

Advances

in COMPUTERS
VOLUME 29

Contributors to This Volume

JOHN M. CARROLL
RORERT W. CLOUGH
RICHARD W. JUDY
MING T. Llu
JONATHAN K. MILLEN
MOVROE NEWBORN

Advances in
COMPUTERS
E D I T E D BY

MARSHALL C. YOVITS
Purdue School of Science
Indiana University-Purdue University of Indianapolis
Indianapolis, Indiana

VOLUME 29

ACADEMIC PRESS, INC.
Harcourt Brace Jovanovich, Publishers

Boston San Diego New York
Berkeley London Sydney
Tokyo Toronto

COPYRIGHT @ 1989 BY ACADEMIC PRESS, INC.

ALL RIGHTS RESERVED.
N O PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL. INCLUDING PHOTOCOPY, RECORDING, OR
ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
1250 Sixth Avenue, San Diego, CA 92101

United Kingdom Edition published by
ACADEMIC PRESS INC. (LONDON) LTD.
24-28 Oval Road. London NWI 7DX

LIBRARY OF CONGRFS CATALOG CARD NUMBER: 59- 15761

ISBN 0-12-012129-8

PRINTED IN TtE UNITED STAmS OF rMBRICA

89 Po 91 Y2 9 I 7 6 5 4 3 2 I

Contents
CONTRIBUTORS vii
PREFACE . ix

Models of Multilevel Computer Security
Jonathan K . Milien

1 . Introduction
2 . Implementing Models
3 . Model-to-Specification Correspondence
4 . The Bell-LaPadula Model
5 . Database and Network Models
6 . Information Flow Models
7 . Conclusion .

References .

.

.

Evaluation. Descrlptlon and Invention:
Paradigms for Human-Computer Interaction

John M . Carroll

1 . Introduction
2 . Human Factors Evaluation
3 . Cognitive Description
4 . Usability-Innervated Invention
5 . The Ecology of Computing

Acknowledgment
References .

Protocol Engineering

Ming T . Liu

1 . Introduction
2 . Network Architecture
3 . Formal Models for Protocol Specification .
4 . Protocol Validation
5 . Verification and Conformity Analysis . .
6 . Protocol Synthesis
7 . Timed Models and Performance Analysis .
8 . Protocol Conversion
9 . Implementation and Conformance Testing

10 . Automated Protocol Design

.

.

.

.

.

.

.

.

.

.

1
6

10
17
27
31
41
43

47
49
55
61
68
72
72

80
83
88

110
126
133
144
155
167
171

V

vi CONTENTS

1 1 . Conclusion 183
Acknowledgments 184
References 184

Computer Chess: Ten Years of Significant Progress
Monroe Newborn

1 . Introduction 198
2 . Search Techniques in Chess Programs 198
3 . Opening Books 231
4 . Endgame Play and Endgame Database 231
5 . A Brief History of Computer Chess Tournament Play 232
6 . The Rating of Chess Players 233

Program Strength 237
8 . On the Chess Skill of Chess Programmers
9 . Languages Used by Chess Programs 239

10 . Testing Chess Programs
1 1 . Debugging Chess Programs 240
12 . A Sample of Play: DEEP THOUGHT 0.02 (White) versus

HITECH (Black) 241
13 . Data on Programs. Computers, Languages, Authors,

Affiliations, Etc 244
14 . The International Computer Chess Association and the

ACM's Computer Chess Committee 246
15 . Conclusions 246

References 247

. . . .

7 . The Relation Between Computer Speed and

238

240

Soviet Computing in the 1980s

Richard W . Judy and Robert W . Clough

1 . Introduction 251
2 . Soviet Computing Before 1980: A Brief Summary 253
3 . Official Plans for the 1980s 255
4 . Hardware Development in the 1980s 257
5 . Perestroika and Soviet Computing 317

References . 322

.

AUTHOR INDEX 331

SUBJECT INDEX 341

CONTENTS OF PREVIOUS VOLUMES 351

Contributors

Numbers in parentheses refer to the pages on which the authors’ contributions begin.

John M. Carroll (47), User Interface Institute, IBM T. J. Watson Research

Robert W . Clough (251), Hudson Institute, Herman Kahn Center, 5395

Richard W . Judy (251), Hudson Institute, Herman Kahn Center, 5395 Emerson

Ming T. Liu (79), Department of Computer and Information Science, The Ohio

Jonathan K. Millen (l) , The M I T R E Corporation, Burlington Road,

Monroe Newborn (197), School of Computer Science, McGill University,

Center, Box 704, Yorktown Heights, New York 10598

Emerson Way, PO Box 26-919, Indianapolis, Indiana 46226

Way, PO Box 26-919, Indianapolis. Indiana 46226

State University, 2036 Neil Avenue, Columbus, Ohio 43210- I277

Bedford, Massachusetts 01 730

Montreal, Quebec, Canada H3A 2A7

vii

This Page Intentionally Left Blank

Preface

The serial, Advances in Computers, provides a medium for the in depth
presentation of subjects of both current and long-range interest to the
computer and information community. Within this framework, contributions
for appropriate articles have been solicited from widely recognized experts in
their fields. The time scale of the invitation is such that it permits a relatively
leisurely perspective. Furthermore, the permitted length of the contributions
is greater than many other publications. Thus, topics are treated both in depth
and breadth.

The serial began in 1960 and now continues with Volume 29. These books
have played an important role over the years in the development of the
computer and information fields. As these fields have continued to expand-
both in research and resulting applications as well as in their significance-so
does the importance of the Advances series. As a consequence, it was decided
that Academic Press would this year publish two volumes, 28 and 29; Volume
28 was published earlier this year.

Included in Volume 29 are chapters on computer security, human-computer
interaction, protocol engineering, computer chess, and Soviet computing.

In the first chapter, Dr. Millen considers the very important current issue of
computer security. He points out that multilevel security implies the
assignment of labels, such as classification levels, to data and users in order to
control access. Classification labels bring to mind military applications, with
labels such as “Confidential” and “Top Secret,” but other sets of labels are
useful in a commercial environment. In considering some multilevel access-
control models, Millen focuses on a few influential ideas rather than on secure
systems in general. Certain models are examined in detail because of the ideas
they express and the questions they raise. He explains that the developments in
information-flow modelling are exciting because they are still evolving in a
clear direction. The underlying notion of information flow as an inference
about the possible values of sensitive data sources had led to the important
noninterference concept in deterministic machines.

John Carroll considers the area of human-computer interaction. He likens
the recent evolution of computer technology to that of a “race” between
function and usability. The frontier of usability has been pressed onward by
the development of new applications and interface technologies. The race
between function and usability, he states, has made the area of human-
computer interaction a very high-profile research area within computer
science and within the computer industry. It is difficult to develop science and
technology relating to usability rapidly enough, but it is critical to do so.
Human-computer interaction has often been described as an interdisciplinary

ix

X PREFACE

research area, but only now are the full interdisciplinary possibilities emerging,
with psychologists participating fully and in a variety of roles in the evolution
of computer technology.

Professor Liu in the third chapter is concerned with computer-
communication protocols. These are sets of rules permitting an orderly
exchange among physically separated computers. The discipline in this area is
now called protocol engineering and is currently receiving increased attention.
Dr. Liu shows that a protocol engineering system allows the protocol designer
to express the protocol formally, test its specifications for correctness (valida-
tion and verification), obtain some early indication of how it performs, com-
pile major parts of the implementation directly from the formal specifications,
and, finally, test the resultant implementation to assure that it conforms to
specifications (implementation verification or conformance testing).

Professor Newborn contributed a chapter to Volume 18 of Adounces in
Computers 10 years ago, ahich surveyed developments in computer chess in
the middle and late 1970s that raised the playing strength of chess programs to
just over the 2000 level, the United States Chess Federation Expert rating.
Now chess programs have improved at least another 500 rating points and are
playing almost at Grandmaster level. In this chapter, Newborn describes the
technical developments that led to this remarkably strong level of play. He
goes on to indicate that while the last decade has seen programs progress from
playing at the Expert level to almost that of the Grandmasters, the coming
decade should be even more exciting. It is quite likely that before the year 2000,
a computer will defeat the human world champion.

Dr. Richard Judy and Robert Clough state that Soviet computing in the
1980s has been a very interesting scene. This was the decade when the nation’s
top political leadership finally recognized the central role of computers and
other information technologies in military, economic, and social development.
This recognition however came very late in the game, not before the Soviet
Union’s international competitors attained a huge, perhaps insurmountable,
lead in the technologies and their applications. Compared with Western and
Japanese progress in developing and using information technologies of all
kinds, the Soviet Union has continued to lose ground rapidly in the 1980s.
Judy and Clough point out that there is mixed news for the Soviet computer
user of the late 1980s. Available hardware and software continue to fall further
behind what their Weslern counterparts are using at every level, from
supercomputers to microcomputers. This however is tempered by the fact that
the scientific and political leadership now openly recognizes the problem and
vows to resolve it.

It is my great pleasure to thank the contributors to this volume. They have
given extensively of their time and effort to make this book an important and
timely contribution to their profession. Despite the many calls upon their time,

PREFACE xi

they recognized the necessity of writing substantial review and tutorial
articles. It has required considerable effort on their part, and their cooperation
and assistance is greatly appreciated. Because of their efforts, this volume
achieves a high level of excellence, that should be of great value for many years
to come. It has been a pleasant and rewarding experience for me to edit this
volume and to work with these authors.

MARSHALL C. Yovrn

This Page Intentionally Left Blank

Models of Mu I ti level Computer Security

JONATHAN K . MILLEN

The MITRE Corporation
Burlington Road
Bedford. Massachusetts

1 . Introduction

1.2 Reference Monitors
1.3 Label-Based Policy

2 . Implementing Models
2.1 The Successive Refinement Approach . .
2.2 FormalTop-LevelSpecifications
2.3 A Flaw Discovered

3.1 Introduction
3.2 Abstract Definition of a Secure System . .
3.3 Models as Logical Systems
3.4 Mapping Models to Formal Specifications .

4 . The Bell-LaPadula Model
4.1 Introduction
4.2 The Abstract Model
4.3 Transition Rules

4.5 Trust and Integrity
5 . Database and Network Models

5.1 Database Management System Models . .
5.2 Network Models

6 . Information Flow Models
6.1 Introduction
6.2 Non-interference
6.3 Restrictiveness

7 . Conclusion
References

1.1 Nondiscretionary Security Policy

3 . Model-to-Specification Correspondence . . .

4.4 System Z and Tranquility

. i

. 1

. 3

. 4

. 6

. 6

. 8

. 8

. 10

. 10

. 10

. 12

. 14

. 11

. 17

. 18

. 20

. 21

. 24

. 21

. 21

. 30

. 31

. 31

. 33

. 36

. 41

. 43

1 . Introduction

1.1 Nondiscretionary Security Policy

Multilevel security implies the assignment of labels. such as classification
levels. to data and users. for the purpose of controlling access . Classification
labels bring to mind military applications. with labels such as “Confidential”
and “Top Secret. ” but other sets of labels may be useful in a commercial

1

ADVANCES IN COMPUTERS. VOL . 29
Copyright 0 1989 by Academic Press . Inc .

All rights 01 reproduction in any form r e ~ e ~ e d .
ISBN 0-12-012129-8

2 JONATHAN K. MILLEN

environment (Lipner, 1982). In practice, label-based controls are supple-
mented by additional access restrictions. Some of the special policies appro-
priate for commercial applications are discussed by Clark and Wilson (1987).

Access-control policies on label assignments are termed “nondiscretionary”
or, synonymously, “mandatory.” Policies in which ordinary users can decide
whether or not to grant or transfer access privileges to other users, for acess to
certain data under their control, are referred to as “discretionary.” In systems
with a discretionary policy, it can be difficult to determine the extent to which
access rights propagate. This general problem is the safety problem, and it has
been shown to be recursively undecidable in a sufficiently broad context
(Harrison, 1985; Harrison, et al., 1976).

Nondiscretionary access-control models are interesting primarily because
of their role in a process of implementation that has been reasonably
successful, rather than because of any deep mathematical results. One clear
and simple reason for implementing a nondiscretionary policy is to foil
“Trojan horse” programs. Such programs cannot reassign labels, and hence
cannot affect label-based access restrictions. By contrast, in a purely discre-
tionary system, they might reassign access permissions, or move information,
without the knowledge of, and against the intent of, the human user on
whose behalf the program is supposed to be executing.

Some multilevel access-control models will be surveyed here. There have
been other surveys, such as those by Landwehr (1981) and Millen and
Cerniglia (1984). This survey includes more recent models, and also differs
from previous ones by presenting a few models in greater depth. We wish to
focus on a few influential ideas rather than models or secure systems, and there
will be no attempt at broad coverage of either old or new models. Certain
models will be examined in detail because of the ideas they express and the
questions they raise.

The first access-control models were for operating systems, and modelled
the policy by which an operating system grants requests by processes for
access to controllable segments of main memory. We shall look at the design
decisions behind these models, and their intended application to secure com-
puter system development. Some new ideas arise in database system models,
which impose additional structure on data objects, raising questions about
how to assign labels. There will be a brief discussion of network models.

It has been known, at least since an article by Lampson (1973), that
unauthorized disclosure of data is possible even in a system where access
controls are perfectly enforced, and even if they are nondiscretionary.
Computer systems may have leakage channels or cooert channels by which a
process accessing sensitive data may communicate it to a user who is not
supposed to have access to that data. We shall conclude with a few models of
information flow that are deep enough to explain this phenomenon, and which

MODELS OF MULTILEVEL COMPUTER SECURITY 3

have given rise to techniques for detecting information flow in violation of
label-based policies. These models are not access-control models.

1.2 Reference Monitors

1.2.1 Subjects, Objects, and Access

In its simplest form, an access-control model has subjects, or active entities,
that can exercise various modes of access on objects, or repositories of infor-
mation. Several modes of access may be recognized. Access is a directed
relation: subjects have access to objects. If one desires to model some form of
access by one subject to another, subjects can be assumed to be a special kind
of objects. The model can be thought of as a state-transition machine whose
current state is an access matrix showing, for each subject and object, what set
of access modes the subject currently has for that object. An abstract machine
of this kind is called a reference monitor. These basic ideas come from Lampson
(197 1) and Graham and Denning (1972); the term “reference monitor” arose in
a U.S. Air Force planning study (Anderson, 1972).

Access modes, in a multilevel context, have implications for information
flow. In particular, each access mode must be interpreted as representing a
read, a write, both, or neither, in addition to whatever other significance it
might have. If a subject has some form of read access to an object, information
can flow from the object to the subject. If a subject has some form of write
access to an object, information can flow from the subject to the object.

1.2.2 Subject Memory

Subjects are viewed as agents for transmitting information. If a subject has
simultaneous read access to one object and write access to another,
information flows from the first object through the subject to the second
object. What if a subject has read access to an object temporarily, but releases
that access before obtaining write access to another object? Does information
flow from the first object to the second? This is equivalent to asking whether
subjects have memory. It is usually assumed that they do.

Some modellers prefer to say that subjects have no memory themselves, but
each subject is associated with a private object to which it has read and write
access. For example, if one thinks of a process in an operating system as a
subject, its private object consists of its processor context-i.e., its registers.
The problem with this approach is that it is rarely followed through
conscientiously. No one ever bothers to specify axiomatically in their models
that such private objects always exist with read/write access. And when they
try to show that software specifications or high-order language code satisfies

4 JONATHAN K. MILLEN

the model, they have trouble because certain private objects are not visible in
the implementation.

Certain subjects and objects are part of the external interface of a system, in
the sense that they may act as conduits for information entering or leaving it. It
is assumed that any such information flow is consistent with the labels on
the subjects or objects. Some models make the external interface activities ex-
plicit, others do not.

1.2.3 Access Modes and Transactions

Models of higher-level services such as database management systems or
message systems frequently emphasize the notion of a “transaction” as the way
a user interacts with the system. In a transaction-oriented model, all in-
formation flow occurs during transactions. The same transaction may cause
read and write accesses to several objects by the requesting subject. In the time
between transactions, a subject might perform some local processing on its
private memory, but it cannot read or modify other objects.

In this kind of model, the transactions themselves are the modes of access.
The access matrix lists, for each subject and object, what transactions the user
may employ upon that object.

1.3 Label-Based Policy

1.3.1

The same set of labels is used for both subjects and objects. On an object, a
label represents some measure of the sensitivity of, or special restrictions on,
the data in the object. On a subject, the label represents the clearance or
privileges of the subject, as well as the sensitivity of the data in its memory.
Labels are ordered, in that one can tell, at least for some pairs of labels, when
one represents greater data sensitivity than the other. In the tradition of Bell
and LaPadula (1975), this ordering-actually a partial ordering, as we shall
see in a moment-is often called dominance. Dominance will be symbolized
in this discussion with the inequality symbol “2,” and the reverse relation
“dominated by” with “1.”

The Dominance Relation on Labels

1.3.2 Information Flow Policy

Labels are used in models of multilevel security to constrain access. The
access restrictions are intended to enforce a higher-level, informal, infor-
mation-flow policy: information flow from one entity to another is possible
only when the destination carries a label dominating that of the source. Given

MODELS OF MULTILEVEL COMPUTER SECURITY 5

some natural, intuitive properties of information flow, we can show that
dominance should be a partial ordering, if this information-flow policy is to be
satisfied; these arguments were given by Denning (1976).

First, information flow is trivially possible from an object to itself. Hence, if
x is the label of the object, we must have x I x. So dominance is reflexive.

Second, if information flows from an object a to a subject b, and then from b
to an object c, information may have flowed as a result from a to c. Now,
suppose the labels on a, b, and c are x, y, and z, respectively. If x I y and y I z,
the policy requires x I z. So dominance is transitive.

Third, suppose there is a subject a and an object b with labels x and y,
respectively, such that x I y and y I x. There is nothing that will force us to
conclude that x = y. We can only say, at this point, that dominance is a pre-
ordering, as is done by Walter et al. (1974a). However, since information may
flow in both directions between a and b, the policy permits a and b to swap
information until they contain exactly the same data. There is then no reason
to distinguish the labels x and y. So we may as well assume that dominance
is antisymmetric also, making it a partial ordering.

A total ordering is not necessary, or always desirable; we do not need to
assume that all pairs of labels are comparable. One common and useful system
of labels arises from marking each subject and object with one or more
categories, e.g., financial, administrative, NATO. A single label is a set of
categories. A subject can read an object only if it is cleared for all the categories
in the object’s label, so the dominance relation in this case is just set inclusion,
which is not a total ordering.

It can be convenient also to assume that a least upper bound operator exists
for the dominance partial ordering. Suppose one wishes to create a subject to
read information from two objects labelled x and y. It is desirable to label the
new subject with the least upper bound of x and y. For, suppose there is
another object whose label dominates both x and y. Then the new subject can
be allowed to write into it.

Denning (1976) points out that when a least upper bound operator exists,
and when the set of labels is finite and possesses a universal lower bound
(representing non-sensitive, unrestricted information), a greatest lower bound
also exists. (The greatest lower bound of x and y is the least upper bound of
all common lower bounds of x and y.) Under these circumstances the domi-
nance relation forms a lattice.

1.3.3 The. *-Property

In an access-control model, the information-flow policy stays behind the
scenes as a motivation for an explicit access-control policy. The access-control
policy limits the modes of access permitted between subjects and objects, on

6 JONATHAN K. MILLEN

the basis of their labels. Two access-control restrictions are assumed:

0 A subject is permitted read access to an object only if its label dominates

0 A subject is permitted write access to an object only if its label is domi-
the label on the object.

nated by the label on the object.

The conjunction of these two statements is often called the *-property, after
a similar property stated in the Bell-LaPadula model (Bell and LaPadula,
1975). All multilevel access-control models have some form of it. The reader
is warned, however, that “*-property” is not a well-defined term. Even Bell
and LaPadula have given different versions of it (LaPadula and Bell, 1973;
Bell, 1973).

It is obvious, given the kind of assumptions we have made about
information flow, that the *-property implies the information-flow policy.
Information flow was assumed to occur only as a result of accesses, and the *-
property says it can only flow “uphill” with respect to the labels.

2. Implementing Models

2.1 The Successive Refinement Approach

A model is just the first step in a secure system development. One paradigm
for using models in implementing secure systems was suggested by the Air-
Force planning study (Anderson, 1972), and was refined through a series of
projects, initially sponsored by the Air Force and later supported more
generally by the U.S. Department of Defense. This line of development led to
the publication of the “Orange Book,” a standard for evaluating the security
of computer systems, by the National Computer Security Center (1985).

The idea proposed in the Preface of the Anderson report was to “. . . start
with a statement of an ideal system, a model, and to refine and move the
statement through various levels of design into the mechanisms that
implement the model system.” At this time, David Parnas had already
described a technique for precise specification of software modules (Parnas,
1972). Some work at MITRE (Burke, 1974) put the two together, and
recommended the four-stage approach illustrated in Fig. 1. The specifications
in stage 2 were called “formal” specifications to distinguish them from
imprecise natural-language specifications, and to emphasize the possi-
bility that one could construct mathematical proofs relating the specifications
to the model in stage 1, and perhaps also to the high-order-language source
code in stage 3.

MODELS OF MULTILEVEL COMPUTER SECURITY 7

Mathematical
Model

- Formal Source Machine
Specification - Code - Implementation

FIG. 1. The four-stage approach.

Carrying out the four-stage approach rigorously was then, and is still now,
beyond the state of the art. Showing that the source code satisfies the formal
specifications is essentially a proof of program correctness. In 1977, Stanford
Research Institute had made considerable progress with a methodology for
proving that a hierarchically structured operating system satisfied formal
specifications in the spirit of the ones Parnas had suggested (Neumann et al.,
1977). Various efforts have been made along these lines, and we shall not
attempt to survey them here. None have been fully satisfactory, primarily
because program correctness, in general, is a formidable goal that has not been
reduced to practice. And even if one could prove that the source code is
correct, there is still the question of showing that it has been compiled properly
and runs correctly on the target computer.

Despite the failure to apply mathematical rigor to all aspects of the
implementation of a secure computer system, techniques traceable to the
four-stage approach have led to the development of a few systems that are
believed to be much safer than any that had previously been built. Much of the
credit for their success goes to improvements in hardware, but without a
simple, elegant policy to support, the hardware features might well have been
ineffective.

The key ideas in the development of secure multilevel systems have been
these:

0 A simple, uniformly applied hardware mechanism for protection of
memory.

0 A small operating system “kernel” that uses the hardware mechanism to
protect itself and to control all memory accesses in accordance with a
security policy.

0 A simple, nondiscretionary policy for the kernel to support.

There are, of course many details that must be thought out and imple-
mented carefully, from interrupt handling and 1 / 0 management to user
authentication. The reason this approach has a chance of succeeding is that
the kernel is designed from the beginning with a full understanding of the
hardware mechanism underneath and the policy to be supported.

The Department of Defense Trusted Computer System Evaluation Criteria,
known as the “Orange Book”(Nationa1 Computer Security Center, 1985), is a

8 JONATHAN K. MILLEN

requirements document used for rating computer systems with respect to their
ability to protect classified or other sensitive information. The rating process
and its application to Defense systems is too complex to be discussed here. The
significance of the Orange Book, for us, is that it embodies much of the
experience gained from DoD-sponsored secure computer system development
along the lines summarized above.

2.2 Formal Top-Level Specifications

The highest Orange Book rating, “A1 ,” has requirements for implementing
multilevel security with the greatest degree of assurance that is considered
“reduced to practice.” It requires not only a model of a mandatory access-
control policy, but also a “formal top-level specification” and evidence that the
specification is consistent with the model. Although the Orange Book requires
only a “mixture of formal and informal methods” to establish the corre-
spondence, most efforts to meet A1 requirements have used formal methods or
verification tools. The Orange book A1 requirements also call for a mapping
between the formal specification and the security-critical source code; this
requirement is typically satisfied with systematic but informal methods. The
first computer system named as satisfying A1 requirements was the Honeywell
SCOMP (Fraim, 1983), and it has defeated attempts at penetration.

The intended role of a model, then, is to state a security policy to be
supported by system software and hardware, and consequently to serve as a
statement of requirements to be satisfied by the next stage of the im-
plementation, the formal specification. In this way, logical errors in the design
of the system might be caught earlier, and more easily, than otherwise.

The use of nonprocedural formal specifications has been helpful in making
this process practical. It was Parnas (1972) who suggested writing specifica-
tions nonprocedurally. A nonprocedural specification says what the result
of a function procedure call is, without saying how it is accomplished. It uses
logical operators, even quantifiers, but does not employ programming con-
structs for flow of control, such as sequencing or looping. Conditional state-
ments are used, but they are viewed as logical connectives.

Some languages for formal specification have been developed to the point
where software tools exist for parsing specifications in the language and for
proving properties about them. Four specification and verification environ-
ments of this kind were described by Cheheyl et al. (1981), showing how the
tools were applied to a small example of a secure system.

2.3 A Flaw Discovered

Here is an example of how a security flaw was discovered; it actually
happened during the development of a certain secure system, according to

MODELS OF MULTILEVEL COMPUTER SECURITY 9

Guttman (1987). The operating system has a command to create a (logically)
new memory segment; the command is called “create-segment.” The create-
segment command may give the calling process access to the new segment. The
process indicates the desired security level label and access mode via argu-
ments to the create-segment call.

The problem arose because a process was allowed to create a segment at a
level equal to or higher than its own level. Naturally, when a process creates a
segment at a strictly higher level, it should not be able to obtain read access to
it. Otherwise, it would be able to read higher-level data written into the
segment by any higher-level process. The create-segment command was
supposed to check for that, and raise an error condition if the calling process
requested read access to a new segment at a strictly higher level. But there was
a mistake in the command as specified, and the source code implemented the
mistake.

This problem was found while attempting to show that the formal
specification was consistent with the model. We can see how this was done
by looking at an excerpt from the formal specification. The part of the
specification shown below shows the error test within the create-segment
command; it states a condition upon which an “invalid-request” error is
reported.
create-segment (map, wire, access, seg-access, pl):

if map and
((wire and not (access = {‘write’}) and not Lteq(seg-access, pl))
or ...)
then return ‘invalid-request’
else . . .

The condition is complicated because the command has various options
passed as parameters. Two of these are map, a boolean indicating whether the
calling process will be given access to the new segment; and wire, a boolean
indicating whether the new segment is to be locked in main memory. Other
arguments are: access, the mode of access requested; seg-access, the security
level specified for the new segment; and pl, the security level of the calling
process. The condition compares seg-access with pl using Lteq, the “less than
or equal to” relation.

The problem is that the security level comparison is made only if “wire” is
requested. So if “wire” is not requested, the calling process can get read access
to a new segment at a higher level. The condition is hard enough to read so that
the specifier and implementor thought they were doing the right thing. The
verifier, however, tried to prove a property required by the model:

if (map and (access = {‘read‘} or access = {‘read’, ‘write’}))
then Lteq(seg-access, pl).

10 JONATHAN K. MILLEN

This property is part of the *-property as stated in the previous section,
mapped down into the terminology of the specification, and interpreted for the
access state resulting from the create-segment command. It should be
provable under the hypothesis that the invalid-request error did not occur (if
the error did occur, then create-segment returns immediately with the error
message without creating the new segment). But it was not provable, and thus
the problem was discovered.

3. Model-to-Specification Correspondence

3.1 Introduction

Mapping model properties down into specification terminology, and then
proving them, is one way to show that a specification is consistent with a
model. This activity is something like doing program correctness proofs, but
there are some important differences:

0 The properties to be proved are derived in a uniform way from an

0 The target of the verification is not a procedure written in source code,

0 It is well within the state of the art to construct rigorous proofs for

abstract model.

but rather a formal specification.

specifications of real systems.

Let us examine what it means, in general, to say that a specification is
“consistent with” a model. We shall begin by characterizing models and
specifications abstractly, and end with a description of what proving the
correspondence implies in a practical sense. The reader is cautioned that this
characterization does not apply to all possible models of computer security or
forms of system specification; it is appropriate only for the implementation
paradigm summarized above. In particular, it is meant for multilevel security
models of the sort surveyed in this article, and specifications written in a
certain style.

3.2 Abstract Definition of a Secure System

Both models and specifications describe state-transition automata. A state-
transition automaton (or, simply, a machine) includes a set of states Q, a set of
inputs X, and a transition function 6 from Q x X to Q. It also has a set of

MODELS OF MULTILEVEL COMPUTER SECURITY 11

outputs, Y, which may be associated either with transitions or states, and a
specified initial state.

Security models have additional structure. A reference monitor can be
characterized as a machine that associates an access matrix with each state.
Sets of subjects, S , objects, 0, and access modes, M, are the additional
elementary sets that occur in the definition of a reference monitor. Formally,
an access matrix is a function from (subject, object) pairs to sets of access
modes; or, it could be a relation containing (subject, object, access-mode)
triples.

The access matrix changes from state to state. We could simply define the set
of states as the set of access matrices, but usually a state has other components
as well. Rather than think of the state as a complicated structure, it may be
easier to think of the state set as a collection of state names, identifiers, or
indices. Components of a state, such an access matrix, are found using
functions defined on the state set. Thus, an access matrix function might be of
the form a: Q -+ ! Y (M) s x o (where the exponent notation A B represents the set
of functions on B into A, and B(A) is the set of subsets of A).

