. 

EXAMPLE WINDOW OFF: WINDOW 411, "GET FILE INFO example"" 9 
TEXT 4,9,0,1: DEFSTR LONG 

continued. " 

REM INITIALIZE POINTER TO 'FILE INFORMATION PARAMETER BLOCK' 
hParmBlkPtr&=VARPTR(paramBlock$) 

REM TELL THE FILE MANAGER THERE IS NO '10' COMPLETION ROUTINE 
ioCompletion&=O: POKE LONG hParmBlkPtr&+12,ioCompletion& 

INPUT"Filename: ";filename$:ioNamePtr&=VARPTR(filename$) 
POKE LONG hParmBlkPtr&+18,ioNamePtr& 

REM TELL THE FILE MANAGER TO USE THE 'DEFAULT' DRIVE 
ioVRefNum%=O: POKE WORD hParmBlkPtr&+22,ioVRefNum% 

REM INPUT Volume number 
INPUT"Input Volume number = ";InputioFDirlndex% 
iOFDirIndex%=InputioFDirlndex% 
POKE WORD hParmBlkPtr&+28,ioFDirlndex% 

PRINT "VOLUME NUMBER = «RETURN>=default): ";InputioFDirIndex% 

GET FILE INFO paramBlock$ 

REM GET (& COMPUTE) SELECTED VALUES FROM THE PARAMETER BLOCK 
ioResult%=PEEK WORD (hParmBlkPtr&+16) 
PRINT "Result code "; ioResult% 
ioNamePtr&=PEEK LONG(hParmBlkPtr&+18) 
PRINT "Pathname 
PRINT "fileName 
ioVRefNum%=PEEK WORD(hParmBlkPtr&+22) 
PRINT "Volume reference number 
ioFRefNum%=PEEK WORD(hParmBlkPtr&+24) 
PRINT "Path reference number 
ioFDirIndex%=PEEK WORD (hParmBlkPtr&+28) 
PRINT "Directory index 
ioDirID&=PEEK LONG(hParmBlkPtr&+48) 
PRINT "Directory ID or file number 
ioFlStBlk%=PEEK LONG(hParmBlkPtr&+S2) 
PRINT "First allocation block of data fork 
iOFlLgLen&=PEEK WORD (hParmBlkPtr&+S4) 
PRINT "Logical end-of-file of data fork 
ioFlPyLen&=PEEK LONG(hParmBlkPtr&+S8) 
PRINT "Physical end-of-file of data fork 
ioFlRStBlk%=PEEK WORD (hParmBlkPtr&+62) 
PRINT "First allocation block resource fork 

n;ioNamePtr& 
nifilename$ 

"iioVRefNum% 

fliioFRefNum% 

"iioFDirlndex& 

"iioDirID& 

";ioFlStBlk% 

";ioFlLgLen& 

";ioFlPyLen& 

";iOFlRStBlk% 

E -83 Macintosh™ Appendix 



MACINTOSH APPENDIX 

GET FILE INFO continued ... 

REMARK 

ioFlRLgLen&=PEEK WORD(hParmBlkPtr&+64) 
PRINT "Logical end-of-file of Resource fork ";iOFlRLgLen& 
ioFlRPyLen&=PEEK WORD(hParmBlkPtr&+68) 
PRINT "Physical end-of-file of resource fork ";iOFlRPyLen& 
ioFlCrDat&=PEEKLONG(hParmBlkPtr&+72) 
PRINT "Date and time of creation {internaljl} ";UNS$(ioFlCrDat&) 
longDate%=l: wantSeconds%=O 
CALL IUDATESTRING(ioFlCrDat&,longDate%,date$) 
CALL IUTIMESTRING (ioFlCrDat&, wantSec'onds%, timeS) 
dateTime$=date$+" .. +time$ 
PRINT "Date and time of creation .. ;dateTime$ 
ioFlMdDat&=PEEKLONG(hParmBlkPtr&+76) 
PRINT "Date/time last modified {internaljl} ";UNS$(ioFlMdDat&) 
CALL IUDATESTRING(ioFlMdDat&,longDate%,date$) 
CALL IUTIMESTRING(ioFlMdDat&,wantSeconds%,time$) 
dateTime$=date$+" "+time$ 
PRINT "Date and time of last modification ";dateTime$ 
PRINT:PRINT"Press a key ..... ; 
DO:UNTIL LEN(INKEY$) 
END 

Also see PUT FILE INFO in this appendix. See "Inside Mac" for specific technical 
information. 

Macintosh™ Appendix E-84 



MACINTOSH APPENDIX 

GET VOLUME INFO function 
) 

FORMA T GET VOLUME INFO volume number% 

DEFINITION Returns system information about the volume specified by volume number. 

EXAMPLE WINDOW OFF:WINDOW lIl, "GET VOL INFO example" 
TEXT 4,9,0,1 

continued ... 

REM INITIALIZE POINTER TO 'VOLUME INFORMATION PARAMETER BLOCK' 
hParmBlkPtr&=VARPTR(paramBlock$) 

REM TELL THE FILE MANAGER THERE IS NO 'IO' COMPLETION ROUTINE 
ioCompletion&=O: POKE LONG hParmBlkPtr&+12,ioCompletion& 

REM INITIALIZE POINTER TO 'VOLUME NAME' 
ioNamePtr&=VARPTR(volName$): POKE LONG hParmBlkPtr&+18,ioNamePtr& 

REM INPUT VOLUME REFERENCE NUMBER 
REM NOTE: 'DEFAULT' DRIVE VOLUME NUMBER is 0) 
INPUT"Volume Number = ";InputioVRefNum% 
ioVRefNum%=InputioVRefNum%: POKE WORD hParmBlkPtr&+22,ioVRefNum% 
REM 
REM USE YOUR INPUT VALUE OF 'ioVRefNum' 
ioVollndex%=O: POKE WORD hParmBlkPtr&+28,ioVollndex% 
PRINT 
PRINT "Volume Number = ";InputioVRefNum% 

GET VOLUME INFO paramBlock$ 

REM GET (& COMPUTE) SELECTED VALUES FROM THE PARAMETER BLOCK 

ioResult%=PEEK WORD(hParmBlkPtr&+16) 
PRINT "Result code 
ioNameptr&=PEEK LONG(hParmBlkPtr&+18) 
PRINT "Pathname Pointer 
PRINT "Volume Name 
ioVRefNum%=PEEK WORD (hParmBlkPtr&+22) 
PRINT "Volume number 
ioVollndex%=PEEK WORD(hParmBlkPtr&+28) 
PRINT "Volume Index 
ioVCrDate&=PEEKLONG(hParmBlkPtr&+30) 
PRINT "Date/time of initialization (internalll) 
longDate%=l: wantSeconds%=O 
CALL IUDATESTRING(ioVCrDate&,longDate%,date$) 
CALL IUTlMESTRING (ioVCrDate&, wantSeconds%,time$) 
dateTime$=date$+" "+time$ 
PRINT "Date and time of initialization 
ioVLsMod&=PEEKLONG(hParmBlkPtr&+34) 

";ioResult% 

";ioNamePtr& 
";volName$ 

";ioVRefNum% 

";ioVollndex& 

";UNS$(ioVCrDate&) 

";dateTime$ 

E -85 Macintosh™ Appendix 



MACINTOSH 

GET FILE INFO continued ... 

REMARK 

PRINT "Date/time of last mod (INTERNAL#) 
CALL IUDATESTRING(ioVLsMod&,longDate%,date$) 
CALL IUTIMESTRING(ioVLSMOd&,wantSeconds%,time$) 
dateTime$=date$+" "+time$ 
PRINT "Date and time of last modification 
ioVNmFls%=PEEK WORD(hParmBlkPtr&+40) 
PRINT "Number of files in directory 
ioVNmA1Blks%=PEEK WORD (hParmBlkPtr&+46) 
PRINT "Number of allocation blocks 
ioVA1BlkSiz&=PEEK LONG(hParmBlkPtr&+48) 
PRINT "Size of allocation blocks 
ioVClpSiz&=PEEK LONG(hParmBlkPtr&+52) 
PRINT "Default clump size 
ioVNxtCNID&=PEEK LONG(hParmBlkPtr&+58) 
PRINT "Next unused node ID 
ioVFrBlk%=PEEK WORD (hParmBlkPtr&+62) 
PRINT "Number of unused allocation blocks 
freeBytes&=ioVA1BlkSiz&*ioVFrBlk% 
PRINT "No. of free bytes 
ioVSigWord%=PEEK WORD(hParmBlkPtr&+64) 
PRINT "Volume signature 
SigWord$=HEX$(ioVSigWord%) 
volType$="error!" 
IF SigWord$="D2D7" THEN volType$="MFS" 
IF SigWord$="4244" THEN volType$="HFS" 
PRINT "Volume Type 
ioVDrvInfo%=PEEK WORD (hParmBlkPtr&+66) 
PRINT "Drive number 
ioVFSID%=PEEK WORD (hParmBlkPtr&+70) 
PRINT "File-system identifier 
ioVBkUp&=PEEKLONG(hParmBlkPtr&+72) 
PRINT "Date and time of last backup (INTERNAL#) 
CALL IUDATESTRING(ioVBkUp&,longDate%,date$) 
CALL IUTIMESTRING (ioVBkUp&,wantSeconds%, time$) 
dateTime$=date$+" "+time$ 
PRINT "Date and time of last backup 
ioVFilCnt&=PEEK LONG(hParmBlkPtr&+82) 
PRINT "Number of files on volume 
ioVDirCnt&=PEEK LONG(hParmBlkPtr&+86) 
PRINT "Number of directories on volume 
PRINT:PRINT"Press a key to finish ..... 
DO:UNTIL LEN(INKEY$) 
RETURN 

See "Inside Mac" for more specific information. 

APPENDIX 
. 11 

"; UNS$ (ioVLsMod&) 

" i dateTime$ 

";ioVNmFls% 

";ioVNmA1Blks% 

";ioVA1BlkSiz& 

"iioVClpSiz& 

";ioVNxtCNID& 

niioVFrBlk% 

"ifreeBytes& 

";ioVSigWord% 

";volType$ 

"iioVDrvlnfo% 

";ioVFSID% 

n;iOVBkUp& 

n;dateTime$ 

niioVFilCnt& 

niioVDirCnt& 

Macintosh™ Appendix E-86 



MACINTOSH APPENDIX 

GET WINDOW function 

FORMAT GET WINDOW [#1 expr, var& 

DEFINITION Returns the Longlnteger "Pointer" to the window specified by exprfor use with 
TOOLBOX functions and calls. 

EXAMPLE WINDOWII1 
CLS 
GET WINDOW #1, WPtr& 
PRINT "The handle of Window one=";WPtr& 
END 

REMARK See section call "TOOLBOX" in this appendix and "Inside Macintosh" for details. 

Another alternative to this function is the WINDOW(14) function. 

Also see WINDOW functions and statements and GrafPort in the QuickDraw section of the 
toolbox chapter of this appendix. 

E -87 Macintosh™ Appendix 



MACINTOSH APPENDIX 

HANDSHAKE statement 

FORMAT HANDSHAKE port, type 

DEFINITION Sets up the handshaking type for the serial 110 with the OPEN"C" statement. 

EXAMPLE 

REMARK 

PORT 
-1 
-2 

TYPE 
-1 
o 
1 

Modem port 
Printer port 

XON/XOFF Handshaking 
No handshaking 
CTS Hardware handshaking (Clear To Send) 

OPEN"C",-2,9600 
HANDSHAKE -2,-1 
PRINT#-2, "Goodbye!" 
CLOSE#-2 

<---Set up for XON/XOFF handshaking 
<---Print directly to imagewriter (bypass Mac printer driver) 

END 

See "Inside Mac" and the hardware manual for your serial device for specific technical 
information. 

Macintosh™ Appendix E-88 



MACINTOSH APPENDIX 

FORMAT 

INDEX$ enhancements 

INDEX$ (expr [ ,Index#j) 
INDEX$I (expr [ ,Index#j) 
INDEX$D ( expr [ ,Index#j) 

INDEXF (simplestring [, element#j [, Index#]) 

DEFINITION On the Macintosh INDEX$ may have up to 10 extra INDEX$'s from 0 to 9 (specified by 
index# above). Each INDEX array may be manipulated separately using the statements 
and functions above. 

expr 

Index# 

expr may be a Longlnteger value with the Mac version allowing INDEX$ 
arrays up to 2 billion elements (memory permitting). 

Specifies a sub index of the INDEX Array i.e. INDEX$(O,1) and 
INDEX$(O,2) are two different INDEX$ arrays. You may specify the index# 
with all the regular INDEX$ statements and functions. Except for this they 
are identical to the regular INDEX$ (see INDEX$ in main reference). 

Other Statements Affected by enhancments to INDEX$: 

coniinued .... 

CLEAR n& [,index#j If index# is used, this sets aside n& bytes of the INDEX$ 
array specified by index#. If index# is not used this 
statement is identical to the regular CLEAR statement as 
described in the main reference section. 

CLEAR -1 Clears aIlINDEX$ arrays to zero (sets to nUll). 

CLEAR INDEX$ [(index#)I Clears only the INDEX$ array specified by index#. 

m&=MEM [( index#)] Returns memory available for that array. 

m&=MEM (index#t10) Returns number of active elements. 

m&=MEM (index#t20) Returns the length in bytes of the INDEX$ specified by index#. 

m&=MEM ( index#+30) Returns the maximum number of bytes available in INDEX$. 

m&=MEM ( indexll+40) Returns the starting address of the INDEX$ specified (VARPTR). 

E -89 Macintosh™ Appendix 



MACINTOSH APPENDIX 

INDEX$ enhancements continued ... 

EXAMPLE 

REMARK 

CLEAR 10000 

DEFTAB 7 

INDEX$(l)="XXX" 
INDEX$(3)="TEST" 
INDEX$D(2) 
CLEAR 1000 

STOP 

GOSUB "SHOW INDEX" 
GOSUB "SHOW INDEX" 
GOSUB "SHOW INDEX" 
GOSUB "SHOW INDEX" 

"SHOW INDEX" : X&=MEM(40) 
PRINT STRING$(35,"*");MEM(0);STRING$(35,"*") 
PRINT n ADDR If; X& I 

PRINT "SIZE";PEEK LONG(X&~12), 
PRINT "BYTES USED" ;PEEK LONG (X&~8), 
PRINT "ELLEMENTS",PEEK LONG(X&-4) 

FOR 1=0 TO 10 
PRINT PEEK(X&+I), 

NEXT : PRINT 
RETURN 

The enhancements to INDEX$ create opportunities for some powerful string handling 
and editing. 

Be sure to see INDEX$ in the main reference section and in the "Variables" section of this 
manual for more information. 

Macintosh™ Appendix E-90 



MACINTOSH APPENDIX 
@-

INKEY$ alternatives 

FORMAT DIALOG(16) OR CALL GETKEY(A%(n» 

DEFINITION This function operates the same as other versions of ZBasic accept during event trapping 
like BREAK ON, DIALOG ON, MENU ON, TIMER ON or MOUSE ON. During these events 
INKEY$ and the event types "Fight" over keys resulting in one or the other functions 
missing characters. 

EXAMPLE1 

Since there are rare occassions when a Macintosh program does not use at least one of 
these events we felt it was imperative to provide a reliable way of intercepting keystrokes 
during events, thus; DIALOG(16) came to be. 

When used during event trapping DIALOG(16) will return the ASCII character of the key: 

WINDOw#1,"Dialog(16) example of INKEY$" 
DIALOG ON:BREAK ON 
ON DIALOG GOSUB "Check Dialog" 

"Main Event Loopu 
GOTO "Main Event Loop" 

DIALOG OFF:BREAK OFF 

"Check Dialog" 
D=DIALOG(O) : Dl=DIALOG (D) 
IF D<>16 THEN RETURN:REM We're just checking for keys this time 
PRINT CHR$ (Dl) ; 
RETURN 

EXAMPLE2 REM This Example program displays the Macintosh keyboard status 
REM as keys are pressed. This routine allows you to monitor 
REM the COMMAND, OPTION, CAPS LOCK, SHIFT and others! 

REMARK 

DIM A%(7),B%(7) 
CLS : FOR 1=0 TO 7 : B%(I)=-l NEXT 
"KEYSCAN I1 

CALL GETKEYS(A%(O)) 
LOCATE 0,0 
FOR 1=0 TO 7 

LONG IF B%(I)<> A%(I) 
LOCATE 0,1 : CLS LINE 

ENDIF 
NEXT 

PRINT I,BIN$(A%(I)) 

TRONX:REM Check for <Command Period>. 
GOTO "KEYSCAN" 

Also see INKEY$ in the main reference section of this manual. 

B%(I)=A%(I) 

Important Note: Obviously DIALOG(16) will be disabled when an EDIT FIELD is active 
since EDIT FIELD gets the keys. 

E -91 Macintosh™ Appendix 



MACINTOSH APPENDIX 

KILL statement 

FORMAT KILL "filename" [. volume%] 

DEFINITION Same as the standard ZBasic KILL except that you may also specify the volume number 
where the file is located. The volume number may be found with FILES$. 

EXAMPLE WINDOWJ!l, "KILL" 
file$=FILES$(l, .... "volume%) 
CLS 
PRINT'tAre you sure you want to erase:"file$"??????" 
INPUT"<Y>es or <N>o";A$ 

REMARK 

A$=UCASE$ (A$) 
IF A$<>"Y" THEN STOP 
CLS 
PRINT"OK, I am erasing:llifile$ 

KILL file$,volume% 
END 

See KILL in the main reference section. 

Macintosh™ Appendix E-92 



MACINTOSH APPENDIX 
ilfl1lt ......... 4i.\WkIR4f.tfflll'&lfMfI.tlftf&1J 

KILL PICTURE statement 

FORMAT KILL PICTURE, variabfe& 

DEFINITION Purges memory used by the PICTURE designated by variable&. 

EXAMPLE 

REMARK 

If many pictures are used (without using KILL PICTURE) you may get an out-of-memory 
system error. 

WINDOW#l,"KILL PICTURE" 
PICTURE ON:CALL SHOWPEN 
CIRCLE FILL 512,383,180 
FOR X=l TO 3000 

PLOT RND(1024), RND(767) TO RND(1024),RND(767) 
NEXT 
PICTURE OFF, A& 
Z&= MEM(-l) 
KILL PICTURE A& 

CLS 
PRINT"BEFORE";Z& 
PRINT"AFTER ";MEM(-l) 
PRINT:PRINT"A total memory savings of:";MEM(-l)-Z&;" BYTES" 
PRINT:PRINT:PRINT"Press a key to continue" 
DO 
UNTIL LEN (INKEY$) 
END 

Be careful to kill only pictures that exist and which will no longer be used. 

Also see the MEMORY MONITOR desk accessory for viewing the memory used by 
PICTURE and other things. 

E -93 Macintosh™ Appendix 



MACINTOSH APPENDIX 

LCOPY function 

FORMAT LCOPY 

DEFINITION Prints the contents of the current window to the Imagewriter. 

EXAMPLE WINDOW#! 

REMARK 

DEF FNP&=PEEKLONG(PRHANDLE) 
CIRCLE FILL 512,383,300 
IF PEEK (FNP&+24)=1 THEN LCOPY 
REM l=Imagewriter, 3=Laserwriter 
END 

Also see PAGE LPRINT. May not function with Laserwriter printer drivers and in some 
cases may cause system errors. 

See PRHANDLE and example above for determining the printer type installed on a 
system. 

Also see ROUTE 128 for a more controllable way of printing window contents to a printer 
such as the LaserWriter. 

Macintosh™ Appendix E-94 



MACINTOSH APPENDIX 

LOF function 

FORMA T LOF (fi/e# [. record length] 

DEFINITION Returns the number of records in a file. Same as the standard ZBasic LOF statement with 
an optional parameter to define the record length. 

EXAMPLE 

REMARK 

The second parameter is primarily useful for determining byte size of a file. LOF(1, 1) 
would return the length of a file in bytes. 

WINDOW4I1 
DO 

A$=FILES$(l,"""volume%) 
OPEN"R l1 ,l,A$"volume% 
PRINT"The file named '"iA$iI11 is "iLOF(l,l).;" Bytes long" 
CLOSE4I1 
PRINT:PRINT:PRINT"Press a key to continue" 
DO: UNTIL LEN (INKEY$) 

UNTIL LEN(A$)=O 
END 

RUN 

The file named 'Fred' is 23 Bytes long 

Also see FILES$ and Ihe LOF function in the main reference manual. 

E -95 Macintosh™ Appendix 



MACINTOSH APPENDIX 

LPRINT statement 

FORMAT LPRINT { % I @} (horizontal, vertical) 

DEFINITION Same as the standard ZBasic statement with the added enhancement of % and @which 
work the same way as PRINT% and PRINT@ except on the ImageWr~er'Th' or 
LaserWriter™ . 

EXAMPLE 

REMARK 

LPRINT%(x,Y) Prints at the relative coordinate position on the paper defined by x,y. 

LPRINT@(X,Y) Prints at the character position on the paper defined by x,y. 

WINDOW#l:WIDTH LPRINT=-2 
CLS 
DEF PAGE 
DEF LPRINT 
IF PRCANCEL THEN END 
COORDINATE 850, 1100:REM Try others! 
Y=20:X=150 
DO:X=X+Gl:Gl=Gl+l 

Y=Y+G:G=G+2 
LPRINT%(X,Y);"LPRINT%"; 

UNTIL X>700 

Y=O 
FOR X= 1 TO 63 

Y=Y+l 
LPRINT@(X,Y)"LPRINT@"; 

NEXT 
CLEAR LPRINT 
END 

Also see ROUTE 128, DEF LPRINT, DEF PAGE, PRCANCEL, COORDINATE and the 
section in this appendix about printing with the "Imagewriter and Laserwriter". 

Important Note: See WIDTH LPRINT-2 for a way of disabling text wrap-around checking and 
increasing print speed 4 to 10 times. Also see LPRINT in the main reference section. 

Macintosh™ Appendix E-96 



MACINTOSH APPENDIX 
,,, •• _ ...... -i'-....affilijjWj 

MEM function 

FORMAT MEM ({ -11-2}) 
MEM (n) 

DEFINITION MEM(-1) returns the maximum amount of available memory for the program and variables. 

EXAMPLE 

REMARK 

Will force purging of all purgable memory blocks to determine total memory available. 

May take from one to several seconds to complete depending on the condition of the 
memory. 

If X&=MEM(-1); X& will return the amount of memory available. Be sure to use a 
Longlnteger variable (regular integers may return a false value). 

MEM(-2) returns the maximum number of contiguous free bytes on the current Heap. 

MEM(n): See INDEX$ in this appendix. 

WINDOW#l;IIKILL PICTUHE" 
PICTURE ON:CALL SHOWPEN 
CIRCLE FILL 512,383,180 
FOR X=l TO 3000 

PLOT RND(1024), RND(767) TO RND(1024),RND(767) 
NEXT 
PICTURE OFF, A& 
Z&= MEM(-l) 
KILL PICTURE A& 

CLS 
PRINT"BEFORE";Z& 
PRINT"AFTER ";MEM (-1) 
PRINT:PRINT"A total memory savings of:";MEM(-l)-Z&;" BYTES" 
PRINT:PRINT:PRINT"Press a key to continue" 
DO 
UNTIL LEN(INKEY$) 
END 

Be sure to read the sections on "Memory Management" and INDEX$ in this appendix. 

May be a good idea to do this function at the start of your program to "Clean-up" memory. 

E -97 Macintosh™ Appendix 



MACINTOSH APPENDIX ----MEMORY MONITOR Desk Accessory 

Lm 
FORMAT Memory Monitor 

DEFINITION The Memory monitor DA has been to monitor system and application memory so you 
can see IT there are problems with memory while your program is running! Use 
FonUDA Mover to install Memory Monitor on your diskettes (we've made it public domain) • 

. " 
Pie Updllte Off 

..... Show System Hellp 
Fllst Pie Updllte 
Crunch Elich Update 
Crunch Memory Once 

. " 
Pie Updllte Off 
Show System Hellp 
Fast Pie Updllte 
Crunch Elich Updllte 
Crunch Memory Once 

REMARK HEAP MONITOR MENU OPTIONS 
Pie Update Off: Turns off the graphic pie chart updating (allows programs to run faster). 

Show System Heap: Changes the display to System Heap vs, Application Heap 
Fast Pie Update: Sets The Memory monttor to update the Memory Pie chart about once every 3 

seconds, When oil tt updates about once every 10 seconds. 
Crunch Each Update: Causes a MaxMem function to be called every update, All purgable blocks will be 

purged and relocatable blocks will be moved down in memory, Check IT problems 
are occurring with handles or relocatable blocks. 

Crunch Memory Once: Crunches memory like above but only once (same as doing MEM(-1)). 

APPL: Application Heap Block Size. All parts of the current program(s) and variables 
must reside in this area. It may be expanded up to the Stack size, 

SYS: System Heap Block Size. Operating System Heap. 
Free: Bytes available for larger or new blocks. The Heap may expand up to Stack size 

less about 30,000 to 60,000 bytes. 
Blocks: Blocks Presently in Use. Good way to find blocks that are allocated. 

Stack Area: Free Stack memory H this number decreases rapidly--check things like: GOSUB 
wtthout RETURN, 

BLOCK TYPES 
Fixed: Cannot be moved or purged until program is finished. 

locked: Same as fixed but may be Unlocked by the program. 
Purgable: This type of block may be purged if its memory is required. 

UnPurgable: This block may be moved but cannot be purged 
Free Memory: This memory is available for more or larger blocks. 

Macintosh™ Appendix E-98 



MACINTOSH APPENDIX 

MENU function 

FORMAT MENU (expression) 

DEFINITION Using the two menu functions, MENU(0) and MENU(1), you can determine which menu 
item was selected. 

EXAMPLE 

REMARK 

continued ... 

These functions are returned when menu events take place between MENU ON and 
MENU OFF statements. 

Your program can then call the appropriate routine using ON MENU GOSUB. 

MENU(0) 

MENU(1) 

Returns the MENU number chosen on the menu bar and 
MUST be used BEFORE you use MENU(1). 
The'* menu returns 255 (used with APPLE MENU). 

Returns the MENU item down which was selected. 
The'* menu returns 1 (used with APPLE MENU). 

MENU(O)=255 
MENU(1)=1 

~MENU(O)= 3 
•• File Edit IIIIlIII!Il!III font Style 

MENU(1)= 8 '" 
V 

See program example next page ... 

Compile Program 
Create Rppllcatlon 
Creetlll Choln File 

List to Screen .l 

Memory InTO •• 

conngure options I 

Note that both functions must be used as a pair. Selecting one without the other causes 
unpredictable results. 

E -99 Macintosh™ Appendix 



MACINTOSH APPENDIX 

MENU function continued ... 

EXAMPLE WINDOW #1, "MENU EXAMPLES" 
COORDINATE WINDOW 

APPLE MENU "<BAbout 'MENU EXAMPLES'" 
EDIT FIELD#I, "Use with EDIT menu", (100,100) - (350, Ill) ,1,2 

MENU 1, 0, 1, "Menu one" 
MENU 1, 1, 64, "/IITEMI has @ sign because of ASCII 64" 
MENU 1, 2, 2, "/2This item has a check mark!" 
MENU 1, 3, 0, "«B/3DISABLED MENU ITEM (GREY) " 
MENU 1, 4, 1, "CLEAR THE SCREEN" 
MENU 1, 5, 1, "/QQuit this program" 

EDIT MENU 2 
MENU 2,1,0,"Can't UNDO" 
MENU 2,7,1,"Use this EDIT MENU with EDIT FIELDS!" 

MENU 3, 0, 1, "Menu three" 
MENU 3, 1, 1, 11 ITEM 1 OF 3 ... Notice how far the menu 
MENU 3, 2, 1, "AI Example of adding 
MENU 3, 3, 1, "<UITEM 3 OF MENU 3 is 
MENU 3, 5, 1, "<BTHE 'BLACK 

ON MENU GOSUB "Menu Check" 
MENU ON: BREAK ON 
uMain Event Loop" 
GOTO "Main Event Loop" 
MENU OFF:BREAK OFF 

"Menu Check" 
Ml=MENU(O) :M2=MENU(I) 
PRINT@(O,O);: CLS LINE 

BOX! t" 

an ICON" 
underlined 

PRINT I1Item n i M2" of MENU"iMli" was chosen." 
LONG IF Ml=255 AND M2=1 

WINDOW#2" (150,100) - (275, 200),-3 
PRINT@(0,3)"This Example Program" 
PRINT@(0,4)" by Mike Gariepy" 
PRINT@(0,5)" April 29, 1987" 
DO 
UNTIL MOUSE (3) :REM Click mouse to close window 
WINDOW#I:WINDOW CLOSE#2 

END IF 
IF Ml=1 AND M2 =4 THEN CLS 
IF Ml=1 AND M2 =5 THEN END 
LONG IF Ml=3 AND M2 =5 

BOX FILL 0,0 TO 1023, 767 
COLOR=O:BOX FILL 150,200 TO 320,230:COLOR=-1 
PRINT%(152,220)"The Black Box strikes Again!"; 

END IF 
MENU:REM Used to set the Menu back to normal 
RETURN 
END 

(Meta 

may go!" 

char <U)" 

Macintosh™ Appendix E-100 



MACINTOSH APPENDIX 
WWf; . 

MENU statement 

FORMAT MENU ON 
MENU OFF 
MENU STOP 

DEFINITION Sets event trapping for lines between MENU ON and MENU OFF. A call will be made to 
the routine specified by ON MENU GOSUB. 

EXAMPLE 

REMARK 

continued ... 

MENU ON 

MENU OFF 

MENU STOP 

Enables event trapping for MENU activity. This will dramatically 
slow program performance and you should use MENU OFF 
whenever high performance is required. Checks for MENU 
events at the beginning of each line. 

Disables event trapping for MENU activity. Use whenever a routine 
needs to execute at high speeds. 

Temporarily disables the ON MENU GOSUB statement and stores 
MENU events in a queue (buffer). Does not increase program 
psifoimaiics. Use MENU OFF when high speed is required. Do 
another MENU ON to restore the ON MENU GOSUB. At that time 
the events in the queue will be processed. 

Note: This statement is automatically executed when a program 
jumps to a routine specified by ON MENU GOSUB and MENU ON 
is enabled again after a RETURN from the ON MENU GOSUB. 

See program example under MENU function. 

See MENU function, APPLE MENU, EDIT MENU, ON MENU GOSUB and the program 
example under MENU function and the other MENU statements on the next page. 

Important Note: Order of program lines determines where event trapping takes place ... 
NOT the order of execution (this is different from the BASIC interpreter). 

E -101 Macintosh™ Appendix 



MACINTOSH APPENDIX 

MENU statement (continued ... ) 

FORMAT MENU 
MENU menu number, item number, state [, title$] 

DEFINITION MENU by itself resets the menu bar back to normal after a MENU event has taken place. 

EXAMPLE 

REMARK 

These statements are used to define the contents of pull-down menus. The optional 
parameters set characteristics of menu items: 

menu number 
item number 

state 

title$ 

The menu column (1-20) (across the top) 
The item number of the menu. If zero is specified, the Menu title is 
assumed (the items down from the top). 
O=disables item 
1 =enableitem 
2=enable item with a check mark 
3 or greater= puts 1bal ASCII character in place of a check mark. 
The string name of the item. Use Meta-Characters to format text or 
add graphic icons. 

USING META CHARACTERS TO FORMAT MENU CONTENTS 

ZBasic allows meta characters to be used in title$ to pass item formatting information to 
the MENU statement (note that the title on the menu bar cannot be changed, only the 
pull down items); 

Meta-Character 
;orRETURN 

< 

~ 
Separates multiple items 

Followed with icon number, adds that icon to the menu 

Followed by a character, marks the menu item 
with that character. Such as a check mark. 

Followed by a character, associates the keyboard key equivalent 
that may be used with the control key. 

Disables the item (greys out). Will not allow userto select it. 

Followed by one of the 
following characters, sets 
the text attributes: 

< B Bold faced 
<I Italicized 
<U Underlined 
<0 Outlined 
<S Shadowed 

See program example under MENU function 

Note: Any items skipped are replaced by disabled lines. 

See information under MENU function, APPLE MENU, EDIT MENU, and the MENU 
statement on the previous pages. Also see the "Toolbox" section of this appendix. 

Macintosh™ Appendix E-102 



MACINTOSH APPENDIX 

MODE statement 

FORMAT MODE [=)n 

DEFINITION MODE is disabled (and ignored) with this version because it is not applicable. All 
Macintosh modes use graphics. All modes use high resolution graphics. 

EXAMPLE 

REMARK 

Character attributes may be changed using the TEXT statement. 

All ZBasic print and graphic action takes place in WINDOWS, not on the screen like other 
versions of ZBasic. The upper-Left corner of a window is the 0,0 graphic and text 
coordinate position. 

Graphic coordinates may be changed by using the COORDINATE statement. The defauH 
coordinates are 1 023x767 as with all other versions of ZBasic. These coordinates are 
relative to the size of the window so if the window size is adjusted the coordinates will be 
adjusted at the same scale. 

To get pixel coordinates use COORDINATE WINDOW. 

MODE=7: REM Ignored .... does absolutely nothing! 

CONVERTING ZBASIC PROGRAMS FROM OTHER COMPUTERS 

To make a Macintosh window emulate other computers you will need to set the text type 
to a mono·spaced font, like MONACO. The following attributes will set a typical window to 
approximate a 80 x25 character screen. Adjust the pOint size as necessary to your 
preferences: 

TEXT 4, 9, 0, 0 

Note: MODE uses the Apple ROMS to set the way the text replaces the background text 
and graphics. There is a bug in the older Macintosh ROMS (64K) that will print extra 
spaces after the text is printed on the screen. You may need to program around this 
problem when using the 64K ROM. 

E -1 03 Macintosh™ Appendix 



MACINTOSH APPENDIX 

MOUSE function 

FORMAT MOUSE (expression) 

~ 
Important Note: This is an optional format to the standard ZBasic MOUSE functions 
(see main reference section). In order to enable this type of MOUSE function you need 
to use the DEF MOUSE=1 statement at the beginning of a program. 

DEFINITION The following MOUSE(expression) functions return information about the MOUSE. The 
value of expression rnay be an integer number from zero to six. 

continued ... 

MOUSE BUTTON EVENTS 

MOUSE(0) This function returns a number of values depending on the MOUSE 
button event that has taken place 
121 Button not pressed and has not been pressed since the last 

MOUSE(0) check. 

Single-Click since last MOUSE(0) check. Use MOUSE(3), (4), (5) 
and (6) to check the first and last posHions of the click. 

2 Double-click since last MOUSE(0) check. Use MOUSE(3), (4), (5) 
and (6) to check the first and last positions of the double-click. 

3 Triple-click since last MOUSE(0) check. Use MOUSE(3), (4), (5) 
and (6) to check the first and last positions of the double-click. 

-1 Same as 1 but the mouse button is still being held down 
-2 Same as 2 but the mouse button is still being held down. 
-3 Same as 3 but the mouse button is still being held down. 

Note: -1, -2, or -3 usually indicate a Click-and-drag event. 

DETERMINING CURRENT MOUSE POSITION 

MOUSE(1) 

MOUSE(2) 

Returns the last horizontal (X) coordinate of the mouse when the 
button was pressed. 

Returns the last vertical (Y) coordinate of the mouse when the button 
was pressed. 

Macintosh™ Appendix E-104 



MACINTOSH APPENDIX f._ ....... ,.B_mmiw •• i;. 
MOUSE function continued .. . 

REMARK 

DETERMINING MOUSE POSITIONS DURING CLICK EVENTS 

MOUSE(3) 

MOUSE(4) 

MOUSE(5) 

MOUSE(6) 

Returns the horizontal (X) coordinate of the mouse when the button 
was pressed the time BEFORE the last event. Very handy for 
determining where the mouse start was in a click-and-drag event. 

Returns the vertical (Y) coordinate of the mouse when the button was 
pressed the time BEFORE the last event. Very handy for determining 
where the mouse start was in a click and drag. 

Returns values depending on the status of MOUSE(0). If a button was 
pressed when MOUSE(0) was checked then this function returns the 
horizontal (X) position of the mouse. If the button was not being 
pressed then this function returns the horizontal position of the 
mouse when the button was released. May be used to calculate the 
last position of a "Click and drag". 

Returns values depending on the status of MOUSE(0). If a button was 
pressed when MOUSE(0) was checked then this function returns the 
vertical (Y) position of the mouse. If the button was not being pressed 
then this function returns the vertical position of the mouse when the 
button was released. May be used to calculate the last position of a 
"Click and drag". 

See MOUSE statement in this appendix and the standard ZBasic MOUSE function in the 
reference section for optional use of the mouse. 

Also see mouse tracking example in the toolbox chapter of this appendix. 

Important note: Set DEFMOUSE=1 at the beginning of your program to enable this 
syntax. Otherwise the ZBasic MOUSE functions will be in affect. 

Important note: The MSBASIC type MOUSE (DEF MOUSE=1) will not function 
outside of a window. Therefore be sure to open a window before attempting to use the 
MOUSE. 

E -105 Macintosh™ Appendix 



FORMAT MOUSE ON 
MOUSE OFF 
MOUSE, STOP 

MACINTOSH APPENDIX 

MOUSE statement 

~po .. nt Noto' Th;,. '" opton" '"mol to the " .. "''''' _;, MOUSE """;,,, 
(see main reference section), In order to enable this type of MOUSE statement you need 
to use the DEF MOUSE=-1 statement at the beginning of a program. 

DEFINITION These statements enable or disable event trapping of MOUSE events 

EXAMPLE 

REMARK 

MOUSE ON Begins checking for MOUSE events and returns those events in 
MOUSE functions (0-6). If an ON MOUSE GOSUB statement has 
been used a GOSUB will be made to the routine specified by line 
or label. When any event trapping is done there will be a 
significant reduction in program speed. 

MOUSE OFF 

MOUSE STOP 

Disables mouse event trapping. Be sure to tum off all event 
trapping when maximum program performance is required. 

Temporarily disables ON MOUSE GOSUB. Stores events in a 
queue and will return events again when MOUSE ON is used. 

WINDOW#l,"MOUSE EXAMPLE" 
DEF MOUSE=-l: REM Other MOUSE types 
TEXT ",a: REM Set for overwrite mode 
MOUSE ON: BREAK ON 
ON MOUSE GOSUB"Mouse Events" 

"Main Event Loop" 
GO TO "Main Event Loop" 
MOUSE OFF 

"Mouse Events" 
XXX=MOUSE(O) :X=MOUSE(l) :Y=MOUSE(2) 
DO:X2=MOUSE(1) :Y2=MOUSE(2) 

PEN",lO:REM Set XOR mode for graphics. 
PLOT X,Y TO X2,Y2 
PLOT X,Y TO X2,Y2 

UNTIL MOUSE (0) =0 
IF ABS(XXX»l THEN PLOT X,Y TO X2,Y2 
RETURN 

Important Note: MOUSE will not function in the ZBasic default window. You will have to 
open your own window before the event can be detected. 

Important Note: Order of program lines determines where event trapping takes place ... 
NOT the order of execution (this is different from the BASIC interpreter). 

Macintosh™ Appendix E-106 



MACINTOSH APPENDIX 

ON BREAK GOSUB statement 

FORMAT ON BREAK GOSUB Line number or "label" 

DEFINITION When this statement is used and a BREAK event occurs, the program will call the routine 
specified by line number or label. A BREAK event occurs when the <COMMAND 
PERIOD> keys are pressed. 

EXAMPLE 

REMARK 

This statement is enabled only between BREAK ON and BREAK OFF program lines. 

To disable this statement and still store BREAK events in the queue use BREAK STOP. 
After BREAK STOP you can re-enable the event trapping by executing another BREAK 
ON at which time any events in the queue will be handled. 

WINDOW#1 
DIALOG ON:BREAK ON 
ON BREAK GOSUB "BREAK OUT" 
ON DIALOG GOSUB "Dialog Event" 

"Main Event Loop" 
GOTO "Main Event Loop" 
DIALOG OFF 

"Dialog Event" 
PRINT"DIALOG(O)=";DIALOG(O) 
PRINT"DIALOG(l)=";DIALOG(l) 
RETURN 

"BREAK OUT" 
END 

See BREAK statements and the section "Writing Macintosh Programs" in this appendix. 

Important Note: For breaking out of programs the ON BREAI( GOSUB is not necessary. A 
Simple BREAK ON near the beginning of a program will cause an automatic scan for the 
<COMMAND PERIOD> keys. If these keys are pressed an END statement will be 
executed. 

Also see TRON, TRONB, TRONX, TRONV, TRONS and TRON WINDOW for other ways of 
breaking out of programs (for best results don't mix BREAK and TRON). 

E -1 07 Macintosh™ Appendix 



MACINTOSH APPENDIX 

ON DIALOG GOSUB statement 

FORMAT ON DIALOG GOSUB Line number or "label" 

DEFINITION When this statement is used and a DIALOG event occurs, the program will call the routine 
specified by line number or label. See DIALOG function for the types of events that are 
trapped with this statement. 

EXAMPLE 

REMARK 

This statement is enabled only between lines containing DIALOG ON and DIALOG OFF. 

To disable this statement and still store events in the queue use DIALOG STOP. After a 
DIALOG STOP you can re-enable the event trapping by executing another DIALOG ON at 
which time any events in the queue will be handled. 

WINDOW#! 
DIALOG ON:BREAK ON 
ON DIALOG GOSUB "Dialog Event" 

"Main Event Loop" 
GOTO "Main Event Loop" 
DIALOG OFF 

"Dialog Event" 
PRINT"DIALOG (0) =" ;DIALOG (0) 
PRINT"DIALOG (1) =" ;DIALOG (1) 
RETURN 

See DIALOG ON, DIALOG OFF, DIALOG STOP statements, the DIALOG function and 
the section "Writing Macintosh Programs" in this appendix. 

Important Note: An automatic DIALOG STOP is executed when this statement is used. 
Upon RETURN an automatic DIALOG ON is executed. This prevents the routine from 
calling itself and causing system errors. 

Macintosh™ Appendix E-10B 



MACINTOSH APPENDIX 

ON MENU GOSUB statement 

FORMAT ON MENU GOSUB Line number or "label" 

DEFINITION When this statement is used and a MENU event occurs, the program will call the routine 
specified by line number or label. 

EXAMPLE 

REMARK 

This statement is enabled only between lines containing MENU ON and MENU OFF. 

To disable this statement and still store MENU events in the queue use MENU STOP. 
After a MENU STOP you can re-enable the event trapping by executing another MENU 
ON at which time any events in the queue will be handled. 

WINDowiIl 
MENU ON: BREAK ON 
ON MENU GOSUB "Menu Event" 

HENU 1, 1, 1, JI/QQuit" 

"Main Event Loop" 
GO TO "Main Event Loop" 
MENU OFF 

"Menu Event" 
X=MENU(O) :Y=MENU(l) 
IF X=l AND Y=l THEN END 
RETURN 

See MENU ON, MENU OFF, MENU STOP statements, the MENU function and the 
section "Writing Macintosh Programs" in this appendix. 

Important Note: An automatic MENU STOP is executed when this statement is used. 
Upon RETURN an automatic MENU ON is executed. This prevents the routine from 
calling itself and causing system errors. 

E -109 Macintosh™ Appendix 



MACINTOSH APPENDIX 

ON MOUSE GOSUB statement 

FORMAT ON MOUSE GOSUB Line number or "label" 

DEFINITION When this statement is used and a MOUSE event occurs, the program will call the routine 
specified by line number or label. 

EXAMPLE 

REMARK 

This statement is enabled only between lines containing MOUSE ON and MOUSE OFF. 

To disable this statement and still store MOUSE events in the queue use MOUSE STOP. 
Alter a MOUSE STOP you can re·enable the event trapping by executing another 
MOUSE ON at which time any events in the queue will be handled. 

WARNING: Use DEF MOUSE=1 or BOMB!. 

WINDOW#l:DEF MOUSE=l 
MENU ON: MOUSE ON:BREAK ON 
ON MOUSE GOSUB "Mouse Event" 
ON MENU GOSUB "Menu Event" 

MENU 1, 1, 1, "/QQuit" 

"Main Event Loop" 
GOTO "Main Event Loop" 
MENU OFF:MOUSE OFF 

"Menu Event" 
X=MENU(O) :Y=MENU(l) 
IF X=l AND Y=l THEN END 
RETURN 

"Mouse Event" 
FOR X=O TO 6 

PRINT"MOUSE EVENT";X;"=";MOUSE(X) 
NEXT 
RETURN 

See MOUSE ON, MOUSE OFF, MOUSE STOP statements, the MOUSE function and 
the section "Writing Macintosh Programs" in this appendix. 

Important Note: An automatic MOUSE STOP is executed when this statement is used. 
Upon RETURN an automatic MOUSE ON is executed. This prevents the routine from 
calling itself and causing system errors. 

Macintosh™ Appendix E-110 



MACINTOSH APPENDIX 

ON TIMER (n) GOSUB statement 

FORMAT ON TIMER (n) GOSUB Line number or "label" 

DEFINITION This statement is used to set up a call to a specific routine every n seconds. 

EXAMPLE 

REMARK 

This statement is enabled only between lines containing TIMER ON and TIMER OFF. 

If n=l 0 then the program will be interrupted every ten seconds. 
IF n=600, the program will be be interrupted every 10 minutes. 

WINDOW#! 
MENU ON: TIMER ON:BREAK ON 
ON TIMER 10 GOSUB "Timer Event" 
ON MENU GOSUB "Menu Event" 

MENU 1, 1, 1, "/QQuit" 

"Main Event Loop" 
GOTO "Main Event Loop" 
MENU OFF:TIMER OFF 

"Menu Event" 
X=MENU(O) :Y=MENU(l) 
IF X=l AND Y=l THEN END 
RETURN 
TIMER OFF 

I1Timer Event" 
J&=TIMER 
PRINT "LAST TIMER";I& 
PRINT "THIS TIMER";J& 
PRINT "---------------------------" 
PRINT "TIME ELAPSED";J&-I& 
I&=J& 
RETURN 

Also see TIMER statement and function in this appendix. 

Note: This statement need not be enabled to get the current value of TIMER. 

E -111 Macintosh™ Appendix 



MACINTOSH APPENDIX 

OPEN statement 

FORMAT OPEN "[{ RID}) {A I RIO II }". filenumber, "filename" [. record lengthJ[. Volume%] 

DEFINITION The OPEN statement for the Macintosh is the same as the standard ZBasic OPEN 
statement with the following enhancements: 

EXAMPLE 

REMARK 

Types Definition 
R RESOURCE FORK: Used when you want to open the Resource fork of a file. 

The Resource fork of an application. like ZBasic. contains the object code 
and resources. The DATA FORK of that application could be used to store 
FONT or WINDOW SIZE preferences for that application (or whatever). 

o DATA FORK: This is the default. Plain DATA files usually have empty 
Resource forks. You could use the Resource fork for storing other important 
important information about that file (like two files in one). 

A Used to OPEN a file for APPEND. This opens the file and sets the file pointer 
to the end of the file so subsequent PRINT# or WRITE# statements will add 
data at the end. OPEN "RA" for resource fork and "DA" for data fork. 

Volume% Tells the system which file volume number is to be used to save the file. The 
volume number is retumed from the FILES$ function. This way of 
designating the volume is much better than using pathnames and is 
recommended in "Inside Macintosh". 

filename Pathnames may also be used in the filename with colon separators. Volume 
number is preferable in most cases. 

OPEN"DO",l,"FRED.TXT" 
PRINT#l,"Hello" 
CLOSE#! 

OPEN"DA", 1, "FRED. TXT" 
PRINT#l,"Goodbye" 
CLOSE#! 

OPEN "I",l,"FRED.TXT" 
DO 

INPUT#!,A$ 
PRINTA$ 

UNTIL EOF (1) 
END 

RUN 

Hello 
Goodbye, 

Also see GET FILE INFO. PUT FILE INFO. GET VOLUME INFO and FILES$ in this 
appendix. Also see OPEN. ON ERROR GOSUB and the chapter "Disk Errors" in the main 
reference section. 

Macintosh™ Appendix E·112 



MACINTOSH APPENDIX 

OPEN "e" statement 

FORMAT OPEN "C", -1 or -2 [,[baud][,[parity][,[stopbit][.word length], [buffer]]]] 

DEFINITION Enhancements to the standard ZBasic statement include: 

-1 
-2 

baud 

stopbit 

word length 

buffer 

Modem port 
Printer port 

Up to 19,200, and possibly 57,600 baud for some 
applications. buffer may need to set larger for higherbaud rates. 
Note that 38,400 baud is also supported for MIDI fans. 

2=1.5 stop bits 

2=5 bits 
3=6 bits 

This version adds ihe "bu;;er" enhancement. Default buffer length 
is 64 bytes. Minimum buffer Length is 1 byte. Maximum length is 
32,767 bytes. 

EXAMPLE CLS 

REMARK 

REM Example of printing text directly to the Imagewriter. 
REM This by-passes the Macintosh printer driver and allows 
REM the user to pass control codes that would be stripped out 
REM by that driver if you used LPRINT or ROUTE 128. 

OPEN"C",-2,9600 
HANDSHAKE=-l:REM XON/XOFF handshaking 
PRINT'-1,CHR$(27);CHR$(31);"Hello" 
CLOSE'-2 
END 

Also see HANDSHAKE in this appendix. 

See main reference section for more information about OPEN "C" and some example 
terminal programs and file transfer programs. 

Important Note: Don't mix OPEN"C" with LPRINT when printing. OPEN"C" won't print to 
the ImageWriter or LaserWriter through AppleTalk. Note that some versions of BASIC use 
LPRINT to route output directly to the printer while ZBasic sends LPRINT output to the 
current printer driver (selected from "Chooser" DA). 

E -113 Macintosh™ Appendix 



MACINTOSH APPENDIX 
~ w 

OPEN TALK statement 

FORMAT OPEN TALK, - ret#, " [string] '1, buffer size] 

DEFINITION This statement opens the MacinTalk speech synthesis software driver and allows you to 
specify Phoneme or American speech commands and set the size of the buffer. 

EXAMPLE 

REMARK 

The Macintalk driver takes ASCII text and converts it into the synthetic speech sounds of a 
male, non-regional, standard American. There is also optional phoneme support. 

The MacinTalk™ program from Apple is included with the master ZBasic diskette and must 
be in the SYSTEM folder of the application using itor a system error may occur (simply 
copy the system icon called "Macintalk" to the system folder from the ZBasic master disk). 

-ref# A negative number describes the using MacinTalk with a PRINT # -ref, 
string. Be sure to use a number different than others used as reference 
numbers for Serial ports, AppleTalk Network ports or OPEN HELP. 

"string" Normally use "". This is reserved for an "exception file". If "noReader" is 
used, you may use phonemes instead of English (default is English). 

buffer size Creates a buffer for storing speech text. The longer the text the longer 
the buffer size needs to be. Default is 256 bytes. 

CLOSE # -ref Closes the Macintalk file. 

REM Example of using ASCII text (regular English words) 
OPEN TALK, -1'''',512 
TALKi-1, 150,110,0 

DO 
INPUT"Tel1 me what to say: ";Speak$ 
PRINTi-1, SpeakS 

UNTIL LEN(Speak$)=O 
CLOSEi-1 

REM Example of using Phonemes (special symbols representing human 
REM voice sounds. This lets you create more realistic speech) . 
OPEN TALK,-1"noReader",512 
TALKi-1, 150,110,0 
PRINTi-1, "/HEH3LOW" :REM Remember: Phonemes only! No ASCII. 
CLOSEi-1 

Important: Always CLOSE MacinTalk when finished. 

See TALK statement and the section "MacinTalk" in the front of this appendix for more 
information. 

Macintosh"" Appendix E-114 



MACINTOSH APPENDIX 1.'i!* ___ I'.II •• {ZI.{f •••• ~ ... 
PAGE lPRINT function 

FORMAT PAGE LPRINT 

DEFINITION Prints the contents of the current window to the imagewriter. 

EXAMPLE WINDow#1 

REMARK 

REM Note that a function is used to get the PRHANDLE each time 
REM This is because it moves around in memory and may not be 
REM in the same place for long. 

DEF FNP&=PEEKLONG(PRHANDLE) 
CIRCLE FILL 512,383,300 
IF PEEK (FNP&+24)=1 THEN PAGE LPRINT 
REM l=Imagewriter, 2=Daisywriter, 3=Laserwriter 
END 

Also see LCOPY. Does not function with the Laserwriter and in some cases may cause 
system errors. See PRHANDLE and example above for determining the printer type 
installed on a system. 

See ROUTE 128 for alternate ways of sending text and graphics to a LaserWriter. 

Same as pressing SHIFT-OPTION-4. PAGE LPRINT is the same syntax as the MS-DOSTM 
version of ZBasic and functions the same as LCOPY. 

E -115 Macintosh™ Appendix 



MACINTOSH APPENDIX 

PEN statement 

FORMAT PEN [Xsizej[, [Ysize}, [visible}, [pen mode}, [pen pattern}} 

DEFINITION PEN is used to specifiy the height and width of the pen point, the mode of how the pen 
interacts with the background, the color and pattern of lines, circles and boxes created 
with ZBasic commands and quickdraw routines (like rounded rectangles and polygons): 

EXAMPLE 

REMARK 

Xsize, Ysize 

visible 
pen mode 

The height and width of the pen point (respectively). See example. 
Note: The upper left corner of the "PEN" is the coordinate pointer. 
Visible= non-zero and Invisible= zero. 
Sets the transfer mode through which the pen pattern is transfered onto 
the screen when shapes are drawn. The modes are: 

8 
10 
12 
14 

PATTERN COPY 
PATTERN XOR 
NOT PATTERN COPY 
NOT PATTERN XOR 

DEFINITION 

9 
11 
13 
15 

PATTERN OR 
PATTERN BIC 
NOT PATTERN OR 
NOT PATTERN BIC 

MODES 
COpy 
OR 
XOR 

Replaces the pixels in the destination area. 
Replace black with black, white with white. 
XORs pixels. Great for animation. 

BIX BIC erases black pixels to white. 
pen pattern Patterns (below). Patterns may be changed from the control panel. 

0123456789101112131415161718 

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 

WINDOW411, "PEN Example": COORDINATE WINDOW 

CLS:PRINT"Press a key to see the X thickness of PEN" 
DO:UNTIL LEN(INKEY$) 
FOR X1=3 TO 475 STEP 22 

X=X+1:Y=60:PRINT%(Xl-3,45);X; 
PEN X,l: PLOT X1,Y TO Xl,310 

NEXT 
DO:UNTIL LEN(INKEY$) 
CLS:PRINT"Press a key to see the Y thickness of PEN" 
DO:UNTIL LEN (INKEY$) :Y=O 
FOR Y1=15 TO 375 STEP 16 

Y=Y+1:X=60:PRINT%(40,Yl+9);Y; 
PEN 1,Y:PLOT X,Y1 TO 450,Y1 

NEXT 
DO:UNTIL LEN(INKEY$) 

See COORDINATE, PLOT, CIRCLE and BOX for ways of drawing using the PEN created 
formats. See the ''Toolbox'' section of this appendix for other ways of using PEN. 

Macintosh™ Appendix E-116 



MACINTOSH APPENDIX 

PICTURE function 

FORMAT PICTURE 

DEFINITION Returns a Longlnteger handle (a memory address pointer) to the current picture area 
specified by PICTURE ON. If PICTURE is used by itself it means that the current picture is 
to be used. Pictures rnay be stored with Longlnteger pointers using PICTURE OFF, var& 
or by var&=PICTURE. Pictures may be put to the window with: PICTURE, var&. 

EXAMPLE1 REM SAVE a PICTURE, var& to a RESOURC.E FILE 
WINDOWf1, "PICTURE Example" 

REM This routine creates a PICTURE called Picture& 
PICTURE ON: CALL SHOWPEN 
CIRCLE 512,384,350 
PLOT 0,0 TO 1023,767:PLOT 1023,0 TO 0,767 
PICTURE OFF 
picture&=PICTURE 

PICTURE, Picture& 
CALL CREATERESFILE ("Testfile") 
Resourcenumber%=l:REM Store several pictures if you want. 
A%=FN OPENRESFILE ("Testfile") 
CALL ADDRESOURCE (Picture&, CVI("PICT"), Resourcenumber%, .... ) 
CALL CLOSERESFILE (A%): KILL PICTURE, Picture& 

Note: A number of pictures may be stored in the same file and may be specified by 
resource number"lo (an integer number Irom 1 to 32,767). 

EXAMPLE2 REM LOAD a PICTURE,var& from a RESOURCE FILE 
A%=FN OPENRESFILE("Testfile") 

REMARK 

continued ... 

Resourcenumber%=l: REM You may have many pictures 
Picture&=FN GETPICTURE (Resourcenumber%) 
REM 
REM Use CALL DETACHRESOURCE (handle) only if you want to 
REM keep the picture in your program. Otherwise you must 
REM show the Picture BEFORE you CLOSE the resource file 
REM with CALL CLOSERESFILE. 
REM 
CALL DETACHRESOURCE (Picture&) 
CALL CLOSERESFILE(A%) 
PICTURE, Picture& 

Note: Resourcenumber"lo may be used to store or load rnany pictures in one resource lile. 
These numbers MUST be unique (do not duplicate numbers within a resource lile). See 
the Macintosh toolbox call: UNIQUEID. 

See Next Page for an example of creating and using a PICTURE bigger than the screen. 
Also see PICTURE statement, KILL PICTURE, WIDTH -2 and PEN. A PICTURE is limHed 
to 32K. 

E -117 Macintosh™ Appendix 



MACINTOSH APPENDIX 

PICTURE function continued ... 

EXAMPLE3 REM Example of creating a PICTURE bigger than the screen. 
REM CALL CLIPRECT allows this. It uses the first 4 integer 
REM variables to get the coordinates: T,L, Band R. 
REM See CALL CLIPRECT in the toolbox section for more info. 

DIM T,L,B,R : T=O : L=O : B=1024 : R=1024 
WIDTH -2:REM Allow printing without WRAP around IN WINDOW. 
DEF MOUSE=-l:REM Mac MOUSE 
WINDOW OFF:APPLE MENU "Instructions to 'The BIG PICTURE'" 
WINDOW#l, "BIG PICTURE", (10,40) - (510,340) ,1 
COORDINATE WINDOW: REM WINDOW area 500 x 300 
CALL CLIPRECT(T): REM CLIP area = 1024 x 1024 
PICTURE ON:TEXT",O 
PLOT 0,0 TO 1023,767: BOX 0,0 TO 1024,1024 
CIRCLE FILL 512,512,300 
PRINT% (10,1014) "Bottom Left" 
PRINT%(900,1014) "Bottom Right" 
PRINT%(10,20) "Upper left" 
PRINT%(900,20)"Upper Right" 
PRINT%(500,512) "CENTER" 
PICTURE OFF:P&=PICTURE 

MENU 1,O,l,"File" 
MENU 1,1,1,"/QQuit" 
MOUSE ON:MENU ON 
ON MENU GOSUB"Menu":ON MOUSE GOSUB"Mouse" 
X=O:Y=O:GOSUB "Show Picture" 

I1Main Event Loop" 
GOTO "Main Event Loop" 
MOUSE OFF:MENU OFF 

"Show Picture" 
PICTURE(X,Y),P&: RETURN 

"Menu" 
M=MENU(O) :M1=MENU(1) 
IF M=l AND M1=1 THEN END 
IF M<>255 THEN MENU:RETURN 
WINDOW#2,"Instructions: 'The Big Picture''', (100,100)-(400,300),24 
PRINT:PRINT:PRINT 
PRINT"To examine different parts of the picture" 
PRINT"press the MOUSE button and drag the window" 
PRINT"to the position you want" 
DELAY 5000: BEEP: 
WINDOW#l:WINDOW CLOSE#2:MENU:RETURN 

"Mouse" 
XX=MOUSE(O) :I=MOUSE(l) :J=MOUSE(2) 
DO 

X=X+I-MOUSE(l) :Y=Y+J-MOUSE(2) 
IF X<-539 THEN X=-539 ELSE IF X>O THEN X=O 
IF Y<-739 THEN Y=-739 ELSE IF Y>O THEN Y=O 
CLS:GOSUB "Show Picture" :DELAY 25 

UNTIL MOUSE (O)=O:PRINT"X=";X" Y="Y" 
RETURN: END 

Macintosh™ Appendix E-118 



MACINTOSH APPENDIX 
.,.,....,..' .. 17 ... *g., .... 

PICTURE statement 

FORMAT PICTURE ON [(x1,y1) - (x2,y2)] 
PICTURE OFF [, var&] 
PICTURE [(x1,y1)][-(x2, y2)][,var&] 

DEFINITION PICTURE may be used to store program Graphics, QuickDraw and/or Text activity 
between a PICTURE ON and PICTURE OFF statement. These pictures can be recalled 
with the Longinteger& variable handle. 

EXAMPLE 

REMARK 

DIFFERENCE BETWEEN PICTURE and GET/PUT GRAPHICS 
PICTURE provides a means of storing graphic images as symbols and coordinates instead 
of pixel images. This requires much less storage and provides a way of doing graphics in 
the finest quality of the current device (like the Laserwriter). GET and PUT graphics are 
fast but require much more storage. An example of the storage difference of say 30 
circles on the screen with GET would be about 20K while PICTURE would only require 
about 200 bytes. 

Picture activity will not be seen unless you use CALL SHOWPEN. CALL HIDEPEN may 
also be used to hide graphics activity (default). 

PICTURE ON Stores the graphic or text into the current PICTURE 
buffer. The entire window area is assumed. See previous 
page to create a PICTURE area larger than the screen. 

PICTURE ON (0,0)-(40,40) Only activity occurring in this "region" will be stored. 

PICTURE OFF ,Pict& Stops storing graphics and text in the PICTURE buffer. 
Will use Pict& as a handle to this picture. 

PICTURE (x1 ,y1)- (x2,y2), var& This statement draws a PICTURE at the coordinate 
specified by x1 ,y1. IThe picture is scaled (enlarged or 
reduced) to fit into the coordinate!"i;pecrried by x2,y2. 
To force the picture to be go off t.' i. edge of the window 
you will need to give x2,y2 coor'llates outside the 
window coordinates. 

PICTURE, OldPicture& Draws Old Picture to present cursor position. 

PICTURE (10,10)-(45,100) Fits picture into coordinates specified 

PICTURE (O,O),a& Draws picture specified by a& at 0,0 and scales the 
picture to fit in the window. 

PICTURE -(50,50), Pic1 & Draws picture at original position and scales it to fit into 
the x2,y2 parameters specrried. 

Note: A single PICTURE is limited to 32K. See examples on previous pages. Also see 
PICTURE function and KILL PICTURE. 

E -119 Macintosh™ Appendix 



MACINTOSH APPENDIX 

PRCANCEL function 

FORMAT PRCANCEL 

DEFINITION When PRCANCEL returns true (non zero) the user has pressed the CANCEL button in the 
DEF LPRINT or DEF PAGE dialog box. This means the user wants to cancel printing and 
you may want to abort a print routine. 

EXAMPLE 

REMARK 

WINDOW#l,"PRCANCEL Example" 

DEF PAGE 
IF PRCANCEL PRINT"CANCEL PRESSED!":BEEP 

DEF LPRINT 
LONG IF PRCANCEL=O 

GOSUB"PRINT ROUTINE" 
XELSE 

PRINT"CANCEL PRESSED! Printing Aborted!" 
BEEP:BEEP:DELAY 2000:END 

END IF 
END 

"PRINT ROUTINE" 
LPRINT"HELLO" 
CLEAR LPRINT 
END 

Also see DEF PAGE and DEF LPRINT. 

Note that <COMMAND PERIOD> will force the print manager to abort printing the current 
page, even if BREAK ON is not enabled. 

Macintosh™ Appendix E-120 



MACINTOSH APPENDIX 

PRHANDLE function 

FORMAT PRHANDLE 

DEFINITION This special function returns a pointer to the Macintosh printer parameter tables. Using 
this pointer you can retrieve information about the page and print set-ups. 

EXAMPLE WINDOWjfo1, "PRHANDLE Example", (10,100) - (500, 300) 
DEFDBL INT P: DEF PAGE 

continued ... 

REM Get PRHANDLE (It doesn't stay in the same place in memory) 
DEF FN P=PEEKLONG(PRHANDLE) 
LONG IF PRCANCEL 
PRINT"CANCEL PRESSED!":BEEP 
END IF 
DEF LPRINT 
LONG IF PRCANCEL 
PRINT"CANCEL PRESSED! Printing Aborted!" 
BEEP:BEEP:DELAY 2000:END 
XELSE 
GOSUB"Page Set-up Information" 
END IF 
GOSUB"Print Info": CLEAR LPRINT 
END 

"Page Set-up Info"rmation" 
REM Page Rectangle Height/Width in points 
PRY=PEEKWORD(FNP+8) :PRX=PEEKWORD(FNP+10) 
PRY2=PEEKWORD(FNP+12) :PRX2=PEEKWORD(FNP+14) 
REM Paper Dimensions Height/Width in points 
PDY=PEEKWORD(FNP+16) :PDX=PEEKWORD(FNP+18) 
PDY2=PEEKWORD(FNP+20) :PDX2=PEEKWORD(FNP+22) 
REM Print Manager version 
PM=PEEKWORD(FNP) 
REM Driver Info 
DI=PEEKWORD(FNP+2) 
REM Vertical and Horiz Resolution 
VR=PEEKWORD(FNP+4) :HR=PEEKWORD(FNP+6) 
REM Paper Heigth/Width (coordinates) 
PH=PEEKWORD(FNP+26) :PW=PEEKWORD(FNP+28) 
REM Printer Port l=MODEM, 2=PRINTER 
PP=PEEKWORD(FNP+30) 
REM Printer Type l=Imagewriter, 2=Laser, 3=Laser+ 
PT=PEEK(FNP+24) 
REM First Page, Last Page 
FP=PEEKWORD(FNP+62) : LP=PEEKWORD (FNP+64) 
REM Number of Copies 
LONG IF PT>l 
NC=PEEKWORD(FNP+46) 
XELSE 
NC=PEEKWORD(FNP+66) 
END IF: RETURN 

E -121 Macintosh™ Appendix 



MACINTOSH APPENDIX 

PRHANDLE statement continued ... 