A multilevel access-control (MAC) system is a reference monitor with a
partially ordered set L of labels and a function I associating subjects and
objects with their labels. In general, the label assignment is a component of the
state, so that 1 is of the form I: Q -+ Lsuo. It defeats the purpose of a label
assignment if labels can change arbitrarily, so most MAC system models
restrict such changes. In some models, label assignment is fixed for all states;
in others, labels may change only in response to inputs in a distinguished set
associated with a trusted source.

Most MAC system models obey some form of the *-property. There might
be a distinguished subset of “trusted” subjects, however, whose accesses are
permitted to be in violation of the *-property.

At this point, the world of security models diverges. The next step in the
progression of models of secure machines is to describe a security policy that is
more or less specific to an intended application. We must split off in different
directions to reach various application models: models of operating systems,
database systems, networks, etc. And when we descend further to formal top-
level specifications, the family of systems being described is narrowed even
more tightly, to the point where they receive brand names such as “Multics”
and “SCOMP.”

The idea behind the successive refinement of the concept of a secure system
remains the same as we descend through the levels of refinement. Just as each
MAC system is a reference monitor, each instance of a given application
model is a MAC system. And a formal top-level specification refines an ap-
plication model similarly.

12 JONATHAN K. MILLEN

3.3 Models as Logical Systems

3.3.1 Axioms and Valid Interpretations

When looking at application models and formal specifications, it is helpful
to become more conscious of a model as a logical system, with symbols for
constants, variables, sets, and relations, and axioms constraining the various
functions and relations that are mentioned. The fact that the “dominates”
relation on labels is a partial ordering, for example, is expressed with three
axioms. The *-property is an axiom constraining the component extractor
function associating access matrices with states.

Models may also have axioms restricting state transitions. When the
function assigning labels to objects can change from state to state, one might
have an axiom stating that objects cannot be downgraded-an object label
in the next state dominates the object label in the current state.

A oalid interpretation of a model is a relational structure (e.g., a machine)
together with a mapping of the sets, functions, and relations to the symbols in
the model, in such a way that the axioms are true. A mapping of a collection of
sets and relations to the MAC system model is accomplished by identifying
which set is the set of subjects, which relation is the partial order on labels, etc.
Once this correspondence is defined, each model axiom is metamorphosed
into a statement about the relations defining the machine. This view of what it
means for a machine to be an instance of a model was applied in an early
security modelling context by Walter et al. (1974b).

It is worth noting that a mapping of sets and relations includes a mapping of
individual constants, such as the access modes “read” and “write.” This is
because constants are viewed as functions of no arguments (and functions are
single-valued relations).

3.3.2 Concrete Models and Transition Rules

Some models have axioms of a specific kind called transition rules. These are
associated with system commands, somewhat like the HRU model (Harrison
et al., 1976). Typical operating system commands are “create object,” “get
access,”etc. The Bell-LaPadula model has a set of rules motivated by a design
for a secure Multics kernel (Bell and LaPadula, 1975).

The idea behind a transition rule is that an input to the machine has a
particular form, namely a command name followed by a list of parameters,
e.g., “get-access(subject, access, object).” Actual values must be substituted
for the formal parameters to obtain a particular input. A single rule covers all
transitions possible with inputs having a given command name.

Let us refer to a model without transition rules as an abstract model, and
one that includes transition rules a concrete model,.

MODELS OF MULTILEVEL COMPUTER SECURITY 13

The usual convention, established by the Bell-LaPadula model, is that
transition rules are not independent of the other axioms. To describe the role
of axioms in a concrete model, we shall call attention to two particular sorts of
axioms:

0 State invariants, which must be satisfied by each individual state (i.e., an
axiom of the form Vq E Q, P(q), where P does not mention any state other
than q.

0 Transition axioms, which mention the transition function.

Transition rules are themselves transition axioms, but they are supposed to
furnish a complete, self-contained specification of what transitions are pos-
sible. This gives us the first consistency property for concrete models:

(Cl) The transition rules, taken together, must imply all other transition
axioms.

There is a second consistency property:

(C2) The transition rules preserve all state invariants.

That is, if a (current state, next state) pair is consistent with a transition rule,
then the truth of the state invariants for the next state must be provable from
the transition rule and the truth of the state invariants for the current state.

The fact that transition rules preserve state invariants is not enough by itself
to ensure that all states satisfy the invariants. We need to assume that

, 0 The initial state satisfies the state invariants.
0 All states are reachable from the initial state.

These are, in effect, new axioms added implicitly to any concrete model.
The two requirements, (Cl) and (C2), in the presence of the new implicit

axioms, ensure that the transition rules enforce the state invariants and
transition axioms. For this sort of model, these requirements may be what the
Orange Book is referring to in Section 3.2.3.2.2, in its requirement for a model
that ". . . is proven consistent with its axioms" (National Computer Security
Center, 1985).

3.3.3 Transition Rule Example

Here is a partial illustration showing the consistency of a transition rule
with a state invariant. Consider this typical transition rule for a read-access

14 JONATHAN K. MILLEN

request, from an imaginary concrete model:

get-read-access(cur-proc, segment-id) [cur-state, next-state] :
((label(segment-id) I label(cur-proc))
A (access-matrix(next-state, cur-proc, segment-id)

v access-matrix(next-state, cur-proc, segment-id)

A ((p # cur-proc v i # segment-id) +

= {‘read’} u access-matrix(cur-state, cur-proc, segment-id))

= access-matrix(cur-state, cur-proc, segment-id))

access-matrix(next-state, p, i) = access-matrix(cur-state, p , i))

This rule is suppose to show the relation between the access-matrix
components of two states related by a transition caused by a get-read-access
input. It permits the subject cur-proc to gain read access to the object
segment-id, provided that an appropriate test on their labels is satisfied. The
test is, of course, motivated by the *-property.

The state invariant that happens to be an axiom of this concrete model is
this one, intended to be an interpretation of the *-property:

(‘read’ E access-matrix(q, p, i) --t label(i) I label(p))
A (‘write’ E access-matrix(q,p, i) + label(p) I label(i)).

To show that this property is preserved by get-read-access, we must show
that it is true with q = next-state whenever it is true with q‘ = cur-state (the
induction hypothesis), assuming that the input was a get-access command
with parameters segment-id = i and cur-proc = p.

Looking at the rule, we see that there is only one case where the access-
matrix changes from cur-state to next-state. In this case, we have

label(i) < label(p),

and then the+ule says that

access-matrix(q, p , i) = {‘read’} u access-matrix((, p , i) .

conjunct is true by the induction hypothesis.
The first conjunct of the *-property is clearly satisfied, and the second

3.4 Mapping Models to Formal Specifications

3.4.1 Mappings

Mathematically, there is no difference between models and formal specifica-
tions. Both are axiomatic descriptions of machines, and both may be either
concrete or abstract in the sense of having transition rules or not. The formal
top-level specifications used in the implementation paradigm discussed above

MODELS OF MULTILEVEL COMPUTER SECURITY 15

are almost always concrete, however, to facilitate the informal correspondence
to the next stage, the source code.

Showing the consistency between a specification and a model means
showing that any instance of the specification is also an instance of the model.
This task is complicated by the fact that the specification and the model of-
ten have a different vocabulary. While the model talks about “subjects” and
“objects,” the specification may use terms such as “process,” “buffer,”
“segment,” etc.

It is necessary to map symbols representing sets and relations in the model
to terms in the specification. Note that a single set in the model, like the set of
objects, may correspond to the union of two or more sets in the specification,
such as buffers and segments, or some other set definable in terms of the sets
and relations in the specification. One then shows that the axioms of the
model, when translated into the terms of the specification, are provable from
the axioms of the specification. This is like constructing a valid interpretation
of a model, except that the instance is another model instead of a particular
relational structure (machine).

A mapping from model terms to specification terms is wrong if it fails to
preserve the meaning behind the terms “subject,” “object,” “read access,”
“write access,” “label,” and others. Unfortunately, one cannot really tell from
the specification itself whether the mapping preserves meaning. How do we
know that “read” and “write” have not been interchanged? What would we do
if the access modes in the specification were named “frob” and “grok”?

The fact that the axioms are preserved helps to some extent. For example,
we must confirm that the labels in the specification form a partial ordering.
However, if the partial ordering is a lattice, and its top and bottom are reversed
(e.g., Unclassified switched with Top Secret) there would be no mathematical
way to tell.

Ultimately, the only way to validate the mapping is to track it down to the
hardware and machine language implementation. Even this does not really
settle the question of what “read” and “write” were supposed to mean in the
first place, since their properties were stated informally. Information-flow
models such as the ones reviewed later address this question.

3.4.2 Mapping Example

As an example, we can show how to set up a mapping between the M A C
system model, with the *-property as a state invariant, and the imaginary
concrete model used above.

The first step is to set up a mapping between the sets and relations in the
concrete model with those in the M A C system model. This requires us to
identify the sets in the concrete model that serve as domains for the variables
used above, and correspond to the elementary sets in the M A C system model.

16 JONATHAN K. MILLEN

Q is mapped to State, the set of states.
S is mapped to Process, the set of processes.
0 is mapped to Segment, the set of segments.
M is mapped to {‘read’, ‘write’}.
L is mapped to Class, the set of classification labels.
X is mapped to {get-read-access} x Process x Segment u

This is not a complete mapping of sets, but it is enough so that we can go on
to show how some functions are mapped. Consider the labelling function

1 : Q + Lsuo.

It will have to be mapped to some concrete relation, which we shall also call 1,
with the signature

1 : State -, ClaSSProccss u Seamen1

The closest we have in the concrete model is

label : Process u Segment + Class.

We can define the concrete version of 1 so that the label assignment is the same
in every state; i.e., for each z of type Process or Segment,

(L(q))(z) = label(z).
This equation defines the concrete version of 1. Similarly, we can map a with
the equation

(a(q))(p, i) = access-matrix(q, p, i).

In effect, the abstract model functions have been added as an extension to
the concrete model, by defining them in terms of the available functions there.
We can also identify the sets in the concrete model with their abstract names;
thus, Q = States, etc.

Once the mapping is complete, one shows consistency by proving that the
axioms of the abstract model are satisfied. For example, we must prove the
*-property. In formal notation, the *-property is

(read E (a(q))(s, 4 + W(4 5 4q)(s))

A (write E (a(q))(s, 4 + W (S) 5 W(4.
When this property is expanded into concrete model terms using the

equations above, it becomes

(‘read’ E access-matrix(q, p, i) + label(i) 5 label(p))

A (‘write’ E access-matrix(q, p, i) + label(p) I label(i)).

MODELS OF MULTILEVEL COMPUTER SECURITY 17

But this is exactly the state invariant included as an axiom in the concrete
model.

4. The Bell-LaPadula Model

4.1 Introduction
The Bell-LaPadula model has been influential in the development of secure

systems with multilevel access-control policies. Perhaps this was because it
was the first concrete MAC system model, and thus the first one suitable for the
first stage of the implementation paradigm discussed earlier. It is also the
reference of choice as the source of the *-property. The story behind the name
“*-property” is that the authors couldn’t think of a satisfactory name for what
they recognized as an important axiom, so a “*” was left in place of a name to
be supplied later.

The model evolved and expanded over several versions. We shall highlight
the features of the first three briefly, then describe the Multics Interpretation in
detail. There has been some recent debate surrounding the definition, purpose,
and adequacy of the Bell-LaPadula model, stimulated by McLean’s “Sys-
tem Z;” those issues will be touched upon.

In Volume I (Bell and LaPadula, 1973), the *-property and rules had not yet
appeared. Any kind of access required that the subject dominate the object in
security level. Security levels had classification and need-to-know compo-
nents, but specific classifications were not named. The state had both a current
access allocation (what we have called an access matrix) and an “access
matrix” representing discretionary permissions; no axiom relating to the latter
was specified.

Volume I (LaPadula and Bell, 1973) limited the access modes to read, write,
append, execute, and control. It introduced a form of the *-property, with
execute access viewed as a kind of read, and “write” access actually implying
both read and write; append access was write-only. It had 10 transition rules.
Rules for giving and rescinding discretionary access permissions tested control
access.

Volume 111 (Bell, 1973) introduced an object hierarchy as a new component
of the state. The hierarchy was used to do away with control access; a subject
implicitly had control access to an object if it had write access to the parent
object in the hierarchy. The hierarchy had to satisfy a compatibility property
discussed below; this necessitated some changes in the rules. Subjects were
given a current security level, distinct from, but dominated by, their maximum
security level, leading to a change in the way the *-property was stated.

The “Unified Exposition and Multics Interpretation” (Bell and LaPadula,

18 JONATHAN K. MILLEN

1975) had a set of rules intended to be suitable as kernel primitives for a secure
version of the MULTICS operating system, and it added the discretionary
security property, which forced current accesses to be consistent with the
permission matrix. The elements, relations, and axioms of this version will be
given in a somewhat abbreviated form, and the rules summarized.

4.2 The Abstract Model

The abstract part of the model defines a kind of machine that we shall call a
“BLP machine.” A BLP machine has state set V, inputs R called requests,
and outputs D = {yes, no, ?} called decisions. Decision outputs are associated
with transitions rather than states. A state has four components, (6, M, f, H),
which will be described below along with other elements of the model.

As a reference monitor, a BLP machine has a set of subjects S, which is a
subset of a set of objects 0, and it has a set of access attributes A = {r, e, w, a}.
Each state has an access set component, denoted with the symbol 6, and
representing current accesses as a set of triples (s, o, x) included in S x 0 x A.

As a MAC system, a BLP machine has a lattice L of security levels. Each
level has two components: a classification from a totally ordered set C, and a
subset of the set K of categories. Subsets of K are partially ordered by set
inclusion, and the lattice ordering a on L is induced as the direct product
C x 9 (K) . That is, (c, x) K (c’, x’) if c I c’ and x c x’ For example, (Confi-
dential, {NATO}) a (Secret, {NATO, NUCLEAR}).

Security levels are assigned to subjects and objects by another component of
the state, symbolized f. An f-component is actually a triple (fs, fo, fc), where

fs : S 4 L is the subject (maximum) security level function,
fo : 0 + L is the object security level function, and
fc : S + L is the subject current security level function.

The current security level is the one that plays a part in the *-property. The
two levels are motivated by the idea that when a user logs in to a computer
system, a process is created to communicate with the user’s terminal and issue
system commands. The process operates at a current security level requested
by the user, and that level may be at or below the clearance of the user, which is
recorded as the maximum level of the process. It is required that fc(s) a fs(s).

There are two axioms relating current access to level assignments: the
simple security property and the *-property. The simple security property
appeared first in Volume I, and states that a subject can have read access only
to objects at or below its maximum level.

Simple Security Property: For each state v = (6, M, f, H),
if (s, o, r) E 6 or (s, o, w) E 6, then fo(o) a fs(s).

MODELS OF MULTILEVEL COMPUTER SECURITY 19

The *-property has an exception built into it for subjects in a distinguished
set S , of “trusted” subjects.

*-Property: For each state v = (b, M , f, H) .
if (s, 0, r) E b and s 4 S T , then f&) cc fc(s);
if (s, 0, w) E b and s 4 S,, then fo(o) = fc(s); and
if (s, 0, a) E b and s 4 S,, then fc(s) a fo(o).

Two other components were added to the state to support discretionary
access control. There is an access matrix M : S x 0 + B(A) whose elements
represent access permissions rather than current access. (Actually, in the
report (Bell and LaPadula, 1975), the subjects and objects were viewed as
indexed by the positive integers, and M was a matrix with elements Mij.)

An object hierarchy was introduced as a way of controlling the assignment
and propagation of access permissions. It was motivated by the directory
structure of Multics, though the model does not distinguish between non-
directory objects and directories without subordinate objects. Formally, the
hierarchy component H is a function on 0 into B(O) , giving the set of
subordinates of each object. H is a hierarchy in the sense that the directed
graph induced on 0, with edges from an object to each subordinate, is a forest,
i.e., a set of rooted trees. A hierarchy is illustrated in Fig. 2.

The discretionary security property states that current accesses are
restricted to accesses permitted in M.

Discretionary Security Property: For each state v = (b, M , f, H) ,
if (s, 0, x) E b, then x E M (s , 0).

0
0

inactive
objects

0
0

“grass”

4- activeobjects -b

FIG. 2. A hierarchy.

20 JONATHAN K. MILLEN

The three state axioms given above, the simple security property, *-
property, and discretionary security property, are considered the security
policy for the abstract model.

4.3 Transition Rules

There are eleven rules, R1-R11. Each rule is a function on R x V into
D x V, giving the decision output and next state for each possible request and
current state. Each rule is intended to handle a particular kernel request. If a
rule Ri is not applicable to an input x, Ri(x, u) = (?, u). Each rule refuses any
request that would leave the system in a state violating the security policy. For
such requests, the rule yields a value of (no, u). Acceptable requests yield a
value of (yes, 0 ’) for some next state u’.

The 1 1 rules handle the following types of requests:

get-read, get-append, get-execute, get-write (four rules);
release-read/execute/wri te/append;
give-read/execute/write/append;
rescind-read/execute/wri telappend;
create-object ;
delete-object-group;
change-subject-current-security-level;
change-object-securit y-level.

The get requests add an element to b, consistent with the three security
policy axioms. The release request deletes an element from b.

The give request adds an access permission to M, and a rescind request
takes it away. Inputs for these requests have two subject parameters-one
representing the requestor, and one who will get or lose the access permission.
These rules check that the requestor has write access to the parent object of the
object involved in the affected access permission.

The create and delete requests cause objects to become attached to, or
detached from, the active part of the hierarchy. A create request selects a
(presumably inactive) object and augments H by adding it as a new child of
a specified object (to which the requestor has write access). The active objects
are those that are parents or have children, plus a few special isolated objects
(called “grass”). The create rule does not actually check that the newly added
object is inactive, though it should.

The newly activated object also receives a new security level. This suggests
that there is more going on here, from a security point of view, than can be
represented in an access-control model. An inactive object is supposed to be

MODELS OF MULTILEVEL COMPUTER SECURITY 21

erased, i.e., cleared of information. This consideration affects the appropriate-
ness of implementations of the model, such as the need to preserve the
meaning of “read” access from an information-flow point of view.

When an object is deleted, i t is removed from the hierarchy, and so are all
objects below it in the hierarchy; this makes all those objects inactive. At the
same time, all subjects who have access to these objects lose it.

The rules preserve a property of the hierarchy called compatibility, credited
to Walter et al. (1974a). A hierarchy is compatible if every subordinate object
dominates its parent in security level. I t is needed to prevent a covert channel
for compromising information. If an object were below its parent in security
level, a subject at the level of the parent could delete the object, and that action
would be detectable by a lower-level subject who had access to the deleted
object.

The rules for changing security levels do not affect the current access set b,
but they require that the resulting state satisfy the policy axioms. Changing
security levels is obviously the kind of activity that should be undertaken only
with care. Volume I1 (LaPadula and Bell, 1973) states the tranquility principle
on page 19: “the classification of active objects will not be changed during
normal operation.” This was stated as a consideration used in designing rules,
but one that could be rejected as a matter of policy. The rule for changing
object levels actually includes a special undefined test for “additional policy
enforcement,” which could decide upon “abnormal” operation.

When changing a subject level, if the change is a downgrade, one must
assume either that subjects have no memory, or that any local memory of a
downgraded subject is erased, in order to avoid a possible compromise. Even
under these assumptions, there is still a covert channel, since a subject carries
with it, in the current access set b, the record of which objects it has access to
(Millen, 1984).

4.4 System 2 and Tranquility

The security policy was expressed in the Bell-LaPadula model by three state
axioms: the simple security property, the *-property, and the discretionary
security property. There are a number of other axioms that are part of the
context in which the security policy is stated, and which are equally part of the
model: those expressing the lattice ordering on security levels, the structure of
the hierarchy as a forest (with a proper definition of active objects), and the
subject maximum level as the upper limit of its current level. But the rules,
and certain properties that they satisfy, may be modified or replaced to suit
the needs of various application systems. In particular, the tranquility prin-
ciple and the compatibility property were not formally part of the abstract
model.

22 JONATHAN K. MILLEN

Because the Bell-LaPadula model has played such an important role in
the development of secure systems, especially those acquired by the U S .
Department of Defense, it is worthwhile to examine how well the model serves
as a statement of requirements for security. If a system obeys the Bell-
LaPadula security policy, is i t really secure? This is part of the more general
question of how one evaluates models; under what circumstances is a model
satisfactory?

It is, of course, unreasonable to expect security to follow from a cor-
respondence with an access-control model. The model only works within
its level of abstraction; it is up to the implementor to make sure that the
concepts such as “read” access are implemented as intended. Looking at the
model as an abstraction of the implemented system, it should be a faithful
representation. Still, one wonders whether the model has said as much as it
could.

The lack of some suitably general and formal statement of the tranquility
property is particularly disturbing, since downgrading an object is a quick and
easy way to compromise information. As a graphic example of a system that is
intuitively insecure and yet satisfies the Bell-LaPadula security policy axioms,
McLean (1987) proposed “System Z.” Based on the Bell-LaPadula abstract
model, it has exactly one transition rule:

When a subject s requests any type of access to an object o, every subject and
object in the system is downgraded to the lowest possible level, permission is
entered into the access matrix M, and the access is recorded in the current access
set b.

A response by Bell (1988) argued that

A model such as the Bell-LaPadula model that was constructed as an
abstraction to allow analysis free of irrelevant detail never claimed to be a
justification of “axioms” in a foundational sense, nor did it claim to capture all
the facets of intuitive-security.

He goes on to point out that a universal downgrading rule as in System Z is
not necessarily insecure from an intuitive point of view. It may be invoked in a
situation where the computer system has been captured by an enemy and all
objects are erased. The erasure is not expressible in an access-control model,
but it is a requirement for the implementation, just as individual objects must
be erased before they are activated by the create-object rule.

Erasure is evidently an awkward subject for access-control models. There is

MODELS OF MULTILEVEL COMPUTER SECURITY 23

a way of handling it that is better suited to the level of abstraction of such
models, though one still needs to think about how to implement it. Instead of
permitting objects to alternate between active and inactive (erased) states,

active * inactive,

let us assume that there is an infinite pool of objects, so that each object need
only be active once. An object just goes through three states:

never used + active + dead.

The fact that a newly active object contains no information derived (via
accesses) from any other object is then obvious from the model, and no special
instructions about erasure are needed. An implementation that carries
forward the spirit of this model will still reclaim the space allocated to dead
objects, but it will treat each newly activated object as conceptually new. The
uniqueness of each new object is reflected by assigning it a previously unused
“unique identifier,” as is done in SCOMP (Fraim, 1983) and PSOS (Neumann
et al., 1977).

In some applications, there are reasons for downgrading or otherwise
changing the level of objects without erasing them. This should only be done
on the request of a privileged subject. McLean (1988) has suggested a model in
which the level of each object o can be changed only at the request of a defined
set of subjects c&). A similar function can be defined for subjects. Inputs are
of the form (s, r) where s is the requesting subject and r is a request. Limited
tranquility is then expressed as an axiom, saying that a transition, due to input
(s, r), that changes the level of an object 0, is possible only when s E c&). If
every subject is associated with a set of users (people), and there is some way (in
the implementation) of ensuring that inputs from a subject are actually
authorized by its users, then one can choose co in such a way that it represents
more complex policies such as n-person control.

It is obvious that downgrading objects is a questionable operation that
should be performed only under special conditions, but it may be less obvious
that upgrading objects can also cause problems. Of course, it is undesirable
and usually against policy to overclassify information by marking it at a higher
sensitivity level than it deserves, but upgrading can also compromise
information through a covert channel. When an object is upgraded, lower-
level subjects that had read access to it in the past will lose that access. If the
upgrade was performed at the request of a higher-level subject, this a a way for
higher-level subjects to affect lower-level subjects. To avoid any possibility
that a high-level subject might covertly signal information to a lower-level
subject, upgrades are either not permitted, or permitted only at the request
of subjects at the original object level.

24 JONATHAN K. MILLEN

4.5 Trust and Integrity

4.5.1 Trusted Subjects

How is it that we can trust certain subjects with risky privileges, such as
downgrading objects or having write access to a lower-level object? Is “trust”
meaningful as a modelling concept, in an environment with faulty software
and Trojan horses? Wasn’t the *-property invented precisely because user
programs could not be trusted?

The answer is that “user” programs are ordinarily not trusted. Processes
(subjects) are trusted only when they execute trusted software that has been
examined as carefully as the operating system kernel software. The kernel
protects this software in the same way that it protects itself, by refusing any
attempt by any unauthorized process to gain write access to the memory
containing the trusted software. Processes become trusted only by the action
of the kernel, which initiates their execution at an entry point of a trusted
program.

4.5.2 Biba’s Integrity Model

Kernel protection of “trusted software applies only to software that the
kernel knows about as part of the design of the system. There is also a need, in
many applications, to protect some programs or data that may be entered into
the system by ordinary users at any time. This general concern is referred to as
protecting the integrity of objects, and it is addressed through methods for
preventing unauthorized write access to the protected objects.

Discretionary access controls can be used to limit write access, but they
work only if all subjects who have write access are trusted, and all subjects who
can give away write access will give it only to trusted subjects. This means that
if a Trojan horse can get either write access to a protected object, or the ability
to give it away, then the protection is a failure. In practice, this often means
that all the programs available to a user must be trusted.

Biba (1977) realized that nondiscretionary access controls could also be
used for integrity, even though they were originally intended merely to prevent
compromise of information. He also discussed discretionary integrity con-
trols, but we shall focus on the label-based controls here.

Subjects and objects are labelled with integrity levels. Biba suggested
“Crucial,” “Very Important,” and “Important” as integrity classes, but any
partially ordered set can be used. If we think of a high-integrity level, e.g.,
Crucial, as dominating a low-integrity level, e.g., Important, the information
flow policy for these levels is the opposite of that for sensitivity levels.
Information flow from one entity to another should be allowed only when the

MODELS OF MULTILEVEL COMPUTER SECURITY 25

destination carries an integrity level dominated by that of the source.
Information can lose its integrity; it can never gain in integrity.

In Biba’s model, subject can observe or modify objects, and invoke other
subjects. Invocation is meant to be interpreted as interprocess communication
or procedure calls (into a different protection domain). Invocation causes
information, in the form of a message or parameter values, to flow from the
invoking subject to the invoked one.

Four different access control policies were proposed by Biba. The simplest
and best remembered is the strict integrity policy, which permits a subject

0 Observe access only to objects of a higher or equal integrity level.
0 Modify access only to objects of a lower or equal integrity level.
0 Invoke access only to subjects of a lower or equal integrity level.

In the strict integrity policy, integrity levels do not change.
The other three policies allow various relaxations of the axioms of the strict

integrity policy. They are: a low-water mark policy, in which a subject can
observe objects of lower integrity level, but its own integrity level is reduced
accordingly; a low-water murk for objects policy, a low-water mark policy in
which a subject can also modify objects of a higher integrity level, but the
integrity level of those objects is immediately reduced; and a ring policy, in
which observation is unconstrained.

The two low-water mark policies still enforce the strict-integrity state
axioms, but only at the cost of changes in the integrity level assignment. The
ring policy works only when it can be assumed that a subject of high integrity
is executing a program of high integrity, which is not misled by observing
objects of lower integrity. The problem here is that executing a program is a
form of observe access; so a high-integrity subject might be a process executing
a low-integrity program, which is inconsistent with the required assumption.
The ring policy would be more effective if execute access could be distin-
guished from observe access (and that distinction could be enforced in the
implementation).

4.5.3 Strict Integrity is Free

If one leaves out invoke access, the remaining access restrictions for
strict integrity an observe and modify access are the dual of the *-property.
Interpreting “observe” as “read” and “modify” as “write,” the only difference is
that the directions of the partial ordering are reversed. This suggests that a
mechanism for enforcing the *-property can be extended to enforce strict
integrity without much difficulty. In fact, in many cases the same mechanism
will work, and it can enforce both the *-property for compromise protection
and strict integrity simultaneously.

26 JONATHAN K. MILLEN

The idea is to redefine the label set. If one has a partially ordered set of
sensitivity levels, say C, and a partially ordered set of integrity levels, say I, one
can define a new set of labels L = C x I, with a partial ordering defined as
follows:

(c, i) I (c’, i’) if c I c‘ and i 2 i’.

Thus, if the *-property is enforced with these labels, a subject can have write
access to an object only if the label of the subject is dominated by that of the
object, and this means that the sensitivity level of the subject is dominated by
that of the object, while the integrity level of the subject dominates that of the
object. This is just what we wanted for strict integrity, and it works similarly for
read access. From an abstract model point of view, nothing new has been
added. From an implementation point of view, the only concern is having
enough bits in a label to represent both levels. Note that if label comparison
is implemented by arithmetic comparison, there is no need to change the
comparison test. Simply use zero to represent the highest integrity level and
use the highest number to represent the bottom integrity level.

In practice, the main problem has been figuring out what integrity levels to
use, and what they mean. An arbitrary list, like the Critical to Important range
in Biba’s report, is not likely to correspond to any useful or mandated policy.
Using the classification range Top Secret to Unclassified is a real mistake,
since it is confusing if the integrity class does not match the sensitivity class.
On the other hand, the system is unusable if the same class is used for both,
since the reinterpreted *-property will constrain a subject to access only
objects of exactly the same class.

One easy and constructive way of using an integrity level is simply to
distinguish between “trusted” and “untrusted,” with the “trusted” label ap-
plied only to objects containing software believed to be trustworthy. Or, in
an environment with mutually suspicious users, have a label per user, like
“trusted-Smith,’’ “trusted-Jones,’’ etc., which are mutually incomparable but
all dominating “untrusted.” Strict integrity will then provide protection
against such threats as Trojan horses and viruses.