REMARK 

"Print Infolt:CLS 
PRINT"PRHANDLE=""FNP 
PRINT"PAGE RECT lI "PRX","PRY,PRX2",npRY2 
PRINT"PAPER RECT", ,PDX", "PDY,PDX2","PDY2 
PRINT"PRINT MANAGER""PM 
PRINT"DRIVER=""DI 
PRINTIlVert/Horiz res""VR,HR 
PRINT"Paper Height/Width",PH,PW 
PRINT"PRINTER PORT""PP 
PRINT"PRINTER TYPE""PT 
PRINT"FIRST/LAST PAGE""FP,LP 
PRINT"Number of copies",NC 
PRINT:PRINT"Any key to continue ..... 
DO 
UNTIL LEN(INKEY$) :RETURN 

See Inside Macintosh" and the Toolbox section of this appendix for more information 
about the printer handle. 

****************** PRHANDLE DATA STRUCTURE ******************** 

PEEK Size (PEEK LONG(PRHANDLE)+Offset) 

Offset 
a 
2 
4 
6 
8 
16 
24 
26 
28 
30 
32 
(46) 
46 
48 
50 
52 
62 
64 
66 
68 
69 
70 
74 
78 
80 

Size 
word 
word 
word 
word 
Rect 
Rect 
word 
word 
word 
byte 
Record 
word 
word 
word 
word 
word 
word 
word 
word 
byte 
byte 
Ptr 
ptr 
word 
byte 

-- Name -
iPrVersion 
iDev 
iVRes 
iHRes 
rPage 
rPaper 
wDev 
iPagev 
iPageH 
feed 
prInfoPT 
iCopies 
iRowBytes 
iBandV 
iBandH 
iDevBytes 
iFstPage 
iLstPage 
iCopies 
bJDocLoop 
fFromApp 
pIdleProc 
pFileName 
iFileVol 
bFileVers 

-------- Description ----------
Printing software version Number 
Used Internally 
Vert Resolution Dots/Inch 
Horz Resolution Dots/Inch 
Page Rectangle (Printable Area) 
Paper rectangle, Actual Paper Size 
Device hi-Byte: l=Imagewrite, 3=Laser 
Vert Paper size 
Horz Paper size 
Paper feeder type (Sheet Feed etc.) 
Print Time Imaging metrics (Record?) 
Copies to Print (Laserwriter only) 
(with imagewriter only) 
See "Inside Macintosh" 
See "Inside Macintosh" 
Bytes Required For Spooling 
First Page to Print 
Last Page to Print 
Copies to Print (imagewriter) 
Print quality: O=Draft, l=Spool 
Printing from an Application 
Idle Procedure While Printing 
Spool File Name: NIL for default 
Spool File volume 
Spool File version 

* See "Inside Macintosh" for specifics. 

Macintosh™ Appendix E-122 



MACINTOSH APPENDIX 

PRINT USING statement 

FORMAT USING " ... ###.### ... I\I\1\1\";numeric expression 

DEFINITION In addition to the normal PRINT USING formats provided by standard ZBasic, this version 
provides a new parameter for expressing formatted scientific notation. 

EXAMPLE 

REMARK 

The new parameter that may be used is the carot ( A ). 

INPUT "Enter a number" ; Xii 
PRINT USING"+iliI## AAAA ";X# 
PRINT USING"HiI##.iI## MAA ";X# 
PRINT USING"+###.### AAAA ";X# 
PRINT USING"+#iI.#iI# AAAA ";x# 
PRINT USING"+#.#'# AAAA ";X# 
PRINT USING"+.## AAAA ";x# 
PRINT USING"+.iI AAAA ";X# 

Enter a number;?123.456 

+l234E-Ol 
+l234.560E-Ol 
+l23.456E+OO 
+l2.346E+Ol 
+1.235E+02 
+.123E+03 
+.12E+03 
+.lE+03 

If you are using exponents greater than 99, leave one space after the last carot ( A ) for 
each digit of exponent exceeding 99. 

Note that some BASIC languages use a "0" to show double precision exponent such as: 
.123D-01. ZBasic always uses an "E". 

Note: Exponents may be up to five digits: E±16,383 

See PRINT USING in the main reference section for other USING options. 

E -123 Macintosh™ Appendix 



MACINTOSH APPENDIX _ ... "8 •• ....,.1' ......... 
PUT statement (graphics) 

FORMAT PUT (x1,y1) [-(x2,y2)] ,var(n), mode 

DEFINITION The same as the standard ZBasic PUT statement with the following additions. 

EXAMPLE 

REMARK 

The -(x2,y2) parameter may be included to scale bit images. They may be expanded or 
shrunk to your preference and within the capabilities of the hardware. 

Along with the standard XOR, OR, AND, PSET and PRESET modes, mode for the 
Macintosh may also be a number between 0 and 7: 

HOW BACKGROUND AND 
FOREGROUND INTERACT 

MODE 
o 
1 
2 
3 
4 
5 
6 
7 

DIM A(lOOOO) 
COORDINATE WINDOW 

CIRCLE 100,100,80 
GET (0,0)-(100,100),A(0) 

CLS 
DO 

DEFINITION 
COpy 
OR 
XOR 
BIC 
NOT COPY 
NOT OR 
NOTXOR 
NOTBIC 

PUT (0,0)-(100+X,100+Y),A(0) 
DELAY 100 
PUT (0,0)-(100+X,100+Y),A(0),2:REM XOR mode 
X=X+2:Y=Y+2 

UNTIL X>400 OR Y>300 
END 

Also see GET and PUT in the main reference section of this manual. See "Inside 
Macintosh" for detailed descriptions of the COPY, BIC, and other graphics "modes". 

Be sure to see GET and PUT in the main reference section for more information. 

Macintosh™ Appendix E-124 



MACINTOSH APPENDIX 
t_".ilwlli& __ •• 11IJffiIII\If%%ElntAiN_ 

PUT FILE INFO statement 

FORMAT PUT FILE INFO paramBLOCK$ 

DEFINITION Puts file information retried and modified by the user back to the file. 

EXAMP LE See GET FILE INFO for example 

REMARK See PBHSetFlnfo in "Inside Macinosh" for detailed technical information. 

E -125 Macintosh™ Appendix 



MACINTOSH APPENDIX 

READ FILE statement 

FORMAT READ FILE [#j file number, desfinationAddress&, NumberofByfes& 

DEFINITION An extremely fast way of loading data from a disk file. Reads the number of bytes 
specified by NumberofByfes& to the address specified by desfinafionAddress& from the 
file specified by filenumber. 

EXAMPLE1 REM Program will load and display a MACPAINT file 
DIM X%(l),71 X$(719) : X%(0)=576 : X%(l)=nO 

EXAMPLE2 

REMARK 

A$=FILES$(l,"PNTG""V%): IF A$="" THEN STOP 
OPEN"I",l,A$,l,V% : FL&=LOF(1)-5l2 : RECORD #1,512 

A&=VARPTR(A$) : Y&=VARPTR(X$(O)) : X&=A& : N=256 
FOR I=l TO 720 : REM Lines in a MACPAINT Picture 

LONG IF N>180 
BLOCKMOVE X&,A&,256-N : X&=A& 
IF N>FL& THEN NX=FL& ELSE NX=N 
READ FILE #1,A&+256-N,NX : FL&=FL&-NX 

END IF 
REM Puts bit image in memory. 
CALL UNPACKBITS(X&,Y&,72) :N=X&-A& 

NEXT 
CLOSE#l 
PUT (O,O),X%(O),PSET: REM PUT PAINT picture on screen. 
END 

REM This routine uses WRITE FILE to save 
REM a MacPaint image. Use with example above 

DEF OPEN "PNTG": REM Set file type to: PNTG 

F$=FILES$(O,"MacPaint Save as .. ",F$,V%) 
IF F$="" THEN RETURN 
WO=1 : OPEN"O",1,F$,1,V% : A$=STRING$(128,0) 
CURSOR=4 : WRITE #1, A$;128, A$;128, A$;128, A$;128 
X&=VARPTR(X$(O)) : A&=VARPTR(A$) : AS&=A& 
FOR 1=1 TO no 

CALL PACKBITS(X&,A&,72) : N=A&-AS& 
LONG IF N>180 OR 1=720 

WRITE FILE #1,AS&,N : A&=AS& 
ENDIF 

NEXT I 
CLOSE#l 
RETURN: REM Use as a subroutine 

See OPEN, CLOSE and the WRITE FILE# statement for way of saving data to file. 

Macintosh™ Appendix E-126 



MACINTOSH APPENDIX 

RENAME statement 

FORMAT RENAME filename 1$ TO filename2$ [, volume number% 1 

DEFINITION Same as the Standard ZBasic RENAME statement except that volume number<'10 may be 
used as the last parameter to specify the folder or volume location of the file whose name 
will be changed. 

EXAMPLE Name$=FILE$ (1, "", , VOLUME % ) 
RENAME Name$ TO "Fred", VOLUME% 
END 

REMARK See FILES$ in this appendix and RENAME in the main reference. 

E -127 Macintosh™ Appendix 



MACINTOSH APPENDIX 

ROUTE 128 statement 

FORMAT ROUTE 128 

DEFINITION Same as the Standard ZBasic ROUTE 128 statement except that with the Macintosh both 
graphics and text are routed. 

EXAMPLE1 WINDOW#l, "ROUTE 128 example" 

EXAMPLE2 

REMARK 

DEF LPRINT: REM Set-up Printer 
IF PRCANCEL THEN STOP: REM STOP if CANCEL pressed. 

COORDINATE 1020,1340 : REM Set Paper coordinates 

ROUTE 128: REM Output to the printer 
TEXT 0,36,64 
PRINT"HELLO NUMBER ONE" 
CIRCLE FILL 510,670,400 
TEXT 0,9,0 
PRINT%(900,1000)"Hel10 number two!!" 
PEN 10,10 
BOX 0,0 TO 1020,1340:PEN 1,1 

ROUTE 0: REM Output back to the screen 
CLEAR LPRINT 
END 

REM Example of ROUTING Graphics and text in COLOR to an 
REM ImageWriter II with a COLOR ribbon 
DEF LPRINT 
ROUTE 128 
FOR I=O TO 7 

COLOR I 
PRINT"THIS IS IN COLOR";I : PRINT 
BOX FILL 800,I*18 TO 814,I*18+16 
CIRCLE 512,384,I*32 
CIRCLE 768,I*32+32,32 

NEXT 
STOP 

Also see LPRINT, TEXT, PEN, DEF PAGE, DEF LPRINT, and PICTURE. 

Macintosh™ Appendix E-128 



MACINTOSH APPENDIX 

RUN statement 

FORMAT RUN filename 

DEFINITION Execute another application from ZBasic. 

EXAMPLE RUN "MacPaint" 

REMARK For example of executing other programs while retaining variables see WRITE FILE 
example in this reference section. 

Also see RUN command, function and statement in the main reference section and the 
seciion on "Execuiing ZBasic programs" in the front of this manual. 

E -129 Macintosh™ Appendix 



MACINTOSH APPENDIX 
mm.···.~.·.··.· .... ·.B, .... BBB~ •.•. · ..... 

SCROLL statement 

FORMAT SCROLL (x1,y1)-(x2,y2), amount x, amount y 

DEFINITION To cause scrolling of text and graphics in the current output window use the SCROLL 
statement. The syntax is: 

EXAMPLE 

REMARK 

x1,y1 
x2,y2 

amount x 

specifies the upper left corner 
specifies the lower right comer 

specifies the horizontal amount of movement in pixels. \I a negative 
number is used the movement is to the left. \I positive numbers are used 
the movement is to the right. 

amounty specifies the vertical amount of movement in pixels. \I a negative number 
is used the movement is up. \I positive numbers are used the movement 
is down. 

CLS 
X1=-12:Y1=-12 
CIRCLE FILL 512, 383, 50 

FOR X=lT030 
X1=X1+1:Y1=Y1+1 
SCROLL (0,0)-(1023,767), X1,Y1 

NEXT 

Scrolling may done in any direction. To scroll up and to the right you would give a 
negative y and a positive x. Your program must update scrolled areas of the screen. 

See example of SCROLL in the example program with SCROLL BUTTON. 

Note: Care should be taken to update position when scrolling windows with buttons or 
scroll bars. 

Macintosh™ Appendix E-130 



MACINTOSH APPENDIX 

SCROLL BUTTON statement 

FORMAT SCROLL BUTTONI#] ref, current II. min] , max j[,lpage] I, {x1 ,y1 )-(x2,y2) j[, type]]] 

DEFINITION ZBasic allows you to create the familiar Macintosh™ scroll bars for your programs. Note 
that you MUST use ref numbers different from those used with the BUTTON statement. 

REMARK 

continued ... 

Lets you create the standard vertical scroll bar (type 1), the horizontal scroll baron the 
bottom of the window (type 2), and position and size your own scroll bars (type 0). 

button number 

current 

min 

max 

page 

(x 1,y1 )-(x2,y2) 

type 

The number used to identify a specific Scroll bar. Numbers are 
integer and must be one or greater and MUST NOT have the 
same numbers as the BUTTON statement. 

If the min value is 0 and the max value is 1000 and you give a 
current value of 500, the scroll box will appear in the middle. With a 
value of 0, the box would appear at the top (or left). 

Sets the minimum value for scroll bar positioning (-32768 min). 

Sets the maximum value for scroll bar positioning (+32767 max). 

If the scroll bar is clicked between the arrow and the box the current 
value (returned in BUTTON{button number)) is incremented (or 
decremented) by this much. Don't use negative numbers. 

Tells ZBasic where to position the movable scroll bar (type 0). 
Note that the type 0 scroll bar width and height may be changed. 
This parameter is ignored when using type 1 and 2 scroll bars. The 
coordinates are ZBasic coordinates. If the height is greater than 
the width, a vertical scroll bar will be displayed. If the width is greater 
than the height a horizontal scroll bar will used. 

There are three types of SCROLL BARS: 

o Movable. May be sized with rectangle coordinates. WQW 
with all Macintosh window types Vou may also set the width 
and height of this type of scroll bar. Experiment... 

Vertical window scroll bar. Positioned on left from the top 
of the window to the bottom of the window and is sized 
automatically if the window size is changed. x-v 
coordinates are ignored. Window types 1 and 5 only. 

2 Horizontal scroll bar. Positioned on the bottom from the left 
of the window to the right of the window and are sized 
automatically if the window size is changed. X-V 
coordinates are ignored. Window types 1 and 5 only. 

To set up event handling for Scroll bars use ON DIALOG. Note: Normal scroll bars are 16 
pixels wide. 

E -131 Macintosh™ Appendix 



MACINTOSH APPENDIX 

SCROLL SUnON continued ... 

EXAMPLE1 WINDOW#l, "ZBasic™ Scroll Bar Statements" 
COORDINATE WINDOW:WINDOW OFF: DIALOG ON: BREAK ON 
DO:UNTIL DIALOG(O)=O:ON DIALOG GOSUB "DIALOG" 

REM Customizable Scroll bars (type zero): 
SCROLL BUTTON #1, 0, 0, 32000, 1000, (20,20) -(30,250) ,0 
SCROLL BUTTON #2, 0, 0, 32000, 1000, (50,20) -(420,90) ,0 
SCROLL BUTTON #3, 0, 0, 32000, 1000, (50,160)-(420,176),0 

REM Regular standard Macintosh Vertical and 
REM Horizontal Scroll bars (types 1 and 2) : 
SCROLL BUTTON #4, 0, 0, 32000, 1000, ,1:REM Vertical 
SCROLL BUTTON #5, 0, 0, 32000, 1000, ,2:REM Horiz 

"Main Event Loop" 
GOTO "Main Event Loop" 
BREAK OFF:DIALOG OFF 
"DIALOG": END 

OUTPUT: 

ZBasic™ Scroll Bar Statements 

.;' SCROLL BUTTONt11 

........... s CROLL BUTTON82 

....... SCROLL BUTTON83 

SCROLL BUTTONt14 /' 

....... SCROLL BUTTON'S 

continued ... 

Macintosh™ Appendix E-132 



MACINTOSH APPENDIX 
....... tl.,MW.'fl&10ThWffl.f" •••• , 

SCROLL BUnON statement continued 

EXAMPLE REM Text Window Scroll Bar(s) Example 
REM ZBasic 3.05 or Greater 1/22/87 A.G. ZEDCOR, INC. 
WINDOW #1, "SCROLL BAR EXAMPLE", (20,60) - (500, 340),1 
COORDINATE WINDOW :WIDTH -2 :X=MEM(-l) :REM Disable Line Wrap 
WINDOW 1,"Example of Scrolling text files", (50,50)-(450,255),9 
TEXT 4,9 :DIM A,D,W,L 
CALL GETFONTINFO(A) :H=A+D+L :REM Get Font Size 
nGOWAyn 
A$=FILES$(l,"TEXT""V%) : IF A$= .... THEN BEEP: STOP ELSE CLS 
OPEN "I",#l,A$,l,V% : CLEAR LOF(1)+32 : TL=O : IF MEM=O THEN STOP 
WHILE NOT EOF(l) REM Read TEXT file into INDEX$ array 

LINEINPUT#l,W$ : INDEX$(TL)=W$ : TL=TL+1 :REM Fill INDEX$ 
WEND 
CLOSE : OV=O : OH=-l : SS=O : REM Set SS =1 for Smooth-Scrolling 

SCROLL BUTTON 1,OV,OV,TL-1,TL/10,,1 
SCROLL BUTTON 2,OH,OH,255,10,,2 

ON DIALOG GOSUB "DIALOG" : WINDOW#l,A$ : REM Fi1ename/Titlebar 
DIALOG ON BREAK ON: REM Var 'SS' Q=NOrro21 Scroll l=Soft Scroll 

"Main Event Loopl1 
GOTO "Main Event Loop" 

DIALOG OFF: BREAK OFF 
"DIALOG": D=DIALOG(O) 
ON D GO TO 
"BUTTON", "X", "ACTIVE", "GOWAyll, "UPDATE", "X", "X", "ZOOM", "ZOOM" 
"ACTIVE" WINDOW #DIALOG(D) : RETURN: REM Activate this window 
"BUTTON" : IF DIALOG(D)=l THEN BV=BUTTON(l) ELSE "SIDE" 

REM For "SOFT" scroll change ABS(X»l to ABS(X»SL (next line) 
X=OV-BV IF ABS(X) > 1 THEN OV=BV : CLS : GOTO "UPDATE" 

IF X>OTHEN DV=H:DL=-l:L=O:P=A ELSE DV=-H:DL=+1:L=SL+1:P=(SL-1)*H+A 
WHILE OV<>BV : IF SS THEN DV=SGN(DV) : 11=1 ELSE II=H 

FORII=II TO H 
SCROLL (0,0)-(W6,W7)"DV : REM SCROLL 1 line or 1 Pixel 
PRINT %(-BUTTON(2)*W,P+(DV*(II-H)));INDEX$(OV-1+L); 

NEXT OV=OV+DL 
WEND RETURN 
"ZOOM" CLS: RETURN : REM ERASE IF ZOOM-IN OR ZOOM OUT 
"SIDE" SCROLL(0,0)-(W6,W7), (OH-BUTTON(2))*W,0:OH=BUTTON(2) 
"UPDATE" : W6=WINDOW(6)-1 : W7=WINDOW(7)-1 : SL=W7/H 
FOR 11= OV TO OV+SL-1 : REM ******* Re-Draw Full Screen ******* 

PRINT %(-BUTTON(2)*W, (II-OV)*H+A);INDEX$(II); 
NEXT 
COLOR 0: BOX FILL O,SL*H TO W6,W7 :COLOR -1 :REM Erase Bottom 
"XU 
RETURN 
REM ********************************************************** 
REM To do smooth pixel scrolling change: 
REM SS=1 and change ABS(X) > 1 to ABS(X) > SL 
REM Add 'CLEAR 0' to Erase INDEX$ Array When Window Closed. 
REM ********************************************************** 

E -133 Macintosh™ Appendix 



MACINTOSH - SEGMENT statement 

APPENDIX 
@$ U 

FORMAT SEGMENT 

DEFINITION Forces the compiler to end a memory segment. SEGMENT forces the current segment to 
end and start a new segment, thus the segments are arranged according to the physical 
location of the code, not the logical flow of the code. 

EXAMPLE 

REMARK 

The SEGMENT RETURN statement causes that segment of memory to be "purgable" 
and it will be discarded if memory is at a premium. This allows for large programs to be 
executed in computers with less memory. 

Segments will automatically end if they reach about 28K bytes. The Macintosh memory 
manager allows segments up to a maximum of about 32K. ZBasic tries to break segments 
at "safe" places. 

X=X+l: GOSUB "Other routine" 

SEGMENT 
"Other routine" 
PRINT "Hello, this is the 'Other routine'" 
Xl=Xl+22 
SEGMENT RETURN 
SEGMENT 

Program lines above between "Other Routine" and SEGMENT RETURN are defined as a 
separate segment (between SEGMENT statements). SEGMENT RETURN is the same 
as a regular RETURN statement except that it "unloads" that segment, i.e. n memory is 
needed, the segment is discarded. If memory is not needed, the segment remains. 

MEM (-1) purges "unloaded memory segments" and returns the memory remaining for 
segments. Use COMPILE to get the length of each segment. See MEM -1, COMPILE, 
ZBASIC MEMORY MONITOR Desk Accessory and SEGMENT RETURN. 

CAUTION: The programmer must calculate the sizes of segments and "Manage" the use 
of segments in memory so that loading a segment into the system without sufficient 
memory does not occur. If you do load a segment into memory that is to large, a "System 
Error" will occur. See COMPILE for segment size. 

CAUTION: If a segment break occurs in the middle of a FOR/NEXT, LONGIIF, 
SELECT/END SELECT or any other structure, the performance of a program will 
decrease dramatically. In some cases system errors may occur. If you are creating very 
large programs, you can monitor the position of default SEGMENT breaks while using the 
COMPILE or LCOMPILE commands. 

Segments may be any size. Small segments will not alter the performance of a program 
unless there are lots of calls outside of that segment to other segments. 

See "Memory Manager" section in the front of this appendix for more information. 

Macintosh™ Appendix E-134 



APPENDIX 

SEGMENT RETURN statement 

FORMAT SEGMENT RETURN 

DEFINITION Same as the RETURN statement except that it tells the Macintosh "Memory Manager" that 
SEGMENT is no longer being used and that it is "Purgable"; thus if memory is at a 
premium (perhaps on an old Macintosh with 128K), that segment MAY be purged from 
memory freeing up room for other segments to be loaded and used. 

EXAMPLE 

REMARK 

If memory is not at a premium the segment will not be disturbed (on Macintoshes with 
plenty of memory, say; a 512K Mac or a Mac II wah 8 giga-bytes [gigglebytes?]). 

X=X+l: GOSUB "Other routine" 

SEGMENT 
"Other routine" 
PRINT "Hello, this is the 'Other routine'" 
Xl=Xl+22 
SEGMENT RETURN 
SEGMENT 

Remember that the program ~ return to another segment other than the one being 
unloaded; otherwise a "System Error" will occur. 

See COMPILE to determine the size of segments. 

MEM (-1) deletes purgable memory segments and returns the memory remaining for 
other segments. See SEGMENT, MEM(-1), ZBASIC MEMORY MONITOR Desk 
Accessory and COMPILE for more information. For detailed technical information about 
the Macintosh memory manager see "Inside Macintosh". 

See "Memory Manager" section in the front of this appendix for more information. 

E -135 Macintosh™ Appendix 



MACINTOSH APPENDIX 

SHUTDOWN statement 

FORMAT SHUTDOWN 

DEFINITION Ejects all diskettes and goes PING! 

EXAMPLE 

REMARK 

Restarts the computer as if you just turned it on. 

WINDOW #l,"SHUTDOWN Example" 
CLS 
FOR X=l TO 1000 

PRINT"BYE! 
NEXT 
SHUTDOWN 
END 

Also see EJECT. 

Macintosh™ Appendix E-136 



MACINTOSH APPENDIX 

SOUND function 

FORMAT SOUND 

DEFINITION Returns the number of sounds in the SOUND buffer. 

EXAMPLE 

REMARK 

SOUND=O Sound buffer empty. 
SOUND=16 Sound buffer full. 

SOUND WAIT 
FOR 1=1 TO 4 

SOUND 400,100,1 
SOUND 800,200 
SOUND 400,100 
PRINTI,SOUND 

NEXT 
INPUT A$ 
PRINT"RESUME",SOUND 
SOUND RESUME 
SOUND WAIT 
SOUND 1000,100 
SOUND 100,500 
INPUT A$ 
SOUND RESUME 
DO 

TRONX 
S=SOUND 
PRINT S, 

UNTIL s=o 

Also see SOUND statement and WAVE. 

E -137 Macintosh™ Appendix 



MACINTOSH APPENDIX 
00 jlJ 

SOUND statement 

FORMAT SOUND frequency, duration [,volume]. [voIce] 
SOUND WAIT 
SOUND RESUME 

DEFINITION Same as standard ZBasic SOUND statement with the following enhancements: 

EXAMPLE 

REMARK 

volume Sets the volume of the sound output. Range is 0 to 255. 
Note: Actual volume is controlled from the control panel DA. 

voice Values from 0 to 3 signifying which voice to use. The Macintosh has 
four voice capability. Default is zero. 

SOUND WAIT Causes sound output to wait until SOUND RESUME. 

SOUND RESUME Restarts sound output of current buffer. 

DIM A%(255) : CLS 
FOR 1=0 TO 255 

A%(I)=RND(32)+I/4 
NEXT 
WAVE 3,A%(0) : WAVE a 
PRINT"RANDOM WAVE SOUNDS" 
FOR 1=100 TO 800 STEP I 

SOUND 1,500 
NEXT 
PRINT"4 VOICE SOUNDS" 
FOR 1=1 TO B 

WAVE 1 : SOUND WAIT 
FOR J=O TO 3 

READ F : SOUND F,400"J PRINTF, 
NEXT 
SOUND RESUME : PRINT 

NEXT 
DATA 400, 400, 400, 000, 400, 400, 400, 000 
DATA 400, 800, 800, 000, 500, 500, 100, 200 
DATA 100, 200, 400, 800, 100, 110, 120, 130 
DATA 400, 450, 500, 550, 000, 000, 000, 400 
PEN ",10 
DO 

FOR 1=0 TO 255 STEP 4 
CIRCLE FILL 512,384+192,192 TO 1,4 

NEXt: TRONX 
UNTIL SOUND=O 

Also see SOUND function and WAVE in this appendix and SOUND in main reference 
section of this manual. 

Note: The maximum volume is controlled with the Control Panel desk accessory. 

Macintosh™ Appendix E-138 



MACINTOSH APPENDIX 
•••• i.t@;lltrl.%illli.i*I$1%IU.ivjtirIMkwRW_ 

SYSERROR function 

FORMAT SYSERROR 

DEFINITION Returns the number of the corresponding Macintosh system error: 

REMARK 

SYSTEM ERRORS 

General Errors 
o No error has occurred 

-1 Queue element not found during deletion 
-2 Invalid queue element 
-3 Core routine number out of range' 
-4 Unimplemented core routine 

1/0 System Errors 
-17 Control error 
-18 Status error 
-19 Re.ad error 
-20 Write error 
-21 Bad Unit error 
-22 Unit empty error 
-23 Open error 
-24 Close error 
-25 Tried to remove an open driver 
-26 Couldn't find driver in resources 
-27 I/O call aborted by KILLIO 
-28 A driver has not been opened 

Memory Allocation Errors 
-108 Not enough room in heap zone 
-109 Handle was nil in handle zone 
-111 WhichZone failed (applied to free block) 
-112 Trying to purge a locked block 
-113 Address in zone check failed 
-114 Pointer check failed 
-115 Blcok check failed 
-116 Size check failed 

System Errors 
32767 Undefmed error 

I Bus error 
2 Address error 
3 Illegal instruction 
4 Divide by zero 
5 Check exception 
6 Trap-V Exception 
7 Privilege violation 
8 Trace exception 
9 Line 1010 exception (Macbug trap) 

10 Line 1111 exception (Macbug trap) 
11 Misc. exception 
12 Unimplemented routine 
13 Spurious interrupt 
14 I/O system error 
15 Segment Loader error 
16 Floating point error (SANE) 
17 Can't Load Package #0 
18 Can't Load Package # I 
19 Can't Load Package #2 
20 Can't Load Package #3 
21 Can't Load Package #4 
22 Can't Load Package #5 
23 Can't Load Package #6 
24 Can't Load Package #7 
25 Can't Allocate Mem block 
26 Segment loader error 
27 File Map Destroyed 
28 Stack Overflow Error 
29 Unknown 
30 "Please Insert disk" 

Numbers not shown had not been defined by Apple as of 5/87 (there may be others). 

See "Inside Macintosh" for detailed explanations of these error messages. 

Also see "Runtime and Compiletime Errors", ERROR and ON ERROR GOSUB in the main 
reference section for more information. 

E -139 Macintosh™ Appendix 



MACINTOSH APPENDIX 

TALK statement 

FORMAT TALK[#J-ref#, speed, pitch, mode (natural or robotic), sex 

DEFINITION This statement is used to change the characteristics orthe sounds of the MacinTalk voice 
synthesizer speech. Be sure that TALK has been opened and is on the same volume. 

EXAMPLE 

REMARK 

speed Varies the rate of speech. Numbers may 
range from 85 to 425 words per minute. 
Default is 150 words per minute. 

pitch Pitch of the voice in the range of 65 to 500 Hz. 
Default is 110Hz. 

mode 0=Natural. 1=Robotic. 

sex Apple says; "Available for future implementation" 

OPEN TALK,-I"",512 
FOR speed=85 TO 425 STEP 20 

TALK#-l, speed,IIO,O 
PRINT#-l, "Hello" 

NEXT 
CLOSE#-l 

OPEN TALK,-I"",512 
FOR pitch=65 TO 500 STEP 20 

TALK#-l, 150,pitch,1 
PRINT#-l, "Hello" 

NEXT 
CLOSE#-l 

See OPEN TALK statement and the section "MacinTalk" in this appendix for more 
information. 

Note: Make sure the Macintalk driver is installed in the current SYSTEM folder. A file error 
will occur if not found. 

Macintosh™ Appendix E-140 



MACINTOSH APPENDIX .... _ ... 
TEHANDLE function 

FORMAT TEHANDLE 

DEFINITION Returns the handle to the current EDIT FIELD so the programmer can manipulate text in 
the fields larger than 255 characters. 

EXAMPLE REM This example by Andrew Gariepy shows you how to use 
REM the INDEX$ string with TEHANDLE to manipulate EDIT 
REM FIELD strings greater than 255 characters. 

continued ... 

DIM LargeRect,x,y2,x2 : y2=8l92 : x2=8l92 : CLEAR 10000,0 
COORDINATE WINDOW: MENU 1,0,1,"File" : EDIT MENU 2 
WINDOW *1 : TEXT ",0 
EDIT FIELD #1, "HELLO", (5,70) - (480,270) ,2,1 

DEF FN teWord%(n,o)=PEEK WORD(PEEK LONG(TEHANDLE(n»+o) 
DEF FN teLong&(n,o)=PEEK LONG(PEEK LONG(TEHANDLE(n»+o) 

LONG FN teLock&(n) 
texthndl&=FN teLong&(n,62) 

END FN = USR3(texthndl&) 
:REM Get handle to text being edited 
:REM return pointer/locked mem block 

: REM Move Text from Edit Field to INDEX$ (index) 

: REM On Entry: field Which EDIT FIELD in current window 
index Which INDEX$ array to use 

: REM On Exit: Returns * of Lines put in INDEX$ 

LONG FN EditToIndex(fie1d,index) 
textPtr&=FN teLock&(field) :REM Lock handle & return Point 
textLen =FN teWord(field, 60) :lines=O :REM No. char's in text record 
CLEAR O,index:CLEAR textLen+100, index: REM Clear & Make room 
temp$="" textPtr&=FN teLock&(field) : REM Initialize Stuff 
FOR i = ° TO textLen-1 

teChar = PEEK(textPtr&+i) :REM Get char from text block 
LONG IF teChar=13 

INDEX$ (lines, index) =temp$ 
temp$="" : lines=lines+l 

XELSE 
temp$=temp$+CHR$(teChar) :REM add character to string 

ENDIF 
NEXT: INDEX$(lines,index)=temp$ 
x=USR7(texthndl&) :REM Unlock Text Block 

END FN = lines 

: REM Move INDEX$(index) to edit field 'field' 

: REM 

: REM 

On Entry: field 
index 
lines 

Which EDIT FIELD in current window 
Which INDEX$ array to use 
* of Lines to use out of INDEX$ 

E ·141 Macintosh™ Appendix 



MACINTOSH APPENDIX 

TEHANDLE function continued ... 

REMARK 

LONG FN IndexToEdit(field,index,lines) 
L&=MEM(20+index) : H&=USRS(L&) IF H&=O THEN BEEP BEEP RETURN 
T&=USR3(H&) :A&=T&: I&=MEM(40+index) 
REM T& is temporary Ptr, 1& points to INDEX$ 
FOR 1=0 TO lines : sl%=PEEK(I&): 1&=1&+1: REM get & Skip Length byte 

IF (T&-A&)+sl% => L& THEN PRINT"Program Error .... : STOP 
BLOCKMOVE I&,T&,sl% :I&=I&+sl% :T&=T&+sl% :POKE T&,13 : T&=T&+1 

NEXT I : t&=FN teLong&(field,62): x=USR6(t&) :REM dispose of old TEXT 
x=USR7(H&) : POKE LONG PEEK LONG(TEHANDLE(field»+62,H& 
POKE WORD PEEK LONG(TEHANDLE(field»+60,T&-A& :REM SET TEXT LENGTH 
CALL TECALTEXT(TEHANDLE(field» 
CALL TEUPDATE(LargeRect,TEHANDLE(field» 

END FN 

: REM Make Dummy Edit Field Text 

FOR 1=0 TO 5 : INDEX$(I)=HEX$(I)+STRING$(RND(99),"jf") :NEXT 
FN IndexToEdit(1,0,S) 

: REM Example uses of TEHANDLE 

"WAIT LOOP" 
LOCATE 0,0 
PRINT "DEST RECT",FN teWord(1,0),FN teWord(1,2), 
PRINT FN teWord(1,4),FN teWord(1,6) 
PRINT "VIEW RECT",FN teWord(1,8),FN teWord(1,10),FN teWord(1,12), 
PRINT FN teWord(1,14) 
PRINT "SELECT PT",FN teWord(1,28),FN teWord(1,30),FN teWord(1,32), 
PRINT FN teWord(1,34) 
PRINT "TEXT LEN.",FN teWord(1,60),"lines=";FN teWord(1,94), 
PRINT "TEXT ADDR",PEEK LONG(FN teLong&(1,62» 
ON BREAK GOSUB "BREAK" 
BREAK ON 

GOTO "WAIT LOOP" 
BREAK OFF 

: REM Show ending contents of EDIT FIELD 

"BREAK" 
N=FN EditTolndex(1,0) 
EDIT FIELD CLOSE 1 : CLS 
FOR 1=0 TO N 

PRINT INDEX$(I,O) 
NEXT 
STOP 

See the TE toolbox calls in the "Toolbox" section of this appendix for other ways of 
manipulating the text in an EDIT FIELD. 

Macintosh™ Appendix £-142 



MACINTOSH APPENDIX 
............ 'MIWMI ....... 

TEXT statement 

FORMAT TEXT [fontj[. [point size]. [face]. [mode]] 

DEFINITION This statement is used to change the characteristics of the text going to the printer and to 
the screen. While you may also use the text commands of quickdraw. ZBasic provides 
this easy function to change text characteristics with one statement instead of four. 
Parameter values: 

EXAMPLE 

REMARK 

Ii.. FONT Ii.. FACE Ii.. MODES 
0 System font 0 Plain 0 Source COPY 
1 Application font 1 Bold 1 Source OR 
2 New York 2 Italic 2 Source XOR 
3 Geneva 4 Underlined 3 Source BIC 
4 Monaco 8 Outlined 4 NOT source COpy 
5 Venice 16 Shadow 5 NOT source OR 
6 London 32 Condensed 6 NOT source XOR 
7 Athens 64 Extended 7 NOT source BIC 
8 San Francisco (19=bold.italic and shadow) 
S TOionto 
10 Seattle 
11 Cairo eQltH SIZI;; 
12 LosAngleles 1 through 127 

Common laser fonts: (20-11mes. 21-Helvetica, 22-Courier, 23-Symbol, 24-Taliesin) 

Default TEXT attributes: TEXT 4,9,0,1 FONT: Monaco 
SIZE: 9 
FACE: 0 
MODE: 1 

NOTE: TEXT affects output to both the screen AND PRINTER (Imagewriter or 
Laserwriter). LPRINT is normally used for text output to the printer. If you wish to ROUTE 
both TEXT and Graphics output to printer use ROUTE 128. 

To determine what fonts are available on your system, use this routine: 

REM Determine the fonts and numbers on current system 
FOR X = 0 TO 255 

CALL GETFONTNAME(X, A$) 
IF LEN(A$) THEN PRINT X, A$ 

NEXT 

Most Macintosh fonts are proportionally spaced and printing columns of data is different 
from other computers. The MONACO font is an excellent one for mono-spaced 
characters to simulate other systems. 

64K ROM BUG NOTE: The original 64K Macintosh™ ROMS have a bug in the source 
copy mode and print a few extra spaces after the text. Therefore ZBasic sets the text 
mode to Source OR. To change it to print over the background completely, use TEXT ... 0 
at the beginning of your program. This bug was fixed in the 128K ROMS (like the 
Macintosh Plus™). 

E -143 Macintosh™ Appendix 



MACINTOSH APPENDIX 

TIMER function 

FORMAT TIMER 

DEFINITION Returns the number of seconds that have elapsed since the internal clock was at 
midnight. For instance, 12 noon would return 43,200. There are 86,400 seconds in a 
day. 

EXAMPLE start&=TIMER 

REMARK 

PRINT "Start time=t1;start& 

DELAY 10000 

endtime&=TIMER 
PRINT "End time=";endtime& 

PRINT" Total elapsed time=";endtime&-start& 
END 

RUN 

Start time= 2311233 
End time= 23311243 
Total elapsed time= 10 

Also see TIMER ON, TIMER OFF, ON TIMER GOSUB and TIME$. 

Note: TIMER will always return the correct count whether or not the TIMER ON function 
has been enabled. 

Macintosh™ Appendix E-144 



MACINTOSH APPENDIX 
tltm ......... 'illltBDIMfi4Wi.ftkf •• ,1 

TIMER statement 

FORMAT TIMER ON 
TIMER OFF 
TIMER STOP 

DEFINITION TIMER is used to create a TIMER event every n seconds. In other words; the program will 
be routed to the subroutine specified by ON TIMER n GOSUB every n seconds when 
physically between TIMER ON and TIMER OFF statements. 

EXAMPLE 

REMARK 

TIMER ON 

TIMER OFF 

TIMER STOP 

WINDOWJIl 

Enables the timer event trapping and calls a routine you 
specffy wnh ON TIMER(n) GOSUB suboutine. n is a 
number between 1 and 86,400 which specifies the number 
of seconds between TIMER events. 

Disables TIMER ON (TIMER function still works) 

Temporarily disables the timer event checking and stores 
events in a queue until TIMER ON is executed again. 

MENU ON: TIMER ON:BREAK ON 
ON TIMER 10 GOSUB "Timer Event" 
ON MENU GOSUB "Menu Event" 

MENU 1, 1, 1, "/QQuit" 

"Main Event Loop" 
GOTO "Main Event LOOp" 
MENU OFF:TIMER OFF 

"Menu Event" 
X=MENU(O) :Y=MENU(I) 
IF X=1 AND Y=1 THEN END 
RETURN 

"Timer Event" 
J&=TIMER 
PRINT "LAST TIMER";I& 
PRINT "THIS TIMER";J& 
PRINT 1' ___________________________ " 

PRINT "TIME ELAPSED";J&-I& 
I&=J& 
RETURN 

See TIMER function, TIME$ and ON TIMER GOSUB for more information. 

Note: The TIMER function will always return the correct count whether or not the TIMER 
ON function has been enabled. 

E -145 Macintosh™ Appendix 



MACINTOSH APPENDIX _ ...... 
TRON #128 statement 

FORMAT TRON#128 

DEFINITION This statement is an enhancement to the standard TRON that routes all line number trace 
output to the printer. Great for debugging without disturbing screen output. 

EXAMPLE TRONU28 

REMARK 

FOR X=l TO 2 
NEXT 
END 

RUN 

Printer output: 
00001 00002 00003 00002 00003 00004 

See TRON in the main reference manual for more information. Also see TRON V and 
TRON MONITOR in this appendix. 

Macintosh™ Appendix E-146 



MACINTOSH APPENDIX 

TRON statement 

FORMAT TRON ~variabJe name 
TRON V 

DEFINITION Same as the standard ZBasic TRON with the following enhancements: 

EXAMPLE 

TRON~variable 

TRONV 

Sets up the variables whose names and values will be passed to 
the TRON MONITOR desk accessory when TRON V is enabled. 

Sets up variable value passing events to work with the ZBasic 
TRON MONTOR desk accessory (included with ZBasic). 

REM Enable the TRON MONITOR Desk accessory 
REM BEFORE executing the program or use: 
REM X%~FN OPENDESKACC("Tron Monitor") See DA example in Toolbox. 
WINDOW#l, "EXAMPLE OF TRON V AND TRON~VAR" 
PRINT"Be sure to "CLICK" the Tron monitor DA window and "Watch" 
PRINT:PRINT"Since Single-Step is on you will need to press a key" 
PRINT"to advance to the next line statement. 
DIALOG ON:BREAK ON 
TRON V: REM Enable trace window event trapping 
REM Check the variables S$, X and Y 
TRON~S$:TRON~X: TRON~Y 

DO 
X~RND(lO) :Y~RND(lO) 

S$~CHR$(RND(64)+33) 

UNTIL LEN(INKEY$) 
END 
OUTPUT: 

o Tron 
Running , Line: 17, Suffer: 37% 
20,3204, Y %=3 
20,3205, S $="5" 
24,3262, X %=t 
24,3263, Y %=9 
24,3264, S $="[" 
23,3322, X %=10 
23,3323, Y %=2 
23,3324, S $="3" 
22,3382, X %=6 
22,3383, Y %=6 
22,3384, S $="S" 
19,3442, X %=4 
19,3443, Y %=to 
19,3444,S$="R" 
18,3502, X %=8 
18,3503, Y %=4 
18,3504, S $="M" 
17,3562, X %=4 
17,3563, Y %=1 

REMARK See TRON MONITOR DA information on next page. 

E -147 Macintosh™ Appendix 



FORMAT 

DEFINITION 

EXAMPLE 

REMARK 

MACINTOSH APPENDIX 

TRON MONITOR Desk Accessory 

LID 
Tron Monitor 

This desk accessory comes with ZBasic and is installed using FONT/OA Mover. The 
TRON MONITOR is activated from the Iii menu and values of variables selected with 
TRON=variable are shown in the TRON MONITOR window. 

Stop Program 
Single Step 
Crunch Memory 
Clear Buffer 
6,9 or 12Point 
2, 4 or 16K Buffer 
Font 
Save to Clipboard 

May be used to exit the program instead of <COMMAND PERIOD> 
The same as TRON S 
Same as doing MEM(-1) 
Erases the contents of the Tron Buffer 
Sets the point size of the text in the window 
Sets the buffer size 
Sets the font used for text in the Tron Monitor window 
Saves the contents of the Tron Monitor window to the clipboard 
so you can copy them into a word processor or ZBasic's editor for 
closer examination and debugging. 

~H 
Stop Program 
Single Step 
Crunch Memory 

Rppointment Diary 
Chooser Clear Buffer 

Control Panel 
DRFont 
Find File 
Inside Mac 
Key Caps 
Smart Alarms 
SmartScrapTM 
The C1ipper™ 

~'Iron Monitor" . 

See TRON V on previous page. 

6 Point 
.,1'9 Point 

12 Point 

.,1'21< Buffer 
4k Buffer 
161< Buffer 

System Font 
.,I'Geneua Font 

Monaco Font 

Saue to Clipboard 

The TRON window must be activated in stand-alone applications when regualr event 
trapping is being used. Without event trapping acitvated the. menu cannot be pulled 
down and TRON MONITOR selected. 

Macintosh17>f Appendix E-148 



MACINTOSH APPENDIX 

USR defaults 

FORMAT Variable&=USRn(exprj 

DEFINITION Pass exprto a USR routine defined by n and return value in Variable&. 

REMARK These USR functions are the defaults and contain many powerful tools for the 
experienced and not-so-experienced programmer. 

continued ... 

USRO Allocates Non-Relocatable Memory Block on the Heap 
Toolbox See NewPtrin "Inside Macintosh" 
expr Number of bytes to Allocate 
Variable& Returns the start address in memory. 

Example 

If Value = 0 the block was not allocated (error). 

X&=USRO(10000) 
LONG IF X&=O 

PRINT"Not Enough memory!n:STOP 
XELSE 

PRINT PEEK(X&) :REM Points to first of 10000 bytes 
END IF 

USR1 Releases Non-relocatable Memory Block from Heap 
Toolbox See _DisposPlrin "Inside Macintosh". 
expr The Longlnteger pointer to the Block you want to release 
Variable& Returns the address of the Block 

Example 
Warning 

De-allocates the memory block pOinted to by 'expr' 
allowing the memory to be used by other blocks 

X&=USR1(X&) 
If X& does not point to a memory block expect a system errorl 

USR2 High-Speed Longlnteger Square Root 
expr Longlnteger number 
Variable& Returns Longlnteger Square root of expr 

Example X&=USR2 (144) 
(Returns 12) 

E -149 Macinlosh™ Appendix 



MACINTOSH APPENDIX 

USR functions continued ... 

USR3 Locks a Relocatable Memory block (keeps from moving in memory) 
Toolbox See Hlock "Inside Macintosh". 
expr Handle to relocatable memory block 
Variable& Returns the Address to the start of the Locked block 

Note: Only pass a Longlnteger (do not use a 16 bit integer). 

Example X&=USR5(10000) 
Y&=USR3 (X&) 
POKE Y&,123 
Y&=USR7 (X&) 
GOSUB"far away1l 
Y&=USR3 (X&) 
Z=PEEK(Y&) 
Y&=USR6 (X&) 

: REM Allocates a Handle to a relocatable block 
: REM Locks the block and returns Pointer 
: REM Puts 123 to the 1 st byte of block 
: REM Un-Locks the block (Still avail) 
: REM May cause Memory block to move 
: REM Locks the block and returns Pointer 
: R EM Gets the 1 st byte of block 
: REM Disposes of the memory block 

USR4 Returns the address of a File 1/0 Paramblock 
expr ZBasic file number 
Variable& Returns a pOinter to the 1/0 Paramblock. 

Example X&=USR4(2) 

USR5 Allocate a Relocatable Memory Block 
Toolbox See NewHandle in "Inside Macintosh". 
expr Sizeofthe Block requested in Bytes (LongWord if >32,767) 
Variable& Returns the Handle to the Relocatable block 

" Value=O then it could not allocate the block! 

Example See USR3 example 

USR6 Dispose of a Relocatable Memory Block pointed to by the Handle. 
Toolbox See _DisposHandle in "Inside Macintosh". 
expr Handle to the memory block to be Disposed (Longlnteger) 
Variable& Unknown 

Example See USR3 example 

USR7 Unlock a "Locked" Handle 
Toolbox See HUnlock in "Inside Macintosh". 
expr Handle to Locked Relocatable memory block (Long Integer) 
Variable& Unknown 

Note USR6 automatically Un-locks the block first. 

USR8 See USR8 in the main reference section (INTEGER SINE) 
USR9 See USR8 in the main reference section (INTEGER COSINE) 

Macintosh"" Appendix E-150 



MACINTOSH APPENDIX 
',' ::: .~ 

WAVE statement 

FORMAT WAVE voice [. {SIN I var%(n) } I 

DEFINITION Sets the WAVE form of the sound output used with the SOUND statement. 

EXAMPLE 

REMARK 

voice 
SIN 
var".tG(n) 

Specifies one of the Macinbtosh voices (0-3). Default is zero. 
Specifies a Sine Wave (this is the default) 
Sets the WAVE format in the an inlegervariable array. There must be 
at least 256 elements in the array. 

DIM A%(255) : CLS 
FOR 1=0 TO 255 : A%(I)=RND(32)+I/4 
WAVE 3,A%(0) : WAVE 0 
PRINT"RANDOM WAVE SOUNDS" 
FOR 1=100 TO 800 STEP I 

SOUND 1,500 
NEXT 
PRINT"4 VOICE SOUNDS" 
FOR 1=1 TO 8 

WAVE 1 : SOUND WAIT 
FOR J=O TO 3 

READ F : SOUND F,400"J 
NEXT 
SOUND RESUME : PRINT 

NEXT 
DATA 400,400,400,0 
DATA 400,400,400,0 
DATA 400,800,800,0 
DATA 500,500,100,200 
DATA 100,200,400,800 
DATA 100,110,120,130 
DATA 400,450,500,550 
DATA 0,0,0,400 
PEN ",10 
DO 

FOR 1=0 TO 255 STEP 4 

PRINTF, 

NEXT 

CIRCLE FILL 512,384+192,192 TO 1,4 
NEXT 
TRONX 

UNTIL SOUND=O 

Also see SOUND function and SOUND statement. 

E -151 Macintosh™ Appendix 



MACINTOSH APPENDIX 

WIDTH statement 

FORMAT WIDTH-n 
WIDTH LPRINT -n 

DEFINITION Disable automatic wrap of text. This can speed up printing by a factor of 4-10 times. 

EXAMPLE 

REMARK 

WIDTH-2 
WIDTH LPRINT -2 

Disables text wrap-around in the screen. 
Disables text wrap-around to the printer. 

WIDTH-1 
WIDTH LPRINT -1 

Sets back to normal wrap-around mode. 
Sets back to normal wrap-around mode. 

WINDOW#l, "DEF LPRINT":WIDTH LPRINT-2 
DEF LPRINT 
IF PRCANCEL THEN PRINT"Printing Aborted":STOP 

ROUTE 128 
PRINT"HELLO" 
CIRCLE FILL 200,200,200 
CLEAR LPRINT 
ROUTE 0 
END 

Also see WIDTH in the main reference section for other options. 

Macintosh™ Appendix E-152 



MACINTOSH APPENDIX 
__ ::,tiO .,J,ZJaOi"ziinIW.UWJilliwijtlim_HmilLI;;mg 

WINDOW function 

FORMAT WINDOW (expression) 

DEFINITION The WINDOW function returns important information about the active and/or output 
window being used: 

continued ... 

GET ACTIVE AND OUTPUT WINDOW 

WINDOW(0) 

WINDOW(1) 

Returns the window number of the current active window. WINDOW(0) 
returns 0 if there is no current active window. 

Returns the window number of the current output window. All printing, 
graphics, and quickdraw graphics are directed to this window (this will 
normally be the active window unless WINDOW OUTPUT has been 
used, in which case the Active and Output windows may be different). 

ZBasic allows up to 15 windows on the screen at the same time (memory permitting). The 
forward-most highlighted window is the "active window" and is the window where all 
activity takes place unless ZBasic is directed to focus activity on another window with the 
WINDOW OUTPUT statement. 

The WINDOW statement will make the window with that window number the active window 
and bring it to the front. The "active window" and "output window" are the same unless 
the WINDOW OUTPUT statement is used to direct output to another window other than 
the "active window". This may be done for re-drawing background windows or for other 
updating. 

The current output window is where the BUTTON, EDIT FIELD and DIALOG functions 
return information. 

Sending output to another window other than the "active window" is normally done when 
a window refresh is called for, such as after a dialog window erases part of a background 
window. The only time you do not have to replace window contents is when a menu pull
down is done (see GETPUT.BAS and WINDOWPIC.BAS examples on the master disk). 

GET WINDOW SIZE IN PIXELS 

WINDOW(2) 
WINDOW(3) 
WINDOW(4) 

WINDOW(5) 

Returns the width of the current output window. 
Returns the height of the current output window. 
Returns the width position in the current output window where the next 
character will be printed. 
Returns the height position in the current output window where the next 
character will be printed. 

E -153 Macintosh™ Appendix 



MACINTOSH APPENDIX 

WINDOW function continued ... 

REMARK 

GET WINDOW SIZE IN RELATIVE COORDINATES 

WINDOW (6) 
WINDOW (7) 
WINDOW(S) 

WINDOW (9) 

Returns the width of the current output window. 
Returns the height of the current output window. 
Returns the width position of the current output window where the 
next character will be printed. 
Returns the height position of the current output window where the 
next character will be printed. 

GET WINDOW POSITION ON THE SCREEN (Pixel Coordinates (screen)) 

WINDOW (10) 

WINDOW (11) 

WINDOW (12) 

WINDOW (13) 

Returns the horizontal pixel position of the upper-Ieft-hand-corner of 
the window on the screen. 
Returns the vertical pixel position of the upper-Ieft-hand-corner of 
the window on the screen. 
Returns the horizontal pixel position of the lower-Ieft-hand-corner of 
the window on the screen. 
Returns the vertical pixel position of the lower-Ieft-hand-corner of the 
window on the screen. 

GET WINDOW GRAFPORT POINTER 

WINDOW (14) Returns a pointer& to the grafport of the window for use with toolbox 
calls (same as GET WINDOW). 

Example: WPTR&=WINDOW(14) 

Also see CALL GETPORT and GrafPort in the toolbox chapter . 

• Also see COORDINATE, DIALOG function, WINDOW statements and GET WINDOW. 

Macintosh™ Appendix E-154 



MACINTOSH APPENDIX 

WINDOW statement 

FORMAT WINDOW! #)window number[, [title$! ,! (xt,yt)-(x2,y2) )[, type 1JJ 
WINDOW CLOSE \ #\ window number 
WINDOW OFF 
WINDOW OUTPUT[ #Jwindow number 

DEFINITION The ZBasic Window statements and functions are very powerful and will let you take full 
control of the Macintosh windowing environment. 

continued ... 

There are many possible ways of configuring windows. Parameter definitions: 

window number The number of the window being referred to (expression 
between 1 and 15). Window numbers outside this range will 
"wrap-around" i.e. number 17 will converted to window one etc. 

titleS A title that appears in the Title bar at the top of all window types 
except 2,3 and 4. The title will be centered. System font is used. 

(x t,yt )-(x2,y2) The window size is given in actual pixel coordinates (NOT ZBasic 
coordinates), with x1 and y1 as the upper left hand corner and x2 
and y2 as the lower right corner. Default size is (4,38)-(510,320) 
(which is approx. 80x25 lines in Monaco 9 point text). 
The smallest window size is 64x64 pixels. 
The largest window size is 8192x8192 pixels (for large displays). 

type Document window. This window has a title bar at the top and a size box at 
the bottom right hand corner so the user may size the window. 

2 Dialog window with a border of double lines. This window has no other 
attributes and may not be moved or sized. The user will normally just "click" 
the window to make it go away. This Dialog window is used for giving error 
messages or other messages to the user. 

3 Window with a simple one line border. May be used similar to number 2 
above. 

4 Window with a shadow. Same as number 3 but with a shadow. 

5 User may not change window size. Same as WINDOW type 1 but without a 
grow box and gives a slightly larger view area than window type 1. 

6-8 Undefined. 

9 Adds a ZOOM BOX to the title bar in HFS. This is ignored with MFS. 
Example: WINDOW ill, "Example"" 9. Type 9 and 265 are the only 
types with Zoom. See DIALOG 8 and 9 for ways of determining when the 
ZOOM box events occur. Same as window type one in other ways . 

• Subtract one to get the Toolbox window ID (see Window in Toolbox section). 

E -155 Macintosh™ Appendix 



MACINTOSH APPENDIX 

WINDOW statement continued ... 

Other Window Types The windows may be modified by making the window type negative or by 
adding certain values to it: 

Negative type MODAL DIALOG WINDOWS. The user cannot click outside the window or. 
use MENUs. Example: WINDOW #1, "Example",,-l 

Add 256 to type DISABLE GO-AWAY BOX for that Window: 
Example: WINDOW #1, "Example"" 257 

Types 17-24 ROUNDED CORNERS. 18=least rounding----24=most rounding. 
Example: WINDOW #1, "Example"" 17 

WINDOW TYPES 

UJINDOUJ 
TYPE# 2 

Same as #t 
w/Zoom Box 

::::j»»'>N'~>>>'>>>N"">>>>>>'''''>'>>>> ""v: 
, D TITLE 1 

NOTE: To activate window selection and window events be sure to use event trapping 
like ON DIALOG. Also see GET WINDOW, WINDOW function and COORDINATE. 

FORMA T WINDOW CLOSE [#jwindow number 

DEFINITION Removes the window specified by window number from the screen. 

continued ... 

It is important that there always be a window to direct graphics and printing. Therefore you 
should redirect output to another window with WINDOW OUTPUT#n or WINDOW#n 
before closing the active window. 

Macintosh"'" Appendix E-156 



MACINTOSH APPENDIX 
........ i .. 'ttl •• i __ lll __ 

WINDOW statements continued 

FORMAT WINDOW OFF 

DEFINITION Disables the ZBasic default command window so that it does not appear in Stand-Alone, 
double-click applications. It will always appear during interactive programming. 

FORMAT WINDOW OUTPUT [#jwindow number 

DEFINITION Directs output to this window (not necessarily the active window). 

The Active Window is normally the current selected window where all graphics and 
printing are directed. There may arise a situation where you will wish to direct output to 
another window without de-activating the current active window. 

Use this statement to accomplish that. Use this statement (or WINDOW#n) again to re
direct output back to the active window. 

FORMAT WINDOW [#j window number 

DEFINITION Makes the window specified by window number the ACTIVE window. This brings the 
window to the front. If no window is currently open, a window will be created (defauH is 
window type 1 with a size of (4,38)-(510,320). 

EXAMPLE CLS: Y=50 
DIALOG ON 

REMARK 

FOR Type=l TO 5: IF Type>3 THEN Y=200 
IF Type<4 THEN X1=(Type-1) *150 +25ELSE X1=(Type-3) *150 +25 
Tit1e$="Window"+STR$(Type) 

WINDOW *Type, Title$, (Xl, Y)-(X1+100, Y+100), Type 
PRINT@ (,5) ; "\"lindow type"; Type 
PLOT 0,0 TO 1023, 768 
INPUT"Press <ENTER>";A$ 

NEXT 
DIALOG OFF 
FOR X=lT05 

WINDOW *X: REM Makes the WINDOW ACTIVE 
INPUT "<ENTER to CLOSE WINDOW";A$ 

WINDOW CLOSE *X 
NEXT 
END 

See IOTEST.BAS on the master disk for more examples of creating your own window 
types. 

E -157 Macintosh™ Appendix 



MACINTOSH APPENDIX 

WINDOW PICTURE statement 

FORMAT WINDOW PICTURE [#1 window number. PictureHandle& 

DEFINITION Sends a picture handle to the Macintosh Window Manager for use to refresh the specified 
window contents should the window be overwritten with graphics, Desk Accessories or 
other windows (update events will not be generated). 

EXAMPLE 

REMARK 

window number The window to be used. 

PictureHandle& A Longlnteger variable used as a handle for a PICTURE. See the 
PICTURE function and statement for details. 

WINDOW OFF: WINDOW#1",4 

REM Create a PICTURE for use with WINDOW PICTURE 
PICTURE ON 

PRINT"THIS IS A TEST" 
CIRCLE 512,384,384 
PLOT 1023,0 TO 0,767 

PICTURE OFF,PIC& 

REM Display PICTURE specified by PIC&. 
PICTURE, PIC& 

REM Set PIC& for refresh. Try opening DA's 
WINDOW PICTURE #l,PIC& 

ON BREAK GOSUB "STOP UPDATE": BREAK ON 

nMain Event Loop" 
GOTO "Main Event Loop" 

"STOP UPDATE" 
WINDOW PICTURE #1,0: REM Stop Updating window 
KILL PICTURE PIC&: REM Delate PICTURE from memory 
END 

Also see PICTURE, KILL PICTURE, GET and PUT graphics and WINDOW. Also see FN 
GETPICTURE in the Toolbox section of this appendix. 

Macintosh™ Appendix E-158 



MACINTOSH APPENDIX 

WRITE FILE statement 

FORMAT WRITE FILE [#J filenumber%, destinationAddress&, NumberofBytes [&] 

DEFINITION Allows high-speed disk write. Used in conjunction with READ FILE#. 

EXAMPLEl 

REMARK 

destinationAddress& 
NumberofBytes[&] 

Longlnteger address where writing begins. 
Bytes 10 write. 

REM This program allows you to Execute other applications 
REM and return with all variables as they were 
REM THIS APPLICATION MUST BE IN SYSTEM FOLDER TO WORK WITH HFS 
REM NOTE: ALL VARIABLES ARE RESTORED UPON RETURN TO THIS PROGRAM 

WINDOWJll,"Execute other Applications and return" 
FIRST%=O: GOSUB"Get Last Variable pointer" 
REM Check to see if returning from another application 
OPEN"R",I,"VARS" REM If returning from an application 
LONG IF LOF(I,I»10 REM reload all the variables 

REF..n FILE #1 f VARPTR (FIRST%), LAST&-VARPTR (FIRST%) 
CLS: BEEP:BEEP:TEXT 1,24,1 
PRINT:PRINT"Returning from: ":PRINTAPPL$ 
PRINT:PRINT"Press a key ..... 
DO:UNTIL LEN(INKEY$) 

END IF 

REM *** EXIT TO MAC PROGRAM AND RETURN TO THIS PROGRAM *** 
REM Moves This Applications filename to FINDER name 
FOR 1=0 TO 15: REM Your filename MUST be less than 16 char'S 

POKE &2EO+I,PEEK(&910+I) 
NEXT 
REM *** Get name of application to execute 
APPL$=FILES$(I,"APPL""Volume%): REM APPL=any executable file 
LONG IF APPL$= .... 

CLOSEJIl 
KILL "VARS" 
REM Restore FINDER filename as desktop start-up 
A$="FINDER" 
FOR 1=0 TO LEN(A$)+1 

POKE&2EO+I,PEEK(VARPTR(A$) +1) 
NEXT 

XELSE 
RECORDJll,O,O: REM Reset file pointer to beginning of file 
REM *** Save Variables before executing Application 
WRITE FILE #1,VARPTR(FIRST%), LAST&-VARPTR(FIRST%) 
CLOSEJIl 
REM Execute Application now ... 
RUN APPL$,Volume% 

END IF 
END 
"Get Last Variable pointer" 
LAST&=VARPTR(LAST%) :RETURN 
REM Last variable used as a dummy for READ FILE and WRITE FILE 

Also see READ FILE#. 

E -159 Macintosh™ Appendix 



MACINTOSH APPENDIX ~ 

ASIC 

MACINTOSH 
TOOLBOX 
4=~ 

Macintosh and QuickDraw are Trademarks of Apple Computer. Inc, 

Macintosh™ Appendix E-160 



~~ MACINTOSH APPENDIX 
*. • ............ Zi:Q.J;:. 

MACINTOSH TOOLBOX ~ 
The Macintosh comes with many powerful, built-in functions and statements. ZBasic 
gives you access to most of them. While the Mac ROM calls and functions are indeed 
useful, the technical "Inside Macintosh" was written in Hieroglyphics as far as most BASIC 
programmers are concerned. 

This section of the ZBasic manual attempts to simplify and enlighten BASIC programmers 
to the Macintosh toolbox routines. While there are a number of examples, definitions and 
illustrations, there may be unpleasant occasions when you will have to refer to "Inside 
Macintosh" (it is 1500+ pages). Hopefully this section of the manual will keep the need 
for this to a minimum. 

WHAT WE DON'T INCLUDE 

Operating System and Memory Manager traps are excluded since they are both register 
based instead of stack based and would conflict with the internal workings of ZBasic. 

GLOSSARY OF TERMS AND DEFINITIONS USED THROUGHOUT THE TOOLBOX 

DATA TYPES 

The toolbox refers to many terms that may be foreign to you. The following paragraphs 
discuss some of these terms and will be used throughout this section. 

There are also special terms discussed at the beginning of each section (like QuickDraw 
and Resource Manager) that are specific to those toolbox types. Be sure to study those 
glossaries as well. The terms used will be certain data or variable types as defined below: 

NUMERIC 
The numeric terms under "Type"; Byte, Word, Long and Fixp, will refer to the following 
ranges and memory requirements. 

--Type -
Byte 
Word 
Long 
Fixp 

-- Bns ---
8 bit 
16 bit 
32 bit 
32 bit 

BOOLEAN 
Byte 8 Bit 

STRING 
Char 
Str 

Byte 
Len+String 

EXPRESSIONS 

---Bytes----
1 
2 
4 
4 

Boolean 

--- Positive ---
o to 255 

--- Signed -----
-128 to +127 

o to 65,535 -32,768 to +32,767 
o to 4,294,967,294 

-- None--

True <> 0 False = 0 

±2,147,483,647 
±32,767.999,9 

Passed as Word with ASCII in both hi & low Bytes 
Byte length followed by up to 255 characters (either a 
quoted string or a string variable). 

Wherever Byte, Word, Long, Fixp or Char are used in toolbox functions or calls you may 
substitute expressions (not str). 

This means you may use a number, variable or numeric expression in place of that type 
and values exceeding the range specified will be truncated. 

Important Note: When you see a variable specifier like %, &, $ or Var in a toolbox function 
or call, you MUST use a variable there! 

E -161 Macintosh™ Appendix 



MACINTOSH APPENDIX ~ 

VARIABLE TYPES 

When you encounter one of the variable type specifiers; %, &, $ or Var, it means you 
MUST use that variable type. The routine uses the painter to that variable (VARPTR) and 
not the value stored in the variable (at least not directly). 