4.5.4 Type Enforcement

Strict integrity may be easy to implement, but it does not address all
integrity needs. According to Clark and Wilson (1987), in a data processing
environment there is often a need to ensure that certain “constrained data
items,” or CDI’s, are manipulated only by specified “transformation pro-
cedures,” or TPs. A T P is entrusted to read a CDI of one type and create an
output CDI of a different type. This sort of processing is essentially the same as
an “assured pipeline” as described by Boebert and Kain (1985). Pipelining is a

MODELS OF MULTILEVEL COMPUTER SECURITY 27

special case of a type enforcement scheme in which each program is restricted
to have read objects only of specified data types, and write access only to
objects of specified data types.

Boebert and Kain make the point that type enforcement cannot be im-
plemented with a nondiscretionary policy using partially ordered labels. For,
suppose that the pipeline is two steps long, e.g.,

where A, B, and C are CDI types. Suppose that integrity labels are assigned to
A, B, and C, and also to the objects containing the programs TP1 and TP2, in
such a way that the reads and writes in the pipeline are permitted by strict
integrity. This would imply that A and TP1 had a greater or equal integrity
level than B, and that B and TP2 had a greater or equal integrity level than C.
What, then, is to prevent TP1 from writing into C as well? Not the *-property.

It is possible to turn the partial ordering around so that all of the reads and
writes in the pipeline tend to increase, rather than decrease, the integrity level.
In that case, the *-property would refuse the needed accesses. But, now we can
say that subjects executing TP l and TP2 are partially trusted (this term comes
from Lee (1988)), and will be given a special dispensation sufficient to
accomplish their necessary accesses. As a policy, this is certainly another way
of accomplishing the effect of a pipeline, but there are as many flavors of
partial trust as there are TPs; this is a complex policy.

5. Database and Network Models

5.1 Database Management System Models

Most of the work in secure database management systems (DBMS) has
been done in the context of relational systems, in the sense of Codd (1970). A
relational database is a set of relations. In a mathematical context, each
relation is a subset of a Cartesian product of domains; its elements are tuples.
In a DBMS context, domains are often called j e ld s , and the tuples are referred
to as records. The components of an individual record are called data elements.
See Fig. 3 for an illustration.

Relations in a DBMS must have a key field or fields. By definition, the data
elements in a key field identify records, in the sense that there is at most one
record with a particular data element in the key component. Sometimes two or
more key fields taken together are needed to constitute a key. There may be
more than one set of fields that satisfy the properties of a key; one of these is
selected as the primary key.

DBMS models differ from one another primarily in the way they slice up
relations into objects, which has implications for the way labels are assigned.

28 JONATHAN K. MILLEN

FIELDS
F G H

RECORD

FIG. 3. A DBMS relation.

Labels may be assigned by field, by record, by data element, or by relation.
These choices have consequences for the way the DBMS is implemented. The
finer the granularity of objects, the less likely it is that a general-purpose secure
operating system kernel will provide both full data protection and efficient
service, and the more special-purpose trusted code is likely to be added.

One of the earliest approaches, by Hinke and Schaefer (1975), assigned
classifications by field. They found that they needed axioms saying that the
(primary) key fields of a relation all had the same classification, and that all
other fields had a classification dominating that of the key. The reason for
this is that, in order to read a data element of a record, the DBMS implemen-
tation must find the right record first, using a search procedure that reads the
key field. Entering and updating records in this system is complex for a rela-
tion having fields at different levels, since the subject that enters a high-
classification data element in its proper field cannot also enter a data element
into a low-classification field, and oice oersa.

The I. P. Sharp model (Grohn, 1976) assigned protection levels by relation.
Their protection levels, incidentally, included an integrity level, in accordance
with the strict-integrity model mentioned in the previous section. With a
protection level on an entire relation, it is still possible to simulate the
assignment of levels by field. The trick is to create a separate relation for each
non-key field, each one having its own copy of the key, and classified at the
level desired for the non-key field. A subject at the level of one of the higher-
level fields could then use relational DBMS operations to assemble the
information from all fields (relations) at its level and below.

A Naval DBMS model (Graubart and Woodward, 1982) assigns protection
levels at a data element granularity. However, records, fields, and relations and
the entire database are viewed as containers and may each have their own

MODELS OF MULTILEVEL COMPUTER SECURITY 29

default security level (DSL). The actual level of a data element is chosen from
several levels: the DSL associated with its unique location as a data element,
and the DSLs of all containers it belongs to. Some of these DSLs may be
unspecified (but the database always has one). When there is a conflict, because
there are two or more applicable DSLs that are specified and different, a
priority scheme is used to determine the final level.

Another approach to the assignment of labels is to attach them to views, as
suggested by Denning et al. (1987a). A view, in a relational system, is a formula
for constructing a new relation from one or more base relations. The base
relations are the ones in which data is actually stored; views are stored only as
formulas. Users cannot access base relations directly; they may only see and
operate on views.

Classifying views permits a more flexible approach to some policy issues
regarding the classification of data in a database. For example, data might
sometimes be classified by value. Suppose a database on private airline flights
has a relation showing the principal passenger of each flight. Records showing
passengers from a specific list, e.g., the President or foreign dignitaries, might
be assigned a higher sensitivity level than others. One can also address the
aggregation problem, referring to the fact that a large enough accumulation of
records can become more sensitive than any of the individual records.

Data entered into the system is assigned a level on a data-element basis,
using rules called classification constraints; these can be expressed as views
also. Access views- the ones users see-normally receive a level just sufficient
to cover the levels of the data elements that must be assembled to construct a
view instance. Special policy considerations may result in a different level,
however. With this sort of policy, the operations for constructing views (using
relational operators) and assigning them levels must be trusted.

In most of the policies discussed above, objects were assigned labels on the
basis of their location attributes. The location of a data element is determined
by identifying the relation it belongs to, the key of the record it is in, and which
field it fills. But, in some systems, this location information does not uniquely
determine the label of the data. For example, the label might be affected by the
value of the data element, or the label might have been set to different levels
depending on the level of the subject that updated the data element. In such
systems a problem arises.

If the location information does not determine the label of the data, then
certain data might exist for a location without being visible to lower-level
subjects. This means that lower-level subjects might update the location
without being aware of a conflict. It also means that higher-level subjects
might signal information to lower-level subjects with an update that makes the
contents of the location invisible.

The solution chosen for the SeaView model (Denning et al., 1987b) is

30 JONATHAN K. MILLEN

CARGO

FIG. 4. Polyinstantiation.

plyinstantiation. Multiple versions of a data element, record, or relation are
created as necessary to reflect updates at all sensitivity levels. When a flight
record originally shows oranges as a cargo, and someone updates it to show
nuclear fuel, an uncleared subject will see only the version of the cargo that
says oranges, while a higher-level subject will see the nuclear-fuel entry (see
Fig. 4.) This prevents the two problems with updates, since an uncleared
subject cannot cause the nuclear fuel to be left behind by changing oranges to
apples, nor can a higher-level subject covertly signal information by affecting
the lower-level view of the relation.

5.2 Network Models

Multilevel security in networks is a recent phenomenon. Very few examples
exist, and it is difficult to say whether formal models had an important role in
their development. Current approaches to multilevel modelling of networks
are in flux, and it seems too early to draw conclusions on how best to do
network modelling. Two published examples will be mentioned to give a flavor
of what happens when multilevel access-control considerations are applied to
networks.

The abstract model for SNet (Glasgow and MacEwen, 1987) sees a network
as a medium for transmitting labelled messages between subjects. The security
properties of the network ensure both that sent messages are labelled with the
label of the sending subject, and also that received messages are delivered only
to subjects whose label dominates that of the message. SNet subjects are
intended to represent hosts or terminal concentrators. Some are trusted; a
trusted subject is permitted to change its current level to any level below a

MODELS OF MULTILEVEL COMPUTER SECURITY 31

specified maximum. The network has a global state, consisting of two histories
for each subject: a transmit history and a receive history, each of which is a
sequence of messages. The network state changes as the result of a send or
receive event by some subject, which extends that subject's history.

Besides the axioms relating to labels, the SNet model has other axioms
stating that messages are not misdelievered, and that every received message
was sent. Messages include sender, receiver, and data components, so these
axioms ensure that message data has not been relabelled or substituted from
another message while in transit. The SNet work also includes a formal
specification showing more of the network structure, and a proof that it
satisfies the model.

McHugh and Moore (1986) have a model they describe as a simplified
version of the Bell-LaPadula model. The subjects are network hosts, and the
objects are datagrams. Instead of separate send and receive events, their
system has communication events. A communication event is a triple (s, o, s')
where s is the sending subject, s' the receiving subject, and o is a datagram. It is
secure if the classification of o dominates the clearance of s, and the clearance
of s' dominates the classification of o. The network state is a set of
communication events-the ones that have taken place so far-and it is
secure if its elements are all secure. There is also a discretionary aspect to
the policy, in that only certain pairs of subjects are authorized to share
communication events. This policy has been shown to hold for a formal
specification written in Gypsy.

These models both interpret subjects as hosts and treat the network as a
single large machine. Taking a host as a subject is not unreasonable for
nondiscretionary access control purposes, as long as trusted, multilevel hosts
have been shown to deserve their privileges. Taking a network as a single large
machine, however, is only the first step in a process that decomposes the
network into its components and examines the role of each component. The
most productive way of doing so, from a formal modelling point of view, has
yet to be seen.

6. Information Flow Models

6.1 Introduction

There are ways to compromise information in a computer system that
cannot be understood solely from access control considerations. If examina-
tion of access control mechanisms in a computer system design is like using

32 JONATHAN K. MILLEN

a magnifying glass, current research in computer security modelling has the
objective of constructing an electron microscope. This survey of multilevel
modelling will conclude with a summary of these new directions in research.

A mechanism by which a process operating at a high sensitivity level can
send information to a lower-level process, in spite of an access control policy,
is termed a cooert channel. Some covert channels arise from the way the system
is implemented: Lampson (1973) provides an example of a timing channel, in
which a process communicates to others by varying the time it requests for
computation. Other channels can be recognized in an abstract design
specification of a system, even in a concrete model. We noted a channel
inherent in one of the Bell-LaPadula transition rules for Multics, and we saw
that polyinstantiation in a secure relational database was motivated partly by
covert channel concerns.

There have already been a number of models aimed at defining information
flow in abstract machines, with sufficient precision so that covert channels can
be explained and detected. In these models, we can state axioms to the effect
that no information flow occurs from a subject to another, except when the
security labelling would permit. There has been some effort to develop tools
and techniques based on these models, for detecting covert channels in system
specifications. Some fairly recent applications of these methods are discussed
by Haigh et al. (1986) and Benzel(l984). Covert-channel analysis is presently
difficult, but the models and tools are still being developed.

Information-flow models share the philosophy that information flow is
related to inference: if one subject can, by observing outputs available to it,
deduce something about inputs from another subject, there has been some
information flow. Conversely, if there is no information flow, the first sub-
ject’s outputs would be independent of the input from the other subject. This
idea was originally suggested by Jones and Lipton (1975), for computations
rather than machines. One direction of development from the computation
idea was to look at the computations occurring in high-level-language
programs, due to individual statements, subroutines, or the entire program.
This led to the definition by Cohen (1978) of strong dependency between
variables in a program, and to syntactically-based analysis techniques as given
by Denning and Denning (1977). Millen (1978) expressed information
compromise from one state variable to another due to inference in a
nondeterministic machine, and there was a model due to Feiertag, et al. (1977)
that formulated a policy for deterministic machines that prevented in-
formation flow from inputs at a high level to outputs at a lower level. These
early approaches were surveyed by Landwehr (198 1).

There have been some significant advances since then. The next step was a
paper by Goguen and Meseguer (1982), defining a notion called non-
interference, which was a generalization of the Feiertag model.

MODELS OF MULTILEVEL COMPUTER SECURITY

6.2 Non-interference

33

6.2.1 Definitions

Non-interference was defined in the context of a machine composed of

0 A set S of states, with an initial state so E S.
0 A set U of users (or subjects).
0 A set C of commands (or operations).
0 A set 0 of outputs.

together with functions

do:S x U x C + S .
out: s x u + 0. 0

We may think of U x C as the set of inputs for this machine. Inputs are
thought of as coming from particular users, and in each state there is an output
available to each user.

Terminology. Let (U x C)* be the set of sequences of inputs in U x C.
If w E (U x C)*, we can start the machine in its initial state and apply the in-
puts in w successively, leaving the machine in some state which we shall denote
by [w]. Let [w]. = out([w], u).

Given an input sequence w and a user u, define w/u as the subsequence of w
obtained by deleting all inputs of the form (u, c) for some c. (This notation
comes from Rushby (1985))

A user u is non-interfering with user u if, for all w E (U x C)*,

We write u $* u as an abbreviation for the statement that u is non-interfering
with u.

This says that the final output to u would be unaffected if all inputs from u
were deleted. Previous outputs to u would also be unaffected, since they are the
final outputs of shorter input sequences. It is claimed that non-interference
precisely captures the notion of information flow, in the sense that there is no
information flow from u to u if and only if u is non-interfering with u.

Goguen and Meseguer also define non-interference between groups of
users. First, if w is an input sequence and A is a set of users, define w/A as the
subsequence of w with inputs from all users in A deleted. Then, for A c U and

34 JONATHAN K. MILLEN

B c U, A is non-interfering with B (written A $* B) if, for all u E B,

A multilevel security (MLS) policy can be stated as soon as we add a
labelling function,

level: U + L,

where L is a partially ordered set of sensitivity levels. Goguen and Meseguer's
policy states that the users at or above one level cannot interfere with users at
or below a second level, if the second level does not dominate the first.

MLS1: Let x E L and y E L such that x g y.
Then { u I level(u) 2 x} + { u I level(u) I y } ,

Rushby (1985) states the multilevel security policy in a different form, for pairs
of users:

MLS2: Let u E U and u E U such that level@) $ level(u). Then u + u.

It is not hard to show that MLSl and MLS2 are equivalent. First, suppose
that MLS2 is true, and let x E L and y E L such that x $ y. Let A =

{ u I level(u) 2 x}. Choose u such that level(u) I y. Note that if u E A, then
level(u) $ level(u). By MLS2, if u E A, then u + u. Let A = {ul,. . . , u,,}. Then,
for any input sequence w,

CWIU = [w/u,lu = C(W/U1)/U,lu =. . . = C W / (~ l r . . . , ~ . } l , = C W / A l " .

Thus, MLS2 implies MLSl.
Now, suppose that MLSl is true, and let u E U and u E U such that

level(u) $ level(u). Again, let A = {u' I level(u') 2 x}. Let x = level(u) and y =

level(u). By MLS1, A + { u ' I level(u') I y}. This gives us
Cwlu = Cw/Alu by MLSl

= [(w/u)/A],

= [w/ulu by MLSl again.

since u E A

Thus, u + u, showing that MLSl implies MLS2.

6.2.2 Unwinding

If we agree that the non-interference MLS policy is a satisfactory definition
of nondiscretionary security, there is still a practical problem: showing that a
formal specification is consistent with it. The definition of non-interference in

MODELS OF MULTILEVEL COMPUTER SECURITY 35

terms of arbitrary input sequences is not easy to deal with. The unwinding
theorem of Goguen and Meseguer (1 984) expressed non-interference equiva-
lently as a property that could be tested for each state transition. This brought
it within reach of standard proof techniques for formal specifications.

The unwinding theorem will be presented in the somewhat simplified form
given by Rushby (1985). The key to unwinding is to notice that each user has a
limited view of the machine, determined by the outputs available to that user.
Two states are equivalent for a user if they cannot ever be distinguished by that
user, on the basis of subsequent outputs. One user is non-interfering with a
second user if state transitions caused by the first user go to another state that
is equivalent for the second user.

An equivalence relation = on the set of states S is a congruence with respect
to a user u E U if

0 s = t implies out(s, u) = out(?, u), and
0 s = t and u E U and c E C implies do(s, u, c) =- do(t, u, c).

Unwinding Theorem: u ++ u if and only if there exists a congruence = with
respect to u such that, for all c E C and s E S reachable from the initial state,

do(s, u, c) = s.
The proof is given, in different forms, by Goguen and Meseguer (1984) and

Rushby (1985). The proof that the existence of the congruence implies non-
interference is accomplised by induction on the length of an input sequence.
The proof that non-interference implies the existence of a suitable congruence
is routine once the congruence is constructed. Since any reachable state can
be expressed as [w] for some w, define [w] = [w’] if for all input sequences z,
[W Z] ” = [W ’ Z] ” .

6.2.3 Applying Unwinding to Multilevel Security

Haigh et al. (1986) showed how the unwound formulation for non-
interference could be used to check whether the SAT (Secure Ada Target)
system, as specified by a concrete model in Gypsy, is free from covert channels.
In attempting to prove that the MLS policy was satisfied, the proof failed, and
by examining the reason for the failure they discovered a covert channel.

The proof method is to identify a good candidate equivalence relation on
the states, for each subject, and try to show that it is acongruence, and also that
it satisfies the unwinding condition for each pair of subjects u, u with
level(u) g level(u). If the proof succeeds, the MLS policy (MLS2) holds. If the
proof fails, it does not necessarily mean that the MLS policy fails; it might only
mean that they chose the wrong congruence relation. Nevertheless, if a failed

36 JONATHAN K. MILLEN

proof leads to the discovery of a covert channel, the effort has been
worthwhile.

The candidate congruence relation was constructed by identifying the
“subject view” of the state for each subject. The subject view consists of those
state components that could eventually affect values returned to the subject.
Two states with the same values in the components belonging to a certain
subject view are equivalent for that subject. One way of assigning subject views
is to try to associate a sensitivity level with each component or sub-component
of the state. Those components at or below the sensitivity level of a subject are
in its view.

As a practical method for covert channel analysis, there are two drawbacks
to this approach: one is the skill required to find a good congruence relation,
and the other is the skill required to trace the cause of a failure to a covert
channel. It might be argued that something like clairvoyance is required,
rather than skill; but an understanding of the system architecture is probably
sufficient to do the job. In this respect, there are no clearly superior methods
for performing covert channel analysis.

Since the non-interference approach is so general, why limit it to convert-
channel analysis? Are access-control models still needed? Access-control
models are useful because they provide understandable design guidance, the
system is expected to enforce its access-control policy, and the mechanisms
for access control are clearly visible in the machine architecture. The non-
interference MLS policy, on the other hand, gives no design guidance, and
proofs of it generally fail because real systems have covert channels. Some
may be eliminated when they are found, but others are not serious enough
to remove.

6.3 Restrictiveness

6.3.1 Nondeterministic Systems

Non-interference has one significant limitation: it applies only to determin-
istic machines. Consequently, it is not applicable to many multiprocessor
systems and networks, since they are often nondeterministic. Nondeterminacy
arises from the unpredictability of delays that occur in distributed systems.
There are two sources of delay: propagation of signals within a component,
and propagation of messages between components. Because of these delays,
networks are subject to race conditions; a component may behave differently,
depending on which of two messages reaches it first, and either way is possible.

Some work has been done by McCullough (1987, 1988a, 1988b) on
generalizing interference in the context of an event-system model of com-

MODELS OF MULTILEVEL COMPUTER SECURITY 37

putation. Consider a set E of events, which correspond to the primitive actions
done to or by a system. Of these, some are input events, others are output
events, and the rest are internal. Let I be the set of input events and 0 the set of
output events. A system will be characterized by the set of event sequences that
are possible for it.

Formally, a system is a quadruple (E , I, 0, T) where I and 0 are disjoint
subsets of E, and T is a subset of E*, the set of finite sequences of elements of
E. T is called the set of traces, and it satisfies two axioms:

0 Event Separability: If t E T and s is an initial subsequence of t , then s E T.
0 Input Total i ty: If t E T and i E I, then ti E T.

Event separability reflects the idea that a system might have been stopped at
any time, so whatever events have happened up to any earlier moment
constitute a possible trace. Input totality says that inputs cannot be prevented
from coming at any time, and show up in the trace, though the machine may
ignore them.

It should be clear that event systems can represent either deterministic or
nondeterministic machines. One way of representing a deterministic machine,
for example, is to record the entry into a state as an internal event. Ignoring
outputs for the moment, the traces of a deterministic machine would then have
the form

q o i l q l i 2 . . . ,

where each triple qni,+ lqn+ must be consistent with the transition function.
Input totality must be recognized by adding other traces in which extra inputs
have been added, as qnin+ l i’ i”qn+ The first or last input between states would
be the one responsible for the transition, as a matter of convention.

It is not hard to come up with a version of non-interference that is plausible
for event systems. First, introduce a set U of users, and associate inputs and
outputs with users. Then we might say that a user u is non-interfering with
another user u if the set of possible outputs to u is unaffected by deleting the
prior inputs from u. If one alters a trace by deleting inputs from u, the resulting
event sequence is not necessarily a trace, but one can find another trace with
the same inputs, in which the final output to u is unchanged.

6.3.2 Composability

The problem with this, and other plausible generalizations of non-
interference, is that it is not robust with respect to a very important
construction: the act of connecting systems together into composite systems,
or networks. The ability to compose systems and retain their security

38 JONATHAN K. MILLEN

properties is significant because such connections are used to

0 Create nondeterministic systems from deterministic ones.
0 Create networks.
0 Create complex systems from simpler subsystems.
0 Represent the interactions of trusted with untrusted processes.

McCullough (1988b) gives an example that illustrates the technical difficulty
of generalizing non-interference in a composable way. Suppose we have two
event systems A and E with the following behavior:

A has inputs and outputs associated with user u (which we think of as a
high-level user), and two specific types of output associated with user u (the
low-level user). One output to u is a “stop-count” signal, which occurs non-
deterministically at any time. The next output to u is the parity (odd or even)
of the total number of u’s events, both inputs and outputs, that occurred prior
to the stop-count output. Inputs and outputs belonging to u occur nondeter-
ministically without restriction.

A typical trace for system A might be pictured on a vertical time line as in
Fig. 5, where u’s events are represented by dashed arrows and u’s events with
solid arrows. B is identical to A except that its stop-count signal is an input
rather than an output. See Fig. 6.

It is plausible to say that u is non-interfering with u in both system A and
system B. The reason is that u’s parity output can be either odd or even,
regardless of the number of inputs from u, since additional outputs to u might
possibly be generated and change the count.

stop-count I-

FIG. 5. A trace of System A.

MODELS OF MULTILEVEL COMPUTER SECURITY 39

stop-count 4

FIG. 6. A trace of System B.

We can connect A and B together into a composite system by taking the
stop-count output from system A and feeding it into system B as a stop-count
input. There should be nothing insecure about this connection, since both
events belong to the same user, u. In the network, the stop-count signal has
become a single event, which is neither an output nor an input, but rather an
internal event. Also, u’s outputs from A are fed into B as inputs, and u’s outputs
from B are fed into A as inputs. A still gets other external inputs, but B does
not. We assume that no two events are simultaneous, so that events will appear
in a discernible order in the traces of the composite system. A typical trace of
the composite system is pictured in Fig. 7.

The reader is invited to check that the two parity outputs to u emitted from
the two component systems permit u to determine whether u has entered an
even or odd number of inputs. The number of inputs is odd if the parity
outputs disagree, and even if they agree. Consequently, u is not non-interfering
with u in the network. For, when u had an odd number of inputs, deleting them
changes the overall parity, forcing a change in one of the two outputs to u.

6.3.3 Restrictiveness and Multilevel Security

McCullough then proceeded to define a new, stronger security property
called restrictiveness that is much less obviously a generalization of non-
interference, though it coincides with non-interference on deterministic
systems. Restrictiveness was then shown to be preserved when systems were
composed in such a way that labels on events are matched.

40 JONATHAN K. MILLEN

stop-count
I

9,*. . .-. .

FIG. 7. A trace of the composition of System A and System B.

Terminology. If s E E* is an event sequence, and F c E is a set of events, s I F
is the subsequence of s consisting of just those events in F. Also, let E represent
the empty sequence. The letters a, b, c, etc., represent event sequences.

A set F c E of events is said to be restrictive if the hypotheses

0 abc E T
0 b, b’ E I *
0 b I F = b’ I F
0 c [(I - F) = E

(abc is a trace).
(b and b‘ are input sequences).
(b and b‘ agree on F).
(c has no non-F inputs).

imply the existence of c’ E E* such that

0 ab’c’ E T
c ’ I F = c l F

0 c’ I (I - F) = E

(ab’c’ is a trace).
(c and c’ agree on F).
(c‘ has no non-F inputs).

Roughly speaking, any change in non-F elements of a trace segment b of
inputscan be repaired by changing non-F elements of the following part of the
trace. This conveys the idea that non-F inputs, and the users responsible for
them, are non-interfering with F events, and the users who can observe them.

To get a definition of multilevel security, introduce a partially ordered set of
levels L and a function level: E -+ L. Note that events rather than users are

MODELS OF MULTILEVEL COMPUTER SECURITY 41

given levels, and that all events, including internal events, receive levels. An
event system together with the level structure is called a rated event system. If
x E L, let view(x) = { e E E I level(e) I x}, the events of level at or below x.

A rated event system is multilevel secure if, for all x E L, view(x) is restrictive.
It is shown in McCullough (1988a) that restrictiveness, and hence mul-

tilevel security, is composable, in the sense that if it holds for two systems A
and B, it holds for a composite system in which outputs from either system
have been merged with equal-level inputs of the other system. Other work
comparable to the development of non-interference has also been done. In
McCullough (1988b) there is a state-machine characterization of restrictive-
ness similar to the unwinding theorem for non-interference, and there has been
some effort to apply it to a real system (Casey et al., 1988). More work still
needs to be done to check whether some simpler or weaker definition of
multilevel security in nondeterministic systems is possible, and to find
practical ways of applying it to detect covert channels or guide system design.

7. Conclusion

The common feature of the models we have been discussing is the use of
sensitivity labels to restrict information flow. We have seen that, because of the
nature of information flow, labels ought to be partially ordered, and it is often
convenient to assume that they form a lattice.

When an information flow policy is implemented with an access-control
mechanism, or reference monitor, the result is a mandatory access-control
system that restricts access according to the *-property. A MAC system has
the important advantage that it provides protection against Trojan horses,
assuming that the privileged programs that set labels or perform other trusted
functions are not themselves Trojan horses. Furthermore, there are computer
architectures that support this kind of policy in a simple, understandable way.

MAC system models have been used with some success to help design secure
computer systems. There is room for disappointment that a rigorous
procedure cannot be followed, in practice, from a policy model all the way to
verification of microprograms. Yet, there is evidence that taking the first steps
rigorously, from a model to a formal specification, has resulted in better
designs and has found bugs that might otherwise have taken longer to
discover.

It is straightforward and practical to prove that a formal specification is
consistent with a model, but the correspondence is relative to a particular
mapping. Successful mappings are not unique; the right one must exhibit an
appropriate interpretation of the model, by reflecting the information-flow

42 JONATHAN K. MILLEN

meaning behind the abstract list of access modes. When there is a close match
between the model’s access modes and those enforced in the hardware for
memory access, e.g., read and write, finding the proper interpretation is
easy. Otherwise, one has less assurance that the model is implemented
accurately.

Real security policies are not pure. The *-property in the Bell-LaPadula
model, for example, has an exception built into it for trusted subjects. How
does one decide whether a particular subject deserves to be trusted? One
cannot really answer this in the context of the model, though we have noted
that it is possible to use additional structure in the model to limit the privilege
of a trusted subject, through sharing control with other subjects or adding
type-enforcement restrictions.

It was a pleasant discovery of Biba’s that a limited form of nondiscretion-
ary integrity control is possible simply by reinterpreting the meaning of
labels. Modern systems should be designed to be flexible enough to take ad-
vantage of the strict integrity trick, despite the fact that it does not address
the prior question of how to qualify subjects for high integrity, nor does it
implement the type-enforcement or pipeline policies called for in commercial
applications.

It is difficult to tell how best to use MAC system models for database
systems or networks. There are two levels at which the MAC approach can be
used. One level is at an external interface, where objects are complex
abstractions such as relations, views, virtual connections, or datagrams. This is
the most natural level at which to describe the system security policy as it is
visible to users, but so much software is used to support it that it is difficult to
assure correct implementation. The other level is at the interface to the
underlying secure operating system kernel, if there is one, where objects are
segments of memory. This is the level at which access control is enforced, and
where one has the most assurance that a simple information-flow policy is
implemented. Both levels seems to be needed.

All access-control models have the failing that they assume that information
flow can occur only when an appropriate access mode has been granted. In
fact, information is communicated by all kinds of events, including the refusal
of access, leading to covert channels. It is a tribute to the perseverance of
researchers that they not only understand how this is possible, but they have
developed proof techniques for finding covert channels that can be used in
practice, albeit with some difficulty at present.

The developments in information-flow modelling are exciting because they
are still evolving in a clear direction. Starting with the underlying notion of
information flow as an inference about the possible values of a sensitive data
source, leading to the non-interference concept in deterministic machines, the

MODELS OF MULTILEVEL COMPUTER SECURITY 43

following advances have been made:

0 An equivalent state-transition formulation (unwinding).
0 A technique for detecting covert channels based on the state-transition

0 A stronger but composable definition for nondeterministic systems
version.

(restrictiveness).

Restrictiveness is not the final answer, because it has not been shown to be
the weakest definition that still guarantees composability and which reverts
to non-interference on deterministic systems. Analysis techniques based on
information-flow approaches also need to be developed further. Perhaps, one
day, the present dichotomy between access-control policy and covert-channel
analysis will disappear, and the two will be subsumed in theory and practice
under a single methodology.