-Variable
% 
& 
$ 
Var 

--Type--
Integer 
Long Integer 
String 
Any Variable 

Pointer to Integer Variable 
Pointer to Long Variable 
Pointer to String Variable 
Pointer to Any Variable 

Important Note: when you see a variable specifier always use that variable type! 

WHEN TO USE EXPRESSIONS OR VARIABLES 

This toolbox chapter contains terms with a number of definitions that begin with a name. II 
the name includes a variable specifier than you must use a variable. II no specifier is given 
and a type follows like; Byte, Word, Long, Str , Fixp, or Char. Use that type: 

Examples: 

Cnt 
Name 
Name$ 
Plr 
Ptr& 

Word 
Str 
Var$ 
Long 
Long 

Count Word Value (0 to 32,767 typically) 
Any Name "quotes" or Variable$ 
A string variable only (specified by $) 
An expression, number or numeric variable 
A Longlnteger variable only (specified by &) 

POINTER TO MACHINE LANGUAGE ROUTINES 

'POINT' 

Used to point to the address of a user defined machine language routine. In most cases 
this should be defined as zero. 

Proc Long Pointer to a Machine Language Routine 

Some routines, primarily QuickDraw, List Manager and some MOUSE functions use what 
we'll refer to as Point. This signifies that the four bytes starting at the position of a variable 
are significant. These bytes can be accessed using a number of different variables: 

Point Var Var$, Var& or Var%,Var% 

Point Does: PEEK LONG(VARPTR(Var)) or POKE LONG(VARPTR((Var)) 

An example of using Point would be to return the position of the MOUSE where the first 
two bytes return the vertical position and the last two bytes retum the horizontal position. 

Macintosh™ Appendix E-162 



4=~ MACINTOSH APPENDIX 

POINTERS (Ptr) 

A Pointer is the Long address of the actual byte(s) to be used. Pointers never move in 
memory (non-relocatable). 

Ptr Long FirstByle= PEEK(Ptr) 
SecondByte= PEEK(Ptr+1) 

HEAP 

POINTER ---+ 4%\\» ~,,, >. ~on.Relocatable 
Block of Memory 

A Pointer to a Non-Relocatable Block 

HANDLES (Hndl) 

A Handle is used to point at the current position of a relocatable pointer in memory. This 
position may be moved according to the condition of memory and the whims of the 
Macintosh Memory Manager. 

Hndl Long FirstByle= PEEK(PEEK LONG(Hndl» 
SecondByte= PEEK(PEEK LONG(Hndl)+ 1) 

Handles may be locked and unlocked with the ZBasic USR3 and USR? statements 
respectively. Don't leave a Handle locked for too long (see USR 3 and? in this appendix 
for more details of usage). 

HEAP 

HANDLE; 

I CI------I-+-MasterpOinter 

~~~~~~~Relocatable C Block of Memory 

A Handle to a Relocatable Block

Handles are referred to quite frequently in the toolbox. Relocatable blocks of memory are
used so the Macintosh Memory manager can make the most efficient use of memory.

ZBasic compiled programs take advantage of the Memory Manager by creating segments
when compiling. See SEGMENT and SEGMENT RETURN for ways of contrOlling the
memory segments of your ZBasic programs.

E -163 Macintosh™ Appendix

MACINTOSH APPENDIX ~ _li_.",.·.;au,.
Resource Manager
See some examples of Resource Manager under "PICTURE" and "Clipboard" in this appendix.

The following terms are used with the Resource Manager routines:

Type
Rsize
Indx
ID
Attr
RefNum
ErrNum
Fname
Fname$
Rhndl

Returns
Word%=
RefNum%=
ErrNum%=
RefNum%=
RefNum%=
Cnt%=
Cnt%=
Rhndl&=
Hndl&=
Rhndl&=
IDO/o=
Rsize&=
AUr%=

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

••••••• 128
Rsize=
Roff=
Word=

Long
Long
Word
Word
Word
Word
Word
Str
Var$
Long

Example: DEFSTR LONG: T&=CVI("TEXTU)

Resource size in bytes
Index number (From 1 to n typically)
ID number of resource
File attributes (See "Inside Mac")
Resource file reference number
Resource manager error number
File name: "quoted string" or Variable$
File name in variable$
Handle to resource

Fun ct Ion 5····················
FN INITRESOURCES
FN OPENRESFILE (Fname)
FN RESERROR
FN CURRESFILE
FN HOMERESFILE (Rhndl)
FN COUNTTYPES
FN COUNTRESOURCES (Type)
FN GETINDRESOURCE (Type,lndx)
FN GETRESOURCE (Type,ID)
FN GETNAMEDRESOURCE (Type,Name)
FN UNIQUEID (Type)
FN SIZERESOURCE (Rhndl)
FN GETRESFILEATTRS (RefNum)

Pro ced u res· •••••••••••••••
RSRCZONEINIT
CREATERESFILE (Fname)
CLOSERESFILE (RefNum)
USERESFILE (RefNum)
GETIND1YPE (Type&, Indx)
SETRESLOAD (Byte)

o efl n It Ion 5······························
••• Conflicts with ZBasic Intemally! .-
Opens existing Resource file by name
Returns last resource manager error
Returns current Refnurn of resource file
Returns Refnum of file with ResHandle
Returns Total number of Resource type(s)
Returns the number of Resources of Type
Get Handle to Resources using Type & Index
Get Handle to Resource using Type & I.D. #
Get Handle to Resource using Type & Name
Returns an ID% for Type not yet used
Returns sze in bytes for Resource Handle
Returns file attributes

o ef I n It Ions····················· •••••••••••••
••• Conflicts with ZBasic Internally! •••
Create a new Resource file called Fname
Close Resource file specified by RefNum
RefNum Resource file becomes first searched
Indx=1 to Cnt%(above): Returns types in Type&
If Byte=O then won't load --Non-Zero will load

LOADRESOURCE (Rhndl)
RELEASERESOURCE (Rhndl)
DETACHRESOURCE (Rhndl)
GETRESINFO (Rhndl,ID%,Type&,Name$)
SETRESINFO (Rhndl,IO,Name)
SETRESATTRS (Rhndl,Attr)
CHANGEDRESOURCE (Hndl)
ADDRESOURCE (Rhndl, Type, ID, Name)
RMVERESOURCE (Rhndl)
UPDATERESFILE (RefNum)
WRITERESOURCE (Rhndl)
SETRESPURGE (Byte)
SETRESFILEATTRS (RefNum, Attr)

Reads Resource pointed to by Rhndl into Memory
Release Resource pointed to by Rhndl from Memory
Makes hndl Not Part Of Resource

ROMS ONLy·······················
FN MAXSIZERSRC(Hndl)
FN RSRCMAPENTRY(Hndl)
FN OPENRFPERM(Fname,Vref,Perm)

Returns ID,Type,Name of Rhndl
Changes The ID Number & Name of Rhndl
Changes Attributes to Attr of Rhndl
Set Resource in memory changed (to write).
Adds resource (Rhndl) of Data, Res Type, id, Name
Remove Rhndl from Res File
Update resource file on disk with memory
Writes Resource Data specified by Rhndl to Disk
Allows modifing purgable Resource to 0 or-l
Sets the ResFile of RefNum Attributes

Oef(n It Ions··············· •••••••••••••••••••
Returns the Maximum Resource size
Returns Offset (Rolf) in Resource Map
Open Resource file, Fname, Vref=VrefNurn
Perm=Perrnission ReadlWrite etc ...

Macintosh™ Appendix E-164

~MACINTOSH APPENDIX

QUICKDRAW GRAPHIC ROUTINES
QuickDraw is a collection of powerful graphic tools built into the Macintosh ROM.

Note that ZBasic utilizes these routines in most of it's graphic statements and functions like; PLOT,
CIRCLE, BOX, COLOR, PEN, GET, PUT, PICTURE so that you will not need to do QucikDraw routines for
these. These routines will come in handy for inverting, Regions, Polygons etc.

The following terms are used with the QuickDraw routines:

POINT AND RECT
Point Var
Rect Var

SRect Rect
DRect Rect

Pointer to the first byte of two "Words" specifying Y, X
Pointer to the first byte of four "Words" specifying Y. X and Y2.
X2 that are the top-left and bottom-right coordinates of a rectangle.
Defines the source Rectangle (same structure as Rect)
Defines the target Rectangle (same structure as Rect)

Examples of ZBasic variables wah Point and Rect

Variabla Order Reet Variable Polnn Polnt2 Top (V) Laft(X} Bottom(V} Rlght(X}

DIMA%(3) A%(O) A%(O) A%(2) A%(O) A%(1) A%(2) A%(3)
DIMT.L.B.R T T B T L B R
DIM TL&.BR& TL& TL& BR& TL& • TL&** BR&' BR&**
DIM P2&(1) P2&(0) P2&(0) P2&(1) P2&(0)* P2&(0)" P2&(1) • P2&(1) ••

'The High byte. "The low byte.
Note: In most cases we use the T.L.B.R format in our example programs.

Coord
Top
Left
Bottom
Right

Size
Word
Word
Word
Word

Offset
Rect+O
Rect+2
Rect+4
Rect+6

Offset
Point1+0
Point1+2
Point2+0
Point2+2

---- Range
-32767 to 32767
-32767 to 32767
-32767 to 32767
-32767 to 32767

Note: The coordinates are in the reverse order to ZBasic coordinates (Y. X instead of X. V).

OTHER COMMON QUICKDRAW TERMS

globe
GrfPtr
TxtPtr
Spos
RgnHnd
BitMap
xSize
ySize
xPos
yPos
dx
dy
Angle

Long
Long
Long
Word
Long
Long
Word
Word
Word
Word
Word
Word
Word

E -165 Macintosh™ Appendix

Long Word Pointer to application globals (see AS Memory next page)
Pointer to space for GrafPort (usually inside current window)
Pointer to text in memory (points to first character not length byte)
Start offset position in bytes
Handle to a Region
Pointer to BitMap information
Horizontal size in pixels
Vertical size in pixels
Left edge of horizontal position
Right edge of horizontal position
Delta X Position (add that to current position to get new position)
DeHa Y Position (add that to current position to get new position)
Degrees (Integer 0 to 360)

MACINTOSH APPENDIX ~ ...
PATTERNS, CURSOR and PEN TERMS

Pat Var Pattern Definition 8 bytes (Bits:1=Black)
PHndl Long Handle to pattern of 8 Bytes

CHndl Long Handle to cursor structure
Curs Var Cursor pattern: 68 total bytes
Offset Type Description
0 Word16 Cursor shape
32 Word16 Cursor mask
64 Point Hotspot

PenRec Var PenState Record 18 bytes
Offset Type Description
0 Point PnLoc (Pen location)
4 Long PnSize (Pen size)
8 Word PnMode (Pen mode)
10 Byte8 Patttern

Srnode Word Source Transfer Mode
Pmode Word Pattern Transfer Mode
Color Long Color to be used (Original OuickDraw. OuickDraw II will vary)

Smode Mode Prnode Mode Color
0 srcCopy 8 patCopy 33 Black
1 srcOr 9 pator 30 White
2 srcXor 10 patXor 20S Red
3 srcBic 11 PatBic 341 Green
4 notsrcCopy 12 notpatCopy 409 Blue
S notsrcOr 13 notpatOr 273 Cyan
6 notsrcXor 14 notpatXor 137 Magenta
7 notsrcBic 1S notpatBic 69 Yellow

Also see PEN in this appendix.

GLOBAL MEMORY lOCATIONS USEFUL WITH QUICKDRAW

Offsets oil Application AS Glebals: AS=PEEK LONG(&904)

PEEK Size Name Description
AS-4 Long GrafPort Pointer to current GrafPort
AS-12 Byte8 White White Pattern (8 bytes)
AS-20 byte8 Black Black Pattern (8 bytes)
AS-28 Byte8 Gray SO% Gray Pattern (8 bytes)
AS-36 Byte8 ItGray 2S% Gray Pattern (8 Bytes)
AS-44 Byte8 dkGray 7S% Gray Pattern (8 Bytes)
AS-112 Byte68 Cursor Current Mouse Cursor (68 Bytes)
AS-126 Byte14 BitMap Full Screen BitMap (14 Bytes)
AS-128 Long RandSeed Random Seed fer Mac's Random #
AS-126 Long BaseAddr Base Address of Screen Bit Image
AS-122 Word rowBytes Row Width in Byte (Even # of Bytes)
AS-120 Rect Bounds Screen Bounds Rectangle

Example: To obtain RandSeed above use: PEEK LONG(PEEK LONG(&904) - 128).

Macintosh™ Appendix E-166

~~ MACINTOSH APPENDIX
••• _.}f-"il1a.g~1

GrafPort POINTER

The GrafPort Pointer pOints to many important areas of information for a specific window. Each
window has it's own GrafPort to keep track of cursor and pen position, current color etc.

To get the GrafPort pointer to a window use the ZBasic GET WINDOW or the toolbox GETPORT.

Examples:

TO GET
pnMode

PenSize

Pen Pat

USE THIS PEEK MODE
GET WINDOW #1, GrfPtr&: REM This gets the pointer
PEEK WORD (GrfPtr&+56)

PEEK LONG (GrfPtr&+52)

FOR x=O TO 7
PRINT BIN$ (PEEK (GrfPtr&+58+X))

NEXT
REM BIN$ shows the bit pattern in D's and l's

------------ GrfPtr: GrafPort Ptr Offsets-------------------------- 206 Bytes ----------------

Oiisei
o
2
6
8
16
24
28
32
40
48
52
56
58
66
68
70
72
74
76
80
84
88
90
92
96
100
104

Type
Word
Long
Word
Rect
Rect
Long
Long
Byte 8
Byte 8
Point
Long
Word
Byte 8
Word
Word
Word
Word
Word
Fixp
Long
Long
Word
Word
Long
Long
Long

Name
Device
baseAddr
Row Bytes
PortRect
PortRect
VisRgn
ClipRgn
bkPat
filiPat
PenLoc
PenSize
pnMode
PenPat
pnVis
txFont
txFace
txMode
txSize
spExtra
fgColor
bkColor
ColrBit
PatStretch
PicSave
rgnSave
PolySave
GrafProcs

Description
Device-specific information
Base Address to bit image
Width of full image in bytes (even number)
Boundary Rectangle of image
GrafPort Rectangle
Vis able Region
Clipping Region
Background pattern
Fill pattern
Pen Location

(pattem is 8 bytes)
(pattem is 8 bytes)

Pen Size (first Word is Y, second Word is X)
Pen Mode (see above)
Pen Pattern (see PEN above and in appendix)
Pen Vis ability
Font Number
Font Face
Font Transfer Mode
Font Size (1 to 127)
Space extra fixed Point (+/-32767.xxxx)
Foreground color
Background color
Color bit (used by printer manager)
Used Internally'
Handle to PICTURE being saved
Handle to Region being saved
Handle to Polygon being saved

'See "Inside Macintosh" for definitions to the other offsets which are normally not used (not enough
room in this manual to describe them in the detail necessary).

E -167 Macintosh™ Appendix

MACINTOSH APPENDIX ~

QuickDraw FUNCTIONS AND PROCEDURES GROUPED BY TYPE

GrafPort

CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL

INITGRAF (globe)
OPEN PORT (GrlPlr)
INITPORT (GrlPlr)
CLOSE PORT (GriPtr)
GETPORT (GrlPlr&)

GRAFDEVICE (Word)
SETPORTBITS (BitMap)
PORTSIZE (xSize, ySize)
MOVEPORTIO (xPos, yPos)
SETORIGIN (xPos, yPos)
SETCLIP (RgnHnd)
GETCLIP (RgnHnd)

CLiPRECT (Rect)

COLOR

CALL
CALL
CALL

FORECOLOR (Long)
BACK COLOR (Long)
COLOR BIT (Word)

Don't Use """
Allocates space for GrafPort"""
Initializes GrafPort Information"""
Closes GrafPort & Releases Memory"""
Get current Grafport pointer and return in Grlptr&
(returns GrafPort to current output Window)
Sets the Device field in GrafPort to Word"""
Change portbits field of GrafPort"""
Change current port size (active area)
Move Top/Left corner of current GrafPort
Set a New Graphic origin (normally 0,0)
Set Clipping Region of GrafPort to RgnHnd
Get Current GrafPort clip Region to RgnHnd

Changes the GrafPort Clip Region to Rect
See example under PICTURE in this appendix.

"""May conflict with ZBasic: Use with caution.

Set Foreground color to Long value
Set Background color to Long value
Set Color Bit (used by ImageWriter™ printer driver)

Note: ZBasic's COLOR statement does this automatically for printing to the ImageWriter'"".

PEN

CALL
CALL
CALL
PHndl=

CALL
CALL

PENNORMAL
PENPAT (Pat)
BACKPAT (Pat)
FN GETPATIERN (ID)

HIDEPEN
SHOWPEN

Reset Pen to 1,1 pixels,patCopy,Black
Set Current Pen Pattern (Pat= 8 bytes)
Changes the background pattern to Pat
Get Handle to Pattern Resource # 10

Stop drawing Until matching showpen
Resume Drawing in current GrafPort

Note: These two procedures are stacked (you must do one SHOWPEN for every HIDEPEN).

CALL
CALL
CALL
CALL
CALL

GETPEN (VPoint)
GETPENSTATE (PenRec)
SETPENSTATE (PenRec)
PENSIZE (xSize, Ysize)
PEN MODE (Pmode)

continued ...

Returns current Pen Location in Point
Get Current Pen State into PenRec
Set Current Pen State With PenRec
Set Pen Size in Pixels
Set Pattern Transfer Mode (8 to 15)

Macintosh"'" Appendix E-168

Jt=~ MACINTOSH APPENDIX •• Addu!:
continued from previous page ...

EXAMPLE
REM Example of SHOWPEN, HIDEPEN and PENSIZE
REM SX showpen x coordinate.
REM SY = showpen y coordinate.
REM HX = hidepen x coordinate.
REM HY = hidepen y coordinate.
CLS: SX=lO: SY=20: HX=SX: HY=SY: X=SX: Y=lOO
FOR Z=lT020

CALL PENSIZE (Z,Z) :REM INCREMENTS PEN WIDTH AND HEIGHT
PLOT X,Y
LONG IF (Z MOD 2)=0

CALL HIDEPEN: PLOT HX,HY: CALL SHOWPEN
XELSE

PLOT SX,SY
END IF
SX=SX+SO:X=SX

NEXT

MOVE AND LINE

CALL

CALL
CALL
CALL

MOVE(dx,dy)

MOVETO (xPos, yPos)
LINE (dx, dy)
LlNETO (xPos, yPos)

Move relative to Current Position. If dx=10, dy=20
and current position is 20,30 then moves to 30,50.
Move Pen Pointer to xPos,Ypos
Draw Line relative to x+dx, y+dy
Draw Line from current Pos to xPos,Ypos

EXAMPLE
WINDOWill,"Example of MOVE TO and LINETO"
COORDINATE WINDOW: REM All QuickDraw routines use "Pixels"
CALL MOVETO (0,0)
DO

CALL LINETO (RND(WINDOW(2)), RND(WINDOW(3)))
UNTIL LEN(INKEY$)

RECTANGLES

CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL

Byte=
Byte=
Byte=
Byte=

FRAMERECT(Rect)
PAINTRECT(Rect)
ERASERECT(Rect)
INVERTRECT(Rect)
FILLRECT(Rect,Pat)

OFFSETRECT (Rect, dx, dv)
INSETRECT (Rect, dx, dy)
UNIONRECT (SRect1, SRect2, Rect)
PT2RECT (Point, Point, Rect)
SETRECT (VRect,Top, Left,Boltom,Right)

FN SECTRECT (SRect1, SRect2, Rect)
FN PTINRECT (Point, Rect)
FN EQUALRECT (Rect1, Rect2)
FN EMPTYRECT (Rect)

continued ...

Outline Rectangle
Draw Rectangle in Foreground
Erase Rectangle to Background
Invert Every bit in the Rectangle
Fill Rect with Pattern Specified

Offset rectangle by dX,dy (Same size)
Shrink or Expand Rectangle by dX,dy
Returns the Union of SRect1,2 in Rect
Returns the Smallest Rect from 2 points
Set Rectangle Values into VRect

If By1e= True, returns intersection in Rect
Returns True if Point in Rectangle
Returns True if Rect1=Rect2
Returns True if Rect too small or invisable

E ·169 Macintosh™ Appendix

MACINTOSH APPENDIX ~

ROUND CORNERED RECTANGLES

Other Terms used in this section:

Oh
Ow

CALL
CALL
CALL
CALL
CALL

Word
Word

Height 01 rounded edge in Pixels
Width 01 rounded edge in Pixels

FRAMEROUNDRECT(Rect,Ow,Oh)
PAINTROUNDRECT(Rect,Ow,Oh)
ERASEROUNDRECT(Rect,Ow,Oh)
INVERTROUNDRECT(Rect,Ow,Oh)
FILLROUNDRECT(Rect,Ow,Oh,Pat)

Outline Roundrect
Draw Roundrect in ForeGround
Erase Roundrect in Background
Invert Every bit in Roundrect
Fill Roundrect with Pattern Specified

EXAMPLE1

EXAMPLE2

CLS: DIM T,L,B,R,PAT%(3): REM All QuickDraw routines use "Pixels"
PAT%(0)=&AA55 : PAT%(1)=&AA55 PAT%(2)=&AA55: PAT%(3)=&AA55
T=lOO : L=100 : B=250 : R=300
CALL FRAMERECT(T)
CALL PAINTRECT(T)
CALL INVERTRECT(T)
CALL FILLRECT(T,PAT%(O»
CALL FRAMEOVAL(T)
CALL PAINTOVAL(T)
CALL INVERTOVAL(T)
CALL FILLOVAL(T,PAT%(O»
CALL FRAMEROUNDRECT(T,10,10)
CALL PAINTROUNDRECT(T,20,20)
CALL INVERTROUNDRECT(T,30,30)
CALL FILLROUNDRECT(T,40,40,PAT%(0»
CALL FRAMEARC(T,0,45)
CALL PAINTARC(T,45,90)
CALL INVERTARC(T,90,135)
CALL FILLARC(T,135,180,PAT%(0»
END

: GOSUB
: GOSUB
: GOSUB
: GOSUB
: GOSUB
: GOSUB
: GOSUB
:GOSUB
: GOSUB
: GOSUB
: GOSUB
: GOSUB
: GOSUB
:GOSUB
: GOSUB
: GOSUB

"WAIT/CLS"
"WAIT/CLS"
"WAIT/CLS"
"WAIT/CLS"
"WAIT/CLS"
"WAIT/CLS"
"WAIT/CLS"
"WAIT/CLS"
"WAIT/CLS"
"WAIT/CLS"
"WAIT/CLS"
"WAIT/CLS"
"WAIT/CLS"
"WAIT/CLS"
"WAIT/CLS"
"WAIT/CLS"

"WAIT/CLS" : DELAY 100 : CLS : DELAY 100 : RETURN

REM T%, L% = TOp left corner
REM B%, R% = Bottom right corner
REM OX = offset X pixels horizontally.
REM OY = offset Y pixels vertically.
TRONB: REM All QuickDraw routines use "Pixels"
COORDINATE WINDOW:CLS
DIM T%,L%,B%,R%
T%=0:L%=0:B%=120:R%=90:0X=15
FOR I=OT037

PEN"" I

REM Change PAINT on next line to ERASE, FRAME, INVERT or FILL
REM to see other ways of doing rectangles. You can also
REM replace RECT with ROUNDRECT to do rounded corners.

CALL PAINTRECT (T%): DELAY 100
LONG IF 1>15

LONG IF OX<=O
OX=-15: OY=O

END IF
OY=OY+1: OX=OX-1

END IF
CALL OFFSETRECT (T%,OX,OY)

NEXT:END

Macintosh™ Appendix E-170

4=~ MACINTOSH APPENDIX

OVALS
CALL FRAMEOVAL(Rect)
CALL PAINTOVAL(Rect)
CALL ERASEOVAL(Rect)
CALL INVERTOVAL(Rect)
CALL FILLOVAL(Rect,Pat)

EXAMPLE

Outline Oval
Draw Oval in ForeGround
Erase Oval in Background
Invert Every bit in Oval
Fill Oval with Pattem Specified

TRONB: COORDINATE WINDOW:CLS

ARCS

DIM T%,L%,B%,R%: REM This sets up the Rect coordinates
T%=10:L%=10:B%=200:R%=300

FOR I=OT037
PEN",,!

REM Change PAINT on next line to ERASE, FRAME, INVERT OR FILL
REM to see other ways of doing rectangles.

CALL PAINTOVAL (T%)
NEXT
END

Other Terms used in this section:

Strt
Angle

Word
Word

Start Angle 0 to 360 (O=top)
Number of Degrees ClockWise (0 to 360)

CALL
CALL
CALL
CALL
CALL

FRAMEARC(Rect,Strt,Angle)
PAINTARC(Rect,Strt,Angle)
ERASEARC(Rect,Strt,Angle)
INVERT ARC(Rect,Strt,Angle)
FILLARC(Rect,Strt,Angle,Pat)

EXAMPLE

Outline Arc (no lines to center)
Draw Arc in ForeGround
Erase Arc in Background
Invert every bit in Arc
Fill Arc with Pattem Specified

COORDINATE WINDOW: CLS:REM All QuickDraw routines use "Pixels"
DIM T%,L%,B%,R%
T%=SO:L%=1S0:B%=2S0:R%=2S0:
FOR I=O TO 37 STEP 4

PEN",,!
CALL PAINTARC (T%,0,90)
PEN""I+1
CALL PAINTARC (T%,90,90)
PEN, '," I+2
CALL PAINTARC (T%,180,90)
PEN""I+3
CALL PAINTARC (T%,270,90)

NEXT

E -171 Macintosh™ Appendix

REM Set up Rect

MACINTOSH APPENDIX ?~~

REGIONS
Regions are limited to 32K in length. Do not call OPENRGN when another region is already open as all
previously defined regions will then act erradically.

Other Terms used in this section:

SRgn
DRgn

RgnHnd
RgnHnd

Source Region Handle
Destination Region Handle

RgnHnd=FN NEWRGN
Byte= FN PTINRGN (Point, RgnHnd)
Byte= FN RECTINRGN (Rect, RgnHnd)
Byte= FN EOUALRGN (RgnHnd1, RgnHnd2)
Byte= FN EMPTYRGN (RgnHnd)
CALL DISPOSERGN (RgnHnd)
CALL COPYRGN (SRgn, DRgn)
CALL SETEMPTYRGN (RgnHnd)
CALL SETRECTRGN(RgnHnd,Top,Bottom,Left,Righ')
CALL RECTRGN (RgnHnd, Rect)
CALL OPENRGN
CALL CLOSERGN (RgnHnd)
CALL OFFSETRGN (RgnHnd, dx, dy)
CALL INSETRGN (RgnHnd, dx, dy)
CALL SECTRGN (SRgn, SRgn, DRgn)
CALL UNIONRGN (SRgn, SRgn, DRgn)
CALL DIFFRGN (SRgn1, SRgn2, DRgn)
CALL XORRGN (SRgn1, SRgn2, DRgn)

CALL
CALL
CALL
CALL
CALL

FRAMERGN (RgnHnd)
PAINTRGN (RgnHnd)
ERASERGN (RgnHnd)
INVERTRGN (RgnHnd)
FILLRGN (RgnHnd,Pat)

EXAMPLE

Create a New Empty Region Handle
True if Point inside Region
True if all or part of Rect in Region
True if Region #1 = Region #2
True if Region is empty
Releases Memory Ocupied by RgnHnd
Copys Region Structure SRgn to Drgn
Makes RgnHnd Point to Empty Region
Set Region to Rectangle specified
Sets Region to Rectangle only
Tell OuickDraw to Save Region Information
Closes Open Region and save in RgnHnd
Offsets Region by dX,dy
Shrinks or Expands Region, +n=inward
Calculates Intercetion of 2 Regions
Calculates Union of 2 Regions
Calculates Difference of 2 Regions
Calculates XORof 2 Regions

Outline Area Specified by RgnHnd
Paint Area Specified by RgnHnd
Erase Area Specified by RgnHnd
Invert Area Specified by RgnHnd
Fill Area Specified by RgnHnd

WINDOW#l,"Example of using REGIONS"
COORDINATE WINDOW: REM All QuickDraw routines use "Pixels"
DIM PAT%(3), T%, L%, B%, R%:REM Set up variables for Rect
PAT%(0)=&AA55 : PAT%(1)=&AA55 : PAT%(2)=&AA55 : PAT%(3)=&AA55

Barbell&=FN NEWRGN
CALL OPENRGN

CALL SETRECT(T%, 20,20,30,50)
CALL FRAME OVAL (T%)
CALL SETRECT(T%, 25,30,85,40)
CALL FRAMERECT (T%)
CALL SETRECT(T%, 80,20,90,50)
CALL FRAME OVAL (T%)

CALL CLOSERGN(Barbell&)
CALL FILLRGN(Barbell&, PAT%(O»

:REM Form the weight

:REM Form the BAR

:REM Form the right-weight

CALL OFFSETRGN(Barbell&, 100,100) :REM Offset
PAT%(O)=&FFFF : PAT%(l)=&FFFF : PAT%(2)=&FFFF :

and do again
PAT%(3)=&FFFF

CALL FILLRGN(Barbell&, PAT%(O»
CALL OFFSETRGN(Barbell&, 100,100)
CALL FRAMERGN(Barbell&)
CALL DISPOSERGN(Barbell&)
DO: UNTIL LEN (INKEY$) : END

REM Offset and do again
REM Do an outline
REM Kill Region

Macintosh™ Appendix E-172

~~ MACINTOSH APPENDIX

SCROLL AND COPYBITS

CALL SCROLLRECT(Rect,dx,dy,URgn) Move Pixels dX,dy Update Region=URgn
CALL COPVBITS(SRect,DRect,SBit,DBit,Mode,MaskRgn) Copy Source Rect area to the Des!. Rect

PICTURE (Also see PICTURE in this appendix)

Other Terms used in this section:

PicHnd
Kind
Size
Data

Long
Word
Word
Long

Handle to Picture
Type of Comment
of Bytes
Handle to actual Data

(PICTURES are limited to 32K)
(Comment Number)
(0 if No Data)
(Nil if No Data)

---------------- PICTURE Record ----------------
Offset Size Name Description
o Word picSize Total Size in Bytes (up to 32767)
2 Rect picFrame Bounding Rectangle
10 Data picData Picture B~tte Codes (Data Making up Picture)

PicHnd= FN OPENPICTURE(Rect)
PicHnd= FN GETPICTURE(ID)
CALL CLOSE PICTURE
CALL PICCOMMENT(Kind,Size,Data)
CALL DRAWPICTURE(PicHnd,Rect)
CALL KILLPICTURE(PicHnd)

MOUSE CURSOR

CHndl=
CALL
CALL
CALL
CALL
CALL
CALL

FN GETCURSOR(ID)
INITCURSOR
SHIELDCURSOR(Rect,Point)
SETCURSOR(Curs)
HIDECURSOR
SHOWCURSOR
OBSCURECURSOR

Open Picture size Rect to store Graphics
Get Handle to Resource Picture With ID
Tell QuickDraw to stop saving Picture
Save Comment into Picture Structure
Draw Picture scaled to Fit Rect
Release Memory Occupied by Picture

Get a Handle to Resource Cursor ID
Change Mouse Cursor Back to Arrow
Hide Cursor if it Intercects Rect
Change Mouse Cursor to Curs Pattern
Hide Mouse Cursor
Show Mouse Cursor
Hide Mouse Cursor until Moved

See example under CURSOR in the reference section of this appendix.

E' -173 Macintosh™ Appendix

MACINTOSH APPENDIX ~

POLYGONS

Other Terms used in this section:

PlyHnd Long Handle to Poly

PlyHnd= FN OPENPOL Y
CALL CLOSEPOLY
CALL KILLPOL Y(PlyHnd)
CALL OFFSETPOL Y(PlyHnd,dx,dy)
CALL MAP POL Y(PlyHnd,Var,Var)
CALL FRAMEPOLY(PlyHnd)
CALL PAINTPOL Y(PlyHnd)
CALL ERASE POL Y(PlyHnd)
CALL INVERTPOL Y(PlyHnd)
CALL FILLPOL Y(PlyHnd,Pat)

EXAMPLE
TRONB: TEXT",O

Retums Handle to Poly & starts saving
Tell OuickDraw to Stop Saving Poly
Release Memory Occupied by Poly
Offset Poly Definition by dX,dy
Map Area specified by Poly Handle
Outline Area specified by Poly Handle
Paint Area specified by Poly Handle
Erase Area specified by Poly Handle
Invert Area specified by Poly Handle
Fill Area specified by PlyHnd with Pattern

COORDINATE WINDOW: CLS : DIM A%(lO)
X&=FN OPENPOLY: CALL SHOWPEN
PLOT 0,0 TO 200,0: DELAY 800
PLOT 200,0 TO 200,200: DELAY 800
PLOT 200,200 TO 100,100: DELAY 800
PLOT 100,100 TO 100,200: DELAY 800
PLOT 100,200 TO 0,0: DELAY 800
CALL CLOSEPOLY
FOR 1=0 TO 37

PEN""I
CALL PAINTPOLY(X&) :PRINT@(50,5)"PAINT POLY ... "
DELAY 100
CALL INVERTPOLY(X&) :PRINT@(50,5)"INVERT POLY ... "
DELAY 100

NEXT
CALL KILLPOLY(X&)

GRAPHIC UTILITIES

Other Terms used in this section:

VPoint
VRect
h

Long
Rect
Word
Word

Variable With Point Value in it

v

Byte=
Byte=
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

Variable Reel Modified by ToolBox Call
Horizontal Position
Vertical Position

FN EOUALPT (Point, POint)
FN GETPIXEL (xPos, YPos)
ADDPT(Point,VPoint)
SUBPT(Point,VPoint)
SETPT(VPoint,h,v)
LOCAL TOGLOBAL(VPoint)
GLOBAL TOLOCAL(VPoint)
STUFFHEX(Plr,Str)
SCALEPT(VPoint,SRect,DRect)
MAPPT(VPoint,SReel,DRect)
MAPRECT(VRect,SRect,DRect)
MAPRGN(RgnHnd,Var,Var)

True if Point #1 = Point #2
Get pixel state: NOT zero if pixel is set.
Add Point to VPoint stored in VPoint
Sub Point to VPoint stored in VPoint
Make Point from h,v as Words
Convert Local in VPoint to Global Point
Convert Global in VPoint to Local Point
Convert Hex in Str to Bytes at Ptr
Scales Point Size in VPoint
Map/Scale Point from Source to Dest Reel
Map/Scale VRect from Source to Des! Reel
Map/Scale Region from Source to Dest Rect

Macintosh™ Appendix E-174

~MACINTOSH APPENDIX

ICONS

IHndl= FN GETICON(ID) Get Handle to resource ICON in IHndl
Draw ICON Sized and at Rect CALL PLOTICON(Rect,IHndl)

EXAMPLE
REM This example shows how to to access
REM ICONS from our application and display them
REM in your programs. Courtesy A.G.

CLS : DIM T,L,B,R
"LOOP"
FOR J=O TO 2

FOR I=l TO 128 STEP 4
T=140-1 : L=256-1 B=140+I: R=256+1
CALL PLOTICON(T,FN GETICON(J))

NEXT
NEXT
TRONX : GOTO "LOOP"

QUICKDRAW ROUTINES AVAILABLE ON NEW ROMS ONLY

Other Terms used in this section:

SPtr
DPtr
SRow
DRow
Hght
Wdth
Seedh
SeedV
SBit
MBit
DBit
MRect

Long
Long
Word
Word
Word
Word
Word
Word
Long
Long
Long
Var

Source Pointer
Destination Pointer
Source Row
Destination Row
Hight (in Pixels)
Width (in Words)
Vertical Offset in Pixels
Horizontal Offset in Pixels
Source BitMap
MaskB~Map
Destination BitMap
Mask Rectangle

CALL
CALL
CALL
Long=

SEEDFILL(SPtr,DPtr,SRow,DRow,Hght,Wdth,Seedh,Seedv)
CALCMASK(SPtr,DPtr,SRow,DRow,Hght,Wdth)
COPVMASK(SBit,MBit,DBit,SRect,MRect,DRect)
FN GETMASKT ABLE

E -175 Macintosh™ Appendix

MACINTOSH APPENDIX ?~

TEXT AND FONTS
See TEXT statement in this appendix for more information about using Macintosh fonts.

Terms used in this section:

Fnum
Fsize
Face
Fmod
Fixp
Pxls

FntRec
o
2
4
6
16

Bij ---
0
1
2
3
4
5
6
7

Pxls%=
Pxls%=
Pxls%=
Byte=
Long=
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

Text Font Number
Font Size 1 to 127
Text Face bits (bold, italic etc.)

Word
Word
Word
Word
Long
Word

Text Mode (Mode 0 to 7) See bug note under TEXT in this appendix.
Fixed Point Example: F&=num#*65536 ,~
Number of Pixels -\.--0'\'\

.-'1",0
Var
Ascent
Descent
WidMax
Leading

Font Record 8 Bytes --- 128k Rom FFrec -- '\1" v
. \j o Ascent Fixed

'toO 4 Decent Fixed
8 Leading Fixed
12 Width Max Fixed

Hndl Width Table

Value - Face --- Num --- Font ----- Num-- Font ----
1 Bold 0 System 1 Appl Font
2 Italic 2 New York 3 Geneva
4 Underline 4 Monaco 5 Venice
8 Outline 6 London 7 Athens
16 Shadow 8 SanFransisco 9 Toronto
32 Condensed 11 Cairo 12 LosAngeles
64 Extended 20 Times 21 Helvetica
128 *Reserved* 22 Courier 23 Symbol 1-.: fSt-\
FN CHARWIDTH(Char) Returns Pixel Width of Char (ASCII Val) ~lh~ ~S
FN STRINGWIDTH(Str) Returns Pixel Width of Str 0''-'-
FN TEXTWIDTH(TxtPtr,Spos,Cnt) Returns Pixel Width of text,Spos~cnt
FN REALFONT(Fnum,Fsize) Givin Font Number/Size True if in Sys
FN SWAPFONT(Var) *** Don't Use ***
TEXTFONT(fnum) Change current font to Font Number word
TEXTFACE(Face) Change Text Face to face
TEXTMODE(Fmod) Change Text Mode (Fmod= 0 to 7)
TEXTSIZE(Fsize) Change text Size (Fsiz= 1 to 127)
SPACEEXTRA(Fixp) Change Character Spacing +/-nnn.nnn
DRAWCHAR(Char) Draw Ascii Char at current pen position
DRAWSTRING(Str) Draw String from current pen Position
DRAWTEXT(TxtPtr,Spos,Cnt) Draw Text frorn current pen Position
GETFONTINFO(FntRec) Get Font Information into font reoord
INITFONTS .** Don't Use .. *
GETFONTNAME(Fnum,Name$) Returns Name for Font Number in Name$
GETFNUM(Name,Fnum%) Returns Font Number for Font Name in Fnum%
SETFONTLOCK(Byte) \I Byte <> 0 Current Font Un-Purgable

TEXT for128k ROM systems only
CALL MEASURETEXT(Cnt,Str,Var%) Makes an Integer Array of Pixel Positions
CALL SETFSCALEDISABLE(Word) True Tells QuickDraw Not to scale fonts
CALL FONTMETRICS(FFrec) Fixed Point Version of GetFontlnfo

Macintosh™ Appendix E-176

.lfC&"Th0"'1

~MACINTOSH APPENDIX

WINDOW MANAGER
Terms used in this section:

WPir
Ref Con
tHle
wID
Wsto
BWptr
Vis
plD
gWay
dxy
Where

Where
o
1
2
3
4
5
6
7
8

WPtr=
WPlr=
WPlr=
Where=
Byte=
dxy=
RefCon=
PicHnd=
Point=
Long=
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

continued ...

Window Pointer ZBasic™: Wptr&=WINDOW(14)
Window Long word Ref Value
Window Title
ID of resource Window
Area to Store Window record (Nil in Heap)
Behind Which Window 'Wptr'
True if Visable
Proc ID, Window DefinHion
True if GoAway Box
Delta x,y (0 if no change)

Long
Long
Str
Word
Long
Long
Byte
Word
Byte
Long
Word Where the point is on the screen (Global Coordinates).

Point in
Desk Top
Menu Bar
System Window
Contents
Drag
Grow Box
GoAway
Zoom-In Box
Zoom-Out Box

plD
0
1
2
3
4
8
16-23

Window Proc ID's Offset
Std Document 0
Alert or Dialog 208
Plain Box 210
Plain W/Shadow 211
Doc Wo/Size Box 212
Zoom Window 213
Rounded Edge DocProc 214

FN NEWWINDOW(wSto,Rect,Title,Vis,pID,BWptr,gWay,RefCon)

Description
GrafPort
WindowKind
Visable
HiLited
GoAway
·Reserved·
StructureRgn

FN GETNEWWINDOW(wID,wSto,BWptr) Opens up Resource Window Definition
FN FRONTWINDOW Returns Window pointer of Front Window
FN FINDWINDOW(Point,Wptr&) Returns Point in Window. See 'Where'
FN TRACKGOAWAY(Wptr,Point) Track Mouse Down in GoAway Box
FN GROWWINDOW(Wptr,Point,Rect) Track Window Grow,Mouse Down in Grow
FN GETWREFCON(Wptr) Get Current Ref Con Value
FN GETWINDOWPIC(Wptr) Get Handle to Window Picture
FN PINRECT(Rect,Point) Pins the Point Inside the Rect
FN DRAGGRAYRGN(Long,Point,Var,Var,Word,Long)
INITWINDOWS ••• Don't Use! •••
GETWMGRPORT(Wptr&) Returns Pointer to Window Mgr Window
CLOSEWINDOW(Wptr) Close Window Pointed to by Wptr
DISPOSEWINDOW(Wptr) Closes Window Created WHh Nil as wStorage
SETWTITLE(Wptr,Str) Change Window Title to Str
GETWTITLE(Long,Var$) Get Current Window title in Var$
SELECTWINDOW(Wptr) Makes this Window the Front Window
HIDEWINDOW(Wptr) Makes the Window invisable
SHOWWINDOW(Wptr) Makes the Window Visable (Same Order)
SHOWHIDE(Wptr,Byte) If Byte=O Make Invisable else Visable
HILlTEWINDOW(Wptr,Byte) if Byte=O UnHilite else HilHe Window
BRINGTOFRONT(Wptr) Brings the Window in front of Others
SENDBEHIND(Wptr1,Wptr2) Sends Window1 behind Window2
DRAWGROWICON(Wptr) Draws Window Grow icon
MOVEWINDOW(Wptr,gh,gv,Byte) Move Window to Global gh,gv,Front if true
DRAGWINDOW(Wptr,Point,Rect) Drag Window,Mouse POint,Bounds Rectangle

E -177 Macif]tosh™ Appendix

MACINTOSH APPENDIX ~ --continued from previous page ...

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
Byte=

EXAMPLE

SIZEWINDOW(Wptr,w,h,Byte)
INVALRECT(Rect)
INVALRGN(RgnHnd)
VALIDRECT(Rect)
VALlDRGN(RgnHnd)
BEGINUPDATE(Wptr)
ENDUPDATE(Wptr)
SETWREFCON(Wptr,RefCon)
SETWINDOWPIC(Wptr,PicHnd)
CLiPABOVE(Wptr)
SAVEOLD(Wptr)
DRAWNEW(Wptr,Byte)
PAINTONE(Wptr,RgnHnd)
PAINTBEHIND(Wptr,RgnHnd)
CALCVIS(Wptr)
CALCVISBEHIND(Wptr,RgnHnd)
SETPORT(Wptr)

128k Roms Only
ZOOMWINDOW(Wptr,Point,Word)
FN TRACKBOX(Wptr,Word,Byte)

Size to w,h, UpDate Event if Byte True
Force an UpDate Event For Rect Area
Force an UpDate Event for Rgn Area
Tell Window Manager this Rect Valid
Tell Window Manager this Rgn Valid
Begin Update Process for Window
End Update Process for Window
Set Window Ref Con Field
Set Window Picture Handle
Sets up Clip Region
Save Content/Structure area of Window
Restore from Above, Update if True
See Inside Mac
See Inside Mac
See Inside Mac
See Inside Mac
See Inside Mac

*** ••
See Inside Mac
See Inside Mac

REM This example shows you where the mouse
REM is on the screen:

DIM Y%,X%:COORDINATE WINDOW
WINDOW#l,"Window Pointer Example"
GET WINDOW#l, Wptr&
REM Use CALL GETPORT (Wptr&) to get current window Grfptr&.
DIALOG ON:BREAK ON
DO

CALL GETMOUSE(Y%)
CALL LOCALTOGLOBAL(Y%)
WHERE=FN FINDWINDOW(Y%,Wptr&)
PRINT X%, Y%,
SELECT CASE WHERE

CASE O:PRINT"DESK": CURSOR 2
CASE l:PRINT"MENU BAR"
CASE 2:PRINT"SYSTEM WINDOW (Desk Accessory?)"
CASE 3:PRINT"CONTENTS":CURSOR 0
CASE 4:PRINT"DRAG":CURSOR 4
CASE 5:PRINT"GROW BOX"
CASE 6: PRINT"GO-AWAY BOX": CURSOR 3
CASE 7:PRINT"ZOOM-IN BOX"
CASE 8:PRINT"ZOOM-OUT BOX"
CASE ELSE:PRINT"NUMBER RETURNED WAS:"WHERE"--->UNKNOWN!"

END SELECT
UNTIL LEN(INKEY$)
END

Macintosh™ Appendix E-178

~MACINTOSH APPENDIX
lM.I wlil __ tlfll.,' •••• lirtlJiwlsw •••

CONTROL MANAGER