REFERENCES

Anderson, J. P. (1972). “Computer Security Technology Planning Study,” Vol. I . ESD-TR-73-5 1,

Bell, D. E. (1973). “Secure Computer Systems: A Refinement of the Mathematical Model.” ESD-

Bell, D. E. (1988). Concerning “Modelling” of Computer Security. Proc. 1988 IEEESymp. Security

Bell, D. E., and LaPadula, L. J. (1973). “Secure Computer Systems: Mathematical Foundations.”

Bell, D. E., and LaPadula, L. J. (1975). “Secure Computer System: Unified Exposition and Multics

Benzel, T. C. V. (1984). Analysis of a Kernel Verification. Proc. 1984 IEEE Symp. Security and

Biba, K. J. (1977). “Integrity Considerations for Secure Computer Systems.” ESD-TR-76-372. The

Boebert, W., and Kain, R. (1985). A Practical Alternative to Hierarchical Integrity Policies. Proc.

Burke, E. L. (1974). “Synthesis of a Software Security System.” MTP-154. The MITRE

Casey. T. A., Vinter, S. T., Weber, D. G., and Varadarajan, R. (1988). A Secure Distributed

Cheheyl. M. H., Gasser, M., Huff, G. A,, and Millen, J. K. (1981). Verifying Security. ACM

Clark, D. D., and Wilson, D. R. (1987). A Comparison of Commercial and Military Security

Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks. Commun. ACM 13

Cohen, E. (1978). Information Transmission in Sequential Programs. In “Foundations of Secure
Computation”(R. A. DeMillo, D. P. Dobkin, A. K. Jones, and R. J. Lipton, eds.), pp. 297-336.
Academic Press, New York.

AD 758 206. James P. Anderson and Co., Fort Washington, Pennsylvania.

TR-73-278, Vol. 111. The MITRE Corporation, Bedford, Massachusetts.

and Privacy, pp. 8-1 3.

ESD-TR-73-278, Vol. 1. The MITRE Corporation, Bedford, Massachusetts.

Interpretation.” ESD-TR-75-306. The MITRE Corporation, Bedford, Massachusetts.

Privacy, pp. 125-133.

MITRE Corporation, Bedford, Massachusetts.

8th National Computer Security Conf., pp. 18-27.

Corporation, Bedford, Massachusetts.

Operating System. Proc. 1988 IEEE Symp. Security and Privacy, pp. 27-38.

Computing Surveys 13 (3). 279-339.

Policies. Proc. 1987 I E E E Symp. Security and Privacy, pp. 184- 189.

(6). 377-387.

44 JONATHAN K. MILLEN

Denning, D. E. (1976). A Lattice Model of Secure Information Flow. Comm. ACM 19(5), 236-242.
Denning. D. E., and Denning, P. J. (1977). Certification of Programs for Secure Information Flow.

Comm. ACM 20 (7). 504-513.
Denning, D. E., Akl, S. G., Heckman, M., Lunt, T. F., Morgenstern, M., Neumann, P. G., and

Schell, R. R. (1987a). Views for Multilevel Database Security. IEEE Trans. Sofiware Eng. SE-13

Denning, D. E., Lunt, T. F., Schell, R. R., Heckman, M., and Shockley, W. (1987b). A Multilevel
Relational Data Model. Proc. 1987 IEEE Symp. Security and Privacy, pp. 220-233.

Feiertag, R. J., Levitt, K. N., and Robinson, L. (1977). Proving Multilevel Security of a System
Design. Proc. 6th ACM Symp. Operating System Principles, pp. 57-65.

Fraim, L. J. (1983). SCOMP: A Solution to the Multilevel Security Problem. IEEE Computer
Magazine (July, 1983). 26-34.

Glasgow, J. I., and McEwen, G. H. (1987). The Development and Proof of a Formal Specification
for a Multi-level Secure System. ACM Trans. Computing Systems 5 (2), 151-184.

Goguen, J. A., and Meseguer, J. (1982). Security Policies and Security Models. Proc. 1982 IEEE
Symp. Security and Privacy, pp. 11-22.

Goguen, J. A., and Meseguer, J. (1984). Unwinding and Inference Control. Proc. 1984 IEEE Symp.
Security and Privacy, pp. 75-85.

Graham, G. S., and Denning, P. J. (1972). Protection-Principles and Practice. Proc. IFIPS
Sprint Joint Computer Cony., pp. 417-479.

Graubart, R. D., and Woodward, J. P. L. (1982). “A Preliminary Naval Surveillance DBMS
Security Model.” MTR-8475. The MITRE Corporation, Bedford, Massachusetts.

Grohn, M. J. (1976). “A Model of a Protected Data Management System.” I. P. Sharp Associates
Limited, Ottawa, Canada.

Guttman, J. D. (1987). Information Flow and Invariance. Proc. I987 IEEE Symp. Security and
Privacy, pp. 67-13.

Haigh, J. T., Kemmerer, R. A., McHugh, J., and Young, W. D. (1986). An Experience Using Two
Covert Channel AnalysisTechniques on a Real System Design. Proc. 1986 IEEE Symp. Security
and Privacy, pp. 14-24.

Harrison, M. A. (1985). Theoretical Issues Concerning Protection in Operating Systems. In
“Advances in Computers,” Vol. 24(M. C. Yovits, ed.), pp. 61-100. Academic Press, New York.

Harrison, M. A., Ruzzo, W. L., and Ullman, J. D. (1976). Protection in Operating Systems. Comm.

Hinke, T. H.. and Schaefer, M. (1975). “Secure Data Management System.” RADC-TR-75-266.
System Development Corporation, Santa Monica, California.

Jones, A. K., and Lipton, R. J. (1975). The Enforcement of Security Policies for Computation.
ACM Operating Sysrems Rev. 9(5), 197-206. (Also in J . Comput. Syst. Sci. 17.35-55.)

Lampson, B. W. (1971). Protection. Proc. 5th Princeton Cony. In$ Sci. Syst., pp. 437-443.
Lampson, 8. W. (1973). A Note on the Confinement Problem. Comm. ACM 16 (lo), 613-615.
Landwehr, C. E. (1981). Formal Models for Computer Security. ACM Computing Surveys 13 (3).

LaPadula, L. J., and Bell, D. E. (1973). “Secure Computer Systems: A Mathematical Model.” ESD-

Lee, T. M. P. (1988). Using Mandatory Integrity to Enforce “Commercial” Security. Proc. 1988

Lipner, S . B. (1982). Non-Discretionary Controls for Commercial Applications. Proc. 1982 IEEE

McCullough, D. (1987). Specifications for Multi-level Security and a Hook-Up Property. Proc.

McCullough, D. (I 988a). “The Theory of Security in Ulysses.” Odyssey Research Associates,

(2), 129-140.

ACM 19 (8), 46-471.

247-278.

TR-73-278, Vol. 11. The MITRE Corporation, Bedford, Massachusetts.

IEEE Symp. Security and Privacy, pp. 140-146.

Symp. Security and Privacy, pp. 2-10.

1987 IEEE Symp. Security and Privacy, pp. 161-166.

Ithaca, New York.

MODELS OF MULTILEVEL COMPUTER SECURITY 45

McCullough, D. (1988b). Noninterference and the Composability of Security Properties. Proc.
1988 IEEE Symp. Security and Privacy, pp. 177-186.

McHugh, J., and Moore, A. P. (1986). A Security Policy and Formal Top Level Specification
for a Multi-Level Secure Local Area Network. Proc. 1986 IEEE Symp. Security and Privacy,

McLean, J. (1987). Reasoning About Security Models. Proc. 1987 IEEE Symp. Security and

McLean (1988). The Algebra of Security. Proc. 1988 IEEE Symp. Security and Privacy, pp. 2-7.
Millen, J. K. (1978). Constraints, Part 11. Constraints and Multilevel Security. In “Foundations of

Secure Computation” (R. A. DeMillo, D. P. Dobkin, A. K. Jones, and R. J. Lipton, eds.),
pp. 205-222. Academic Press, New York.

Millen, J. K. (1984). A1 Policy Modelling. Proc. 7th DODINES Computer Security Conf..,

Millen, J. K., and Cerniglia, C. M. (1984). “Computer Security Models.” MTR-9531. AD A 166
920. The MITRE Corporation, Bedford, Massachusetts.

National Computer Security Center (1985). Department of Defense Trusted Computer System
Evaluation Criteria. DoD 5200.28-STD.

Neumann. P. G., Boyer, R. S. Feiertag, R. J., Levitt, K. N., and Robinson, L. (1977). “A Provably
Secure Operating System: The System, its Applications, and Proofs.” Stanford Research
Institute, Menlo Park, California.

Parnas, D. L. (1972). A Technique for Software Module Specification With Examples. Comm.

Rushby, J. (1985). The SRI Security Model. Computer Science Laboratory, SRI International.
Walter, K. G., Ogden, W. F., Rounds, W. C., Bradshaw, F. T., Ames, S. R., and Shumway, D. G.

(l974a). “Primitive Methods for Computer Security.” Department of Computing and Informa-
tion Sciences, Case Western Reserve University, Cleveland, Ohio.

Walter, K. G., Ogden, W. F., Rounds, W. C., Bradshaw, F. T., Ames, S. R., Biba, K. J., Gilligan,
J. M., Schaeffer, D. D., Schaen, S. I., and Shurnway, D. G. (1974b). “Modeling the Security
Interface.” Department of Computing and Information Sciences, Case Western Reserve
University, Cleveland, Ohio.

pp. 34-39.

Privacy, pp. 123 - 13 1.

pp. 137-145.

ACM 15 1.5). 330-336.

This Page Intentionally Left Blank

Evaluation, Description and Invention:
Paradigms for Human-Computer Interaction

JOHN M. CARROLL

User interface Institute
ISM T.J. Watson Research Center
Yorktown Heights, New York

1. Introduction. 47
2. Human Factors Evaluation. 49

2.1 Direct Empirical Contrast 49
2.2 LackofTheory . 53

3. Cognitive Description. 55
3.1 Breadth versus Depth . 56
3.2 Design by Deduction . 58

4. Usability-Innervated Invention 61
4.1 Psychology as a Mother of Invention 62
4.2 Ecological Analysis. 65

5. The Ecology of Computing. 68
5.1 Science and Invention . 69
5.2 The Current Perplexity 71

Acknowledgement . 72
References . 72

1. Introduction

A vivid image of the recent evolution of computer technology is that of a
“race” between function and usability. New technologies and new capabilities
become available to users faster than user problems can be studied,
understood and addressed. For example, the many user studies of word-
processing applications carried out over the past decade focused their
attention on keyboard-oriented, stand-alone systems with small and low-
resolution monochrome displays. In 1981, our group at the Watson Research
Center turned attention to secretaries learning to use such word-processing
applications. At the time, this was a novel application; computer editing was
still largely the province of programmers revising code.

But now, and without a finished analysis of word processing, the frontier of
usability has been pressed onward by the development and introduction of
new applications and new interface technologies. Communication appli-
cations such as electronic mail and computer conference support raise
usability challenges far more diverse than those raised by the extension of

47

ADVANCES IN COMPUTERS, VOL. 29
Copyright ‘ 4 . 5 1989 by Academic Press. Inc.

All rights of reproduction in any form reserved.
ISBN 0-12-0121 29-R

48 JOHN M. CARROLL

word processing to nonprogrammers. In the current technology, multiple
users cooperatively access multiple applications via an extremely heterog-
eneous collection of workstation types. And even as the usability issues in
these new domains are being articulated and explored, leading-edge proto-
types are introducing gestural (e.g., handwriting) and speech input and
interactive video output. Such new developments are occurring more rapidly,
more broadly across the industry, and affecting more users all the time.

The race between function and usability has made the area of human-
computer interaction (or HCI) a very high-profile research area within
computer science and within the computer industry: it is difficult to develop
usability science and technology fast enough, but it is also critical to do so.
Indeed, the race has created the need for chapters such as this one. However,
this attention has also helped to expose some fundamental perplexity about
what the field is and how it is supposed to work. It is still the case that HCI
research has its principal effect on discussions of usability and user-interface
design and only a small, derived effect on actual practice in the design and
development of computer systems and applications.

What is the goal of HCI research? There need not be a single answer to this
question. But the more answers there are, and the more irreconcilable the
various answers are, the more fragmented the field will appear. In HCI there
are many answers to this question. One traditional answer comes from the
field of Human Factors: HCI needs to provide methods and metrics for
evaluating the usability of computers. A second answer comes from Cognitive
Science: HCI is a testbed for the application of cognitive psychology to a real
problem domain. A third answer comes from the exigencies of the computing
industry: HCI must help guide the definition, invention and introduction of
new computing tools and environments.

The practice of HCI is even more fragmented than its goals might imply.
For example, some varieties of human factors evaluation explicitly suggest
that developing cognitive science theories of HCI may impair progress in
understanding usability (Whiteside and Wixon, 1987). On the other hand,
Newell and Card (1985) warn that psychology might be driven out of HCI by
computer science unless it can develop predictive cognitive models, coining
the slogan “hard science drives out the soft.” Yet even the most developed
cognitive models in HCI have had no significant impact on the design of user
interfaces (Carroll and Campbell, 1986). Moreover, it is paradoxically true
that product innovations in user-interface design have generally led HCI
research rather than following from it in the conventionally assumed flow of
“technology transfer” from Research to Development. The recent impact of
the Apple Macintosh illustrates this.

Perhaps these conflicting and fragmented views of HCI can be understood
as consequences of the race between function and usability, of the rapid
growth in needs, activities and expectations. Perhaps the current perplexity

PARADIGMS FOR HUMAN-COMPUTER INTERACTION 49

about HCI reflects an intermediate state in a true evolution toward more
effective approaches to understanding the usability of computer systems and
applications. In this chapter I take such an historical view, identifying three
distinct paradigms, or orientations, to HCI research and application. Initially,
HCI work focussed on empirical laboratory evaluation of computer systems
and techniques. Subsequently, empirical studies of usability were organized
by and addressed to cognitive theoretical description of human behavior and
experience. Currently, the focus of HCI work is shifting toward a more
directive role in invention, design and development. The progression of these
three paradigms comprises a case study of a field discovering what it is about,
and, more generally, of the variety of roles available in the psychology of
technology.

2. Human Factors Evaluation

The traditional role of psychologists working in the context of computer
applications and services is empirical evaluation of usability. The original
research arena of human-computer interaction is the psychology of pro-
gramming and the professional programmer (Curtis, 1985; Shneiderman,
1980). A prototypical example of this paradigm is a set of experiments
conducted by Sheppard et a[. (1979). In one of these, participants were given
20 minutes to reconstruct from memory a Fortran program of 26-57 lines
that they had studied for the preceding 25 minutes. Two approaches to
“structured” program organization (Dijkstra, 1972) were contrasted with a
“convoluted” organization (including backward exits from DO loops, arith-
metic IFs, and unrestricted GOTOs). Reconstructive memory for the con-
voluted program organization was poorer (i.e., error rates were higher) than
for either of the structured organizations (though only in one case was the
difference statistically significant).

Such early work in the human factors of programming was important in
demonstrating the feasibility of empirical assessment. By addressing some of
the timely issues of the day, it broadened the grounds of debate in software
technology from formal analysis and system performance to include usability
and productivity issues. The basic paradigm of directly comparing two
alternate designs in a usability evaluation is still the standard of practice in
much HCI research and in many product development laboratories.

2.1 Direct Empirical Contrast

The development of empirical methodologies for evaluation, and the
exercise of these methodologies in the context of software and system design,
is a continuing need in HCI. Direct empirical measurement is still the only

50 JOHN M. CARROLL

adequate means of assessing the usability of software techniques and
computing artifacts (Carroll and Rosson, 1985; Curtis, 1980; Gould and
Lewis, 1985). Establishing the importance of usability to the success of
computing systems and techniques, and developing and promoting empirical
methodologies to make usability evaluations have been major foci of HCI
work.

From the start, HCI evaluation studies were strongly influenced by research
practice in experimental psychology: emphasis was placed on tightly con-
trolled laboratory approaches. From an historical standpoint, this was a
reasonable move: there was an acute lack of theory and methodology for
investigating usability. These laboratory studies generally took the form of
direct contrasts: computing artifacts or techniques were directly pitted against
one another in a brief but behavior-intensive measurement session. This
evaluation work produced a variety of findings, often framed as guidelines for
software-development practice and user-interface design, generally of the
form “A is better than B.” And perhaps even more importantly, the work set a
more objective standard for usability evaluations, and provided a systematic
basis for scrutinizing designers’ hopeful intentions and trade-press reviewers’
glib comments.

However, there are many limitations inherent in the laboratory-based
direct-contrast methodologies of experimental psychology. These limitations
become clear when the methodologies were applied in the complex practical
contexts of HCI design. Controlled laboratory studies of software are difficult
to design and carry out. The investigator needs to master programming
languages and computer applications in order to be in a position to assess
others’ performance and to interpret their experiences. The experimental tasks
that are studied necessarily require skilled human participants and involve
learning and using very complex tools. This is expensive and time-consuming
research. Such difficulties just don’t come up when one takes an experimental
approach to memorizing nonsense syllables, the stock-in-trade of traditional
experimental psychology, or to making timed responses to meaningful but
simple objects such as isolated words, its more modern variant.

In experimental psychology, the sheer differences in recall rate or response
times may be all there is to know about a person’s performance in a task: the
situations are relatively simple. Understandably perhaps, such work is
directed at collecting straightforward quantitative indicators of performance
such as task times and error rates, and formally testing these for statistical
significance of direct contrasts (that is, computing the probability that
obtained score differences might have occurred by chance). HCI situations,
however, are not simple at all. In many cases it may be more important to
know how people approach a task, or how they feel about their performance,
than it is to know how quickly or successfully they perform. Nevertheless, the
early commitment of HCI evaluation work to direct-contrast studies created a

PARADIGMS FOR HUMAN-COMPUTER INTERACTION 51

strong bias for collecting quantitative indicators of performance, such as time
and success measures, and against placing primary, or even equal emphasis on
qualitative data (which in other human factors contexts have often played a
more prominent role; Chapanis, 1959, pp. 23-95).

These constraints of direct-contrast laboratory methods took a toll on the
relevance of HCI evaluation work. The difficulties of designing and conduct-
ing controlled experiments in complex circumstances inclined investigators
to make use of scaled-down tasks such as, for example, memorization and
reconstruction of small programs. The focus on quantitative differences
inclined investigators to focus on the simplest of performance measures. This
undermined the fundamental objectives of human factors evaluation, trans-
forming questions about complex human behavior and experience in complex
computing environments into simple scores of performance on toy-scale tasks.
Such work could not answer the underlying “why” questions that motivated
human factors evaluation in the first place; it could not provide the depth of
understanding necessary to help guide the design of new software techniques
and applications.

Yet this style of work became quite pervasive. Ledgard et al. (1980) assessed
the use of symbolic notations in text-editor commands by contrasting a
command language having extremely complicated symbolic conventions with
one almost free of these. Murrel (1983) contrasted message-based and
window-based communication for a cooperative decision-making task. Holt
et al. (1987) contrasted object-oriented design with more standard approaches.
But exactly what is it about symbolic notations that is bad? What is it about
window-based communication and object-oriented design that is good? None
of these projects resolved the overall evaluation issue it posed. And none
collected detailed enough information to contribute to a conceptual under-
standing of the issues involved.

Worst of all perhaps, these simplications frequently did not even produce
the statistically significant differences they were adopted to facilitate. The use
of indentation to highlight structure in program listings seems intuitively like
a good idea. It’s a simple factor that can in principle be conveniently removed
from the complications of the real programming process for direct-contrast
laboratory study. However, Love (1977), Shneiderman and McKay (1976) and
Weissman (1974) all failed to find significant benefits of indentation. Studies of
variable names have produced a conflicting potpourri of results; sometimes
mnemonic names are more effective than non-mnemonic names and some-
times not (Schneiderman, 1980, pp. 70-71). The daunting possibility remains
that it was because of the trivial tasks that were studied and the limited types of
data that were collected and analyzed that no differential benefits were
found.

Such practical problems with direct contrasts encouraged experimental
designs contrasting extreme positions, again to increase the possibility of

52 JOHN M. CARROLL

measuring statistically significant differences. The assessment of symbolic
conventions by Ledgard et al (1980) contrasted extremely complicated
examples of such conventions with an extreme absence of them. Liebelt et al.
(1982) showed that a menu system was easier to learn when the menu hierarchy
was organized than when it was disorganized(!). Indeed, in the Sheppard et a!.
(1979) experiment, several alternate approaches to “structured” programming
were consistently indistinguishable based on the data, but the extreme
alternative of “convoluted” programming produced significantly poorer
performance than either of the structured approaches. In a sense, this study
did not so much verify the benefits of deliberately structuring code as i t did
the risks of deliberately mis-structuring it. (Obvious and extreme evaluation
contrast are still sometimes professionally encouraged as long as they employ
“an interesting methodology” (Green, 1987, pg. 6).)

Finally, human factors evaluation work is highly constrained by the often
prodigious amounts of time required to make direct experimental contrasts of
alternatives. Indeed, it seems logically doomed to consume more time than the
evolution of software it is intended to guide. By the time the Sheppard et al.
(1 979) paper appeared, structured programming methods were already the
established practice. The evaluation work confirmed what had already
happened, rather than playing a causal role in the evolution of practice. This
limitation of the evaluation paradigm for HCI could be called the “evaluation
dilemma”: one cannot evaluate something that does not yet exist, hence direct
evaluation always lags development by some fraction of a development cycle
(Carroll, 1987a).

In sum, the exigencies of direct-contrast laboratory work entailed compro-
mises in the face validity of the work itself, and, in the end, often failed to
produce definitive or timely evaluations. How should programs be structured?
How should hypertextual information systems be navigated? One cannot
answer these questions with a few simple performance measures, but they are
surely empirical questions. Answering them would involve developing a
detailed understanding of what people do and try to do with programs and
applications and the rich interaction of these goals and actions with the
constructs of programming languages, the facilities of computing environ-
ments, aspects of the workplace, and many other factors.

These complexities have had a predictable effect: even in quarters where
human factors evaluation is the official operating paradigm, most of the
impact of psychology on the development of technology has come about
through task analysis or consulting. Indeed, to a considerable extent human
factors evaluation has become an historical stage in the development of
current HCI. We return to the curious schism between what is officially
anointed as standard practice and what is in fact the standard practice in later
discussion of the invention paradigm for HCI.

PARADIGMS FOR HUMAN-COMPUTER INTERACTION 53

2.2 Lack of Theory

The guiding hope in doing evaluation work is that the data collected and the
methods developed can cumulate into coherent analyses about why some
systems and techniques are more usable than others, and about how to
enhance the usability of future systems and techniques. It is a bottom-up
approach to developing theory. However, directly contrasting two complex
situations (e.g., two versions of a system) to determine which one is better is a
poor vehicle for sorting out and saving experience. Complex alternatives with
no a priori theoretical analysis do not become interpretable merely by virtue of
a simple horse race. It would take an infinity of such “one-off contrasts to
build a theory from the bottom up. Even the simple and controlled situations
studied in experimental psychology would be intractably indeterminate
without top-down theoretical direction.

Many of the difficulties with direct-contrast evaluations can be attributed to
this lack of theory. The use of toy-scale problem domains and simple,
quantitative measures is problematic in that without a theory of HCI domains
there is no way to know whether a toy problem is representative of a real
problem or not. There is no way to know whether one is studying a coherent
part of the real problem, or an accidental and idiosyncratic case. Can an
analysis of writing 50-line programs be scaled up to the problem of writing
5000-line programs? Is the task of pointing a cursor at an arbitrary screen
location a coherent part of the task of pointing acursor in the course of editing
text? Are interpretations of isolated system events related to interpretations of
the very same events embedded in a real stream of user interaction? Answering
such questions is impossible without a theory with which to interpret the toy
situations and to extrapolate from them to real situations.

Sheil(1981), for example, noted that complexity is not linear with program
length. It certainly seems that the task of editing a 5000-line program raises
problems of navigation and naming conventions that are just not raised in the
task of editing a 50-line program. Elements of HCI situations may interact
and trade off in different ways as the problem scale or the task changes. Is
avoiding G O T 0 statements more or less important than employing inden-
tation in a program listing? And are there contexts in which the relation is
inverted? Again, without a theory there is no way to extrapolate these
interactions. Indeed one can do little more than organize separate studies on
the basis of superficial features (e.g., as pertaining to variable names or menu
systems). Without a theory of, for example, how people understand, name, and
remember entities, there is no way to work back from a variety of performance
differences obtained in a variety of experimental settings to an explanation of
the underlying concepts that caused the differences (see Newell, 1973).

In the absence of a theoretical framework for understanding usability, HCI

54 JOHN M. CARROLL

evaluation work has had to address issues at a very large grain of analysis.
Hauptmann and Green (1983), for example, contrasted a natural-language
interface with a menu interface for creating business graphics (failing to find
any significant differences in time, errors or attitudes). Of course, contrasting
natural language with menus is painting with a rather broad stroke: how could
a single experimental contrast resolve such a multifaceted contrast? Were the
two interfaces individually optimized to be the best interface possible in their
respective interface styles? Were they controlled to have the same functional
capabilities and the same task-relative functional capabilities? The same kinds
of questions arise for the examples discussed earlier, evaluating structured
programming, object oriented programming and symbolic notations. The lack
of theory forces these crude contrasts; but the crude contrasts prohibit
pertinent or univocal results.

Methods and theories in software technology are often collections of loosely
connected prescriptions. Ideas such as structured programming and direct
manipulation (Shneiderman, 1983) are important theoretical concepts, and
they surely carry empirical consequences. But they are not falsifiable in the
Popperian sense (Popper, 1965): one cannot hope to reject such ideas tout
court on the basis of isolated laboratory tests; to try to do so is to get the logic
of the inquiry wrong. From our current perspective of a few years hence, it is
clear that no outcome of the Sheppard et al. (1979) study could have rejected
structured programming as an appropriate prescriptive theory. The real
evaluation need is for detailed qualitative information that can guide the
revision and integration of such ideas. The issue is not whether structured
programming is good, or indeed whether it is better than some other ap-
proach; the issue is what structured programming really consists of, how in
detail it affects actual programming tasks, and how it can be integrated into
routine programming practice.

The assessment goal is just too limiting: a paradigm that merely evaluates
distinctions articulated by others deprives itself of playing any directive role
(Sheil, 1981). In this context, we can understand why studies such as Sheppard
et al. (1979) failed to lead to the development of an articulated theory of
programming: the evaluation enterprise bound itself to what already existed,
commenting at a high level on the appropriateness of specific techniques from
the mid 1970s. A poignant example is the work showing that input error rates
are reduced when using teletype terminals instead of visual display units
(Walther and O’Neil, 1974; Carlisle, 1970). It was never a possibility that
teletype terminals would supplant visual display units through the course of
technological evolution, quite the contrary. The bald evaluation result,
without specific implications for the design of future visual display devices, can
only be seen as an historical curiosity.

Empirical evaluation of software and systems is a key to usability. But it is a

PARADIGMS FOR HUMAN-COMPUTER INTERACTION 55

separate question whether a science of human-computer interaction can arise
out of this activity. In fact, it did not. The evaluation paradigm introduced
psychology and psychologists to the HCI problem domain. It was a platform
for establishing the importance of usability and for developing empirical
approaches to measuring the usability of systems and software. However, its
methodological commitments and lack of theory cast it in a supporting role in
emerging software and user-interface science: more of a commentator on new
technology than a directive force. The challenge that this raised was how
psychology could play a more directive role in the development of new
software and user-interface technology.

3. Cognitive Description

In the early 1980s there was a shift toward bringing HCI research under the
aegis of broader psychological theory. Shneiderman (1980, pg. 51), for
example, used the classic paper of Miller (1956) on human information
processing limitations to derive the prescription that programmers avoid the
use of GOTO constructs. Shneiderman analyzed the process of understand-
ing programs as involving the recoding of lines of code into meaningful
“chunks.” GOTO jumps in a program text disrupt this structure by
functionally chunking nonadjacent lines of code. Card et al. (1983) published a
compelling monograph adapting information-processing psychology to the
description of fluent user interaction with text editors. These efforts had an
enormous effect, enlarging and intensifying interest in the psychology of
usability both within computer science and within psychology.

This shift confronted one of the key limitations of earlier work, the lack of
theory. Tying specific empirical results to theories of human information
processing provided means to integrate diverse results, to resolve nonsignifi-
cant or conflicting findings, to dampen the distortions of poor research, but
most importantly to develop abstractions that, in principle, could help lead the
development of software technology and user-interface design.

However, this work also raised new issues and problems. Aligning HCI
phenomena with cognitive descriptions of those phenomena is useful to the
extent that the cognitive descriptions themselves are rich, revealing and well-
integrated. In fact, psychological theory is at least as fragmented as software
theory and methodology. Building a psychology of usability by placing this
body of fragmented theory into correspondence with software situations
risks inheriting the fissures as well as the solid ground. Ironically, cognitive
description work also threatened the major achievement of human factors
evaluation, namely, establishing the centrality of direct usability testing to the
ultimate success of computing systems and techniques. The cognitive
description paradigm entrained a strongly analytic conception of software

56 JOHN M. CARROLL

design, raising the question of how much direct evaluation might be necessary
if a good theory were in hand.