This section covers things like Buttons, Scroll bars and other controls.

Terms used in this section:

Wprt
title
Value
Min
Max
Ref Con
ProclD
Visable
clD
Chndl
Aproc
Axis
Siopr
Lrect
Horz
Vert

Long
Str
Word
Word
Word
Long
Word
Byte
Word
Long
Long
Word
Rect
Rect
Word
Word

Window Pointer
String for Control Title
Current control Value
Minumum control Value
Maximum control Value
Controls Ref Value
Control Definition Procedure ID
True if Visable
Contol Resource ID number
Control Handle
Pointer to Action Procedure
1=Horz Move,2=Vertical Move,O=Both
Slop Rectangle
Limit Rectangle
Size in Pixels Width
Size in Pixels Height

CONTROL HANDLE

---------------- Chndl: Control Handle Template --------------------
Offset Size Name Description
o hndl nextControl next control in the list
4 WPtr contrlOwner owning window
8 Rect contrlRect bounding rectangle
16 Byte contrlVis visible state
17 Byte contrlHilite Highlight state
18 Word contrlValue current value of control
20 Word contrlMin minimum value of control
22 Word contrlMax maximum value of control
24 Hndl contrlDefHandle control definition procedure
28 Hndl contrlData data for definition proc
32 Proc contrlAction local actionProc
36 Long contrlRFcon refcon defined by application
40 str contrlTitie title string

Control Manager Definitions
ID
0
1
2
8
9
10
16

Chndl=
Chndl=
CALL
CALL
Word=

Type Font Used Part Code Description
Button System 10 Simple Button
Check Box System 11 Check Box or Radio
Radio Button System 20 Up Arrow Scroll Bar
Button Window 21 Down Arrow
Check Box Window 22 Page up Area
Radio Button Window 23 Page Down Area
Scroll Bar none. 129 In Scroll Thumb

FN NEWCONTROL(Wptr,Rect,title,Visable,Value,Min,Max,ProclD,Ref Con)
FN GETNEWCONTROL(cID,Wptr) Get and open a resource defined Control
DISPOSECONTROL(Chndl) Releases Memory and Deletes Control
KILLCONTROLS(Wptr) Dispose of all Controls in Window
FN TESTCONTROL(Chndl,Point) Returns Part code of where Point is

continued ...

E -179 Macintosh™ Appendix

MACINTOSH APPENDIX ~~

continued from previous page ...

Word=
Word=
CALL
CALL
CALL
CALL
CALL
CALL
CALL
Value=
Min=
Max=
RefCon=
AProc=
CALL

CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL

EXAMPLE

FN FINDCONTROL(Point,Wptr,Chndl&)
FN TRACKCONTROL(Chndl,Point,Aproc)
HIDECONTROL(Chndl)
SHOWCONTROL(Chndl)
DRAWCONTROLS(Wptr)
HILITECONTROL(Chndl,Word)
MOVECONTROL(Chndl,xPos,yPos)
DRAGCONTROL(Chndl,Point,Lrect,Slopr,Axis)
SIZECONTROL(Chndl,horz,vert)
FN GETCTLVALUE(Chndl)
FN GETCTLMIN(Chndl)
FN GETCTLMAX(Chndl)
FN GETCREFCON(Chndl)
FN GETCTLACTION(Chndl)
GETCTITLE(Chndl,Var$)

SETCTLVALUE(Chndl,Value)
SETCTLMIN(Chndl,Min)
SETCTLMAX(Chndl,Max)
SETCREFCON(Chndl,Refcon)
SETCTLACTION(Chndl,Aproc)
SETCTITLE(Chndl,title)

128k ROM Only
UPDTCONTROL(Wptr,RgnHnd)
DRAW1 CONTROL(Chndl)

Get Chndl with Point in Window
Use when Mouse down in Control
Makes Controllnvisable
Makes Control Visable
Draws all Controls in Window
Changes Control HiLite 255=lnactive ...
Move Top/Left corner to new Window Loc
User Drag Control Proc
Size Control to Horz width,Vert Height
Get Current Control Value
Get Current Control Min
Get Current Control Max
Get Current Control Ref Con
Get Current Control Action Proc Pointer
Get Current Control title into Var$

Set Control Value
Set Control Minimum
Set Control Maximum
Set Control Ref Con
Set Control Action Procedure
Set Control title

Draws only the controls in Update Region
Draw a single control if Visable

REM Control Manager Example Routines 5/10/87 A.G.
REM using the Control Manager toolbox routines

DIM T,L,B,R : T=10 : L=10 : B=160 : R=160 : REM Rectangle
WINDOW #l,"Control Example" : TEXT 4,12
FOR I=O TO 2 : REM Make Control types 0 thru 2

T=10 : B=40 : ID=I : V=O : GOSUB "Make Control"
T=50 : B=90 : ID=I : V=l : GOSUB "Make Control"
T=100: B=140: ID=I :v=255: GOSUB "Make Control"
T=150: B=190: ID=I+8 : V=l : GOSUB "Make Control"
L=L+165 : R=R+165

NEXT
T=200 :L=10 :B=232 :R=440 :ID=16 :V=25 : GOSUB "Make Control"
SBhndl&=Chndl&:T=240:L=10:B=270:R=120:ID=0 : V=l : GOSUB "Make
Control"
ON TIMER(l) GOSUB "TIMER"
"LOOP" : BREAK ON TIMER ON
GOTO "LOOP" : BREAK OFF : TIMER OFF
"TIMER" : Y=240
H=H+1 : IF H>255 THEN H=O ELSE IF H=l THEN H=255
CALL MOVECONTROL(Chndl&,X,Y) : X=X+10 : IF X>400 THEN X=10
CALL HILITECONTROL(Chndl&,H)
V=FN GETCTLVALUE(SBhndl&) : 'Title$="Scrol1 at"+STR$(V)
CALL SETCTITLE(Chndl&,Title$)
RETURN
"Make Control"
Title$="TYPE "+CHR$(48+ID)+",Value="+STR$(V)
Chndl&=FN NEWCONTROL(WINDOW(14),T,Title$,1,V,0,100,ID,0)
RETURN

Macintoshr>f Appendix E-1BO

~ MACINTOSH APPENDIX

MENU MANAGER
Terms used in this section:

Meta .
1\

<
I
(

miD
Mtil
Mhndl
After
Before
Mlist
item

Char

Char
Char
Char
Char

Word
Str
Long
Word
Word
Long
Word

Description
Separates Multiple Items
Specifies ICON Number (ASCII+208) 1\1 =ICON 257
Check or Other Mark
Special Char Style. Bold.ltalic.Underline.Outline.Shadow
Menu Key Equivalent
Disabled Menu Item
Dashed Line

Menu 10 #: This is the Menu Number
Menu Title
Menu Handle: Mhndl&=GETMHANDLE(Menu Number)
Item # to Follow
10 of item to insert In front of
Handle to Complete Menu Bar
Item # in Menu 0= Title. 1.2.3

Ascn DascilpUon
o No Mark
11 Command Mark (Clover Leaf)
12 Check Mark
13 Diamond Mark for Menus
14 Apple Mark (Desk Accy's)

Mhndl=
Mlist=
Mlist=
Mhndla
Long=
Long=
item=
Mhndl=
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

continued ...

FN NEWMENU(mID.Mtll)
FN GETNEWMBAR(MbarID)
FN GETMENUBAR
FN GETMENU(ID)
FN MENUSELECT(Point)
FN MENUKEY(Char)
FN COUNTMITEMS(Mhndl)
FN GETMHANDLE(mID)
INITMENUS
DISPOSEMENU(Mhndl)
APPENDMENU(Mhndl.Str)
ADDRESMENU(Mhndl.Type)
INSERTRESMENU(Mhndl.Type.After)
INSERTMENU(Mhndl.Before)
DRAWMENUBAR
DELETEMENU(mID)
CLEARMENUBAR
SETMENUBAR(Mlist)
HILITEMENU(mID)
SETITEM(Mhndl.item.Str)
GETITEM(Mhndl.item.Var$)
DISABLEITEM(Mhndl.item)
ENABLEITEM(Mhndl.item)
CHECKITEM(Mhndl.item.Byte)

E -181 Macintosh'" Appendix

Allocates Space for new Menu 10 & Title
Gets Complete Resource Menu Bar of 10
Saves Whole Menu in Mlist
Get Resource Menu
Called if Mouse down in menu bar
Returns Menu and item in long word
Returns # of items in the Menu
Returns Mhndl from miD
••• Don't Use •••
Dispose of Menu created with NewMenu
Add string of Menu(s) to End
Add Resource Menu of type Example 'FONT'
Insert Resource Menu of Type After Item
Insert Menu Before 10 specified
Redraws Menu Bar (After Changes)
Deletes Menu With 10 Specified
Clears All Menus from Menu Bar
Restores Whole Menu from Mlist
HighLites Menu mID.Un-Hilites if 0
Changes item to Str
Gets Current item in Var$
Disables Menu item (Grays out)
Enables Menu item (Makes Selectable)
Checks item if byte= True else Un-Checks

MACINTOSH APPENDIX ~

continued from previous page ...

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL

EXAMPLE

SETITEMMARK(Mhndl,ltem,Char)
GETITEMMARK(Mhndl,ltem,Var%)
SETITEMICON(Mhndl,ltem,Byte)
GETITEMICON(Mhndl,ltem,Var%)
SETITEMSTYLE(M hndl,ltem, Word)
GETITEMSTYLE(Mhndl,ltem,Var%)
CALCMENUSIZE(Mhndl)
FLASHMENUBAR(mID)
SETMENUFLASH(Cnt)

128k ROM Only
INSMENUITEM(Mhndl,Str,After)
DELMENUITEM(Mhndl,item)

Mark Menu ttem Wtth Character
Get Menu Mark into Var%
Put an ICON on item
Get the ICON number from ttem in Var%
Set the Character Style of ttem
Get the Character Style of item in Var%
Internally Used
Flash miD, If 0 Flash Whole Menu Bar
Number of Flashes after Selected

Insert Menu item Str After item Specified
Delete Menu item specified

REM Display contents of Menu items
WINDOW 1,"Get Menu Items Example"
CLS: DIM A$(lOO)
Menu handle&=FN GETMHANDLE (255)
LONG-IF Menu handle&

N=FN COUNTMITEMS (Menu_handle&)
FOR 1=1 TO N

CALL GET ITEM (Menu handle&,I,A$(I»
PRINT CHR$(I+64)")- "A$(I)

NEXT
END IF
END

Macintosh™ Appendix E-182

~. MACINTOSH APPENDIX

TEXT EDIT ROUTINES
See example program under TEHANDlE in this appendix. The following terms are used in this section:

Drect
Vrect
TeHndl
ChrHnd
TxtPtr
len
Sels
Sele
just

Rect
Rect
long
long
long
long
long
long
Word

Destination Rectangle (Fn Text in this Rect)
View Rectangle (Show text in this Rect)
TEHandle same as ZBasic's TEHANDlE
Handle to text Specified in edit record
Pointer to 1 st character of Text
length in Bytes
Select Start
Select End
0=left,1=Center,-1=Right Text Justification

----------------- TeHandle Offsets -------------------
0 DRect DestRect
8 VRect ViewRect
16 SRect SelRect
24 word lineHight
26 word FontAscent
28 Point SelPoint
32 word SelStart
34 word SelEnd
36 word Active
38 Proc WordBreak
42 Proc Clikloop
46 long ClickTime
50 word Clickloc
52 long Carettime
56 word CaretState
58 word Just
60 word telength
62 Hndl hText
66 word RecalBack
68 word recallines
70 word ClickStuff
72 word CrOnly
74 word txFont
76 word txFace
78 word txMode
80 word txSize
82 Gptr GrafPtr
86 Proc HighHook
90 Proc caretHook
94 word nlines
96 Words .. lineStarts

continued

E -183 Macintosh™ Appendix

Destination Rectangle
View Recangle

For line Spacing
CareVHighlighting Position

Start of Selection
End of Selection

Proc Pointer (User Word Break)
Proc Pointer (While Mouse Down)

justification
length of Text (Up to 32767)
Handle to Text being edited

if < 0, New line at <CR> only!
Font
Face
Mode
Size
GrafPort

Number of lines
Array of Words Start of Each line

MACINTOSH APPENDIX ~

continued from previous page ...

TeHndl=
ChrHnd=
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL

FN TENEW(Drect,Vrect)
FN TEGETTEXT(TeHndl)
TEINIT
TEDISPOSE(TeHndl)
TESETTEXT(TxtPtr,Len,TeHndl)
TEIDLE(TeHndl)
TECLlCK(Point,Byte,TeHndl)
TESETSELECT(Sels,Sele,TeHndl)
TEACTIVATE(TeHndl)
TEDEACTIVATE(TeHndl)
TEKEY(Char,TeHndl)
TECUT(TeHndl)
TECOPY (TeH ndl)
TEPASTE(TeHndl)
TEDELETE(TeHndl)
TEINSERT(TxtPtr,Len,TeHndl)
TESETJUST(just,TeHndl)
TEUPDATE(Rect,TeHndl)
TEXTBOX(TxtPtr,Len,Rect,just)
TESCROLL(dx,dy,TeHndl)
TECAL TEXT(TeHndl)

128k ROMS Only
TEAUTOVIEW(Auto,TeHndl)
TESELVI EW(TeHndl)
TEPINSCROLL(dx,dy,TeHndl)

Get a Handle to New Text Edit Record
Returns Handle to text in edit record
.... Don't Use"·
Dispose of Memory allocated to Text Rec
Makes a Copy of Text For Editing
Call this enough to keep caret Blinking
Call if Mouse Down in edit Field
Change the Selection range
Activate an Edit Field
DeActivate an Edit Field
Send a Key to Text edit Field
Tell Text edit to Cut current selection
Tell Text edit to Copy current selection
Tell Text edit to Paste current selection
Tell Text edit to Delete current selection
Insert Text just Before Selection Range
Change or Set Text justification
Update Text within givin Rectangle
Draws specified text in rect with just.
Scroll Text by dX,dy in view rectangle
ReCalculate all Line Starts after Change

If Auto= True Enables Auto Scroll
If Auto Scroll Enabled,Makes Sel Visable
Stops scrolling when last line in Vrect

Macintosh™ Appendix E-184

~ MACINTOSH APPENDIX
~1f1_."'ltl&i'lII_10Iilrl{t~;m#,}BBst

DIALOG MANAGER
The following terms are used in this section:

Rproc
Dptr
BWPtr
Dsto
title
Visable
ProclD
GoAway
Hems
diD
Fproc
EvRec
aiD
Sproc
Ihndl
strt
end

Dptr=
Long=
Byte=
Byte=
item=
Hem=
Hem=
Hem=
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

Item=
CALL
CALL
CALL

Long
Long
Long
Long
Str
Byte
Word
Byte
Handle
Word
Long
Var
Word
Long
Long
Word
Word

Resume Procedure (After Syserr)
Dialog Pointer
Behind which window pointer (-1 means in front of all)
Storage area for Dialog (Nil H in Heap)
Title of Dialog Box
Visable if True
Dialog procedure ID (Like Window)
True if GoAway Box
Handle to a dialog item list
Dialog Resource ID number
Filter procedure for Dialog (0 if none)
Event Record
Alert Template ID number
Error Sound Procedure
Item Handle
Start se lect range
end Select Range

FN NEWDIALOG(Dsto,Rect,title,Visable,ProclD,BWptr,GoAway,RefCon,Hems)
FN GETNEWDIALOG(dID,Dsto,BWptr) Get a resource defined Dialog Definition
FN ISDIALOGEVENT(EvRec) Returns True if Handled else DialogSelect
FN DIALOGSELECT(EvRec,Dptr&,item%) True if Enabled Hit,Else False
FN ALERT(aID,Fproc) Display & Handle Alert,Returns Hem hit
FN STOPALERT(aID,Fproc) Display & Handle Alert,Returns item hit
FN NOTEALERT(aID,Fproc) Display & Handle Alert,Returns item hit
FN CAUTIONALERT(alD,Fproc) Display & Handle Alert,Returnsitem hit
INITDIALOGS(Rproc) Don't Use ••••
ERRORSOUND(Sproc) Set Special Error Sound Procedure
CLOSEDIALOG(Dptr) Close Dialog Box
DISPOSDIALOG(Dptr) Calls Close and Releases Memory
COULDDIALOG(dID) Makes Dialog ID resource UnPurgable
FREEDIALOG(dID) Makes Dialog ID resource Purgable
MODALDIALOG(Fproc,item%) Returns Dialog item hit in item%
DRAWDIALOG(Dptr) Just Draws the Dialog Box
COULDALERT(dID) Makes Dialog ID resource UnPurgable
FREEALERT(dID) Makes Dialog ID resource Purgable
PARAMTEXT(Strl,Str2,Str3,Str4) Sets Param text For Dialog Boxes
GETDITEM(Dptr,item,ltype%,lhndl&,Rect) Returns Item Type,Handle,Reet
SETDITEM(Dptr,item,Type,lhndl,Rect) Sets item Type,Handle,Rect
GETITEXT(lhndl,text$) Returns item text from item Handle
SETITEXT(lhndl,text) Set text into item specified by Handle
SELITEXT(Dptr,item,Strt,end) Set dialog start/end selection range

128k Roms •••••
FN FINDDITEM(Dptr,Point)
HIDEDITEM(Dptr,item)
SHOWDITEM(Dptr,item)
UPDTDIALOG(Dptr,RgnHnd)

Returns item number at Point specified
Move item off screen, Invisable
Bring back on screen, Visable
Update area of dialog specified by Region

See Example on next page ...

E -185 Macintosh™ Appendix

MACINTOSH APPENDIX ~

DIALOG MANAGER continued ...

EXAMPLE1

Item
1
2
4
5
6
7

Dialog Manager Item Types

Description Item Description ID
ok Button 8 Static Text 0
Cancel Button 16 Edit text (Dialogs Only) 1
Button 32 Icon 2
Check Box 64 Pict Item
Radio Button 0 User Item
Rsrc Control 128 Add to Disable

REM Returns all the item types from a dialog
REM See chart above
DIM itemType%(63),itemhndl&(63) ,3 iRect$(63)
X&=FN GETNEWDIALOG(13s,0,-1) : item=O
DO : item=item+l

CALL

System Icons
Stop Icon
Note Icon
Caution Icon

GETDITEM(X&,item,itemType%(item) ,itemhndl& (item) ,iRect$ (item»
UNTIL itemhndl&(item)=O OR item=63

EXAMPLE2

continued ...

CALL MODALDIALOG(O,X%)
CALL DISPOSDIALOG(X&)
PRINT X%
FOR 1=1 TO item

PRINT I,itemType%(I),itemhndl&(I)
NEXT
END

REM Displays all resource dialogs found in
REM open resources (DA'S, System and Appl dialogs etc.)

Type&=CVI ("DLOG")
ResCount%=FN COUNTRESOURCES(Type&)
FOR J=l TO ResCount%

TRON X
Hndl&=FN GETINDRESOURCE(Type&,J)
CALL GETRESINFO(Hndl&,ID%,RType&,Name$)
Dlgptr&=FN GETNEWDIALOG(ID%,O,-l)
CALL DRAWDIALOG(DlgPtr&)
DELAY 500
CALL DISPOSDIALOG(DlgPtr&)

NEXT J
STOP

Macintosh™ Appendix E-186

~MACINTOSH APPENDIX

DIALOG continued

EXAMPLE3 ZBasic allows you to use Macintosh™ CAUTION, NOTE and STOP windows easily.
DIM 63 A$(4)
FOR I = 1 TO 4

A$(I)="USER STRING #"+STR$(I)
NEXT
CALL PARAMTEXT(A$(1) , A$(2), A$(3), A$(4»
FOR I=1 TO 4

REM Change next line to: ALERT, CAUTIONALERT or NOTEALERT
REM for the ICON needed in your application.
Response% = FN STOPALERT (I,D)

NEXT

Response% returns the users response. If RETURN is pressed, the highlighted button
is assumed to be the answer. Note that the answers are always 1 or 2 with the highlighted
button always number one:

0 c::J
USEn SlRING II 1
USER SIRING # 2
USER STRING # 3
USEn STAING II 4

2 0 G!Jl
USER SmlNG # 1 (cancel)
USER SmlNG II 2
USER SmlNG # 3
USEn smlNG # 4

3 e CEJ
USEn SmlNG # 1 ~ USER SmlNG # 2
USER SrnlNG # 3
USER SmlNG # 4

4 0 ~
USER SmlNG II 1 (3) USER STRING # 2
USER SmlNG II 3
USER SmlNG II 4

Alert Windows

FN CAUTIONALERT

FN STOPALERT

[g -_., -_.

FN NOTEALERT

Blank
FN ALERT

..

E -187 Macintosh™ Appendix

MACINTOSH APPENDIX ~~

DESK ACCESSORIES
Terms used in this section:

ID%=
CALL

EXAMPLE1

EXAMPLE2

FN OPENDESKACC(Name)
CLOSEDESKACC(ID%)

WINDOW 1,"DESK ACCESSORY.BAS"
CLS
DIM A$ (100)

Menu_hand1e&=FN GETMHANDLE (255)

LONG IF Menu handle&
N=FN COUNTMITEMS (Menu_handle&)
FOR I=l TO N

CALL GETITEM (Menu handle&,I,A$(I))
PRINT CHR$(I+64)")- "A$(I)

NEXT
END IF

PRINT

Open DA with name in 'Name'
Close open DA with ID%

INPUT&l,;! "DA NUMBER TO OPEN - X QUIT";DA$

CLS
DA$=UCASE$ (DA$)
IF DA$ = "X" THEN END
DA$=A$(ASC(DA$)-64)
PRINT
X=FN OPENDESKACC (DA$)
WINDOW OUTPUT 1
END

WINDOW 1,"Enable/Disable Desk Accessories"

"DISABLE DA"
Var&=FN GETMHANDLE(255)
CALL DISABLEITEM(Var&,O)

"ENABLE DA"
CALL ENABLEITEM(Var&,O)

Macintosh™ Appendix E-188

~MACINTOSH APPENDIX t., Wi ••• i&f0t .. *_txa.
STRING HANDLING ROUTINES
Terms used in this section:

StrHnd

CALL
StrHnd=
StrHnd=
Long=
Word=
Word=

Long Handle to Relocatable String

SETSTR I NG(StrHnd ,Str$)
FN NEWSTRING(Str)
FN GETSTRING(lD)
FN MUNGER(Long,Long,Var,Long,Var,Long)
FN IUMAGSTRING(Var,Var,Word,Word)
FN IUMAGIDSTRING(Var,Var,Word,Word)

INTERNATIONAL UTILITIES
Terms used in this section:

Makes Str from StrHnd
Makes StrHnd from Str
Retums StrHnd for Resource ID
Manipulates Bytes in Strings
Compares 2 strings
Compares 2 Strings

Second
Form
Date$
Time$
liD
IRhndl
itlprm

Long
Word
Var$
Var$
Word
Long
Long

Long Word of Seconds since January 1, 1904
Mask for Form

CALL
CALL
Byte=
IRhndl=
CALL
CALL
CALL
CALL
CALL

INITPACK(PackID)
INITALLPACKS
FNIUMETRIC
FN IUGETINTL(IID)

String Variable to store Date String
String Variable to store Time String
International Resource ID 0,1
International Resource Handle
International Parameter

IUDA TESTRING(Second,Form,date$)
IUDATEPSTRING(Second,Form,date$,IRhndl)
IUTIMESTRING(Second,Byte,Time$)
IUTIMEPSTRING(Second,Byte,Time$,IRhndl)
IUSETINTL(Refnum,ID,itlprm)

E -189 Macintosh™ Appendix

Init Package
••• Don't Use ••• init all pkg's
True if Metric System Used
Returns Handle to itnl Resource
String Date from Seconds
Returns Date
Returns Time$,if True Seconds
Returns Time$,lf true Seconds
Sets the Itnl rsrc to Specified

MACINTOSH APPENDIX ?~

FILE INPUT/OUTPUT
Terms used in this section:

Drive
EvMsg
Prmpt
Dproc
Srply
diD
Fproc
FFproc
Ntypes
TypList

Word
Long
Str
Long
Var
Word
Long
Long
Word
Var

Word specifing Which Drive
Event Message Err Code in High Word
Prompt String
Dialog Hook Procedure
Standard File Reply
Dialog 10
Filter Procedure
File Filter Procedure
Number of File Types
Pointer to File Type List

Word=
Word=
Word=
Word=
CALL
CALL

FN DIBADMOUNT(Point,EvMsg)
FN DIFORMAT(Drive)
FN DIVERIFY(Drive)
FN DIZERO(Drive,Name)
DILOAD

Call After a disk insert Event
Format Disk in Drive Specified
Verify Disk in Drive specified
Initialize Disk in Drive,Vol Name

DIUNLOAD
Load and Make Disk Init Pkg UnPurgable
UnLoad and Make Disk Init Pkg Purgable

Standard Open New File Box Procedures

CALL SFPUTFILE(Point,Prmpt,Name,Dproc,Srply)
CALL SFPPUTFILE(Point,Prmpt,Name,Dproc,Srply,dID,Fproc)

Standard Open Old File Box Procedures

CALL SFGETFILE(Poinl,Prmpl,FFproc,Nlypes,TypLisl,Dproc,Srply)
CALL SFPGETFILE(Poinl,Prmpl,FFproc,Nlypes,TypLisl,Dproc,Srply,dID,Fproc)

Macintosh™ Appendix E-190

~MACINTOSH APPENDIX

MOUSE
Byte=
Byte=
Byte=
CALL

EXAMPLE

FN BUTTON Current Mouse Button Status O=Up
True if Mouse not let up Since Last
Same as Still Down Except No Mouse Up
Returns Mouse in Local Coordinates

FN STILLDOWN
FN WAITMOUSEUP
GETMOUSE(Point)

REM VARIABLES A,D,W,L = FONTINFO; SEE
REM PH HORIZONTAL PIXEL COORDINATE
REM PV VERTICAL PIXEL COORDINATE
REM CH HORIZONTAL CURSOR COORDINATE
REM CV VERTICAL CURSOR COORDINATE
REM DH DIFFERENCE IN HORIZONTAL COORDINATES SINCE LAST
GETMOUSE
REM DV = DIFFERENCE IN VERTICAL COORDINATES SINCE LAST
GETMOUSE
TRONB: COORDINATE WINDOW:CLS:TEXT ",0
DIM A,D,W,L:O&=O
DO

CALL BACKCOLOR (A)
CALL GETWMGRPORT (X&)
D&=FN DELTAPOINT (X&,O&) :O&=X&
H=A+D+L
PH=X& AND 65535
PV=X&»16
CV=PV/H
CH=PH/W
DV=D&»16
DH=D& AND 65535
PRINT@(0,10)"PIXEL COORDINATES ";PH",";PV
PRINT@(0,12)"CURSOR COORDINATES ";CH",";CV

LONG IF PV<O OR PH<O OR PH>WINDOW(6) OR PV>WINDOW(7)
PRINT@(O,14);"** OFF SCREEN **"

XELSE
PRINT@(O,14);"** ON SCREEN **"

END IF

LONG IF DH<>O OR DV<> 0
PRINT@(O,18)"SINCE LAST TIME

END IF

LONG IF FN BUTTON
PRINT@(O,16);"MOUSE DOWN"

XELSE
PRINT@(O,16);"MOUSE UP

END IF

U;DHIt,"DV;"

UNTIL LEN (INKEY$) : END

NOTE: Also see example program under "Control Manager".

E -191 Macintosh™ Appendix

MACINTOSH APPENDIX ~~

MISCELLANEOUS
Terms used in this section:

Keys

Word=
Long=
CALL
CALL
CALL

EXAMPLE

Byte=
Byte=
Byte=
Byte=
Byte=
CALL
CALL

8 Bytes Current Keyboard BitMap 0=Up,1=Down Bits

FN RANDOM
FN TICKCOUNT
GETKEYS(Keys)
SYSBEEP(Word)
SYSTEMTASK

Returns Uniform Random #-32768 to 32767
Returns # of Ticks (1/60 Second)
Returns Current Keyboard Status of ALL keys
System Beep for Duration Word/60 seconds
Allows Desk Accy's Update time (Clock etc.)

REM Displays ALL keys; including Command, Shift and Option keys!
DIM A%(7),B%(7): CLS : FOR 1=0 TO 7 : B%(I)=-l : NEXT
"KEYSCAN II

CALL GETKEYS(A%(O)): LOCATE 0,0
FOR 1=0 TO 7

LONG IF B%(I)<> A%(I)
LOCATE 0,1 : CLS LINE: PRINT I,BIN$(A%(I))

ENDIF
NEXT
TRONX:REM Press <Command Period> to stop

GOTO "KEYSCAN"

FN CHECKUPDATE(Var)
FN SYSTEMEDIT(Word)
FN SYSTEMEVENT(Var)
FN GETNEXTEVENT(Word,Var)
FN EVENTAVAIL(Word,Var)
SYSTEMCLlCK(Var,Long)
SYSTEMMENU(Long)

See Inside Mac
See Inside Mac
See Inside Mac
See Inside Mac
See Inside Mac
See Inside Mac
See Inside Mac

B% (I) =A% (I)

CUPBOARD SCRAP MANAGER
Note: This section refers to the Clipboard; NOT the scrapbook. Terms used in this section:

Sptr
Dhnd
Ofst
Slen
Type
Sptr

Long
Long
Long
Long
Long
Long

Pointer to Scrap Info
Destination Handle for Scrap
Offset to Scrap
Length of scrap in Bytes
Scrap Type Example: 'TEXT' or 'PICT'
Pointer to Source for Scrap

----------------- Scrap Info Record ----------------
o Long Scrap Size in bytes
4 Long Handle to Desk Scrap
8 Word Count Changed by 'ZeroScrap'
10 Word Scrap State,+=ln Memory,O=On Disk.-=Not Initialized
12 StrPtr Scrap File Name

Sptr=
OSerr=
OSerr=
Slen=
OSerr=
OSerr=

FN INFOSCRAP
FN UNLOADSCRAP
FN LOADSCRAP
FN GETSCRAP(Dhnd,Type,ofst&)
FN ZEROSCRAP
FN PUTSCRAP(Slen,Type,Sptr)

Get Pointer to Scrap Info
UnLoad Scrap in Memory to Disk
Read Scrap from Disk Into Memory
Get current Scrap from Disk or Memory
Clear current scrap contents
Puts Data to Scrap in Memory or on Disk

Macintosh™ Appendix E-192

~~ MACINTOSH APPENDIX

CALCULATIONS
Terms used in this section:

Numerator
Denominator
o to 360 Degrees

Numer
Denom
Angle
Slope

Word
Word
Word
Long High Word=dy, Low Word=dx

Sptr=
Long=
Word=
CALL

Point=
Slope=
Angle=
CALL

FN FIXRATIO(Numer,Denom)
FN FIXMUL(Fixp,Fixp)
FN FIXROUND(Fixed)
LONGM UL(Long,Long, Var)

FN DELTAPOINT(Point,Point)
FN SLOPEFROMANGLE(Angle)
FN ANGLEFROMSLOPE(Slope)
PTTOANGLE(Rect,Point,Angle%)

Fixed Point Divide of two Integers
Fixed Point Multiply of to Fixed Point
Rounds +Fixp Number to Nearest Integer
Multiply 2 Longs to a 64 bit Result at Var

Compute Difference of 2 x,y Points
Compute Delta x,y Point From Angle
Compute Angle from Delta x,y Point
Calc Integer Angle to Center of Rect

BINARY CALCULATIONS
Terms used in this section:

Bit

Byte=
CALL
CALL
Long=
Long=
Long=
Long=
Long=
Word=
Word=

Long Bit # to Sel/Reset or Test 0 to 4,294,967,295

FN BITTST(Var,Bit)
BITSET(Var,Bit)
BITCLR(Var,Bit)
FN BITAND(Long,Long)
FN BITOR(Long,Long)
FN BITXOR(Long,Long)
FN BITNOT(Long)
FN BITSHIFT(Long,Cnt)
FN HIWORD(Long)
FN LOWORD(Long)

Tests a Bit offset Var with Long bit number
Set a Bit Offset Var with Long bit number
Reset a Bit Offset Var with Long bit number
AND's two Long words to result
OR's two Long words to Result
XOR's two Long words to Result
Returns the Logical NOT of long word
Shifts the Long word Cnt Bits +/-
Returns the High Word of a long Word
Returns the Low word of a Long Word

PACKBITS AND UNPACKBITS
Terms used in this section:

SrcPtr
DstPtr
SBytes

Var&
Var&
Word

Variable which contains Source Address
Variable which contains Destination Address
Source Bytes (Normally 72 for MacPaint,127 Max)

·Note· SrcPtr & DestPtr Addresses Updated after ToolBox.

CALL PACKBITS(SrcPtr,DstPtr,SBytes) Pack Source bytes to Destination
CALL UNPACKBITS(SrcPtr,DstPtr,SByts) UnPack Source to Destination Bytes

Note: See example of these two calls under READ FILE# which loads and saves MacPaint images.

E -193 Macintosh™ Appendix

MACINTOSH APPENDIX ~

SCUZZY FUNCTIONS (128K ROMS ONLY)
Terms used in this section:

OSerr
tiD
VCmd
Wait
TIB
STA%
MSG%

SCSI Functions
Word
Word

••• 128k ROMS or Greater •••
Operating System Error Code
Target SCSIID

Var
Long
Var
Var%
Var"10

------ TIB Block --------
o scOpCode
2 scParaml
6 scParam2
4 SCMOVE
5 SCLOOP
6 SCNOP
7 SCSTOP
8 SCCOMP

Command Source of Bytes
Number of ticks (timeout)
Transfer Instruction Block
Integer Variable Status
Integer Variable Message

-- Transfer Inst OpCodes --
Integer 1 SCINC
Long 2 SCNOINC
Long 3 SCADD

--------------- ScsiB bITS -----------------
15 14 13 12
EndDma DmaReq PtyErr IntReq
7 6 5 4

11
PhsMat
3

10
BsyErr
2

9
Atn
1
Sel

8
Ack
o
DBP Rst Bsy Req Msg C/D

OSerr=
OSerr=
OSerr=
OSerr=
OSerr=
OSerr=
OSerr=
OSerr=
OSerr=
OSerr=
ScsiB=

FN SCSIRESET
FNSCSIGET
FN SCSISELECT(tID)
FN SCSICMD(VCmd,Cnt)
FN SCSICOMPLETE(STA%,MSG%,Wait)
FN SCSIREAD(TIB)
FN SCSIWRITE(TIB)
FN SCSIINSTALL
FN SCSIRBLlND(TIB)
FN SCSIWBLlND(TIB)
FN SCSISTAT

I/O

Resets the SCSI Buss
Arbitrates for Use of SCSI bus
Selects the Device tiD
Sends the Command at VCmd,Cnt Bytes
Gives the current Command Watt Ticks
Transfers Data from Target to Initiator
Transfers Data From Inttiator to Target

Same as Write, Does not Poll/REO
Same as Read, Does not Poll/REO
Returns BitMap of SCSI Control/Status

Macintosh™ Appendix E-194

~MACINTOSH APPENDIX

LIST MANAGER (128K ROMS ONLY)
Terms used in this section:

Ihndl Long Handle to List Record
Cell Point Cell Description
vCell var Cell Variable
Lsize Point Cell Size in Pixels
Vrect Rect View Rectangle
Drect Rect Data Rectangle
plD 10 Proc 10
Drawit Byte Draw it Flag
Grow Byte Has Grow box Flag
Hscrl Byte Has Horzontal Scroll Bar Flag
Vscrl Byte Has Verlical Scroll Bar Flag
Cnum Word Column Number
Rnum Word Row Number
Dptr Long Pointer to Data
Olen word Length of data in bytes
Sproc long Search Procedure
hNext byte Flag for next horz Cell
vNext byie Fiag ior next Vert Cell
Doff Word Data offset in bytes
Lwidth Word List Width in pixels
Lhight Word list Hight in Pixels
dCol Word Number of Columns
dRow Word Number of Rows

------------ List Record ------------
Offset
o
8
12
16
20
28
32
36
37
38
39
40
44
48
52
56
60
64
68
72
76
78 ...

Size
Rect
Gptr
Point
Point
Rect
Chndl
Chndl
Byte
Byte
Byte
Byte
Long
Point
Point
Ptr
Cell
Long
Hndl
Hndl
Rect
Word
Words ..

continued

Name
rView
port
indent
celiSize
visable
vScroll
hScroll
selFlags
IActive
IReserved
list Flags
clikTime
clikLoc
MouseLoc
IClickLoop
lastClick
Ref Con
listDefHandle
usrHandle
dataBounds
maxlndex
celiArray

E -195 Macintosh™ Appendix

Description
List's Display Rectangle
List's grafPort
Indent Distance
Cell Size
Boundry of Visable Cells
Vert Scroll Handle
Horz Scroll Handle
Selection Flags
Boolean True if Active
Resurved
ListFlags Auto-Scroll Flags
Click-Time Time of Last Click
Position of last click
Current Mouse Location
Routine for Lclick
Last Click,Last Cell Clicked
Ref Con
List's Definition Procedure
User Handle
Boundry of Cells Allocated
Maxlndex (Used Intemally)
Cell Array of integer Offsets to Data

MACINTOSH APPENDIX ~~

LIST MANAGER (128K ROMS ONLY) continued

------------------- selFlags Bit Definitions -------------------
Bit Value Name Description
o 1 ???? ????
1 2 INoNilHilite 1 = don't hilite empty cells
2 4 IUseSense 1 = shift should use sense of start cell
3 8 INoRect 1 = don't grow (shift,drag) selection as rect
4 16 INoExtend 1 = don't extend shift selections
5 32 INoDisjoint 1 = turn off selections on click
6 64 IExtendDrag 1 = drag select without shift key
7 128 IOnlyOne 0 = multiple selections, 1 = one

---------------- list Flags Bit Definitions -----------------
Bit Value Name Description
o 1 IDoHAutoscroll 1 = allow horizontal autoscrolling
1 2 IDoVAutoscroll 1 = allow vertical autoscrolling

Lhndl=
Word=
Word=
Byte=
Byte=
Long=
Byte=
Byte=
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

continued ...

FN LNEW(Vrect,Drect,Lsize,pID,Wptr,Drawit,Grow,Hscrl,Vscrl) New List!
FN LADDCOLUMN(Cnt,Cnum,Lhndl) Add Cnt Columns starting at Cnum
FN LADDROW(Cnt,Rnum,Lhndl) Add Cnt Rows starting ar Rnum
FN LGETSELECT(Byte,Cell,Lhndl) Return True if Selected or Cell coord
FN LCLlCK(Point,Word,Lhndl) Call if Mouse down in Dest Rect
FN LLASTCLlCK(Lhndl) Retums Cell coord of Last Cell Clicked
FN LNEXTCELL(hNext,vNext,vCell,Lhndl) True if Next Cell in vCell
FN LSEARCH(Dptr,Dlen,Sproc,vCell,Lhndl) True if Found & Cell in vCell
LDISPOSE(Lhndl) Dispose of List
LDELCOLUMN(Cnt,Cnum,Lhndl) Delete Cnt Columns starting at Cnum
LDELROW(Cnt,Rnum,Lhndl) Delete Cnt Rowa starting at Rnum
LADDTOCELL(Dptr,Dlen,Cell,Lhndl) Appends Data to Cell
LCLRCELL(Cell,Lhndl) Clear Contents of Cell
LGETCELL(Dptr,Dlen%,Cell,Lhndl) Gets Data in Cell to Dptr and Dlen%
LSETCELL(Dptr,Dlen,Cell,Lhndl) Sets Data for Dlen into Cell Specified
LCELLSIZE(Cell,Lhndl) Sets the Cell Size Field before Drawing
LSETSELECT(Byte,Cell,Lhndl) Select or de-Select if Byte True/False
LFIND(Doff%,Dlen%,Cell,Lhndl) Returns offset & Length of Cell Data
LRECT(Rect,Cell,Lhndl) Returns in Local coord Cell Rectangle
LSIZE(Lwidth,Lhight,Lhndl) Adjust List & Scrolls after SizeWindow
LDRAW(Cell,Lhndl) Redraw Cell Specified
LDODRAW(Byte,Lhndl) False Disables cell Drawing, True Enables
LSCROLL(dCol,dRow,Lhndl) Scrolls the List Number Rows/Columns
LAUTOSCROLL(Lhndl) Scroll List til Selected Cell top/Left
LUPDATE(RgnHnd,Lhndl) Update Rgn Area of Display
LACTIVATE(Byte,Lhndl) True:Activate List, False De-Activate

Macintosh"'" Appendix E-196

~~ MACINTOSH APPENDIX
tll I.itl\t&WlltlWI_it.$.,X._

LIST MANAGER (128K ROMS ONLY) continued

EXAMPLE
REM Example of using the LIST-MANAGER Toolbox Routines

COORDINATE WINDOW : REM Use Window Coordinates
DIM T,L,B,R : T=O : L=O : B=8192 : R=8192 : REM Big Rectangle
DIM VT,VL,VB,VR,DT,DL,DB,DR,LH,LW : REM Two Rectangles
DIM WHAT,MSG&,WHEN&,WHERE&,MDF : REM Event Message Variable
DIM CELLY,CELLX : REM Cell Variable Definition
WINDOW #1 : CALL CLIPRECT(T) : REM Window For List Manager
VT=O : VL=O : VB=WINDOW(7)-1 : VR=WINDOW(6)-1 : REM VIEW RECTANGLE
DT=O : DL=O : DB=20 : DR=20 : REM DEST RECTANGLE
CELLY=20 : CELLX=90
LHNDL&=FN LNEW(VT,DT,CELLY,0,WINDOW(14) ,-1,-1,-1,-1)
FOR CELLY=O TO 19

FOR CELLX=O TO 19
A$="*TEST*"+STR$(CELLY)+STR$(CELLX)
CALL LSETCELL(VARPTR(A$)+l,LEN(A$),CELLY,LHNDL&)

NEXT
NEXT
DO

X=FN GETNEXTEVENT(2+4+8+16+32+64,WHAT)
ON WHAT GOSUB "MOUSE DOWN","MOUSE UP","KEY DOWN","KEY UP","KEY

DOWN", "UPDATE If

UNTIL °
"MOUSE DOWN"
WHY=FN FINDWINDOW(WHERE&,WPTR&)
LONG IF WHY=3 AND WPTR&=WINDOW(14)

CALL GLOBALTOLOCAL(WHERE&)
X=FN LCLICK(WHERE&,MDF,LHNDL&)

END IF
RETURN
"KEY DOWN"
LONG IF (MDF AND 256)<>0 AND (MSG& AND 255)=ASC(.....)

CALL LDISPOSE(LHNDL&)
STOP

XELSE
BEEP

ENDIF
RETURN
"KEY UP"
"MOUSE UP"
RETURN
"UPDATE"
WPTR&=WINDOW (14)
CALL BEGINUPDATE(WPTR&)
CALL LUPDATE(PEEK LONG(WPTR&+24),LHNDL&)
CALL ENDUPDATE(WPTR&)
RETURN
END

E ·197 Macintosh™ Appendix

MACINTOSH APPENDIX ~~

USEFUL MEMORY LOCATIONS
Name Size Addr Description

Acount Word &A9A Alert Stage 0 to 3
ApFontlD Word &984 Font Number of Application Font
ApplLimit Long &130 Application Heap Limit
ApplScratch Byte12 &A78 Application Scratch Area 12 by1es
AppParmHandle Long &AEC Handle to Finder Information