3.1 Breadth versus Depth

Scientific psychology seeks to understand behavior and experience by
providing laws, concepts, and explanations. However, there are severe limits
on what types of phenomena psychology can address with these goals and
tools; there are ranges over which the goals and tools make sense and outside
of which they do not. In particular, academic psychology typically attempts to
capture generalizations across domains. But fine details of specific task
situations can be very important: what a person thinks and decides to do is
often ascribable to knowledge of a single fact, e.g., the name of a particular
command in a particular system. These fine-grained details serve as boundary
markers for theorizing: scientific laws that must refer to individual facts as
conditions seem unwieldy, and psychologists routinely make a strategic
retreat to abstract or artificial domains to control such details.

This is a reasonable heuristic, with extensive precedent in the sciences.
Classical point-mass mechanics is developed under the idealization of friction-
less contact, even though there are no frictionless systems. Other theoretical
apparatus has been developed to add back the effects of friction in real
systems. The difficult details of friction are treated as “perturbations” of the
classical theory (Gleick, 1987). Similarly, the traditional research strategy in
psychology has been to focus on sweepingly general issues and distinctions
under the idealization that domain and situation context can be ignored. Basic
psychological research addresses topics such as the “structure of memory,”
but not, for example, “memory for Unix commands” (Norman, 1981). It tries
to resolve “big” issues such as “is there a separate mental type for imagery?”
(Pylyshyn, t973; Paivio, 1971).

It turns out that describing frictionless contact provides a useful foundation
for understanding the motion of real objects in real circumstances. Even
though the effects of friction are not simple, treating these effects as per-
turbations of an idealized theory has also proven tractable in engineering ap-
plications (for example, computing trajectories). The question is whether the
same basic strategy is useful in psychology. This is an open question. Newel1
(1973), for example, criticized the pursuit of sweeping dichotomies such as
existence of a separate mental type for imagery, saying “you can’t play twenty
questions with nature and win.” Indeed, the emergence in the 1980s of
Cognitive Science as a broader discipline, incorporating psychology with the
serious consideration of the structure of task domains, can be seen as a
response to traditional idealizations (Carroll, 1988).

Chase and Simon’s (1973) classic study of expertise in chess showed that, for

PARADIGMS FOR HUMAN-COMPUTER INTERACTION 57

a reconstructive memory task, chess masters tended to recall piece positions in
attack and defense groupings. This study has had two very different legacies.
On the one hand, it opened up a variety of questions about domains. How are
chess piece groupings indexed in a player’s memory; how they are accessed in
realistic tasks (such as playing chess, as opposed to reconstructive memory for
arbitrary board positions); how does expertise in chess develop through
significant spans of time? Many of these issues have been pursued and in
a variety of domains (see Chi et al., 1988), though many would argue that
the work still takes too narrow a view of the process of attaining expertise
and of the nature of expert knowledge and performance (e.g., Dreyfus and
Dreyfus, 1986).

On the other hand, Chase and Simon’s result was sweepingly generalized
as “experts have chunks,” and has been mechanically replicated in domain
after domain. There is no rich and well-integrated theory of either experts or
chunks outside of considerations of specific domains. Thus, these studies
show only that when humans know something about a domain and are
asked to do reconstructive memory tasks of an arbitrary sort, they use what
they know to do the task. A series of these studies have been undertaken in
HCI contrasting memory performance for scrambled and unscrambled pro-
gram listings (Adelson, 1981; McKeithen ec d., 1981; Shneiderman, 1980).
This work showed that people with programming experience can use knowl-
edge of language structures in organizing their memories.

This finding has not led to rich understandings of how people achieve
expertise in programming or about how programming knowledge is indexed
in memory and accessed in performance. It has not helped to guide the
development of new software tools and environments. These cognitive
descriptions do not address and provide no guidance in practical aspects of
programming (the design of programming languages, environments, educa-
tion, etc.); they do not even engage issues specific to the domain of pro-
gramming (the types of modules one would want in a library to facilitate
code reusability).

An extensive tradition of psychological research describes learning,
memory and error patterns for paired-associates, the classic nonsense syllable
(e.g., Esper, 1925; Postman and Stark, 1962). This work has been applied to the
analysis of user performance with various types of command languages
(Barnard et al., 1981; Carroll, 1982; Landauer et al., 1983). For the most part,
these applications have been no less mechanical than those of the “experts
have chunks” work. Yet they have been relatively more successful in that the
cognitive descriptions developed for command language interactions have
had fairly specific prescriptive content for command language design. Indeed,
HCI research on command names has led to specific revisions in philosophical
and linguistic conceptions about what names are (Carroll, 1985).

58 JOHN M. CARROLL

But this work, and indeed all cognitive description work in HCI, is subject to
a very fundamental problem in the underlying logic of the inquiry. Psychology
concerns itself with existence: is there a separate mental type for imagery?
HCI, like any applied science domain, concerns itself with impact: how much
of a difference will certain types of consistency make in the learnability of a
command language? This is why the “experts have chunks” work seems
reasonable from the perspective of our curiosity about chess masters and other
experts, but difficult to apply in the face of questions about how to support
experts and facilitate the development of expertise. This is also why the use of
extreme contrasts, such as scrambled programs versus structured programs,
can make sense in the pursuit of basic theory, but much less so in the pursuit
of meaningful application.

Landauer (1987a) has recently called attention to this in observing that
while basic psychology routinely focusses on the “significance” of effects, it
typically disregards the size of effects. Cognitive descriptions framed in terms
of existence dichotomies can be assessed by the statistical significance of direct
contrasts: do expert programmers chunk more than novices? However, such
differences do not guarantee that the effects will be large enough to matter.
Would it matter if experts reliably chunked 2% more than novices? Would it
matter if scrupulously consistent command languages were learned 3% faster
than randomly consistent languages? To determine the practical size of effects
one needs to consider cost-benefit tradeoffs in realistic tasks. Chunking may
have a big effect on people trying to memorize scrambled little programs, but
the size-of-effect question forces attention to real programmers writing and
reading real programs. The two situations might be quite different.

3.2 Design by Deduction

HCI is fundamentally a design domain: it exists in the first place because of
the need to design more usable computing artifacts for people to use. Design in
a complex and poorly charted domain can seem like trial and error. How
should user-interface design work proceed to ensure more usable user
interfaces? The human factors evaluation paradigm sought to address this
kind of question by providing methodology for directly evaluating design
techniques (such as structured programming) and particular artifacts (for
example, a particular programming language or programming environment).
But direct evaluation operates on a case-by-case basis. The cognitive
description paradigm sought to improve upon this by providing theoretical
abstractions beyond the specific cases (see Moran, 1981).

Card et al. (1983) made what is surely the most thorough and disciplined
attempt to interpret and develop modern information-processing psychology
into a foundation for the design of computer systems. In their GOMS model

PARADIGMS FOR HUMAN-COMPUTER INTERACTION 59

(an acronym for Goals, Operators, Methods and Selection rules), users
hierarchically decompose their goals into successively finer subgoals until
these match a basic set of methods. The user has rules for selecting methods
appropriate to the current situation, and each method itself consists of a
sequence of operators, keypresses and hand motions. This analysis was fitted
to a variety of text-editing performance data, in many cases yielding consistent
values for the model’s parameters.

However, the theory proved quite limited in application to user-interface
design. GOMS was not able to describe problem-solving activity, only routine,
over-practiced performance. In fact, it could not describe errors at all, even
though nearly a third of the routine behavior it sought to describe consisted of
error and error recovery. It was also severely hampered by the race between
function and usability: by the time it had produced good performance
descriptions for error-free, over-practiced behavior on line-oriented editors,
the focus of concern in user interfaces and end-user applications had moved on
to other problem areas. (See Carroll and Campbell (1986) for further
discussion.) The work had its greatest impact on relatively low-level aspects of
human-computer interaction, such as the analysis of pointing devices (Card
et al., 1978). Indeed, it appears that this approach may only work for user-
interaction events on the order of one second in duration in which errors are
extremely rare and/or extremely regular(!), and for technological contexts
that are unchanging on the order of decades (Newel1 and Card, 1985). Few
design problems in HCI fall into this rather severe category.

Most cognitive description work is far less theoretically ambitious than the
GOMS work. For example, the use of menu selection as an alternative to
typed commands is sometimes “deduced” from the fact that humans are better
at recognition than at recall (e.g., Tennant, et al., 1983). This is terribly
oversimplified. Users of menu systems must deal with formidable navigation
problems (MacGregor and Lee, 1987; Robertson et al., 1981). They must deal
with complex morphological, semantic and referential relations between
various selection names (Carroll, 1985). Here again, the evolution of user-
interface technology is complicating the simple dichotomies: rich aliasing
(Gomez and Lochbaum, 1985) may substantially mitigate the relative
difficulty of recall, and alternative approaches to menu design may carry
differing performance implications (pop-up menus, multiple-selection menus,
active forms). Finally, though the advantage of recognition over recall is an
established sweeping principle in psychology (e.g., Crowder, 1976), Black and
Sebrechts (1981) have observed that there are circumstances in which the
reverse is true.

We earlier considered Shneiderman’s (1980) reference to Miller’s (1956)
analysis of human information-processing limitations in grounding the
prescription to avoid GOTOs. Miller’s specific argument, however, does not

60 JOHN M. CARROLL

consider spatial or temporal proximity of items to be “chunked.” Accordingly,
the G O T 0 prescription cannot be deduced from Miller’s analysis. Indeed,
virtually nothing of much interest could be deduced from the specifics of
Miller’s analysis. The connection is more informal: Miller’s work called
attention to the (obvious) fact that humans are limited with respect to the
information they can manage; Shneiderman was inspired by this to suggest a
particular tactic for easing information management in programming. The
informality of the theoretical linkages is not specially problematic: the non-
psychological-theory components of HCI do no better (e.g., what is an
interface toolkit?). Having theories cogent enough and pertinent enough to
even informally direct and inspire design work is a big advantage.

The problem uis-a-uis design by deduction is that in none of these examples
of cognitive description applied to design do we have in hand the ancillary
theoretical apparatus to deductively bridge between the “leading claims” and
the implementation details. GOMS is probably a reasonable first approxi-
mation framework for thinking about task analysis. Recognition probably is
easier than recall in many circumstances. GOTOs probably do strain human
information-processing capacity. But to use this theoretical material de-
ductively in design we need to know precisely how the details of given
situations interact with and modulate the psychological principles. None of
the theories is complete enough to tell us this. Hence none can be used
deductively.

To an extent, this lack can be addressed through theory development. For
example, Polson (1987) has developed the GOMS approach into a potentially
more useful design tool. However, other considerations indicate that HCI
design can never be rendered deductive. The particular complexity of software
technology stems from the fact that everything inherently interacts with
everything else (Brooks, 1987). The technological context plays an important
role in determining whether an idea will survive at all. For example, object-
oriented techniques have been seen as a major advance in software technology,
but the successful use of these techniques is limited by the availability of
appropriately supportive programming environments (Uebbing, 1987). Many
times these interactions cannot be anticipated at all. Presenting rich in-
formation displays and direct access to running code often entails cluttered
displays and inefficient performance. Many of these critical details and
interactions cannot be analyzed before a prototype system is built. Indeed, one
of the most important determinants of the success of software technologies is
their amenability to revision and reimplementation on hardware and software
platforms not even available when they were first developed (Brooks, 1987).

The cognitive description paradigm in HCI was a genuine advance. It
provided independent conceptual foundations for the psychology of HCI that
made it possible to develop useful theory. Reciprocally, it brought the HCI

PARADIGMS FOR HUMAN-COMPUTER INTERACTION 61

domain within the purview of academic psychologists. This has opened a two-
way dialog within which basic cognitive psychology may stand to gain as
much from the cognitive engineering case study of HCI as HCI may stand to
gain from the science of cognition (Carroll, 1987b; Norman, 1987).

4. Usabiiity-Innervated Invention

The human factors evaluation and cognitive description paradigms share
basic assumptions about the position of psychological analysis in HCI. They
assume that psychology operates outside the development process, outside
even the research prototyping process. They assume that the role of psy-
chologists in HCI is to offer commentary: evaluations, theoretical descrip-
tions, but not direct participation in the invention, design and development
of new HCI technologies and artifacts. This assumed positioning and role
for psychology in HCI is all the more striking when one recognizes that HCI
is fundamentally a design domain. HCI is about designing new software tools
and user interfaces. Seen in this light, the traditional paradigms for psy-
chology in HCI have pursued a tangential, supporting role in the field’s key
endeavor and raison d’etre.

It has, of course, been recognized that serious usability research needs to
pay serious attention to the nature of HCI domains and tasks. This concern
has always been in the focus of HCI work. But being relevant to designer
needs is not the same as taking the initiative in the design work itself. The
implicit division of labor in HCI has had chronic organizational conse-
quences. For example, a recent panel discussion at the ACM CHI’88 Con-
ference asked how human factors specialists, and cognitive scientists working
on u‘sability, can organize to work effectively with designers and developers
(Grudin, 1988). The answers offered are revealing: human factors professionals
should be placed directly into development groups, human factors profes-
sionals should manage the developers, and usability consultants from outside
the organization should be used(!). The traditional paradigms created an
organizationally adversarial basis for the exchange of commentary between
software developers and psychologists.

The traditionally assumed positioning and role of psychology within HCI
is now being seriously questioned. In this new paradigm of “usability-
innervated invention,” usability is seen as connecting the invention of HCI
artifacts to user needs no less essentially than nerves connect organs and
muscle tissues to sensory and motor brain centers. The activity of muscles
and organs is meaningful only insofar as it is innervated by sensation and
action; the activity of inventing HCI artifacts is meaningful only insofar as
it is innervated by usability considerations. Conversely, sensory and motor

62 JOHN M. CARROLL

centers exist primarily to innervate the body’s muscle and organs; under-
standing usability is important because it produces the critical direction for
HCI invention. In this view, HCI artifacts are not merely evaluated or de-
scribed in terms of their usability; they are conceived and created for usability.

4.1 Psychology as a Mother of Invention

Building and inventing things it not a traditional activity in psychological
research. Psychology is part natural science and part social science; its tradi-
tional focus is the analysis of natural and social phenomena. In the tech-
nological arena of HCI, this traditional focus was straightforwardly extended
to the analysis of technology through evaluation and theoretical description.
But these traditional activities also provided the opportunity for psycholo-
gists working in HCI domains to develop technological skills and domain
experience. In many cases, these psychologists are now in a position not only
to analyze usability problems, but to synthesize technological solutions. In
his plenary address at the CHI +GI’87 Conference, Tom Landauer (1987b)
succinctly captured this in casting “psychology as a mother of invention”
in HCI.

Many recent prototype systems and interface techniques were invented by
psychologists to instantiate specific psychological claims and to allow these
claims to be explored and developed empirically. For example, Landauer’s
group analyzed human performance in a variety of naming and reference tasks
to develop specific tools and techniques for keyword information systems
(e.g., Furnas et al., 1983). The database system Rabbit (Williams, 1984) and
its “retrieval by elaboration” paradigm embodied claims about the structure
of human memory and memory search as consisting of the manipulation of
concrete exemplars. The variety of “Minimalist” training materials and soft-
ware environments described in Carroll (1989) embody a set of claims about
how new users learn computer applications. The display management system
Rooms (Card and Henderson, 1987) embodies an analysis of typical user
working sets (services and data accessed simultaneously).

User-interface metaphors are a systematic and detailed intrusion of psy-
chology into modern computing system development (Carroll and Thomas,
1982; Carroll et al., 1988). For example, systems that provide electronic work-
spaces that can be written to and viewed by multiple users in a cooperative
interaction session are presented as “chalkboard” systems in the way that
they are described to users and even in the way that they appear and operate
(Stefik et al., 1987). Thinking of the system as a physical chalkboard provides
an initial familiarity for the user. It also suggests specific tasks and approaches
to accomplishing them. It provides the user with an initial conceptual vocabul-
ary within which to couch questions and draw conclusions. (Analogous points

PARADIGMS FOR HUMAN-COMPUTER INTERACTION 63

could be made for other new computer interface designs ranging from task-
oriented window layout (Carroll et al., 1987), to object-oriented programming
(Rosson and Alpert, 1988).)

Many recent structure-directed editors and intelligent tutoring systems for
programming are clearly vehicles for instantiating psychological analyses of
programming tasks and learning. For example, analyses of programming
plans (e.g., Soloway and Ehrlich, 1984) are embodied in the Bridge tutor
(Bonar and Liffick, 1987). Analyses of how students learn to program in Lisp
(Anderson et al., 1984) have been embodied in a variety of intelligent tutoring
systems for teaching Lisp (Anderson and Skwarecki, 1986; Reiser et al., 1988).
Indeed, Anderson (1987) has argued that designing and evaluating computer
tutors provides unique advantages to basic, academic psychological research
into the mental procedures and knowledge that comprise human cognition.

Of course, psychologists per se are not always the inventors, but psycholog-
ical rationale routinely plays a determining role in the invention of new
software technology. In this work, HCI transcends merely serving as an arena
for applying empirical experience and theoretical analysis to invention. A
better description is that a two-way relationship has developed in which HCI
artifacts themselves are treated as media for codifying experience and analysis,
in which HCI theories are “applied invention” no less than HCI artifacts are
“applied theory” (Carroll and Campbell, 1988). For example, the theoretical
development of the concept “direct manipulation” (Shneiderman, 1983)
devolved from a collection of specific HCI inventions. But this constitutes a
radical shift in the underlying ontology of HCI, namely, seeing computer
artifacts such as interface metaphors, menu hierarchies, programming para-
digms and languages, tutors, and the like as playing theory-like roles.

One standard role of theories is to codify empirically falsifiable claims
(Popper, 1965). Artifacts embody testable claims about how users can
understand and make use of system function in a medium that makes
appropriate empirical investigations possible. Each command name, each
icon, each menu makes claims about the ways users think about the tasks they
will undertake with these systems.

These claims are mutually interrelated, creating a sort of web of theory
more intricate and more comprehensive than any analysis deducible from
conventional discursive psychological theory. A piece of software, such as the
Unix operating system, makes a huge number of specific claims about what
command names, operations, and so forth will be convenient for users. These
claims can be wrong (see Norman, 1981). Desktop interfaces make myriad
claims about familiar presentation and natural conceptual vocabularies,
about clipboards, stationery pads, folders, waste baskets-about how these
objects behave and interact. Moreover, the leading claims, for example as
integrated within a metaphor such as the desktop, have myriad specific

64 JOHN M. CARROLL

dependencies on a diverse set of ancillary claims (for example, claims inherent
in the presentation of highlighting, preferences, and scrolling elevators).

Empirical theories provide explanations by placing logical and causal
constraints on phenomena. Artifacts support explanations of the form “this
specific feature has this specific usability consequence.” The “Tear Off
command in the early Lisa desktop system provides an example. In this
system, “Tear Off spawns a new instance from a prototype object: Tear Off
stationery applied to a stationery pad creates a piece of stationery. The
command was a menu selection, not a gesture (Move is an example of a
gestural command: one selects with the pointer and then moves by moving the
pointer). Thus, there was a sort of inconsistency between Move and Tear Off.
Some users initially tried to Tear Off by selecting and then rapidly sweeping
the pointer (making a tearing gesture). This error has little consequence, and
proved relatively easy for users to sort out on their own. A more difficult
problem stemmed from the fact that Tear Off also applied to non-pad objects
such as folders: the user needed to Tear Off from a “folder pad” to get a new
folder (Carroll and Mazur, 1986).

Theories also contribute to the development of science by providing useful
foundations for further theorizing. Artifacts facilitate theoretical development
in the sense that given artifacts make task analyses possible that in turn
facilitate the invention and development of new artifacts. The typewriter
metaphor was a critical step in the development of the desktop metaphor,
which in turn has been critical in the development of newer interface
metaphors such as rooms and task maps. Understanding user problems at this
level of qualitative detail can be of immediate use in the design of new software
artifacts. Indeed, in subsequent desktop interface products the Tear Off
command evolved into a Make New Folder command.

Theories enable and compel greater explicitness in empirical claims. This is
part of the traditional motivation to formalize. Artifacts serve this role in a
manner quite analogous to classical views of simulation (Fodor, 1968; Newell
and Simon, 1972). To paraphrase Newell and Simon, both must “perform” the
claims they incorporate: the implementation details must be made explicit,
which can lead to further learning about the nature of the claims being made.
Simulations, however, are used by psychologists for specific research pur-
poses; artifacts are used by a wide range of people to do real work. Simulations
are interpreted and evaluated by criteria of descriptive adequacy (Chomsky,
1965): a simulation of problem-solving behavior may be judged on the basis of
how closely it fits the sequence of moves in a verbal protocol, whether it
predicts all and only the kinds of errors that are observed, etc. Artifacts are
interpreted and evaluated by criteria of usability.

Simulations are usually seen as convenient vehicles for theories, but not as
necessary. Are artifacts merely convenient expressions of HCI theories, or do

PARADIGMS FOR HUMAN-COMPUTER INTERACTION 65

they play a more fundamental role? This question cannot be answered now,
but it seems likely that artifacts are in principle irreducible to a more
conventional theory medium. The reason for this, if it is so, would be the
unbounded interrelation of the many claims inherent in a computer artifact,
the fact that everything in software seems to affect everything else (Brooks,
1987), the fact that details of context and situation critically impinge upon the
usability of systems (Whiteside and Wixon, 1987; Winograd and Flores, 1986;
Suchman, 1987). All these may be views of the same underlying state of affairs:
the design of software may be of an order of complexity beyond that which
conventional theories can explain or predict (Hayek, 1967).

In the introduction, we considered the apparent paradox that product
innovations in user-interface design often lead HCI research rather than
following from it in the conventionally assumed flow of “technology transfer”
from Research to Development. However, the view of HCI in which its
artifacts play theory-like roles in organizing research defuses the perplexity of
this state of affairs. Empirical research often follows the explicit codification of
theories. In HCI the medium of choice for expressing theories of usability is in
many cases an exemplary artifact. The appearance of such an artifact
predictably stimulates empirical research.

4.2 Ecological Analysis

The paradigm of usability-innervated invention has many consequences for
the traditional empirical roles of psychologists working in HCI domains.
There are consequences both for what kinds of situations are studied and for
what kinds of information are sought in empirical studies. In both areas, the
driving considerations devolve from invention. The model of research practice
in experimental psychology, originally adapted to HCI through human
factors evaluation, has been augmented by the requirement that empirical
work bear more directly on the invention and development of new artifacts. In
this sense, current work is shifting toward greater responsiveness to the
ecology of HCI as an ecology of invention, design and development.

Ecologically responsive empirical analysis of HCI domains takes place in
uiuo: in software shops, more often than in psychological laboratories. It
addresses whole problems, whole situations, when they are still technologically
current, when their resolution can still constructively affect the direction of
technological evolution. Its principal goal is the discovery of design require-
ments, not the verification of hypothesized direct empirical contrasts or
cognitive descriptions. A recent example is the study by Curtis, et al. (1988) of
the software design process. The detailed interviewing of real designers
produced specific technical proposals for improving software tools and the
coordination of project management, an assessment of major bottlenecks, and

66 JOHN M. CARROLL

a new framework for thinking about software design as a learning and
communication process. (See Nielsen et al. (1986) and Rosson el al. (1988) for
similar kinds of studies.)

Carroll and Campbell (1988) characterized HCI invention in terms of the
“task-artifact cycle”: a given understanding of the tasks programmers need to
and want to accomplish helps to define objectives for new software artifacts
(languages, environments and education, etc.) to support them in these tasks.
Any artifact fundamentally alters the tasks for which it was designed, raising
the need for further task analysis, and in time for the design of further artifacts,
and so on. An example is the progression from user interfaces based on the
typewriter metaphor to those based on the desktop. Early word-processing
applications were designed to exploit specific knowledge their users already
had about typewriting, function keys, data display, command names and so
forth (Carroll and Thomas, 1982).

The typewriter metaphor, however, altered office tasks and in doing so
helped to open up technological possibilities by preparing users for further
electronic office applications (calculators, calendars, mail, database). This
evolution in office task expectations and understandings was better addressed
by systems employing the desktop metaphor. However, desktop systems also
presented a variety of specific problems and possibilities to users (Carroll and
Mazur, 1986; Whiteside et al., 1985). This further task analysis has again
helped to define further interface artifacts, new metaphors for display
organization in user interfaces (“rooms,” Card and Henderson, 1987; “task
paths,” Carroll et al., 1987).

To operate constructively within the task-artifact cycle, HCI empirical work
must provide rich analyses of real users working on real tasks. The main
research setting for such ecological analysis is the case study. A case study can
begin and end anywhere in the task-artifact cycle; the key requirement is access
to real situations. Case-study task analysis usually consists of the collection of
detailed, qualitative information (thinking-aloud protocols, interviews). Such
data are arbitrarily rich: they can be returned to over and over again, and
analyzed from many different perspectives. A typical approach is to make
videotapes to create a vivid and permanent data library. The development of
Minimalist training materials and software environments, cited earlier, was
based on such case-study analysis (Carroll, 1989). Mack’s (1988) inventory of
new-user expectations about cause-and-effect relationships in the operation of
a word processor was a case-study analysis culminating in the development
of a prototype that more intuitively presented word-processing function.

It is important to collect information over a significant span of time to
eliminate ephemeral effects. Monitoring patterns of actual use of a software
environment often supplements the more direct interview and protocol
techniques. Wixon et al. (1983) analyzed patterns of spontaneous interaction

PARADIGMS FOR HUMAN-COMPUTER INTERACTION 67

with an electronic mail application to determine how to design a more usable
command interface for the application. Kelley (1984) analyzed the desk
calendars of office workers to determine requirements for an electronic
calendar facility. Gould and Boies and their collaborators have designed a
series of voice messaging systems using this approach (Gould and Boies, 1983;
Gould et al., 1987).

The key goal of ecological task analysis in the task-artifact cycle is to
produce requirements for subsequent design work. This places emphasis on
identifying big factors- big needs, big usability problems. Thus, one typical
output of this phase is an error taxonomy, a qualitative description of what is
giving the user trouble, how it is happening, what users are doing in
consequence, etc. The complexity and rapid evolution of software technology
requires richer and more open-ended methods than the direct-contrast testing
of the human factors evaluation and cognitive description approaches. This
richer style of task analysis is interpretive, inductive; it seeks to discover, not
merely to confirm or disconfirm.

It often requires studying user-interface technologies and applications
before they are even developed: after all, that’s the point at which empirical
guidance can be most effectively directive (Carroll and Campbell, 1986). For
obvious reasons, it is difficult to do such work, but a variety of simulation
techniques have been developed. For example, Gould et al. (1983) simulated a
speech-recognition capability to explore technological tradeoffs in a tech-
nology that was not then available. Carroll and Aaronson (1988) analyzed
interactions with a simulated intelligent-help facility to help direct the
development of more usable artificial-intelligence applications.

To help direct the task-artifact cycle, new types of usability data and new
roles for usability data are being developed. For example, since the ideas that
lead HCI research typically become codified in products first, it is important to
be able to interpret running systems, to extract key ideas and work with them.
Norman (1981) made an influential psychological interpretation of key
aspects of the Unix operating system. Carroll and Mazur (1986) analyzed new-
user expectations and experiences using the on-line tutorial and direct-
manipulation interface of the Lisa system. Rosson and Alpert (1988) have
recently analyzed psychological implications of object-oriented design.
Carroll et al. (1988) outlined tools for analyzing user-interface metaphors in
design.

Another focus for the development of tools for empirical analysis is the
process of software and system development. A comprehensive methodology
of goal definition and measurement has been developed for guiding the
discovery of appropriate usability requirements and evaluating progress
toward meeting these requirements within the design process (Bennett, 1984;
Carroll and Rosson, 1985; Whiteside et al., 1988).

68 JOHN M. CARROLL

Usability-innervated invention offers a more directive role in framing new
applications and user interfaces, and a more ecologically responsive role for
empirical work. It incorporates and builds upon the prior orientations of
human factors evaluation and cognitive description, but pushes onward in
taking more seriously the fact that HCI is a design field, that it exists to invent
more usable systems and software. Earlier approaches to psychology in HCI
had in effect isolated the task analysis part of the task-artifact cycle from the
definition, development and first use of new software and user-interface
technology, because of preconceptions about the kinds of contributions
psychologists might make to HCI. As a result, and in addition to a variety of
specific limitations discussed above, they offered only commentary on the
process and products of design, not participation.

5. The Ecology of Computing

The progression of three paradigms in the recent history of HCI comprises
a case study of a field discovering what it is about. HCI has achieved much by
exploiting the context of its own practice. It has assimilated the evaluation
methodology of experimental psychology, the theory of cognitive science, and
the invention and development of new technology. Each step in this evolution
has solved some of the problems posed by the step preceding it.

The emerging paradigm of usability-innervated invention redresses the
ecological limitations of direct-contrast laboratory evaluations by promoting
new methods and new roles for empirical evaluation. It redresses the theo-
retical limitations of design by deduction by countenancing richer sources
and embodiments of scientific theory. This in turn has resolved other puzzles
about HCI. For example, the primacy of product-development ideas in HCI
research is puzzling only until it is recognized that product development is a
major context for HCI research: one of the important roles of psychology in
HCI is to provide interpretation and conceptual clarification for product
innovations.

Even the mysterious race between function and usability dissolves:
appropriately contextualized HCI research cannot lag the technological
leading edge; it lives at the technological leading edge; indeed, it creates the
technological leading edge. For example, there is no race between usability
and function in the development of the Rooms display management system
(Card and Henderson, 1987), even though the Rooms approach is at the edge
of our current understanding of display management tasks and artifacts. The
race between function and usability is simply an untoward side-effect of the
organizational consequences of human factors evaluation and cognitive
description.