BootDrive Word &210 Which drive was system booted
CaretTime Long &2F4 Caret Blink time in ticks (1/60 second)
CurApName Str31 &910 Current Application Name Len/text 32 by1es
CurApRefNum Word &900 Current Application Resource RefNum
CurrentA5 Long &904 Value of Application A5 global pointer
DAStrings Long4 &AAO Handles to ParamText Strings 4 Long Words
DefltStack Long &322 Default space allotment for stack
DeskPattem Byte8 &A3C DeskTop Pattern
DlgFont Word &AFA Font Number for Dialogs and Alerts
DoubleTime Long &2FO Double Click Interval in Ticks
DragPattem Byte8 &A34 Pattern for Outline For Dragging
DSAlertRect Rect &3F8 Rectangle for System Error Alert
FinderName Str15 &2EO Name of Finder (What Appl to Execute on Exit)
FScale Disable Byte &A63 O=Enable, nz=Disable Font Scaling
MemErr Word &220 Last memory error
PortBUse Byte &291 Serial Port B Use Flag By1e
Print Err Word &944 Result Code from last print manager Routine
ResErr Word &A60 Current Value of Res Err (Resource error Code)
RndSeed Long &156 Random Number Seed (For Toolbox Random #'s)
RomBase Long &2AE Base Address of ROM
SCCrd Long &1D8 SCC read Base Address
SCCwr Long &1DC SCC write Base Address
ScrapCount Word &968 Count Changed by ZeroScrap
ScrapHandle Long &964 Handle to Desk Scrap in Memory
ScrapName Long &96C Pointer to scrap file name (Str255 format)
ScrapSize Long &960 Size in By1es of Desk Scrap
ScrapState Word &96A Tells where scrap is (Disk/Memory etc.)
ScrDmpEnb Byte &2F8 Cmd-Shift-Number Disable=O
ScrHRes Word &104 Pixels per Inch horizontal
ScrBase Long &824 Base Address of Screen
ScrVRes Word &102 Pixels per Inch Vertical
SdVolume Byte &260 Speaker Volume (Low 3 bits only)
SPAlarm Long &200 Alarm Setting (Seconds)
SPPortA Word &1FC Modem Port Configuration
SPPortB Word &1FE Printer Port Configuration
SPPrint Byte &207 Printer connection Byte
SysFontFAM Word &BA6 System Font number used in menus etc. (New Roms)
SysFontSize Word &Ba8 System font size used in meues etc. (New Roms)
TEScrpHandle Long &AB4 Handle to TEScrap
TEScrpLength Word &ABO Length of TEScrap
Ticks Long &16A Number of ticks since System Startup (1/60 second)
Time Long &20C Number of Seconds since Jan 1st 1904
VIA Long &1DA VIA base Address
WindowList Long &9DA Pointer to 1 st Window in Window List (O=no Wind)
WMgrPort Long &9DE Pointer to Window Manager Port

Macintosh™ Appendix E-198

~MACINTOSH APPENDIX

ALPHABETICAL LISTING OF TOOLBOX TERMS

Term Type Definition Page
$ String Pointer to String Variable 162
& Long Integer Pointer to Long Variable 162
% Integer Pointer to Integer Variable 162
After Word ttem numberto Follow 181

aiD Word Alert Template ID number 185
Angle Word o to 360 Degrees 193
Angle Word Degrees (I nteger 0 to 360) 165
Angle Word Number of Degrees ClockWise (0 to 360) 171
Aproc Long Pointer to Action Procedure 179
Attr Word File attributes (See "Inside Mac") 164
Axis ' Word l=Horz Move, 2=Vertical Move, O=Both 179
Before Word ID of item to insert in front of 181
B~ Long B~ number to SetlReset or Test 0 to 4,294,967,295 193
B~Map Long Pointer to B~Map information 165
BWPtr Long Behind which window pointer (-1 means in front of all) 185
BWptr Long Behind Which Window 'Wptr' 177
Byte 8 Bit Boolean True <> 0 False = 0 161
Cell Point Cell Description 195
Char Byte Passed as Word with ASCII in both hi & low Bytes 161
CHndl Long Handle to cursor structure 166
Chndl Long Control Handle 179
ChrHnd Long Handle to text Specified in edit record 183
clD Word Contol Resource ID number 179
Cnum Word Column Number 195
Color Long Color to be used 166
Curs Var Cursor pattern: 68 total bytes 166
Data Long Handle to actual Data (Nil ff No Data) 173
Date$ Var$ String Variable to store Date String 189
DB~ Long Destination BitMap 175
dCol Word Number of Columns 195
Denom Word Denominator 193
Dhnd Long Destination Handle for Scrap 192
diD Word Dialog ID 190
diD Word Dialog Resource ID number 185
Dlen word Length of data in bytes 195
Doff Word Data offset in bytes 195
Dproc Long Dialog Hook Procedure 190
DPtr Long Destination Pointer 175
Dptr Long Dialog Pointer 185
Dptr Long Pointer to Data 195
Drawit Byte Draw it Flag 195
DRect Rect Defines the target Rectangle (same structure as Rect) 165
Drect Rect Data Rectangle 195
Drect Rect Destination Rectangle (Fit Text in this Rect) 183
DRgn RgnHnd Destination Region Handle 172
Drive Word Word specifing Which Drive 190
DRaw Word Destination Row 175
dRaw Word Number of Rows 195
Dsto Long Storage area for Dialog (Nil ff in Heap) 185
DstPtr Var& Variable which contains Destination Address 193
dx Word Delta X Pos~ion 165
dxy Long Delta x,y (0 if no change) 177
dy Word Delta Y Position 165
end Word end Select Range 185
ErrNum Word Resource manager error number 164
EvMsg Long Event Message Err Code in High Word 190
EvRec Var Event Record 185
Face Word Text Face bits (bold, italic etc,) 176
FFproc Long File Filter Procedure 190
Fixp Long Fixed Point Example: F&=num#'65536 176
Fmod Word Text Mode (Mode 0 to 7) 176
Fname Str File name: "quotes" or Variable$ 164
Fname$ Var$ File name in variable$ 164

E-199 Macintosh™ Appendix

MACINTOSH APPENDIX ~

Fnum Word Text Font Number 176
Fonm Word Mask for Form 189
Fproc Long Filter Procedure 190
Fproc Long Filter procedure for Dialog (0 if none) 185
Fsize Word Font Size 1 to 127 176
globe Long Long Word Pointer to application globals 165
GoAway Byte True if GoAway Box 185
GrfPtr Long Pointer to space for GrafPort 165
Grow Byte Has Grow box Flag 195
gWay Byte True H GoAway Box 177
h Word Horizontal Position 174
Hght Word Hight (in Pixels) 175
Hndl Long FirstByte= PEEK(PEEK LONG(Hndl)) 163
hNext byte Flag for next harz Cell 195
Harz Word Size in Pixels Width 179
Hscrl Byte Has Horzontal Scroll Bar Flag 195
ID Word ID number of resource 164
Ihndl Long Item Handle 185
liD Word International Resource ID 0.1 189
Indx Word Index number (From 1 to n typically) 164
IRhndl Long International Resource Handle 189
hem Word Item # in Menu 0= Title. 1.2.3 181
hems Handle Handle to a dialog item list 185
hlprm Long International Parameter 189
just Word O=Left.l =Center.-l =Right Text Justification 183
Keys 8 Bytes Current Keyboard BitMap O=Up.l =Down Bits 192
Kind Word Type of Comment(Comment Number) 173
Len Long Length in Bytes 183
Lhight Word list Hight in Pixels 195
Ihndl Long Handle to List Record 195
Lrect Rect Limit Rectangle 179
Lsize Point Cell Size in Pixels 195
Lwidth Word List Width in pixels 195
Max Word Maximum control Value 179
MBit Long Mask BitMap 175
Mhndl Long Menu Handle: Mhndl&=GETMHANDLE(Menu Number) 181
miD Word Menu ID number: This is the Menu Number 181
Min Word Minumum control Value 179
Mlist Long Handle to Complete Menu Bar 181
MRect Var Mask Rectangle 175
MSG% Var% Integer Variable Message 194
Mttl Str Menu Thle 181
Ntypes Word Number of File Types 190
Numer Word Numerator 193
Offset Type Description 166
Offset Type Description 166
Ofst Long Offset to Scrap 192
Oh Word Height of rounded edge in Pixels 170
OSerr Word Operating System Error Code 194
Ow Word Width of rounded edge in Pixels 170
Pat Var Pattern Definition 8 bytes (Bits:l ~Black) 166
PenRec Var PenState Record 18 bytes 166
PHndl Long Handle to pattern of 8 Bytes 166
PicHnd Long Handle to Picture(PICTURES are limhed to 32K) 173
plD ID Proc ID 195
plD Word Proc ID. Window Definition 177
PlyHnd Long Handle to Poly 174
Pmode Word Pattern Transfer Mode 166
Point Var Pointer to the first byte of two "Words· specHying Y. X 165
Point Var Var$. Var& or Var%.Var% 162
Prmpt Str Prompt String 190
Proc Long Pointer to a Machine Language Routine 162
ProclD Word Control Definhion Procedure ID 179
ProclD Word Dialog procedure ID (Like Window) 185
Plr Long FirstBytec PEEK(Ptr) 163
Pxls Word Number of Pixels 176

Macintosh™ Appendix E-200

~~ MACINTOSH APPENDIX

Rect Var Pointer to the first byte of four "Words" 165
Ref Can long Controls Ref Value 179
Ref Can long Window long word Ref Value 177
RefNum Word Resource file reference number 164
RgnHnd long Handle to a Region 165
Rhndl long Handle to resource 164
Rnum Word Row Number 195
Rproc long Resume Procedure (After Syserr) 185
Rsize long Resource size in bytes 164
SBtt long Source BitMap 175
SBytes Word Source Bytes (Normally 72 for MacPaint,127 Max) 193
Second long long Word of Seconds since January 1, 1904 189
Seedh Word Vertical Offset in Pixels 175
SeedV Word Horizontal Offset in Pixels 175
Sele long Select End 183
Sels long Select Start 183
Size Word number of Bytes (0 n No Data) 173
Slen long length of scrap in Bytes 192
Slope long High Word=dy, low Word=dx 193
Siopr Rect Slop Rectangle 179
Smode Word Source Transfer Mode 166
Spas Word Start offset position in bytes 165
Sproc long Error Sound Procedure 185
Sproc long Search Procedure 195
SPtr long Source Pointer 175
Sptr long Pointer to Scrap Info 192
Sptr long Pointer to Source for Scrap 192
SrcPtr Var& Variable which contains Source Address 193
SRect Rect Defines the source Rectangle (same structure as Rect) 165
SRgn RgnHnd Source Region Handle 172
SRow Word Source Row 175
Srply Var Standard File Reply 190
STA% Var"10 Integer Variable Status 194
Str len+String Either a quoted string or a string variable 161
StrHnd long Handle to Relocatable String 189
Strt Word Start Angle 0 to 360 (o=top) 171
strt Word Start select range 185
TeHndl long TEHandle same as ZBasic's TEHANDlE 183
TIB Var Transfer Instruction Block 194
tiD Word Target SCSIID 194
Time$ Var$ String Variable to store Time String 189
litle Str String for Control Title 179
title Str Title of Dialog Box 185
title Str Windownle 177
TxtPtr long Pointer to 1 st character of Text 183
TxtPtr long Pointer to text in memory 165
Type long Example: DEFSTR lONG: T&=CVI("TEXT") 164
Type long Scrap Type Example: 'TEXT' or 'PICT' 192
Typlist Var Pointer to File Type list 190
v Word Vertical Position 174
Value Word Current control Value 179
Var Any Variable Pointer to Any Variable 162
vCell var Cell Variable 195
VCmd Var Command Source of Bytes 194
Vert Word Size in Pixels Height 179
Vis Byte True if Visable 177
Visable Byte True if Visable 179
Vis able Byte Visable n True 185
vNext byte Flag for next Vert Cell 195
VPoint long Variable With Point Value in tt 174
VRect Rect Variable Rect Modified by ToolBox Call 174
Vrect Rect View Rectangle (Show text in this Rect) 183
Vrect Rect View Rectangle 195
Vscrl Byte Has Vertical Scroll Bar Flag 195
Wait long number of ticks (timeout) 194
Wdth Word Width (in Words) 175

E-201 Macintosh™ Appendix

Where
wiD
Wprt
WPtr
Wsto
xPos
xSize
yPos
ySize

Word
Word
Long
Long
Long
Word
Word
Word
Word

MACINTOSH APPENDIX ~4

Where the point is on the screen (Global Coordinates).
10 of resource Window
Window Pointer
Window Pointer Z8asic™: Wptr&=WINDOW(t4)
Area to Store Window record (Nil in Heap)
Left edge of horizontal position
Horizontal size in pixels
Right edge of horizontal position
Vertical size in pixels

177
177
179
177
177
165
165
165
165

, ,

Macintosh™ Appendix E-202

4=~ MACINTOSH APPENDIX

E -203 Macintosh™ Appendix

MACINTOSH APPENDIX ~
/1-

INDEX OF TOOLBOX DIALOGSELECT 185 FRAMEARC 171
ROUTINES DIBADMOUNT 190 FRAMEOVAL 171

-- A -- DIFFRGN 172 FRAMEPOLY 174
Page DIFORMAT 190 FRAMERECT 169

ADDPT 174 DILOAD 190 FRAMERGN 172
ADDRESMENU 181 DISABLEITEM 181 FRAMEROUNDRECT 170
ADDRESOURCE 164 DISPOSDIALOG 185 FREEALERT 185
ALERT 185 DISPOSECONTROL 179 FREEDIALOG(185
ANGLEFROMSLOPE 192 DISPOSEMENU 181 FRON1WINDOW 177
APPENDMENU 181 DISPOSERGN 172

DISPOSEWINDOW 177 -- G --
-- B -- DIUNLOAD 190

DIVERIFY 190 GETCLIP 168
BACKCOLOR 168 DIZERO 190 GETCREFCON 180
BACKPAT 168 DRAGCONTROL 180 GETCTITLE 180
BEGIN UPDATE 178 DRAGGRAYRGN 177 GETCTlACTION 180
BITAND 193 DRAGWINDOW 177 GETCTLMAX 180
BITCLR 193 DRAWl CONTROL 180 GETCTLMIN 180
BITNOT 193 DRAWCHAR 176 GETCTLVALUE 180
BITOR 193 DRAWCONTROLS 180 GETCURSOR 173
BITSET 193 DRAWDIALOG 185 GETDITEM 185
BITSHIFT 193 DRAWGROWICON 177 GETFNUM 176
BITIST 193 DRAWMENUBAR 181 GETFONTINFO 176
BITXOR 193 DRAWNEW 178 GETFONTNAME 176
BRINGTOFRONT 177 DRAWPICTURE 173 GETICON 175
BUDON 191 DRAWSTRING 176 GETINDTYPE 164

DRAWTEXT 176 GETITEM 181
-- C -- GETITEMICON 182

-- E -- GETITEMMARK 182
CALCMASK 175 GETITEMSTYLE 182
CALCMENUSIZE 182 EMPTYRECT 169 GETITEXT 185
CALCVIS 178 EMPTYRGN 172 GETKEYS 192
CALCVISBEHIND 178 ENABLEITEM 181 GETMASKTABLE 175
CAUTION ALERT 185 ENDUPDATE 178 GETMENU(ID) 181
CHANGED RESOURCE 164 EOUALPT 174 GETMENUBAR 181
CHECKITEM 181 EOUALRECT 169 GETMHANDLE 181
CHECKUPDATE 192 EOUALRGN 172 GETMOUSE 190
CLEARMENUBAR 181 ERASEARC 171 GETNAMEDRESOURCEl64
CLiPABOVE 178 ERASEOVAL 171 GETNEWCONTROL 179
CLiPRECT 168 ERASEPOLY 174 GETNEWDIALOG 185
CLOSEDESKACC 188 ERASERECT 169 GETNEWMBAR 181
CLOSEDIALOG 185 ERASERGN 172 GETNEWWINDOW 177
CLOSEPICTURE 173 ERASEROUNDRECT 170 GETNEXTEVENT 192
CLOSEPOLY 174 ERRORSOUND 185 GETPATTERN 168
CLOSE PORT 168 EVENTAVAIL 192 GETPEN 168
CLOSERESFILE 164 GETPENSTATE 168
CLOSERGN 172 -- F -- GETPICTURE 173
CLOSEWINDOW 177 GETPIXEL 174
COLORBIT 168 FILLARC 171 GETPORT 168
COPYBITS 173 FILLOVAL 171 GETRESFILEA TTRS 164
COPYMASK 175 FILLPOLY 174 GETRESINFO 164
COPYRGN 172 FILLRECT 169 GETRESOURCE 164
COULDALERT 185 FILLRGN 172 GETS CRAP 192
COULDDIALOG 185 FILLROUNDRECT 170 GETSTRING 189
COUNTMITEMS 181 FINDCONTROL 180 GETWINDOWPIC 177
COUNTRESOURCES 164 FINDDITEM 185 GE1WMGRPORT 177
COUNTTYPES 164 FINDWINDOW 177 GETWREFCON 177
CREA TERESFILE 164 FIXMUL 192 GETWTITLE 177
CURRESFILE 164 FIXRATIO 192 GLOBAL TOLOCAL 174

FIXROUND 192 GRAFDEVICE 168

-- D -- FLASHMENUBAR 182 GROWWINDOW 177
FN CHARWIDTH 176

DELETEMENU 181 FN STRINGWIDTH 176 -- H --
DELMENUITEM 182 FN TEXTWIDTH 176
DELTAPOINT 192 FONTMETRICS 176 HIDECONTROL 180
DETACH RESOURCE 164 FORE COLOR 168 HIDECURSOR 173

Macintosh™ Appendix E-204

~~ MACINTOSH APPENDIX

HIDEDlTEM 185 LDRAW 196 PACKBITS 193
HIDEPEN 168 LFIND 196 PAINTARC 171
HIDEWINDOW 177 LGETCELL 196 PAINTBEHIND 178
HILITECONTROL 180 LGETSELECT 196 PAINTONE 178
HILITEMENU 181 LINE 169 PAINTOVAL 171
HILITEWINDOW 177 L1NETO 169 PAINTPOLY 174
HIWORD 193 LLASTCLICK 196 PAINTRECT 169
HOMERESFILE 164 LNEW 196 PAINTRGN 172

LNEXTCELL 196 PAINTROUNDRECT 170
-- I -- LOAD RESOURCE 164 PARAMTEXT 185

LOADSCRAP 192 PENMODE 168
INFOSCRAP 192 LOCAL TOGLOBAL 174 PENNORMAL 168
INITALLPACKS 189 LONGMUL 192 PENPAT 168
INITCURSOR 173 LOWORD 193 PENSIZE 168
INITDIALOGS 185 LRECT 196 PICCOMMENT 173
INITFONTS 176 LSCROLL 196 PINRECT 177
INITGRAF 168 LSEARCH 196 PLOTICON 175
INITMENUS 181 LSETCELL 196 PORTSIZE 168
INITPACK 189 LSETSELECT 196 PT2RECT 169
INITPORT 168 LSIZE 196 PTINRECT 169
INITRESOURCES 164 LUPDATE 196 PTINRGN 172
INITWINDOWS 177 PTIOANGLE 192
INSERTMENU 181 -- M -- PUTSCRAP 192
INSERTRESMENU 181
INSETREGT 169 Ml\PPOLY 174 n ..
INSETRGN 172 MAPPT 174
INSMENUITEM 182 MAPRECT 174 RANDOM 192
INVALRECT 178 MAPRGN 174 REALFONT 176
INVALRGN 178 MAXSIZERSRC 164 RECTINRGN 172
INVERTARC 171 MEASURETEXT 176 RECTRGN 172
INVERTOVAL 171 MENUKEY 181 RELEASE RESOURCE 164
INVERTPOLY 174 MENUSELECT 181 RESERROR 164
INVERTRECT 169 MODALDIALOG 185 RGETINDRESOURCE 164
INVERTRGN 172 MOVE 169 RMVERESOURCE 164
INVERTROUNDRECT 170 MOVE CONTROL 180 RSRCMAPENTRY 164
ISDIALOGEVENT 185 MOVE PORTIO 168 RSRCZONEINIT 164
IUDATEPSTRING 189 MOVETO 169
IUDATESTRING 189 MOVEWINDOW 177 -- S --
IUGETINTL 189 MUNGER 189
IUMAGIDSTRING 189 SAVEOLD 178
IUMAGSTRING 189 -- N -- SCALEPT 174
IUMETRIC 189 SCROLLRECT 173
IUSETINTL 189 NEWCONTROL 179 SCSICMD 194
IUTIMEPSTRING 189 NEWDIALOG 185 SCSICOMPLETE 194
IUTIMESTRING 189 NEWMENU 181 SCSIGET 194

NEWRGN 172 SCSIINSTALL 194
-- K -- NEWSTRING 189 SCSIRBLIND 194

NEWWINDOW 177 SCSIREAD 194
KILLCONTROLS 179 NOTEALERT 185 SCSIRESET 194
KILLPICTURE 173 SCSISELECT 194
KILLPOLY 174 -- 0 -- SCSISTAT 194

SCSIWBLIND 194
-- L -- OBSCURECURSOR 173 SCSIWRlTE 194

OFFSETPOLY 174 SECTRECT 169
LACTIVATE 196 OFFSETRECT 169 SECTRGN 172
LADDCOLUMN 196 OFFSETRGN 172 SEEDFILL 175
LADDROW 196 OPENDESKACC 188 SELECTWINDOW 177
LADDTOCELL 196 OPENPICTURE 173 SELITEXT 185
LAUTOSCROLL 196 OPEN POLY 174 SENDBEHIND 177
LCELLSIZE 196 OPEN PORT 168 SETCLIP 168
LCLICK 196 OPENRESFILE 164 SETCREFCON 180
LCLRCELL 196 OPENRFPERM 164 SETCTITLE 180
LDELCOLUMN 196 OPENRGN 172 SETCTLACTJON 180
LDELROW 196 SETCTLMAX 180
LDISPOSE 196 -- P -- SETCTLMIN 180
LDODRAW 196 SETCTLVALUE 180

E-205 Macintosh™ Appendix

MACINTOSH APPENDIX ~~

SETCURSOR 173 TEDISPOSE 184
SETDITEM 185 TEGETTEXT 184
SETEMPTYRGN 172 TEIDLE 184
SETFONTLOCK 176 TEINIT 184
SETFSCALEDISABLE 176 TEINSERT 184
SETITEM 181 TEKEY 184
SETITEMICON 182 TENEW 184
SETITEMMARK 182 TEPASTE 184
SETITEMSTYLE 182 TEPINSCROLL 184
SETITEXT 185 TESCROLL 184
SETMENUBAR 181 TESELVIEW 184
SETMENUFLASH 182 TESETJUST 184
SETORIGIN 168 TESETSELECT 184
SETPENSTATE 168 TESETTEXT 184
SETPORT 178 TESTCONTROL 179
SETPORTBITS 168 TEUPDATE 184
SETPT 174 TEXTBOX 184
SETRECT 169 TEXTFACE 176
SETRECTRGN 172 TEXTFONT 176
SETRESATTRS 164 TEXTMODE 176
SETRESFILEA TTRS 164 TEXTSIZE 176
SETRESINFO 164 TICKCOUNT 192
SETRESLOAD 164 TRACKBOX 178
SETRESPURGE 164 TRACKCONTROL 180
SETSTRING 189 TRACKGOAWAY 177
SETWINDOWPIC 178
SETWREFCON 178 -- U --
SETWTITLE 177
SFGETFILE 190 UNIONRECT 169
SFPGETFILE 190 UNIONRGN 172
SFPPUTFILE 190 UNIQUEID 164
SFPUTFILE 190 UNLOADSCRAP 192
SHIELDCURSOR 173 UNPACKBITS 193
SHOWCONTROL 180 UPDATERESFILE 164
SHOWCURSOR 173 UPDTCONTROL 180
SHOWDITEM 185 UPDTDIALOG 185
SHOWHIDE 177 USERESFILE 164
SHOWPEN 168
SHOWWINDOW 177 -- V --
SIZECONTROL 180
SIZE RESOURCE 164 VALIDRECT 178
SIZEWINDOW 178 VALlDRGN 178
SLOPEFROMANGLE 192
SPACEEXTRA 176 -- W --
STILLDOWN 190
STOPALERT 185 WAITMOUSEUP 190
STUFFHEX 174 WRITERESOURCE 164
SUBPT 174
SWAP FONT 176 -- X --
SYSBEEP 192 XORRGN 172
SYSTEMCLlCK 192
SYSTEMEDIT 192 -- Z -
SYSTEMEVENT 192
SYSTEMMENU 192 ZEROSCRAP 192
SYSTEMTASK 192 ZOOMWINDOW 178

-- T _.

TEACTIVATE 184
TEAUTOVIEW 184
TECALTEXT 184
TECLICK 184
TECOPY 184
TECUT 184
TEDEACTIVATE 184
TEDELETE 184

Macintosh™ Appendix E-206

ABS 172
AND 173
APPEND 140,174, E42
APPLE MENU E43
ASC 175
ATN 176
AUTO 177
Abbreviations 32
Accuracy 56

versus speed 60
Memory Requirements 58

Add line numbers A78
Adding Icons to Applications E39
Adobe PostScript™ E25

INDEX

Allocating Memory Blocks E149
Alpha listing of all Toolbox terms E199
Alpha listing of all Toolbox stuff E204
Amstrad B1
Apple IIC1
AppleTalk E26
Applesoft Conversions D22
Arc 90
Array Bounds Checking 74

Variables 72
Variables, Memory Required 52

Aspect Ratio 310, 92
Assembly 144

BASE OPTION 179, 73
BASICA Conversions A25
BCD 56
BEEP 178
BIN$ 180
Binary 180, 46
Binary Math, Z80 B9
Bits 180
Blinking Text C8
BLOADA29
BLOCKMOVE E45
Boolean 180
BOX 181, 93
Brads 91
BREAK E1 07, E46
Break Points 155
Breaking out of a program 24
BSAVEA30
BUNDLEE47
BUTTON E48

Highlighted E49

Calculator 18
CALL "DOS" A31, 145, 182, A31, E52
CASE 183
CGAA10
CHAIN 188, 192, 26, E20
Changing File names 278, 318
Character 183
Character Size E143

CHDIRA34
CHR$185
CINTA35
CIRCLE 186,88,90
CLEAR 188
CLEAR END 188, 27
CLEAR INDEX$ 188
CLEAR LPRINT E53
Clear to End-Of-Line 190
Clear to End-Of-Page 190
ClipBoard E21
Clipping 82
Clipping 89
CLOSE 189, 319
Close files 102
Closing the Printe rDriver E53
CLS 190, D26
CLS LINE 190
CLS PAGE 190
COLOR 191, 95, A36, D26
COM BUFFA38
Command Window E9
COMMAND$ A41
COMMON 192, 27
Communications 288
COMPILE 193, E54
Compile time errors 28
Complex strings 63
Condnional Operators 44
CONFIG 194
Configuration 12
Configuration, MSDOS A12
Configuring Drive Specs C8
Configuring Scientific Accuracy 39
Constants 48
Constants, Memory requirements 49
Constants, String Pointer 305
Convert to Lowercase FN 346
Convert to Uppercase 346
Converting Applesott D22
Converting BASICA A25
Converting MSBASIC programs E29
Converting other BASIC programs 162
Converting QulckBASICTM A25
Converting Strings to numbers 352
Converting Turbo BASIC A25
COORDINATE 195, 80
COS 196
CPIM B1
Creating a Mouse Cursor E57
CREATORE5S
Crnical Error Handling, MSDOS A23
Cross Reference 171
CSRLlN 197
CURSORE56
Cursor Posnion 197
CVB 198
CVI199

DATA 200
Data Fork El12
DATE$ 201, A42, 029
Debugging 154
Debugging, Single Step 154
Decimal 46
DEF202
DEF FN 140, 203
DEF LEN 204, 65
DEF LPRINT C14, 030, E59
DEF MOUSE 205, A43, 031, E60
DEFOPENE61
DEF PAGE E62
DEFSEGA46
DEFTA8206
DEF USR 145, 207, A47
DEFDBL INT E58
DEFPAGEA44
DEFSTR LONG E63
DEFSTR WORD E63
Degrees 91
DELAY 208
DELETE 209
Deleting files 102
Device Independent Graphics 81
DIALOG El 08, E64
DIM 210, 211,64
DIR212, E72
Directory 19
Disabling the default Window, E157
Disk Capacities 157
Disk Error Codes 124
Disk Errors 122
Disk Input Output 98
Divide 170
Divide, Floating point and integer 39
00213
DO-UNTIL 138
DOS3.3C2
DOS 99
Double precision 13
DRAWA77

EDIT214
EDIT FIELD E73
EDIT MENU E75
Edit Window El0
EDIT$ E76
EDITOR 034
Edttor, Full Screen A94
Editor, Full Screen ProDOS 046
Edttor, Standard Line 14
EGAA10
EJECTE77
ELSE 215
Email 2
END 216, A48
END FN 217
END IF 218

INDEX

END SELECT 219
End-Of-File checking 122
EOF220
Erase Array 188
Erase File 249
ERRMSG$221
ERROR 222, 223
ERROR function 124
Error Levels A48
Error Messages 29, 221
Errors, Disk file 122
Errors 28, E139
Executing Z8asic programs 22
Exit Loops 136
Exiting a program 24
EXP 224
Exponential Notation, 55
Expression, byte 35
Expressions 34

Configuring 37
integer 35
Optimized for integer 37

Faster Printing on Macintosh, E152
Fatal Runtime Errors 30
File Handling 98

length (Macintosh) E15
Pointer 99
Records 313
Defining Types E61
Error codes 124
getting length 104
Input 104
LOADE78
Number of files
position pointer 105
Read 104
Routing to a 103
SAVE E78
size limitations 106
Wrtte 104
Comma 08
number of records 104
Random methods 114
Records 105
Sequential method 108

Filename 99
FILES A51
FILES$ E78
Filespec 99, 157
FILL 94, 225
Fill Screen with Characters 190
FIND 20, 226, 69, 239
Finder E8
FINDERINFO E81
FIX 227, A51
Floating point 54
FLUSH EVENTS E82
FN 140, 228, 229

Font El43
FOR 230, 137
Formatting text 303
Four Voice Sound E137
FRAC231
FREAS2
Full Screen Editor A94, 046
Function Keys A55, A67
FUNCTIONS 140

GEnie 2
GET 232
GET FILE INFO E83
GET VOLUME INFO E85
GET WINDOW E87
Getting Started 8
Glossary 171
GOSUB234
GOT0235
Grads 91
Graphic Coordinates, Printing At 97
Graphics 80
Graphics lines 86

HANDSHAKE E88
Hard Disks C8
HELP 236
Hercules A 10
HEX$237
Hexidecimal 46
HFS Ell
HFSE72

INDEX

How To Write Macintosh Programs E17

IBMA2
ICON Types E8
ICONS E39
IF 238
ImageWr~er E24
INDENTA53
Indenting 136
INDEX$ 68, 239, E21, E89

erase contents 188
More than one E89

INDEX$068
INDEX$168
INDEXF 68, 239
INKEY$ 134,241, AS5, E89
INP242
INPUT 126, 243
INPUT# 104, 246
INPUT"Io 126, 133
INPUT@126
Inserting Source Code 140
INSLOTD35
INSTR247
INT248

Introduction 5
Inverse Text 014

Joystick 205

KayPro Bl
KEY$ AS6
Keys, Dffferent 33
Keywords 168
KILL 249, E90
KILL PICTURE E93

Labels 148
LaserWr~er E24
LCASE$346
LCOPYE94
LEFT$ 251
LEN 252
LET 253
Lightpen 205
LINE 144, 182,254
Line Editor 17
Line numbers 148
LINE INPUT 255
LlNEINPUT# 104, 256
Lines 86
LIST 151, 257
LLiST 257
LOAD 258
Load A file E78
Loading Old Programs Ell
LOC 104,259
Local variables 150
LOCATE 260, A57
Locking Memory Blocks E149
LOF 104, 261, E95
LOG 262
Logical Operators 45
LONG FN 141,263
LONG IF 152, 264
Longlntegers E12
Loops 136

Exiting 136
LPOS300
LPRINT 265, E24, E96

Machine Language 144
MACHLG266
Macintalk E27
Macintosh El
Macintosh Specnic Configure E16
Macintosh ToolBox E160
MacPaint E23
Mailing List 115
Math functions, derived 41
Math Operators 36

Math Speed 39
Matrix manipulations 75
MAYBE 267
MEM 26B, 269, A58, D36, E97
Memory B6
Memory Manager, Macintosh E19
Memory Map, ZBO B17
Memory Monitor DA E9B
MENU E99, El00, El0l
MERGE 270
Meta-Characters E44
MFSEll
MID$ 271, 272
Mini-Compiler 20
MKB$273
MKDIRA60
MKI$274
MOD 275
MODE 276, A61, C7, D37, El03
Mode B5
MOUSE 277
MOUSE A63, A65, El04, El06
Mouse, Type definition 205
MSBASIC conversions E29
MSDOSA2
Mulitline IF statement 152
Multi-line function 141
Multiple line statements 149

NAME 278
Negation 36
NEW 279
NEXT 280
Non-Relocatable Blocks E149
NOT 281

INDEX

Notation, Scientific and Exponential 55
Number of Records 315
Numeric Conversions 46
Numeric Range 55

Object Code 156
OCT$282
Octal 46
Off Screen Coordinates 82
ON COM ERROR A66
ON ERROR 283

. ON GOSUB 284
ON GOTO 285
ON INKEY$ A67
ONLINE D38
OPEN 286, El12
OPEN TALK El14
Open Files 101
OPEN"A" El12
OPEN"C" 288, A69, E113
Opening Files 98
OR 290
OUT 291

Out-Of-Memory 74
OUTSLOTD39
Oval 92,310
Overflow, Integer 53
Overflow, Real 56
Overlays B22

PAGE 292, 293
PAGE LPRINT A69, E115
PAINT 94, A72
PALETIEA73
Parentheses 43
Patch 12
PATH 294, D40
PATH$A74
Path names E78
PEEK 295, A75
PEN El16
Perpetual Sort 70
Phoneme E28
PICTE21
PICTURE El17, El18
Pie 90
Pixel 80
Pixel Coordiantes 195
Pixel Versus Relative Coordinates 82
PLOT 86,296
PLOT USING A76
POINT 87, 298
POINTD41
POKE 299, A77
Porting Programs 156
POS300
PostScript E25
PRCANCEL E120
Pre-Defined USR 350
Precedence, Order of 42
PRHANDLE E121
PRINT 125, 302
PRINT USING 303, E123
Print Formatting 303
Print Program 257
Print Source Code 257
Print Window E94
PRINT#301
PRINT%96
PRINT@126
Printer 125
Printer Slot D16
Printing Arrays 75
ProDOSDl
ProDOS disk errors Dll
ProDOS Pathnames Dl0
Program addressing 144
Program Structure 148
Program Tracing 154
PSTR$305
Purgable Blocks E149
PUT 306, E124

PUT FILE INFO E125

Quick Sort n
QuickBASIC conversions A25
QUIT 308

Radians 91
RANDOM 309, 267
Random Access files 114
RATIO 310,92
READ 312
READ FILE E126
READ# 104, 311
Reading From a File 104
REC 104, 315
RECORD 313
Record 99
Records in a file 316
Reference Section, Macintosh E42
Relative Coordinates 81
Relocatable Blocks E149
REM316
Remove line numbers A86
RENAME 317, D42, E127
Renaming files 102
RENUM 18, 318
RENUM' A78
RESET319
Resolution 80, 83
Resource Fork E112
RESTORE 320
RETURN 321
RIGHT$322
RMaker E32
RMDIRA79
RND323
Rounding 57
ROUTE 324, E128
RS-232 Communications 288
RS-232, MSDOS A 17
RUN 22
RUN325,326
RUND43
RUN filename 22, E129
Run Time errors 30
RUN'22
RUN+22
Running a program 22

SAVE 327
Save a File E78
Save Configuration 12
SCREEN A80, A81
Screen 125
Screen dump to printer A69
SCROLL BUTTON E131
SCROLLE130

INDEX

Scroll Bars E131
Seeing ·Pixels· 87
SEGMENT E134, E19
SEGMENT RETURN E134
Segment of a Circle 90
SELECT 328
SELECT CASE 183
Sequential Access files 108
Serial communications 288
Setting Tab stops 206
SGN329
SHARE 27
SHELLA82
Shell Sort 76
Shift 36
SHUTDOWN E136
Simple Strings 63
SIN 330
Single Precision 13
Single Step Debugging
Sort, Perpetual 70
Sorting 76
SOUND 331, E137, 138
Source Code 156
Space Required After Keywords, 51
SPACE$332
Spaces between keywords 150
SPC333
Specialized graphics 97
SQR334
Standard Line Ed~or 14
Standard Reference 170
STEP 335
STOP 336
STR$337
STRING$338
String Constant pointer 305

functions 61
Length 252
Variables 60
Variables, Defining the length 64
Complex 33
Inserting in INDEX$ 69
Simple 33

Structure 148
SWAP 340
SYSERROR, E139
SYSTEM 339

TAB 341
TALKE140
TAN 342
Technical Support 2
TEHANDLE E141
Terms and Defin~ions 32
TEXTE21, E143
Text and Graphics integration C8
Text Styles E143
TFORMATA83

TIME$ 343, A84
TIMER AB5, E111, E144, E145
ToolBox Arcs E171
ToolBox Binary E193
ToolBox Calculations E193
ToolBox Clipboard/Scrap E192
ToolBox Color E168
ToolBox Control Manager E179
ToolBox CopyBits E173
ToolBox Cursor E173
ToolBox Desk Accesories E188
ToolBox Dialog Manager E185
ToolBox expressions, E162
ToolBox File InpuVOutput E190
ToolBox Fonts E176
ToolBox GralPort E168
ToolBox Handles, E163
ToolBox Icons E175
ToolBox International Routines E189
ToolBox Line E169
ToolBox LIST Manager E195
ToolBox Memory Locations E198
ToolBox Menu Manager E181
ToolBox Miscellaneious E192
ToolBox Mouse E191
ToolBox Move E169
ToolBox Ovals E171
ToolBox Packbits E193
ToolBox Pen E168
ToolBox Picture E173
ToolBox Pointers, E163
ToolBox Polygons E174
ToolBox QuickDraw E165
ToolBox Rectangles E169
ToolBox Regions E172
ToolBox Resource Manager EI64
ToolBox RoundRect E170
ToolBox Scrap Manager E192
ToolBox Scroll E173
ToolBox SCSI E194
ToolBox SCUZZY E194
ToolBox String Handling E189
ToolBox terms E161
ToolBox Text E176
ToolBox Text Edit E183
ToolBox Unpackbits E193
ToolBox Window Manager EI77
Toolbox, E160
Trapping Disk errors 123
Trigonometric functions 40
TROFF344
TRON 24, 128, EI46, 154,345, E147
T ron Monitor DA E 148
TRS-80 Bl

UCASE$346
UNNUMA86
UNS$347
Unsigned integer 347, 46

INDEX

UNTIL 348
USING 303
USR 182, 349

VAL 352
Variables 50

Address Pointer 353
names 150
Array 72
Array Memory requirements 78
Global 150
Integer 53
Local 150
Memory Required 52
names 51
String 60
String lengths 64
String memory requirements 66
Type Declarations 50

VARPTR 353, A91
VARSEGA91
Videx Card C7
VIEW PRINT A92
Volume Number E112, E78

WAITA93
WAVEE151
WEND 354
WHILE 355
WHILE-WEND 139
WIDTH 356, E152
WINDOW CLOSE E155
WINDOWE153
WINDOW OFF E157
WINDOW OUTPUT E155
WINDOW PICTURE E158
WINDOW Types E156
Window Refresh, E158
WINDOW, GralPort E154 .
WINDOW, Size EI54
WRITE# 357, 358
Writing to a File 103

XELSE 359
XOR360

Zedcor Address 2

• Same GraphIC and • Create commercial
Ale commands make quality. stand-alone
programs . work ttIe applications easily

same way on all • No Runtime fees
computers.

• Not eopy-Protected • CHAIN

• Type RUN to 'COmpile . MuIti-lIne IF and FN

creates Fast.
DoubIe-CIIc:bbIe
Appllc:lltlona ..

EasIly _ UsIng •

BASIC InterprnII'.

8pocIII--"; -
• -..ROM oupport

• - Gtaphic:o • eo.,.,.... "-" lioppiog
• MENU. WINDOW. DIALOG
• ~oupport
• '"-"'" oupport • t..ongIrMger 1:: 2.M7.CI,IG'

• -oupport
• ~oupport ._-. HElP_..-e_
• _ PIinI or PIC!' . c... ___

• JuoI typo RUN ., """""" • Uoos .. __ _

• Memory ~NT
• Up.,240digilloI_

• InctodIlIy lui ~

APPLE lie . lie . IIGS
][and][+

_u.~
• __ Text _ QqpIIIco In ___ _

• DowIoo 1ndapoacIinI _- -' . .. _ _POIHT .,.....-
. -"..~-• _14 i'1211C_
.~--..... ._ .. _,-
. ,I_In __
.~a..._

• C:- .SYSTEM"
I'nIOOSV_ """AppIe __ or_

UZBaIc: Ie • power
ful offering •••
provides the
flexibility or Turbo
PacaJ and the
apeed or compiled
BASIC ... ~ .. _ _ _-_ .. -_ .. __ ..
"-."
". __ BAIIIC ... _. --.--Wi rnMUII.··

PC-.D._

"01 _ -_ .. _""' .. _ ----
_._Iool..~

PC ___ _

-

' 'compIIIIIIon Ie eo
.... that ..cutIon
Ie IncIIatinguIIh
able 110m • BASIC
InIeqMIIIIIr -up ..

1InE._

"1001. __ ---,_ 01_"'_
-.ding _ .. prtcolovory_"

~,--

• IndInIa 1IIrUck.nI:
LONG F . LONG fN.
fOMIEXT. DOIUNTlL,
WI-.ewEND

• Labels

• HIIICULEII (_ pIuoI
~ oupport (720lI348l

• CQA ~ oupport
. -~oupport

(ZIIaoIc _ hlli"o,,""

~-- .. --"gnpHcGET • PIll' _ oupp6nod) ~-"
SIrIng - - up ., -. IILECfCAIE ._--. _-oupport

• E-..oIy _ RUNTIME.
_ ony_ BASIC

. c...o.COll_

.~--~..-

AIMIIIIIII ...
IIIIDOS PC

OGI'
(noquI- 1281<)

._-
_ on ony CI'IM ZIO
_ SpocIIy 5.25" or r .

	ZBASIC
	Table of contents
	Introduction
	Getting Started
	Configuration
	Standard Line Editor
	Running ZBasic Programs
	Chaining Programs
	Compile and Runtime Errors
	Terms and Definitions
	Math
	Numeric Conversions
	Constants
	Variables
	INDEX$
	Graphics
	Flies
	Screen and Printer
	Keyboard Input
	Loops
	Functions and Subroutines
	Machine Language
	program Structure
	Debugging Tools
	Porting Programs
	Converting Old Programs
	Keywords
	Computer Appendices
	MSDOS
	Z80
	Apple DOS
	Apple ProDOS
	Macintosh

	Index