PARADIGMS FOR HUMAN-COMPUTER INTERACTION 69

Usability-innervated invention offers a new basis for these organizational
dynamics. When the basis for collaboration is evaluative or descriptive
commentary offered from outside the design team, the grounds are frequently
political, and power-based, or interpreted as political and power-based. This is
completely unconstructive: it pushes empirical evaluation and psychological
theory further away from invention. Operating within the task-artifact cycle as
task analysts, as inventors of artifacts, offers a deeper source of interdisci-
plinary and inter-organizational coordination: shared understanding of what
the problems are, why the current design situation is what it is, what the
immediate and longer-term options are, and how they trade off. It offers the
alternative of committed, cooperative work.

5.1 Science and Invention

There is a conventional view of the relationship between scientific research
and the invention, design and development of practical artifacts. The idea is
that basic science provides an understanding of nature which can then be
applied deductively in practical contexts. The relationship between science
and invention in HCI, as it has emerged through the course of the last 15 years,
is interesting from this standpoint in that it appears to be culminating (at least
to this point in time) somewhat unconventionally.

To be sure, the conventional view was what the field started out with: the
vision of the human factors evaluation and cognitive description paradigms
was to develop an empirical basis, to develop a theoretical framework and
finally to apply the theory deductively in design. Through hard experience,
HCI discovered that things were not this neat. Invention produces theory in
HCI at least as much as it applies theory, and this has fundamentally altered
the nature of the empirical work. The resolution of this may lie in a
countercurrent in the history of science, questioning the conventional view
itself. For example, Hindle (1981) analyzed a variety of 19th-century
inventions and failed to find any deductive grounding in the basic science of
the time. Hindle suggests that the conventional view may have developed as
recently as the 1850s in the American scientific establishment as a tactic for
increasing the prestige of and federal support for basic research.

Many well known instances of invention clearly do not conform to the
conventional view. The pulley, for example, had been used effectively for some
2000 years before an adequate scientific analysis of its operation was
developed within Newtonian mechanics. The violins of the 17th century were
so finely crafted that their design was merely emulated for over 200 years.
Indeed, only in the last couple of decades has there been any appreciable
acoustic understanding of how violins really work (Hutchins, 1962). And it is
not clear yet whether the science of acoustics itself was more a contributor to
or a beneficiary of this work.

70 JOHN M. CARROLL

Of course, there is a relation between basic science and invention, but not a
simple deductive relation. Gomory (1983) puts the point well when he argues
that the development of technology is both more complex and less predictable
than the basic research from which it is seen to spring. Gomory discusses the
first 150 years of technology development for the steam engine. He shows that
the “revolutionary” engines of the mid nineteenth century actually evolved
through many small steps, each relying on the chance availability of a
technological niche, an application in which the technology could survive and
develop. The case study of HCI suggests that the relation between basic
science and invention can be highly interactive and reciprocal. The conven-
tional view goes wrong in trying to frame this relation too narrowly.

It is a commonplace of the philosophy of science since positivism to observe
that there are no “discovery procedures,” no algorithms to carry us from the
raw material of empirical science to a theoretical explanation of that raw
material. A way to put this point is to say analogously that there are no
“invention procedures”: the logical leap from basic data and theory to the
invention and development of a usable artifact is neither more or less
deterministic than the step we are more familiar with, namely the step from the
raw material of experience to a theory of a conventional sort. The applied
science of the conventional view is a myth.

Psychology is a young science, so is Computer Science, so is Cognitive
Science, and above all, so is HCI. But this raises the question of whether the
complex and reciprocal interaction of science and invention in HCI is
attributable just to the youth of the relevant fields, to scientific growing pains
as it were. In view of this possibility it is relevant to consider the acoustic
analysis of the violin as conducted over the past 40 years by members of the
Catgut Society, an interdisciplinary group of musicians, instrument craftsmen,
physicists and engineers. Carla Maley Hutchins, the senior member of this
team, told me an interesting anecdote about an early stage in her collaboration
with Bell Labs physicists. The physicists’ initial approach was to disassemble a
violin, induce sine waves and measure resulting resonances.

It’s a beautiful image; it recalls the direct contrasts of human factors
evaluation and the shallow theories of cognitive description. It recalls models
of error-free user behavior as bases for understanding how to design usable
computer systems and applications. It is the conventional strategy of divide
and conquer, which too often requires subtracting out the essence of the
problem being solved. Inducing pure sine waves into the pieces of the violin to
measure the resonances is not an adequate approach to understanding the
violin. The sound to which a real violin responds is not a pure sine wave and
it is not induced; it is a complex tone produced by bowing. Moreover, the
resonances in a whole violin derive both from the parts and from the
composition of the parts, indeed from the big chunk of air trapped within

PARADIGMS FOR HUMAN-COMPUTER INTERACTION 71

the composition of the parts. Analyzing the parts, does not add up to an
understanding of the behavior of the whole.

The point is not that these idealized acoustic analyses were pointless. Such
work is on-going, and has even produced techniques useful in violin-making
(Hutchins, 1981). And the point is not that acoustic science has nothing to offer
as a foundation for understanding violins (bowing does not produce pure sine
waves, but it does produce sound after all). The point is that even in physics the
initial approach to applying science to design is often simplified and
inadequate, whereas the effective role is more interactive and reciprocal.
Indeed, the comparison can be pushed much further: the research of the
Catgut Society led to the design and development of a new set of stringed
instruments, the Violin Octet. The analysis could go only so far when its
purview was an account of the standard string quartet (which acoustically is a
very accidental collection of instruments). To develop and assess laws of
acoustic scaling, to test and develop claims about the violin, it was necessary to
build novel instruments (Hutchins, 1967; Hutchins and Schelleng, 1967).

The violin is intrinsically a very appealing example. But one needn’t go so
far. Anyone in the New York area recalls the renovation of Carnegie Hall.
There was much concern and much debate about the impact this would have
on the famous acoustics of that hall. Acoustics, the old science of physics,
could not deductively direct or predict the outcome. Indeed, to this day the
only fact that everyone agrees on is that the acoustics of Carnegie Hall are now
different.

5.2 The Current Perplexity

Failure to appreciate the subtleties of technology development, coupled
with the inherent limitations of the human factors evaluation and cognitive
description paradigms of HCI and the emergence of the usability-innervated
invention paradigm, has caused substantial perplexity in the field. One body of
work has responded to Newel1 and Card’s (1985) worry that psychology must
be scientifically hard to survive in HCI by retreating into the study of low-level
phenomena and of highly constrained situations creating a very insular
research microcosm. One of the key areas of its focus is replicating classic
phenomena from the psychology of nonsense-list learning (e.g., Polson et al.,
1987). This approach flaunts all the limitations of the cognitive description
paradigm. It is not at all clear that it can be relevant to HCI design work.

Another body of work has rejected psychology as a totally inappropriate
foundation for design work in HCI (Whiteside and Wixon, 1987; Winograd
and Flores, 1986). In this view, focussing on models of the mind and
conceiving of people as computational devices that process inputs, generate
goal lists, and then execute plans and responses all merely obscure and

72 JOHN M. CARROLL

obstruct the designer’s most important responsibility and objective: to
understand the user’s needs and wishes and to serve the user. This work flaunts
the theoretical limitations of human factors evaluation, looking to hermeneu-
tics as a conceptual foundation for design and emphasizing interpretations
that are unique to the situation and to the individual doing the interpreting,
and explicitly discouraging model-building or any form of abstraction.
However, since it is bound to particular cases, this work cannot provide any
framework for understanding HCI phenomena as types.

Both approaches are dismal in prospect: one offering no hope of practical
impact and the other no hope of understanding. However, from the stand-
point of the present discussion these extreme positions have despaired too
quickly. An orderly evolution of HCI work has produced a paradigm that
builds upon the genuine contributions of human factors evaluation and
cognitive description and at the same time redresses their limitations with
respect to design impact and the ecological validity of empirical work.

HCI has often been described as an “interdisciplinary” research area, but
only now are the full interdisciplinary possibilities emerging. Participating
fully and in a variety of roles in the evolution of computer technology offers
psychologists in HCI a uniquely creative opportunity. It’s a demanding
opportunity. Inventing the future is more difficult than commenting on it.
Pushing psychological theory to interpret and analyze new technological
situations and embodying psychological claims and results in HCI artifacts is
not easier than evaluating finished systems, computing t-tests and calculating
performance times. But then one does not move to the frontier for the comforts
of familiarity. The possibility and the challenge of HCI today is to move
forward to new roles and new ideas in technology and science.

ACKNOWLEDGEMENT

This paper is derived from lectures given at Teachers College, Columbia University, the
University of Michigan, the University of Western Ontario, and the IBM Watson Research
Center in the winter of 1988, and from collaborative discussions with Robert Campbell and Elliot
Soloway. I am grateful to Norman Brown, John Karat, Wendy Kellogg, Joan Roemer, Mary Beth
Rosson and Linda Tetzlaf for comments on an earlier version.

REFERENCES

Adelson, B. (1981). Problem solving and the development of abstract categories in programming

Anderson, J. R. (1987). Methodologies for studying human knowledge. Brain and Behavioral

Anderson, J. R., and Skwarecki, E. (1986). The automated tutoring of introductory computer

languages. Memory and Cognition 9,422-433.

Sciences 10 (3). 467-505. (With commentary)

programming. Comm. ACM 29,842-849.

PARADIGMS FOR HUMAN-COMPUTER INTERACTION 73

Anderson, J. R., Farrell, R., and Sauers, R. (1984). Learning to program in Lisp. Cognitive Science

Barnard, P. J., Hammond, N. V., Morton, J., Long, J. B., and Clark, 1. A. (1981). Consistency and
compatibility in human-computer dialog. Int. J . Man-Machine Studies 15.87-134.

Bennett, J. L. (1984). Managing to meet usability requirements: Establishing and meeting software
development goals. In “Visual display terminals” (J. Bennett, J. Sandelin, and M. Smith, eds.),
pp. 161-184. Prentice-Hall, Englewood Cliffs, New Jersey.

Black, J. B., and Sebrechts, M. M. (1 981). Facilitating human-computer communication. Applied
Psycholinguistics 2, 149- 177.

Bonar, J. G., and LiRck, B. W. (1987). A visual programming language for novices. University of
Pittsburgh Technical Report LSP-5.

Brooks, F. P. (1987). No silver bullet: Essence and accidents of software engineering. IEEE
Computer 20, 10-19.

Card, S. K.. and Henderson, D. A. (1987). A multiple virtual-workspace interface to support user
task switching. Proc. CHI + G1’87: Human Factors in Computing Systems and Graphics
Interface, pp. 53-59.

Card, S. K., English, W. K., and Burr, B. J. (1978). Evaluation of mouse, rate-controlled isometric
joystick, step keys, and task keys for text selection on a CRT. Ergonomics 21 (8), 601-613.

Card, S. K., Moran, T. P., and Newell, A. (1983). “The Psychology of Human-Computer
Interaction.” Erlbdum, Hillsdale, New Jersey.

Carlisle, J. H. (1970). Comparing behavior at various computer display consoles in time-shared
legal information. Rand Corporation, Report No. AD712695 Santa Monica, California.

Carroll, J. M. (1982). Learning, using and designing command paradigms. Human Learning:
Journal of Practical Research and Applications I , 31-63.

Carroll, J. M. (1985). “What’s in a Name? An Essay in the Psychology of Reference.” W. H.
Freeman, New York.

Carroll, J. M. (1987a). Five gambits for the Advisory Interface Dilemma. In “Psychological Issues
of Human Computer Interaction in the Work Place” M. Frese, U. Ulich, and W. Dzida,
pp. 257-274. North-Holland, Amsterdam.

Carroll, J. M., ed. (l987b). “Interfacing Thought: Cognitive Aspects of Human Computer
Interaction.’’ Bradford Books/M.I.T. Press, Cambridge, Massachusetts.

Carroll, J. M. (1988). Modularity and naturalness in cognitive science. Metaphor and Symbolic
Activity 3 (2), 61-86.

Carroll, J. M. (1989). “The Nurnberg Funnel: Designing Minimalist Instruction for Practical
Computer Skill,” To be published.

Carroll, J. M., and Aaronson, A. P. (1988). Learning by doing with simulated intelligent help.
Comm. ACM 31, 1064-1079.

Carroll, J. M., and Campbell, R. L. (1986). Softening up Hard Science: Reply to Newell and Card.
Human-Computer Interaction 2, 227-249.

Carroll, J. M., and Campbell, R. L. (1988). Artifacts as psychological theories: The case of human-
computer interaction. IBM Research Report RC 13454. Yorktown Heights, New York. To
appear in 1989 in Behavior and Information Technology 8.

8.87-129.

Carroll, J. M., and Mazur. S. A. (1986). Lisa Learning. IEEE Computer 19(1 I), 35-49.
Carroll, J. M., and Rosson, M. B. (1985). Usability specification as a tool in interactive

development. I n “Advances in Human-Computer Interaction 1” (H. Hartson, ed.) pp. 1-28.
Ablex, Norwood, New Jersey.

Carroll, J. M., and Soloway, E. (1988). The evolving role of software psychology in software
development practice. Unpublished manuscript, IBM Watson Research Center, Yorktown
Heights, New York.

Carroll, J. M. and Thomas, J. C. (1982). Metaphor and the cognitive representation of computing
systems. IEEE Trans. Systems, Man and Cybernetics 12, 107- 1 1 5.

74 JOHN M. CARROLL

Carroll, J. M., Herder, R. E., and Sawtelle, D. S. (1987). TaskMapper. Human-Computer
Interaction: Proceedings of INTERACT’87, pp. 973-978.

Carroll, J. M., Mack, R. L., and Kellogg, W. A. (1988). Interface metaphors and user interface
design. In “Handbook of Human-Computer Interaction” (M. Helander, ed.). North Holland,
Amsterdam, pp. 67-85.

Chapanis, A. (1959). “Research Techniques in Human Engineering.” The Johns Hopkins Press,
Baltimore, Maryland.

Chase, W. C., and Simon, H. A. (1973). Perception in chess. Cognitive Psychology 4, 55-81.
Chi, M. T., Glaser, R., and Farr, M. J., eds (1988). “The Nature of Expertise.” Erlbaum, Hillsdale.

Chomsky, A. N. (1965). ”Aspects of the Theory of Syntax.” MIT Press, Cambridge,

Crowder, R. G. (1976). “Principles of Learning and Memory.” Erlbaum, Hillsdale, New Jersey.
Curtis, B. (1980). Measurement and experimentation in software engineering. Proc. I E E E 68 (9).

Curtis, B. (Ed.) (1985) “Human Factors in Software Development.” IEEE Computer Society
Press, Washington, D. C.

Curtis, B. (1986). By the way, did anyone study any real programmers? In “Empirical Studies of
Programmers” (E. Soloway and S. lyengar, eds.), pp. 256-262. Ablex, Norwood, New Jersey.

Curtis, B., Krasner, H., and Iscoe, N. (1988). A field study of the software design process for large
systems. Comm. ACM 31, 1268-1287.

Dijkstra, E. W. (1972). Notes on structured programming. In “Structured Programming” (0. J.
Dahl, E. W. Dijkstra and C. A. R. Hoare, eds.), pp. 1-82. Academic Press, New York.

Dreyfus, H. L., and Dreyfus, S. E. (1986). “Mind ouer Machine: The Power of Human Intuition and
Expertise in the Era of the Computer.” The Free Press, New York.

Esper, E. A. (1925). A technique for the experimental investigation of associative interference in
artifical linguistic material. Language Monographs 1, 1-47.

Fodor, J. A. (1968). “Psychological Explanation.” Random House, New York.
Furnas, G. W., Landauer, T. K., Gomez, L. M., and Dumais. S. T. (1983). Statistical semantics:

Analysis of the potential performance of key-word information systems. Bell System Technical

New Jersey.

Massachusetts.

1144-1 157.

J., 62 1753 - 1806.
Gleick, J. 1987. “Chaos: Making a New Science.” Viking, New York.
Gomez, L. M., and Lochbaum, C. C. (1985). People can retrieve more objects with enriched

keyword vocabularies. But is there a performance cost? In “Human-Computer lnteraction-
INTERACTBY (B. Shackle, ed.), pp. 257-261. North Holland, Amsterdam.

Gomory, R. E. (1983). Technology development. Science 220, 576-580.
Gould, J. D., and Boies, S. J. (1983). Human factors challenges in creating a principal support office

system-The Speech Filing System approach. ACM Trans. O&e Information Systems I (4),

Gould. J. D., and Lewis, C. H. (1985). Designing for usability: Key principles and what designers

Gould, J. D., Boies, S. J., Levy, S., Richards. J. T., and Schoonard, J. (1987). The 1984 Olympic

Gould, J. D., Conti, J., and Hovanyecz, T. (1983). Composing letters with a simulated listening

Green, P. (1987). Tips on writing a good paper proposal. Computer Systems Technical Group Bull.

Grudin, J. 1988. Integrating human factors in software development. CHI ‘88 Conference on

Hauptmann, A. G., and Green, B. F. (1983). A comparison of command, menu-selection and

273 - 298.

think. Comm. ACM 28(3), 300-311.

Message System: A case study of system design. Comm. ACM 30,758-769.

typewritter. Comm. ACM 26 (4). 295-308.

14, 6-10.

Human Factors in Computing Systems, pp, 157-160.

natural language compter programs. Behauiour and hformation Technology 2, 163- 178.

PARADIGMS FOR HUMAN-COMPUTER INTERACTION 75

Hayek, F. A. (1967). The theory of complex phenomena. I n ‘Studies in Philosophy, Politics, and

Hindle, B. (1981). “Emulation and Invention.” New York University Press, New York.
Holt, R. W., Boehm-Davis, D. A., and Schultz, A. C. (1987). Mental representations of programs

for student and professional programmers. I n “Empirical Studies of Programming: Second
Workshop” (G. M. Olson, S. Sheppard, and E. Soloway, eds.), pp. 33-46. Ablex, Norwood,
New Jersey.

Economics” (F. A. Hayek, ed.). University of Chicago Press, Chicago.

Hutchins, C. M. (1962). The physics of violins. Scientific American, November (Reprint 289).
Hutchins, C. M. (1967). Founding a family of fiddles. Physics Today 20 (2).
Hutchins, C. M. (1981). The acoustics of violin plates. Scientific American 245 (4), 170-186.
Hutchins, C. M. and Schelleng, J. C. (1967). A new concert violin. J. Audio Engineering Soc.

15 (4).
Kelley, J. F. (1984). An iterative design methodology for user-friendly natural language office

information applications. ACM Trans. O@ce Information Systems 2, 26-41.
Landauer, T. K. (1987a). Relations between cognitive psychology and computer system design. I n

“Interfacing Thought: Cognitive Aspects of Human-Computer Interaction” (J. M. Carroll, ed.),
pp. 1-25. Bradford/MIT Press, Cambridge, Massachusetts.

Landauer, T. K. (1987b). Psychology as a mother of invention. Proc. CHI + GI87: Human
Factors in Computing Systems and Graphics Interface, pp. 333-335.

Landauer, T. K., Galotti, K. M., and Hartwell, S. (1983). Natural command names and initial
learning: A study of text editing terms. Comm. ACM 26,495-503.

Ledgard, H., Whiteside, J. A,, Singers, A,, and Seymour, W. (1980). The natural language of
interactive systems. Comm. ACM 23, 556-563.

Liebelt, L. S., McDonald, J. E., Stone, J. D., and Karat, J. (1982). The effect of organization on
learning menu access. Proc. Human Factors Society, 26th Annual Meeting, pp. 546-550.

Love, T. (1977). Relating Individual Differences in Computer Programming Performance to
Human Information Processing Abilities. Ph. D. Dissertation, University of Washington.

Mack, R. L. (1988). Understanding and learning text-editing skills: Observations on the role of
new user expectations. I n “Cognition, Computing and Cooperation” (S. Robertson, J. Black,
and W. Zachary, eds.). Ablex Publishing, Norwood, New Jersey.

MacGregor, J. N. and Lee, E. S. (1987). Performance and preference in videotex menu retrieval:
A review of the empirical literature. Behaoior and Information Technology 6.43-68.

McKeithen, K. B., Reitman, J. S., Reuter, H. H., and Hirtle, S. C. (1981). Knowledge organization
and skill differences in computer programmers. Cognitive Psychology 13,307-325.

Miller, G. A. (1956). The magical number seven plus or minus two: Some limits on our capacity for
processing information. Psych. Rev. 63, 81 -97.

Moran, T. P. (1981). The command language grammar: A representation for the user interface of
interactive computer systems. Int. J. Man-Machine Studies 15, 3-50.

Murrel, S. (1983). Computer communication system design affects group decision making. Proc.
CHI 83 Human Factors in Computing Systems, pp. 63-67.

Newell, A. (1973). You can’t play twenty questions with nature and win. In “Visual Information
Processing” (W. Chase, ed.). Academic Press, New York.

Newell, A,, and Card, S. K. (1985). The prospects for psychological science in human-computer
interaction. Human-Computer Interaction 1,209- 242.

Newell, A,. and Simon, H. A. (1972). “Human Information Processing.” Prentice-Hall, Englewood
Cliffs, New Jersey.

Nielsen, J., Mack, R. L., Bergendorf, K., and Grischkowsky, N. L. (1986). Integrated software
usage in the professional work environment: evidence from questionnaires and interviews. Proc.
CHI ‘86 Human Factors in Computing Systems, pp. 162-167.

Norman, D. A. (1981). The trouble with Unix. Datamation 27, 556-563.
Norman, D. A. (1987). Cognitive Engineering-Cognitive Science. In “Interfacing Thought:

76 JOHN M. CARROLL

Cognitive Aspects of Human-Computer Interaction” (J. M. Carroll, ed.), pp. 323-336.
Bradford/MIT Press, Cambridge, Massachusetts.

Paivio, A. (1971). “Imagery and Verbal Processes.” Holt, Rinehart & Winston, New York.
Polson, P. (1987). A quantitative theory of human-computer interaction. In“1nterfacingThought:

Cognitive Aspects of Human-Computer Interaction.” (J. M. Carroll, ed.), pp. 184-235.
Bradford/MIT Press, Cambridge, Massachusetts.

Polson, P., Kieras, D., and Muncher, E. (1987). Transfer to skills between inconsistent editors.
Microelectronics and Computer Technology Corporation Technical Report ACA-HI-395-87,
Austin, Texas.

Popper, K. (1965). “Conjectures and Refutations.” Harper and Row, New York.
Postman, L., and Stark, K. (1962). Retroactive inhibition as a function of set during the

Pylyshyn, Z. (1973). What the mind’s eye tells the mind’s brain: A critique of mental imagery.

Reiser, B. J., Friedman, P., Gevins, J., Kimberg, D. Y., Ranney, M., and Romero, A. (1988). A
graphical programming language interface for an intelligent Lisp tutor. Princeton University
CSL Report 15.

Robertson, G., McCracken, D., and Newell, A. (1981). The ZOG approach to man-machine
communication. Int. J . Man-Machine Communication 14,461-488.

Rosson, M. B., and Alpert, S. (1988). The cognitive consequences of object-oriented design. IBM
Research Report RC 14191. Yorktown Heights, New York.

Rosson, M. B., Maass, S., and Kellogg, W. A. (1988). The designer as user: Building requirements
for design tools from design practice. Comm. ACM 31, 1288-1298.

Sheil, B. A. (1981). The psychological study of programming. ACM Computing Surveys 13,
10 1 - 120.

Sheppard, S. B., Curtis, B., Millman, P., and Love, T. (1979). Modern coding practices and
programmer performance. IEEE Computer 12 (12), 41-49.

Shneiderman, B. (1980). “Software Psychology: Human Factors in Computer and Information
Systems.” Winthrop. Cambridge, Massachusetts.

Shneiderman, B. (1983). Direct manipulation: A step beyond programming languages. I E E E
Computer 16 (8), 57-69.

Shneiderman, B., and McKay, D. (1976). Experimental evaluations of computer program
debugging and modification. Proc. 6th Int. Congress of the Int. Ergonomics Assoc.

Soloway, E., and Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE Trans.
Sofitware Engineering SElO (3,595-609.

Stefik, M., Foster, G., Bobrow, D., Kahn, K., Lanning, S., and Suchman, L. (1987). Beyond the
chalkboard: Computer support for collaboration and problem solving in meetings. Commu.

interpolated task, J. Verbal Learning and Verbal Behaoior 10,44-51.

Psych. Bull. 80, 1-24.

ACM 30.32-47.
Suchman, L. (1987). “Plans and Situated Actions.” Cambridge University Press, Cambridge.
Tennant, H. R., Ross, K. M., and Thompson, C. W. (1983). Usable natural language interfaces

through menu-based natural language understanding. Proc. CHI ’83 Human Factors in
Computing Systems, pp. 154- 160.

Uebbing, J. Panel on making products. Proc. OOPSLA ‘87: Object-Oriented Programming Sys-
tems. Languages and Applications. Special issue of Sigplan Notices 23 (5) . 1988, pp. 105- 1 1 I .

Walther, G. H., and ONeil, H. F. (1974). On-line user-computer interface: the effects of interface
flexibility, terminal type, and experience on performance. Proc. National Computer Coni 43.

Weissman, L. (1974). A Methodology for Studying the Psychological Complexity of Computer
Programs. Ph.D. Dissertation, University of Toronto.

Whiteside, J., and Wixon. D. (1987). Improving human-computer interaction-a quest for
cognitive science. In “Interfacing Thought: Cognitive Aspects of Human-Computer Interac-
tion” (J. M. Carroll, ed.), pp. 337-352. Bradford/MIT Press, Cambridge, Messachusetts.

PARADIGMS FOR HUMAN-COMPUTER INTERACTION 77

Whiteside. J., Bennett, J., and Holtzblatt, K. (1988). Usability engineering: Our experience and
evolution. In “Handbook of Human-Computer Interaction” (M. Helander, ed.). North
Holland, Amsterdam.

Whiteside, J., Jones, S., Levy, P. S., and Wixon, D. (1985). User performance with command, menu,
and iconic interfaces. Proc. CHI ’85: Human Factors in Computing Systems, pp. 185-191.

Williams, M. D. (1984). What makes RABBIT run? Int. J . Man-Machine Studies 16,405-438.
Winograd, T., and Flores, F. (1986). “Understanding Computers and Cognition: A New

Wixon, D., Whiteside, J.. Good, M., and Jones, S. (1983). Building a user-defined interface. Proc.
Foundation for Design.” Ablex, Norwood, New Jersey.

CHI ‘83 Human Factors in Computing Systems, pp. 24-21.

This Page Intentionally Left Blank

Protocol Engineering

MlNG T . LIU*

1 .
2 .

3 .

4 .

5 .

6 .

7 .

8 .

9 .

Department of Computer and Information Science
The Ohio State University
Columbus. Ohio

Introduction .
Network Architecture .
2.1 OSI Reference Model
2.2 Layering and Abstraction
2.3 Protocol and Service Specifications
Formal Models for Protocol Specification
3.1 State-Transition Models
3.2 Programming Language Models
3.3 Hybrid Models .

4.1 Reachability Analysis

4.3 PROVAT Strategy .
4.4 Preliminary Results .
Verification and Conformity Analysis
5.1 Service Concept .
5.2 Conformity Analysis .
5.3 Axiomatic Approach .
5.4 Transformational Approach
Protocol Synthesis .
6.1 Previous Work .
6.2 Our Synthesis Technique
6.3 Future Work .
Timed Models and Performance Analysis
7.1 Previous Timed Models
7.2 TTG and TTG' Models
7.3 ITTG Model .
Protocol Conversion .
8.1 Previous Work .
8.2 Our Conversion Approach
8.3 Future Work .
Implementation and Conformance Testing
9.1 Automated Implementation

Protocol Validation .

4.2 Relief Strategies .

9.2 Conformance Testing

80

83
85
88
88

96
105
110
I l l
114
117
120
126
126

130
131
133
134
137
143
144
145
148
149
155
156
160
165
166
167

83

89

128

168

* This work was supported by U.S . Army CECOM. Ft . Monmouth. NJ. under Contract No .
DAAB07.88.K.AW3 . The reviews. opinions. and/or findings contained in this article are those of
the author and should not be construed as an official Department of the Army position. policy or
decision .

ADVANCES IN COMPUTERS. VOL . 29

79
Copyright '(" 1Y8Y by Academic Press . Inc .

All rights of reproduction in any form rerrved .
ISBN n-12-012129-R

80 MlNG T. LIU

10. Automated Protocol Design 170
10.1 IBMSystem . 171
10.2 PROSPEC System . 171
10.3 Berkeley System . I73
10.4 PANDORA System. 175
10.5 BBN/NIST System . 176
10.6 TTG/ETG Systems. 178
10.7 KBPV System. 179

1 1 . Conclusion . 183
Acknowledgments . 184
References . I84

1. Introduction

Recent advances in microelectronics and rapid developments in in-
formation technology have made computer networking and distributed
processing possible. As a result, many computer-communication networks
have been designed, implemented, and put into service around the world
during the past decade (Stalling, 1988; Tanenbaum, 1988). They range from a
few connected personal computers to a complex interconnection of thousands
of computers, using a wide variety of communication media such as twisted
wire pairs, coaxial cables, optical cables, microwave links and satellite
channels. Worldwide electronic mail is now a daily reality for millions of
people, and networks have become an essential tool for many users in
academia, business, industry and government.

Depending on specific applications and circumstances, the communication
between a pair of end users in a computer network may take several different
forms. For example, a terminal user may invoke a remote applications
program, and two application programs in different hosts may interact with
each other. To enable an orderly exchange of information between physically
separated computers, a set of rules is required to govern the interaction
between the communicating entities. These rules are collectively called
computer-communication protocols, or protocols for short.

Protocols are simply a set of rules prescribing the manner in which
communication takes place, the meaning of information exchanged and the
appropriateness of communication under prescribed conditions. At the lowest
level, protocols may prescribe how information is to be transmitted and
received over a physical medium, and how that information is to be physically
represented on the medium. At higher levels, protocols aim to overcome
inherent unreliability in low levels, to prevent congestion and deadlocks, to
control the flow of information, and to provide mechanisms for delivery,
addressing and routing of messages. At still higher levels, protocols may
provide services for transferring files between physically separated computers,
for enabling communication between incompatible terminals, for ensuring

PROTOCOL ENGINEERING 81

security in data transmission, etc. Therefore, protocols play an important role
in computer networks, and form the cornerstone upon which computer
networks are built.

Because protocols are the rules defining the interaction between commu-
nicating entities residing at different nodes of the network, running in parallel,
and communicating through possibly unreliable channels, their design is
always a challenging problem. In the last two decades, informal techniques
used to design these protocols have been largely successful, but have also
yielded a disturbing number of errors or unexpected and undesirable behavior
in those protocols (Bochmann and Sunshine, 1980). Consequently, formal
methods of protocol design have emerged in the last decade. Using the formal
approach, a protocol is represented by a formal model (or interchangeably, a
formal specification). Analytic techniques are then used to examine logical
correctness and performance of the protocol before it is actually implemented.
The methodology has been proved to be so effective in identifying many
protocol design errors that the discipline in this area is now called protocol
engineering and is currently receiving more and more attention from both
industry and academia.

Referring to Fig. 1, one can see the domain of protocol engineering as a
system that allows a protocol designer to specify a protocol formally, to test
this specification for correctness (validation of syntax and verification of
semantics), to obtain some early indication of how it would perform
(efficiency), to compile major parts of the implementation directly from the
formal specification, and to test the resultant implementation for conformance
to its specification (Rudin, 1985).

With the proliferation of different network architectures, protocol conver-
sion is needed to achieve interoperability between processes that implement
different protocols. How should it be done? How can one prove that a
conversion is correct? What is meant by a correct conversion? Again, formal
methods have been recently proposed to tackle these problems (Green, 1986;
Lam, 1986). Thus, protocol conversion can be included in the domain of
protocol engineering.

Another area of interest in protocol engineering is protocol synthesis.
Protocol analysis and protocol synthesis are two inherently different but
complementary approaches to ensuring the correctness of communication
protocols (Zafiropulo et a/., 1980). In the analysis approach, an already
designed protocol is first examined to reveal some properties, desirable or
undesirable, and then modified to get rid of the undesirable ones; in the
synthesis approach, rules ensuring some desirable properties are enforced
during the protocol design process. The synthesis approach has the advantage
over the analysis approach in that it can assist the protocol designer to reduce
the possibility of makingerrors, if not to prevent it totally, during the protocol
design process.

82 MING T. LIU

PROTOCOL
DESIGNER

\'
\

CONVERSION/
INTERWORKING

PROTOCOL
IMPLEMENTATION

FIG. 1. Various aspects of protocol engineering

PROTOCOL ENGINEERING 83

This article presents both an expository survey and our research results in
protocol engineering. Because of the length of the presentation, no attempt
has been made to describe all the published work in the literature or to give a
detailed comparison of our results with those of other researchers. It is hoped
that the presentation here and the associated discussion will enable the reader
to understand the current state of the art in protocol engineering (Zim-
mermann, 1983).

In passing, it is worth noting that Piatkowski was probably the first person
to coin the term protocol engineering at an IFIP-sponsored workshop on
computer-network protocols in 1981 (Piatowski, 1981). Just like the field of
software engineering that took about 20 years to mature, some progress has
been made in protocol engineering since 1981, but it has been slow and tedious
(Piatowski, 1983, 1986; Rudin, 1985, 1988). Nevertheless, with the advent of
the Integrated Services Digital Network (ISDN), which is a projected
worldwide public computer-communication network that will provide a wide
variety of services (such as voice, data, video, fax, and image transmissions) to
end users in the 1990s, it is clear that protocol engineering will play an active
and important role in the development and implementation of the ISDN (Duc
and Chew, 1986).

2. Network Architecture

Modern computer networks are designed in a highly structured way, first to
reduce their design complexity, and second to increase their modifiability-
the ability to change the implementation of a module without affecting the
other modules as long as the interface between modules remains constant.
Therefore, most networks are organized as a hierarchy of layers, each one
being built on its immediate lower layer. The function of each layer is to offer
certain services to the higher layer, shielding the higher layers from knowing
the details of how these services are actually implemented. In this section we
briefly present a set of common terminologies, concepts and conventions that
will be used in this article.

2.1 OSI Reference Model

Facilitating communications between information processing systems in a
heterogeneous environment requires a universal framework of computer
networking architecture. It is for this purpose that the International Organi-
zation for Standardization (ISO) initiated development of worldwide
standards for the creation of an open system environment. When complying
with these standards, an information system would be open to communicate

84

Physical

MlNG T. LIU

4 & Physical

I I I I

Application I Application I I

with any other system conforming to the same standards. After several years of
efforts by IS0 (Day and Zimmermann, 1983), the result of this standardization
is the well-known seven-layer Open Systems Interconnection (OSI) Reference
Model (See Fig. 2). It provides a common basis to guide future development of
mutually compatible information processing systems that will greatly benefit
both computer vendors and users.

The reference model has seven layers. In the following we will briefly discuss
each layer of the architecture in turn, beginning with the bottom layer. (For a
more thorough presentation of the OSI Reference Model, see Stallings (1988)
and Tanenbaum (1988).) The lowest layer-the physical layer-provides the
electrical, mechanical, functional, and procedural details necessary to transmit
raw bits over a communication channel. The transmission form within the
physical layer is transparent to the data-link layer and higher layers. The
purpose of the data-link layer is to transform a raw transmission channel into
a line that is free of transmission errors to the network layer. It provides
mechanisms for error recovery due to transmission noise burst, damage, loss,
and duplication. The network layer ensures that all data are correctly received
at their destinations, and in the proper order. It also controls the routing of
data in the network, and prevents congestion and deadlocks. The transport
layer provides multiplexing services, and handles important issues such as

PROTOCOL ENGINEERING 85

naming and addressing, connection establishment and termination, buffering
and flow control, error recovery, and synchronization. The session layer
establishes connections between users (sessions) and manages them. Unlike
the first five lower layers, which are necessary for the correct operation of the
network, the purpose of the presentation layer is to provide certain useful but
not always essential services such as text compression, cryptographic trans-
formations, data security, communication between incompatible terminals,
and file transfer. Finally, the top of the hierarchy-the application layer-
directly provides services to the users of the network.

In addition to ISO, a number of national standard organizations (such as
NIST, formerly NBS, and ANSI) and international standard organizations
(such as CCITT and ECMA) have been taking part in the development of the
OSI Reference Model. Although many existing protocol architectures vary
from the layered structure of the I S 0 Reference Model, the layered approach
has become essentially universal and has been widely adopted in many
computer networks such as the IBM Systems Network Architecture (SNA)
and the DEC Digital Network Architecture (DNA) (see Stalling, 1988;
Tanenbaum, 1988).

2.2 Layering and Abstraction

The major contributions of the OSI work are not only the creation of a
common framework for intersystem communications but also the defining of
a set of terminologies, conventions, and concepts so that research work in the
literature can be stated in and interpreted through a common glossary. In the
area of formal specification and verification, the concepts of service and
protocol are crucial.

While Fig. 2 illustrates a layered protocol structure, Fig. 3 shows in more
detail a particular layer (layer N) and its interaction with the layers above and
below (layers N + 1 and N - 1). In a computer network, each layer consists of
a collection of protocol entities (or protocol processes) that are distributed
over different locations. The protocol entities that are in the same layer are
called peer entities (peer processes) or communicating entities (communi-
cating processes). The peer entities of layer N provide the communication
services (called N-services) to layer N + 1 users. The services provide by layer
N are accessed by the user entities through a layer interface. Likewise, the
entities of layer N access the communication services, called (N - 1) services,
provided by the layer below through another layer interface. The entities of
layer N use these services for exchanging messages. The rules that govern
the exchange of these messages among the entities are collectively called an
N-protocol.

In the context of the OSI Reference Model, it is important to distinguish
between two independent notions: layers of functions and levels of
abstractions.

86 MlNG T. LIU

Services Provided
(N) Services Layer

. .

Layer N

Interface

Protocol
Entity

Layer N- 1

111 Protocol
Entity

(N- 1) Layer

Services Required
(N-1) Services

Interface

Layer

Layering is a structuring technique by which a system can be logically
decomposed into smaller subsystems. In the OSI Reference Model, the
layering approach subdivides the functionality of an open system into seven
layers, each responsible for a specific set of functions. This approach has at
least two significant advantages.

1. The whole system is subdivided into individual pieces of manageable size
that are more comprehensible and subject to independent implementa-
tion and maintenance.

2. A portion of the system is able to perform its function before the
completion of the other parts. This is especially important in establishing
standards. As we can see, at the present time, while the lower layers of the

PROTOCOL ENGINEERING 87

(N+l)-Entity

OSI model have already been developed and become functioning, the
standardization of the upper layers is still in process.

(N+l)-Entity

Abstraction is an architectural concept applying to all layers of an open
system. For each layer N, there are two levels of abstractions-(N)-Service
and (1)-Protocol. At the higher level of abstraction, (N)-Service defines the
interface between (N)-layer and (N + 1)-layer. At the lower level of ab-
straction, (N)-Protocol defines the behavior of (1)-entities inside (1)-layer.

As illustrated in Fig. 4, from the viewpoint of (N - 1)-layer, (N)-Service
represents the capability of the (N)-layer and all the layers below; it is not

(N)-Entity (N)-Entity

a
a
a

(N-1)-Entity

a
a
0

(N- 1)-Entity
I

(1)-Entity (1)-Entity

FIG. 4. OSI architecture

1

: Physical Medium I

88 MlNG T. LIU

concerned about how the capability is realized. The (N)-entities, when making
use of their underlying (N - 1)-Service, constitute a logical implementation of
the (N)-Service. The use of abstraction has several advantages:

1. Each layer, knowing the service provided from its lower layer, can be
designed and developed with little knowledge of the internal operations
in the lower layers.

2. The effect of any future changes of a protocol is localized within a layer
provided that the service offered to the higher layer remains the same.

In reality, no data or messages are transmitted horizontally from one entity
to another except in the lowest layer. Instead, each layer passes data down to
the layer immediately below it, until the lowest layer is reached. Through the
services provided by the layer immediately below it, however, each entity is
able to conceptually think of its communication as being horizontal.

2.3 Protocol and Service Specifications

Specification refers to the information that is used to describe an object. It
should describe only those requirements that the object must satisfy, and no
more. With respect to the protocol architecture mentioned above, there are
two kinds of specifications in each layer N of the protocol hierarchy:

A. The N-service specifcation describes what services the layer N protocol
entities provide for their users in the N + 1 protocol layer. The services
provided by a protocol layer are usually based on a set of service
primitives which describes the operations at the interface through which
the services are provided.

B. The N-protocol specification describes the interactions among the layer
N protocol entities. The interactions are defined in terms of the services
provided to layer N + 1, and the services available from layer N - I .

Most work on formal techniques for specifying communication protocols
has concentrated on protocol specifications and not on service specifications.
However, service specification is receiving more and more attention in current
protocol design (See Section 5.1). Several major formal models primarily used
for protocol specification will be presented in the next section.

3. Formal Models for Protocol Specification

In order to specify a protocol, one must describe what the protocol should
do and how the protocol should react to external stimuli such as service
primitives. The implementation of a protocol is an implicit specification, i.e.,

PROTOCOL ENGINEERING 89

the protocol is specified to behave exactly as does the implementation. Since
most protocols are very complex, one prefers to specify a protocol abstractly
during the initial stage of design and to leave until a later stage those
implementation details that do not affect the function of how the protocol
should behave. The main objective of the abstraction is to facilitate the
validation and verification of the protocol for its correctness before its actual
implementation. As mentioned previously, conventional methods of informal
narrative specification have demonstrated their shortcomings as protocol
design errors crop up (Bochmann and Sunshine, 1980). In this section we
present a brief survey of important formal models that have been proposed for
protocol specification. For comparison we will use the alternating bit protocol
(Lynch, 1968; Bartlett et al., 1969) as a common example for eight of the most
widely used models.

The formal methods discussed in this section fall into three main categories.
The first category includes state-transition models such as finite-state
automata (FSA), formal grammars, and Petri nets. The second category
includes programming language models such as abstract programs, temporal
logic, and abstract data types. In the third category are hybrid models that
include both states and language constructs in the specification of protocols.

3.1 State-Transition Models

The state-transition model is motivated by the observation that protocols
can be modeled by event-driven processes (entities) that communicate with
each other through message passing. The various protocol models differ in the
way processes are specified. Models falling into this category include finite-
state automata, formal grammars, and Petri nets and their derivatives. The
state-transition model of one sort or another with such events forming its
inputs is very natural and easy to automate. However, for realistic protocols of
any complexity, the number of events and states can become unworkably
large, thereby creating the so-called state explosion problem.

3.7.7 Finite-State Automata (FSA)

FSA models are one of the earliest formal models to be applied to protocols.
Ever since Lynch (1968) and subsequently Bartlett et al. (1969) used FSA for
specifying the Alternating Bit Protocol (ABP), the number of formal models
for protocol specification has increased at a rapid rate. The ABP has since then
become a classical example and been used extensively by other models to
illustrate their feasibility in protocol specification and verification.

FSA models are based on the observation that protocols consist largely of
relatively simple processing activities in response to a number of events such as
commands from the user, message arrivals from another peer entity, and

90 MlNG T. LIU

internal timeouts. Therefore, finite-state automata with such events forming
their transitions are a natural model for specifying communication protocols.
The basic approach is to specify the communication system as a collection of
finite-state automata, each describing the behavior of a communicating entity.

In this model, a protocol is represented by a network of communicating
finite-state automata, in which the behavior of a protocol entity is modeled by
a finite-state automaton and the channels between protocol entities are
modeled by FIFO queues. Each state of the finite-state automaton corre-
sponds to a different control stage of the entity. Each transition of the
automaton is labeled with either an input event that enables the transition or
an output event that takes place as part of the transition.

Figure 5 illustrates an FSA model for specifying the Alternating Bit
Protocol (ABP). The protocol provides reliable transmission of data from one
communicating entity (called the sender) to the other (called the receiver). I t
uses a frame-oriented transmission technique: data are divided into frames,
and frames are transmitted one at a time. Transmission errors and losses,
which must be detected, are recovered by the protocol. The sender sends a data
frame together with a control bit, which alternates in value between successive
data frames, and waits for an acknowledgment frame from the receiver. The

i e ! - D I

-DO +E+AI IN

4
+A0 +m

Stm-DER MEDIUM - - - - -
FIG. 5 . CFSM model of the alternating bit protocol

PROTOCOL ENGINEERING 91

data frame is retransmitted until an acknowledgment frame that contains the
same alternating bit as the outstanding data frame is received. Retransmission
is achieved through the use of an internal timer. The timer is started by the
sender upon transmitting a data frame. If no acknowledgment frame is
received within a certain predetermined time interval, the sender assumes the
transmitted data frame is damaged or lost, and retransmits this data frame.
The next data frame will be transmitted only when an acknowledgment of the
previous frame has been received before the time expires. The protocol is so
called because it uses a single control bit to distinguish between consecutive
frames.

The notation used in Fig. 5 is adopted from Bochmann (1978). Labels IN
and OUT stand for two service primitives (send and receive, respectively)
provided to the user at the higher layer. Event IN receives a data frame from
one user on the sender site, while event OUT delivers the received frame to
another user on the receiver site. There are two types of data frames (DO and
Dl), and two types of acknowledgment frames (A0 and Al). 0 and 1 represent
values of the control bit. The + and - signs denote sending and receiving
transitions, respectively. For instance, -DO and + DO represent transmitting
and receiving a data frame with control bit 0, respectively. Transmission
errors are shown as E.

Formally, a protocol P in this model is defined as a quadruple

P = (<Qi)?= 1, <oi)r= 1, <Mij)tj= 1, (succi)r= 1 1 7

where

N is the number of protocol entities,
Qi is the set of state of entity i and Qi n Qj = 0 for i # j,
oi represents the initial state of entity i that is an element in Q i ,
Mij represents the messages that can be sent from entity i to entity j and Mii is
empty for each i,
succi is a partial function mapping for each i and j (i # j) , Qi x (Mi juMji)+
Qj *

Note that for entity i, - x in the graph denotes that x E Mij and + x in the
graph denotes that x E Mji .

Bochmann (1978) used an FSA model to analyze the ABP and the X.25 call
setup and clearing procedures. West and Zafiropulo (1978) used an automated
technique to analyze the X.21 and found a number of unspecified reception
errors in the 1976 version, which were subsequently corrected in the 1980
version. Gouda and his associates (Gouda and The, 1985; Gouda and Chang,
1984; Gouda and Yu, 1984b) used a network of communicating FSA to model,
analyze and synthesize protocols.

92 MlNG T. LIU

Recently, Lee and Lai (1988) have used a relational-algebra approach to
represent an FSA as a transition table. On this basis, the well-known theory in
relational databases can be used to derive the global-state transitions of the
system. Furthermore, the logical errors of protocols can be formulated in
terms of relational algebra. This approach has been implemented on the
INGRES database system and applied to the validation of several protocols
including the X.21.

A limitation of the FSA model is that all necessary information must be
represented by explicit states. For example, there must be different states and
events to handle each possible sequence number. For complex protocols, the
number of states required can be very large, thereby creating the so-called
state explosion problem.

3.1.2 Formal Grammars

Formal languages and the grammars that define them are a type of the
state-transition model. If one views the sequence of inputs and outputs of an
FSA as sentences of a formal language, one can define the formal grammar
that would produce all valid sequences. There is a well-known correspondence
between such grammars and various types of automata that will recognize (or
generate) all valid sequences of the language.

Harangozo (1977) used regular grammars to specify the HDLC protocol
and extended the model to handle sequence numbers by indexing the
production rules of the grammar. Using context-free grammars, Teng and Liu
(1978a, 1978b, 1980) developed a Transmission Grammar (TG) model for the
design and implementation of communication protocols.

In the TG model, a protocol is represented by a set of formal grammars. As
formal grammars are capable of defining a language, the idea is to come up
with a set of production rules that define all the legal protocol action
sequences. Each entity or channel of the protocol in the TG model is described
by a regular grammar. Production rules in the grammar have the following
form:

(left-non-terminal) ::= terminal-string (right-non-terminal).

Terminal symbols in the TG production rules represent protocol actions,
and non-terminal symbols are equivalent to the states in the FSA model. The
meaning of a production rule is that the entity in the state specified by the left-
hand non-terminal may take the actions specified by the terminal string and
enter the state specified by the right-hand non-terminal.

Terminal actions in the TG model are the following: D (Dequeue), Q
(enQueue), F (Fetch), P (Push), 0 (pop), C (Clear), E (Equal), N (Non-empty),
or U (full). The following explanation is obtained from (Teng, 1980).

PROTOCOL ENGINEERING 93

1. Queue (Q) . This action inserts the specified message into the specified
queue in a First-In-First-Out (FIFO) manner (i.e., it puts the message at
the tail of the specified queues). This action requires three fields to be
specified. For example, Q.2.msg means inserting (sending) message msg
to the tail of the queue connected with Entity 2.

2. Fetch (F). This action deletes one instance of the specified message
from any position in the queue. This action is possible only if at least one
instance of the specified message is contained in the queue, and requires
three fields to be specified. For example, F.2.msg means fetching message
msg from any position in the queue connected from Entity 2 to this entity.

This action deletes the specified message from the front
of the specified queue. This action is possible only if the specified message
is at the front of the specified queue, and requires three fields to be
specified. For example, D.2.msg means deleting (receiving) message msg
from the front of the queue connected with Entity 2 to this entity.

4. Priority queue (P) . This action inserts the specified message into the
specified queue in a Last-In-First-Out (LIFO) manner (Lee, it puts the
message at the front of the queue). It is the same as a PUSH operation in
a stack structure, and requires three fields to be specified.

5. Pop (0). This action deletes the specified message from the end of the
specified queue. The action is possible only if the specified message is at
the end of the specified queue. All the three fields have to be specified.

6. CIear (C). This action deletes all of the messages from the specified
input queue, and requires only the first two fields to be specified. For
example, C.2 means clearing the queue connected from Entity 2 to this
entity.

7. Empry (E) . This action tests whether the specified ouput queue is
empty. This action is possible only if there is no message in the specified
queue. Only the first two fields need be specified.

8. Non-empty (N) . This action tests whether there are messages in the
specified output queue. Only the first two fields need be specified.

9. Full (V). This action tests whether the number of messages in the
specified output queue is equal to its capacity. This action is possible only
if the specified queue has reached its limit. Only the first two fields need
be specified.

3. Dequeue (D) .

These actions not only enable modeling of a communication medium as
FIFO, non-FIFO, and priority queues, but also make status checking of an
output queue available. Consequently, they provide a model more powerful
than the FSA model, while keeping the model still simple and feasible for
automatic verification. As an example, Fig. 6 shows the TG specification of the
ABP. The TG model has been automated (see Section 10.6) and used to

94 MlNG T. LIU

<l>::=JN <2>.
<2> ::= Q.2.W <3>.
<3> ::= D.4.AO <4>,

D.4.A1<2>,
D.4.Er <2>.

<4>::=IN <5> .
<5> ::= Q.2.Dl <6>.
<6> ::= D.4.AI < I > ,

D.4.AO <5>,
D.4.Er <5> .

<IDLE>
D.1.DI < R E C V b .

<RECVO> ::= Q.3.W <IDLE>,
Q.3.Er <IDLE> .

<RECVI> ::= Q.3.DI <IDLE>,
Q.3.Er <IDLE> .

::= D.l .DO <RECVO> ,

< I > ::= D.2.DO <2> ,
D.2.D1<6>.
D.2.Er <6>.

<2> ::= OUT < 3 > .
<3> ::= Q.4.AO <4>.
<4> ::= D.2.DI < 5 > ,

D.2.M) <3>,
D.2.Er <3>.

<5> ::= OUT <6>.
<6> ::= Q.4.AI < I > .

<IDLE> ::= D.3.AO <RECVO> ,
D.3.Al <RECVl>.

<RECVO> ::= Q. 1 .A0 <IDLE> ,
Q. 1 .Er <IDLE> .

<RECVI> ::= Q.1.Al <IDLE>,
Q. 1 .Er <IDLE> .

FIG. 6. TG model of the alternating bit protocol

PROTOCOL ENGINEERING 95

validate the X.21 (Umbaugh and Liu, 1982) and the call setup procedure of the
TCP (Umbaugh et al., 1983). It has recently been extended to handle timing
constraints (called the TTG model; see Section 7.2).

An extended type of regular expressions (regular grammars), called protocol
expressions, has been proposed by Holzmann (1982a, 1982b) for the specifica-
tion and analysis of protocols. Besides the common operators such as union,
concatenation and iteration in regular expressions, two new operators are
introduced: the division and multiplication operators. The division operator
is used to distinguish between input and output actions, whereas the multi-
plication operator is used to capture the interaction between two protocol
expressions. An automated system based on this model has been implemented
and will be described in Section 10.4.

Schindler (1980) also extended regular expressions to facilitate protocol
specification. The overall expression may be broken into several blocks, each
block functioning much as a non-terminal grammar. Each term in the
expression may have a rejection predicate that causes an otherwise allowed
operation to be deemed invalid if false. Each block may also have several exit
blocks, which serve to define alternatives. This model has been used to specify
the X.25 (Schindler and Steinacker, 1979; Schindler et al., 1978).

A new methodology, based on attribute grammars, has been proposed by
Anderson and Landweber (1984a, 1984b) for specifying and implementing
communication protocols. Called Real-Time Asynchronous Grammars
(RTAG), it provides mechanisms for specifying data-dependent activities, real-
time constraints, and concurrent activities within the protocol entity. To
demonstrate the viability of RTAG, a parser has been integrated into the
kernel of the 4.2 BSD UNIX operating system, and has been used in con-
junction with the RTAG TP-4 specification to obtain an RTAG-based TP-4
implementation in the DoD internet domain.

3.1.3 Petri Nets and Their Derivatives

There is a great deal of research being conducted in the theory and
application of Petri nets. During the past 10 years Petri nets have been used to
specify and analyze protocols. Recently, Diaz made an extensive survey on this
topic (Diaz, 1982). In the Petri nets model, a protocol is modeled by a number
of component nets representing different protocol entities. Basically, a Petri
net is a graph containing a set of places (represented by circles) and a set of
transitions (represented by bars). Directed arcs are used to connect places to
transitions, and transitions to places. A number of tokens distributed in the
places represent a marking of the net and also decide which transitions are
firable. The firing of a transition causes a redistribution of tokens, and thus
moves the net to a new marking. Therefore, places and transitions of a Petri

96 MlNG T. LIU

net specify conditions and events, respectively. How places and transitions are
connected can be used to describe the behavior of a protocol.

Formally, a protocol P in this model is defined as a quadruple P =
(P, T, E , mo), where

P is a finite nonempty set of places,
T is a finite nonempty set of transitions,
E is a set of directed arcs, E G P x T v T x P, such that for each t E T,

(4, t) E E A (t , 5) E E , (4, 4 E P)

m, is an initial marking function that assigns a nonnegative integer number
of tokens to each place of the net:

m O : P + { O , 1, ...}.

A transition is defined to be firable by a marking m iff every input place of
this transition contains at least one token. When a transition is fired, a token is
removed from each of its input places and a token is added to each of its
output places. This leads the net to a new marking.

For the purpose of presentation, a protocol in this model is often illustrated
graphically, as shown by the example of the ABP in Fig. 7. Petri nets have been
used to specify and verify the ABP(Merlin, 1976; Postel and Farber, 1976) and
the call-setup procedure of a packet-switched network (Symons, 1980) and the
I S 0 Transport protocol (Jurgensen and Vuong, 1984). A variation of the Petri
net model, called SARA, has been used at UCLA to model the X.21 (Razouk
and Estrin, 1980) and the X.25 (Razouk, 1982).

Pure Petri nets suffer most of the same limitations as FSA. Thus a variety of
extensions have been proposed, such as inhibitor arcs, type tokens, and state
variables. Another extension is the addition of timing constraints to the
transitions (called timed Petri nets) (Berthomieu and Menasche, 1983; Walter,
1983). We will discuss timed Petri nets in Section 7.1.

3.2 Programming Language Models

The programming language model is motivated by the observation that
protocols are simply a set of procedures or algorithms to provide communi-
cation services. Models falling into this category include abstract programs,
temporal logic, and abstract data types. Depending on how high level and
abstract a language is used, this approach to specification may be quite near to
an implementation of the protocol. However, efforts to prove the correctness
of the program (the safety and lioeness properties) far exceed those required for
developing the program, and its correctness proof usually depends heavily on
human ingenuity and is hard to automate.

PROTOCOL ENGINEERING 97

FIG. 7. Petri net model df the alternating bit protocol

3.2.1 Abstract Programs

The use of programming languages for specifying communication protocols
is motivated by the observation that protocols are simply one kind of
algorithm, and that programming languages provide a clear and concise way
of describing algorithms. In an abstract program model, protocols are
described as parallel programs. Figure 8 shows an abstract program model for
specifying a simple protocol called the Alternating Bit Protocol (ABP).

Bochman (1975) made one of the earliest attempts at specifying and
verifying a simple HDLC protocol using an abstract program. The protocol
was specified in a free-style Pascal. The program structure is event driven and
similar to a state-transition model in many ways. He partially verified the
protocol by stating three safety invariants that described the number of

98 MlNG T. LIU

1: TIME :=TIME-l
2: delay
3: goto 1

Medium
1: wait SEND
2: SEND := false /* turn off indicator */
3: LOSS:=? /* decide whether message should

4: if LOSS then goto 1
5: ERROR:=? /* decide whether error should

6: ifERROR
7:
8: else betgin

/* wait until Sender ready to send */

be lost */

happen */

/* quit sending message */

then SEQNB := error /* transmit indication of error */

DATA-RECEIVED := DATA-SENT
SEQNB := SEQ

end /* normal transmission */
9: wait RECEIVE /* wait for acknowledgment */
10: RECEIVE := false
11: LOSS :=?

12: if LOSS then goto 1
13: ERROR:=?

14: ifERROR
15:
16: else ACK := EXP /* normal acknowledgment */
17: goto 1

/* turn off indicator */
/* decide whether ack should get

/* quit sending acknowledgment */
/* decide whether ack should

lost */

be erroneous */

then ACK := error /* transmit indication of error */

/* repeat for next message */
F a . 8. Abstract program of the alternating bit protocol

messages sent and received by each protocol entity. However, the proof was
not formal.

About the same time Stenning (1976) also used an abstract program to
specify and verify a data-transfer protocol. His code was very close to standard
Pascal, which enabled him to rely on the standard Pascal rules for deriving
pre- and post-conditions of the invariant assertions. Using the Floyd-Hoare
technique (Floyd, 1967; Hoare, 1969), he was able to verify the safety property
of his protocol.

Krogdahl(l978) developed the technique of protocol skeletons for specifying
and verifying safety properties of classes of protocols. He attempted to

PROTOCOL ENGINEERING 99

Sender

1 : DATA-SENT := INDATAW] /* get next message to be sent */
2: PT:=PT+l /* prepare PT for next message */
3: SEQ := SEQ + 1 MODULO 2 /* switch sequencer for next msg */
4: ACK:=none /* erase previous ack */
5 : =:=TO /* initialize timer to timeout

6: SEND:=true /* send message */
7: wait (ACK # none or TIME = O)/* wait for ack or timeout */
8: if ACK = SEQ then goto 1
9: else goto 4

interval */

/* O.K., repeat */
/* error or timeout, try again */

Receiver

1 : wait SEQNB # none
2: if (SEQNB = error or SEQNB # EXP)
3: then goto 5
4: else begin

/* wait for a message */

/* send old ack for message */

OUTDATA := DATA-RECEIVED
EXP := EXP + 1 MODULO 2

end /* append received message and
prepare ack */

5 : SEQNB := none /* cancel indicator */
6: RECEIVE:=true /* send a&*/
7: goto 1 /* repeat for next message */

FIG. 8. (continued)

provide as general a program specification as possible, using an Algol-like
language. The proof of the invariants follows the standard Floyd-Hoare
technique.

Ansart et al. (1982) developed a Protocol Description and Implementation
Language (PDIL) for specifying protocols and allowing automatic implemen-
tation. Based on standard Pascal, PDIL relieves the user of all the constraints
of putting into a programming language form (e.g., the definition of data
structures and procedures for manipulating typed objects). The latter work
is done by a preprocessor for PDIL, which generates coherent Pascal text.

Castanet et a / . (1985) presented a methodology of using Ada for the
specification and implementation of protocols. Compared with other pro-
gramming languages, Ada has the advantage of homogeneity; its main
drawback is in performance. Yelowitz et al. (1982) combined the use of Ada
and AFFIRM (Gerhart et al., 1980) for modeling a fiber-optic token-ring
network.

100 MlNG T. LIU

3.2.2 CSP and CCS

Two of the abstract program models that have been receiving considerable
attention in the literature are Hoare’s Communicating Sequential Processes
(CSP) and Milner’s Calculus of Communicating Systems (CCS). CSP (Hoare,
1978) is a high-level concurrent language designed for distributed systems. A
CSP program consists of a number of processes that are mutually disjoint in
address space, and communications between processes are accomplished only
through message passing. In addition, guarded commands are used to describe
nondeterministic behavior of each process. A protocol in this model is thus
represented by a CSP program, in which each protocol entity is represented by
a process.

Major CSP constructs are described briefly as follows:

1. Parallel commands [P , [I P, [I.. .)I P,] specify the concurrent execution of
n processes P,, P2,. . . , P,.

2. Input command pi?(x) and output command pi!(expression) specify the
communication between processes pi and pi. (Process pi sends the value
of expression to variable x of process pi.)

3. Both alternative command

c
b,; 110, -,command list,[

b,; 110, +command list,(

b,; I /O ,+ command list,

1

* c
b,; 110, + command list, I
b,; 110, +command list,[

and repetitive command

b,; 110 -, command list,
n

1
are in the form of guarded commands and can be used to specify
nondeterministic behavior of a protocol.

As an example, a CSP specification of the ABP is shown in Fig. 9.

ABP :: [Sender 1 1 Medium I(Receiver]

Sender ::
frame : record

data : . . .;
seq : (0,l ,error)

end;
DATA : . . .; SEQ : (0.1);
Ack : (0, I ,error); done : boolean;
SEQ := 1;
*[Userl?(DATA) -D SEQ := (SEQ+l) mod 2;

frame.data := DATA;
frame.seq := SEQ;
done := false;
*[-done; Medium!(frame) + Medium?(Ack);

[Ack = SEQ -+ done := true 1
Ack = (SEQ+I) mod 2 -+ skip I
Ack = error -+ skip

1
1

1

Receiver ::
frame : /* same as in Sender */
exp : (0.1);
exp := I ;
*[Medium?(frame) + [frameseq = (exp+l) mod 2 + UseR!(frame.data);

frame.seq = exp + skip I
frame.seq = error + skip

exp := (exp+l) mod2 I

I;
Medium!(exp)

1

Medium ::
frame : /* same as in Sender */
Ack : (0, I ,error);
correct, corrupted : boolean;
correct :=true; corrupted := true;
*[Sender?(frame) + [correct + Receiver!(frame) I

corrupted + frame.seq:=error;
Receiver!(frame)

11

1

Receiver?(Ack) + [correct + Sender!(Ack) I
corrupted -+ Sender!(error)

FIG. 9. CSP model of the alternating bit protocol

102 MlNG T. LIU

On the other hand, CCS (Milner, 1980) is a language for specifying the
communication behavior of concurrent systems in terms of a small set of
operators. In this model, a protocol is represented by a set of communicating
agents. An agent is capable of communicating with other agents (via internal
ports) or with an external observer of the system (via external ports). The basic
notion in CCS is a set of atomic events denoting either internal events or
communication events. These atomic events are represented as follows:

1. ax for input event, where x is a value variable.
2. Ee for output event, where E is a label complementary to a, and e is a

value expression.
3. T for internal event.

Based on the notion of the occurrence of an event, CCS has operators to
express the following:

1. Sequences of events, by operator “.”.
2. Choice between sequences of events, by operator “+”.
3. Recursion for specifying infinite sequences, by operator “e”.
4. Parallel composition of agents to form systems of communicating

5. Hiding of a subset of the internal ports, enabling one to abstract away
agents, by operator ‘‘[I”.

from the internal details of an agent, by operator “\”.

Formally, a protocol in CCS is defined by the following BNF notation:

t := xlop(t , , t z , ..., t ”) l X C ; t

where x is a variable name, op is an operator, and t (t , , t , ,..., t“) is a CCS
expression.

As an example, a CCS specification of the ABP is shown in Fig. 10. Note
that in this example, a and p are data flowing from Sender to Receiver, 6 and y
are acknowledgments flowing from Receiver to Sender, and I and 0 are
communication actions with outside observers.

The global behavior of a protocol in the CCS model can be computed by
applying the operation of parallel composition to all its communicating
agents. For example, four communicating agents of the above ABP bit
protocol can be composed as follows:

(SIIC, IIRollCd.
During the parallel composition, pairs of events such as ax and Cre can be
coupled and become a rendezvous event x : = e. The global behavior of the
protocol can again be represented by a CCS expression using only operators
6 6 91 66 + 93, and UeW. . ,

Recently, Liu and Liu (1984, 1986) proposed a methodology for specifying
and analyzing protocols and services for conformity analysis. They specified
both a protocol and its service by a CSP based language. To perform the
conformity analysis, they developed a transformational system to extract from
a CSP process the communication sequences that may arise during its
execution and to express these sequences in terms of behavior expressions in
CCS. By performing algebraic manipulations and the equivalence proof on
these expressions, they can show that the external behavior of a protocol con-
forms to its intended services. A version of the ABP was used to demonstrate
the feasibility of this methodology. We will return to this topic in Section 5.2.

3.2.3 Temporal Logic Techniques

Temporal logic was first introduced by Pnueli (1977) as an adaptation of a
classical model logic suitable for defining the semantics of computer
programs. Recently, it has been used by Hailpern and Owicki (1980) and
Schwartz and Melliar-Smith (1981) to specify and verify the liveness (or
progress) property of protocols. The liveness property requires that certain
transitions eventually take place, and is difficult or impossible to state and
prove in state-transition specifications, since conventional logic cannot refer
to any state other than the present one.

Hailpern and Owicki (1980) model a protocol system as a set of interacting
modules that represent the logical units of the system. Both active (called
process) and passive (called monitor) modules may be specified. They exploit
this modularity in their specifications and proofs. They have verified the safety

104 MlNG T. LIU

and liveness properties of the ABP, and Stenning’s data-transfer protocol
(Hailpern and Owicki, 1983).

Schwartz and Melliar-Smith (1981) developed specifications employing
temporal logic with amore explicit notion of system state. They divide the task
of specifying and verifying protocols into two parts: service-level specification
and network-level specification. The service level defines the operations
available to the users of the protocol, while the network level represents an
abstract specification of the essential details of the protocol implementation.
The goal is to verify the service level from the network level and to verify the
network level from the protocol code. They illustrated the feasibility of their
technique by formally verifying both safety and liveness properties of the ABP.

Recently, Sabnani and Schwartz (1984) verified a multidestination protocol,
called the Selective Repeat procedure, for a satellite broadcast channel shared
by using a time-division multiplexed technique. The Selective Repeat pro-
cedure is modeled as a parallel program in a Pascal-like language. Sabnani
and Schwartz show the correctness of the parallel program model using
temporal logic so that both the safety and liveness properties are satisfied.

3.2.4 Abstract Data Types

Abstract data types (Guttag, 1975) are an attempt to encapsulate data and
the operations that manipulate it. There are two approaches in this area:
abstract model and axiomatic. However, the distinction between these two
approaches may not be so great in practice, since it is possible to write abstract
model specifications in the axiomatic notation.

As reported by Sunshine (1982b, 1983), experience with these techniques is
still limited. However, due to its ability to formalize a large class of protocols,
coupled with the existence of some automated tools for checking specifica-
tions, the abstract data type approach to protocol design looks very
promising. Thus, much more research is required in this direction.

The major advantage of programming language models over state-
transition models is their capability to handle variables and parameters, such
as sequence numbers and timers, which may take on values of wide range.
Another advantage is their ability to specify all protocols and most of their
properties rather than only general correctness properties.

However, since protocol specifications in programming language models
may be very similar to actual implementations, unessential features are often
combined with the essential algorithms. In addition, efforts to prove the
correctness of programs representing communication protocols far exceed
those required to develop algorithms or programs. Program proof usually
depends heavily on human ingenuity and intuition, and the automation of
proof steps seems quite impossible and, therefore, is still far away from being
of significant use.

PROTOCOL ENGINEERING 105

3.3 Hybrid Models

The hybrid model attempts to combine the advantages of both state-
transition and programming language models. It typically uses a small
number of states to capture only the main features of the protocol, with each
state being augmented with context variables and processing routines. The
state-transition part of the model captures the control aspects of the protocol
while variables and data are easily handled by the program part of the model.
Recently, hybride models seem to be receiving the most attention, and both the
I S 0 and the CCITT are actively developing standard techniques based on a
hybrid model.

3.3.1 Abstract Machines

The abstract or extended finite-state machine (EFSM) model is a gen-
eralization of the FSA model. The abstract model allows multiple-state
variables of various types; the state now becomes a vector of these variables
and the transition functions become more complex. The values of these state
variables are changed by the occurrence of events. An event can occur only if
certain enabling conditions are satisfied. (An enabling condition is a predicate
on the state variables.) When more than one event in an event-driven system is
enabled, any one of the enabled events is allowed to occur, resulting in
nondeterminism.

In the abstract machine model, each protocol entity f l is represented by a
vector of state variables v. Each state variable vj E v can take on values from a
domain Dj. One of these state variables can be regarded as an explicit state
variable. A channel between two entities, C,, is represented by state variable zk,
which is the message sequence contained in the channel. Thus, the global state
of the protocol system is given by the tuple (Vl , . .., V,; z l r . . ., z,,,). The initial
global state of the system is given by the initial value of each state variable, and
all communication channels are initially empty. The values of these state

‘ variables are changed by the occurrence of events. An event is described by a
predicate that relates the values of the state variables immediately before the
event occurrence to their values immediately after the event occurrence. Thus
it is denoted by predicate pred(V ; V”) or pred(V, z , . . . ; V”, z”, . . .), where V and
z are variables before event occurrence and V” and z” are variables after event
occurrence. The predicate embodies specifications of both the event’s enabling
conditions and actions.

Each entity or channel has a set of events. The events of entity 4 can only
involve the state vector v and the state vectors of channels accessible from 4.
Entity events model message receptions, message sends, and internal activities.
The events of channel ck can involve only the state vector zk. Channel events
model channel errors such as loss of messages in transit. An event can occur

Variables of Sender:

state:(1,2,3); explicit state variable of sender.
seq:(0,1); sequence number of message sent.
ack:(O, 1 ,error); acknowledgment from receiver.
data:. . .; data to be transferred.

Events of Senders:

1. AcceptData(Vl;Vl”) ==
state = 1 and In(data) and seq := seq + I (mod 2) and state := 2;

2. SendData(V1 ,z1;Vl ,z, ==
state = 2 and SendI((seq,data),zl;~) and state := 3;

3. ReceiveAck(Vl ,zz;Vl”,z;) ==
state = 3 and Receiuez(zz;(ack),z;) and
((ack = seq) + state := I
I (ack = seq + I (mod 2)) + state := 2
I (ack = error) -+ state := 2
)

,, ,,

Variables of Receiver:

state:(1,2,3); explicit state variable of receiver.
exp:(0,1); opposite of expected sequence number of message received.
seqnb:(0,1 ,error); sequence number of received message.
data:. . .; data in received message.

Events of Receiver:

1. DeliverData(V2;Vl) ==

2. SendAck(Vz,z,;V;’,z;) == state = 2 and Sendz((exp).zz;z;) and state := 3;

3. ReceiveData(V:,zl;Vz .zI) ==

state = 1 and Out(data) and exp := exp + 1 (mod 2) and state := 2;

,I I ,

state = 3 and ReceiueI(zl;(seqnb,data),z;) and
((seqnb = exp + I (mod 2)) -+ state := 1
I (seqnb = exp) + state := 2
I (seqnb = error) -+ state := 2
1

Event of Medium from Sender to Receiver:

ChannelError(zl ;z;) == (for some (seq,data) in 21) [seq := error I

Event of Medium from Receiver to Sender:

ChannelError(z2;zi) == (for some (seq) in 2 2) [seq := error]

Abstract machine model of the alternating bit protocol FIG. I I .

PROTOCOL ENGINEERING 107

only if its enabling conditions are satisfied. When more than one event in such
an event-driven system are enabled, any one of the enabled events is allowed
to occur. An entity event can access channel state variables only via send
and receive primitives. The send primitive for channel ck is defined by
Send,(z,, m; z i) = (z i = (z,, m)). The receive primitive for channel ck is
defined by Receive&,; m, z i) = ((m, z r) = zk).

As an example, the abstract machine specification of the ABP is shown in
Fig. 11. Many researchers have proposed particular forms of such abstract
machine models for specifying protocols. While differing in names and in the
details of syntax, they may be considered equivalent in expressive power.

Based on Kelley’s transition model for parallel programs (Keller, 1976),
Bochmann (1980) has proposed a general transition model for the formal
specification of protocols, the specification of the services provided, and the
verification of the correct operation. He discussed these issues by considering,
as an example, the HDLC classes of procedures.

Recently, we have extended the TG model, called the Extended Trans-
mission Grammar (ETG) model, to contain context variables such as
sequence numbers in protocol specifications (Chu, 1989). We borrow the
notion of Communicating Sequential Processes (Hoare, 1978) in using “?” and
“!” as the “receive” and “send” events, respectively. In this context, “?” is a
blocking “receive” as it is in CSP; whereas “!” is a non-blocking “send” that
will not wait for the communicating partner to be ready for the “send” event to
be executable, as is required for “!” in CSP. As an example, the specification of
the ABP in the ETG model is shown in Fig. 12. An automated validation
package for the ETG model has been developed (see Section 10.6).

Shankar and Lam (1983) used an event-driven process model to specify a
version of the HDLC protocol between two communicating protocol entities.
The protocol is verified using the method of projections (Lam and Shankar,
1984). The verification serves as a rigorous exercise to demonstrate the
applicability of this method to the analysis of realistic protocols. The
procedure has been automated and is described further in Section 10.2.

3.3.2 Estelle and LOTOS

Early in the development of the OSI Reference Model (see Fig. 2), it was
recognized that formal description techniques (FDT) would be required to
accomplish the goals of OSI. Work has been under way within the I S 0 to use
FDT for writing precise specifications for the OSI protocols. One of the FDT
developed by Subgroup B, called ESTL (Extended State Transition Language)
or “Estelle,” is a hybrid model based on Pascal and an FSA model (Bochmann
1981; Linn, 1985; Tenney, 1983; Visserset af., 1983). Experience with the use of
this FDT for communication services and protocols is reported in (Bochmann

108 MlNG T. LIU

Channel a-1o.r

Legend

* 1n1t1d 8 h I a polntrr - arrlgnmmt oparator
I sandwont
7 rrralvr want - aqunlltU ta81
t lnaquallty ta8t . rubtracllon oparmtor

ETG model of the alternating bit protocol FIG. 12.

er al., 1982a, 1982b). A tutorial on Estelle can be found in (Budkowski and
Dembinski, 1987). Since September 1988, Estelle has become an international
standard, IS 9074 (Diaz et al., 1989).

The language being developed by the FTD Subgroup C is called LOTOS
(Language for Temporal Ordering Specification). Based on Milner’s Calculus
of Communicating Systems (Milner, 1980), it aims to assist in the formal
definition of protocols and services for the OSI Reference Model. The great
promise of LOTOS lies in the fact that it allows as many levels of refinement as
are needed, through the use of two language operators: parallel composition
and restriction. However, since the effort is made only to describe the message
sequences, there is a minimum impact on the specification of an im-
plementation, thereby giving the implementor the maximum amount of

PROTOCOL ENGINEERING 109

freedom yet still providing sufficient guidance to ensure compatibility.
Recently, Brinksma has used LOTOS to specify the OSI transport service
(Brinksma and Karjoth, 1984). A tutorial on LOTOS can be found in
(Bolognesi and Brinksma, 1987). By now it has become an international
standard, IS 8807 (van Eijk et al., 1989).

3.3.3 SDL

Since 1968, the International Telegraph and Telephone Consultative
Committee (CCITT) has made an effort to create a new language to precisely
specify and describe the functional features of a system. The resulting language
is called Specification and Description Language (SDL), which is also an
extended FSM language (Dickson and deChazal, 1983; Rockstrom and
Saracco, 1982). SDL has both procedural and declarative constructs which
together provide expressive and powerful means for modeling specifications.
It is widely used in telecommunication applications and is supported by
numerous tools. A refinement of SDL in a Pascal-oriented language is under
consideration by the CCITT. A tutorial on SDL can be found in (Saracco and
Tilanus, 1987).

3.3.4 FAPL

The language IBM uses for describing SNA is called Format and Protocol
Language (FAPL). It is derived from PL/l and contains additional constructs
for handling FSMs and processes. A protocol specified in this form is precise,
readily accessible to the implementing product designer and programmers,
and structurally close to the implementations (Nash, 1983; Pozefsky and
Smith, 1982). A tutorial on FAPL can be found in (Nash, 1987).

3.3.5 SelectionIResolution Model

Aggarwal et al. (1983) has proposed the Selection/Resolution model for
specifying, analyzing and validating the behavior of protocols. The model
centers around abstract entities called processes. Parallelism is addresed
directly with concurrent transitions in each process dependent on the status
(formally defined selections) of neighboring process. Protocol specification is
accomplished by defining many small interacting processes, each easy to
specify, which collectively describe the behavior of the protocol. The model is
based on an abstract calculus, which is amenable to hierachical specification.
Validation of a specification is precisely defined in terms of proving properties
on the trajectories of processes. The feasibility of the model was demonstrated
by applying it to the ABP and a file-transfer protocol (Aggarwal and Sabnani,
1986).

110 MlNG T. LIU

3.3.6 CIL

Krumm and Drobnik (1983, 1984) proposed the CIL (Communication
Service Implementation Language) approach for the development of commu-
nication services. It is based on an event-oriented model of program execution
and a first-order predicate calculus. The verification of a program written in
CIL is supported by the automated generation of program axioms and by the
predicate calculus. The design of a program realizing a transport service
exemplifies the CIL approach.

4. Protocol Validation

As discussed in the previous section, to ensure that a communication system
functions properly, its communication protocols must be specified unam-
biguously so that the protocols can be implemented faithfully. More
important, the protocols must be shown to be correct. Verification or
validation is the process of showing the correctness of a protocol. Verification
and validation are often used interchangeably. We will follow the terminology
used by Sunshine (1979). That is, protocol verification is a demonstration that
the interactions of the communicating entities, based on their protocol
specification and the specification of the services provided by the layer below,
satisfy the service specification, whereas protocol validation refers to the more
limited analysis that the protocol specification satisfies a number of general
correctness properties that are essential to all, or nearly all, protocols. The list
of general correctness properties that must be satisfied by all protocols is as
follows:

1. Completeness. The protocol must be able to handle all conditions that
may arise.

2. Freedom from Deadlock. Each protocol system or global state allows
for progress to some other state.

3. Absence of Tempo-Blocking Loops. All looping paths provide some
meaningful communication operations.

4. Freedom from Livelock. Tempo-blocking loops, if any, provide some
exit to paths along which meaningful communication operations may
take place.

5 . Freedom from Overflow. The protocol is not allowed to place more
messages than the communication channels can accommodate.

6. Termination. The protocol will arrive at the desired final situation.

As can be seen from the discussions in the previous section, approaches to
protocol validation depend heavily on the models used for specification, and

PROTOCOL ENGINEERING 111

they have followed two main paths: reachability analysis and deductive
inference (or program proofs). Reachability analysis is based on exhaustively
exploring all the possible interactions of the communicating protocol entities
within a layer, whereas deductive inference is based on a list of statements
of properties (safety and liveness) and a list of axioms and rules for inferring
the statements from the axioms. Restricting our discussion in this section to
reachability analysis only, we will survey relief strategies proposed by a
number of researchers to deal with the so-called state explosion problem, and
also propose a novel approach of our own, which is based on the search
strategies developed in the field of Artificial Intelligence (AI).

4.1 Reachability Analysis

Reachability analysis has been proved to be one of the most effective ways
for analyzing state-oriented models of communication protocols. It was first
proposed by West (1978a, 1978b) and later improved by a number of
researchers (see Section 4.2). The method is based on the idea of state
perturbation in which all the possible global states of a protocol are
enumerated from an initial state. Properties of the protocol can then be
verified based on the global states and the global state reachability graph.

Validation techniques used by FSA models are all based on some sort of
reachability analysis. This analysis involves the exploration of all possible
interactions among communicating entities. A global, system, or composite
state is a combination of both the states of communicating entities and the
states of communication media. From the initial global state, new global states
are generated by applying all possible transitions (user commands, message
arrivals, internal timeouts). This process continues for each newly generated
global state until no new states can be generated. The resulting graph is called
the reachability graph.

Reachability analysis is well suited to checking the general correctness
properties described above since these properties are a direct consequence of
the structure of the reachability graph. For example, global states with no
exits are either deadlock states or proper termination states. More impor-
tantly the generation of the global state space can be easily automated and
several automated systems for protocol validation have been developed (see
Section 10).

A global state graph of the above ABP is shown in Fig. 13. This graph is
generated under the assumption of so-called empty medium abstraction
(Bochmann, 1978). Under this assumption, communication media are con-
sidered empty, i.e., no message is in transit. Therefore, a global state is
composed of the states of the communicating entities. In this graph, (x , y) rep-
resents a global state where the sender is in state x and the receiver in state y .

112

Sender

MlNG T. LIU

Receiver

FIG. 1 3 ~ . FSA model of the alternating bit protocol (with Timeout Mechanism)

A possible transition consists of the sending of a message by one entity, and
the reception of this message (or erroneous message) by the other entity. In the
case of message loss, a transition corresponds to only the sending of a message.
The transition labeled D, stands for reliable transmission (followed by
reception) of a data frame with control bit i, where i is Oor 1. DiE shows that the
data frame is damaged on transmission, and the erroneous frame is received by
the receiver. Di' represents that the data frame is lost on transmission, and no
data frame is received by the receiver. The same notation is used for the
acknowledgment frame except that D has been changed to A.

The resulting global state graph may be examined for detecting general
correctness properties. For example, in Fig. 1 3 ~ , each global state can go back
to the initial global state, thus indicating the absence of deadlocks. There exist
loops without progress (or livelocked loops) such as the loop consisting of
nodes 2 and 10,4 and 12,6 and 15, and 8 and 13. These loops are executed in
the case of transmission errors or losses, and may be prevented by setting a
limit to the number of retransmission times.

The main advantage of FSA models is that reachability exploration can be
automated. The process of validation is far too time consuming and error
prone if done by hand. It may be possible to carry out validation on simple

PROTOCOL ENGINEERING 113

FIG. 13e. Global state graph of the alternating bit protocol under the empty
abstraction

medium

protocols by hand. As protocols become more and more complex, the effort of
manual validation grows beyond human capability. With the help of an
automated validation program, tremendous design time consumed by the
protocol designer can be saved.

The major difficulty of such models is state space explosion (the size of the
global state graph grows exponentially with protocol complexity). For
complex protocols, this technique becomes too complicated for a complete
generation and examination of all reachable global states. Thus, state-
transition approaches are not all suitable for modeling variables that may take
on a large number of values.

114 MlNG T. LIU

4.2 Relief Strategies

Due to its effectiveness and ease of mechanization as discussed above, many
protocol validation tools have been built based on the method of reachability
analysis. However, the applicability of this method is severely restricted by the
so-called stare space explosion problem. Many researchers have developed
relief strategies to attack the state space explosion problem. In this section
a brief survey of these strategies is presented.

The relief strategies presented in this section can be classified into three
categories according to when they should be applied. The strategies in the first
category are those applied during protocol modeling, i.e., in the stage of
formally specifying protocols. The second category of relief strategies are
applied after the protocol modeling is done but before the actual validation
is performed. The third category of strategies are those incorporated into the
validation (and thus reachability analysis) algorithms.

1. The relief strategy proposed by West (1982) falls into the first category.
The major techniques proposed by him are as follow:

(a) Restricting the use of many-valued parameters such as sequence num-

(b) Limiting the number of messages underway in the message queues.
(c) Limiting the classes of transmission errors under consideration.

bers in the specification.

2. Though different terms such as decomposition (Vuong and Cowan,
1982a; Choi and Miller, 1983), and multi-phase (Chow, 1985) are used by
these groups of researchers, the relief strategies they proposed basically fol-
low the same direction. They observe that certain classes of protocols can
be decomposed into components (or multiple phases), which then can be
separately verified to ensure the correctness of the original protocol. This
reduces the complexity of the verification problem since protocol components
are always smaller in the numbers of states and transitions than the original
protocol. They are relief strategies of the second category as classified at the
beginning of this section.

3. The strategy proposed by Lam and Shankar (1984) also belongs to the
second category. Unlike the strategies of decomposition, Lam and Shankar
proposed the projection approach, which, instead of partitioning a protocol
into multiple phases, constructs from the given protocol an image protocol for
each of the functions that is intended to be verified. The states, messages, and
events of entities in an image protocol are obtained by aggregating groups of
states, messages, and events of corresponding entities in the original protocol.
The resulting protocol is smaller than the original protocol, and therefore the
complexity of the problem is reduced.

PROTOCOL ENGINEERING 115

The following relief strategies all belong to the third category.

4. The Finite State Machine (FSM) analyzer, built as one of the tools in the
protocol development system by Blumer and Sidhu (1986), is based on the
model of the extended finite state machine (see Section 10.5). A mechanism
called transition choice rule is provided, which is associated with each of the
transitions. The choice rule is a Boolean condition whose value decides
whether or not the associated transition of the FSM is to be executed during
the reachability analysis. For example, a rule may specify that no transition
may be executed twice in the same path, or that no transition may be executed
to bring a state to itself. As a result, the scope of the state exploration is
controlled by the choice rules. For instance, infinite loops that may occur in
the analysis can be eliminated with appropriate choice rules.

5. LISE (Ansart, 1985) is also a tool based on the model of the extended
finite state machine. It can be operated in two modes: validation mode and
simulation mode. When the system is operated in validation mode, it fires all
the possible transitions in every global state. On the other hand, if the system is
in simulation mode, only one transition out of a global state is selected to fire.
The simulation mode is adopted whenever it turns out that a complete
validation is infeasible due to state explosion. Selection in simulation mode is
accomplished in two ways. In the first way, the selection is simply done on a
random basis; in the second way, a priority is assigned to each of the
transitions and the transition with the highest priority is always the one
chosen.

6. This group of strategies (Rudin and West, 1982; Gouda and Han, 1985;
Zhao and Bochmann, 1986) are based on the fair progress state exploration.
This was first proposed by Rudin and West (1982), then extended by other
researchers. The idea is to explore only those global states that are reachable,
provided that two protocol entities proceed at the same speed. Protocol design
errors such as deadlocks and unspecified receptions can still be completely
detected though the exploration is not exhaustive. The limitation of this
strategy is that it only applies to two-entity protocols.

7. This strategy is called the maximal progress state exploration (Gouda and
Yu, 1984b). The idea is similar to that of the fair progress state exploration and
its applicability is also limited to two-entity protocols. Basically, the strategy
is that the global states of a two-entity protocol can be generated in two sepa-
rate explorations, during each of which a different entity is forced to proceed
at its maximal speed whenever possible. The state space thus explored is not
exhaustive. Nevertheless, protocol design errors such as deadlocks, unspeci-
fied receptions, and channel overflows can still be detected. In addition, this
method has another advantage over others in that it can be structured to run
as two processes on two processors to further speed up the validation process.

116 MlNG T. LIU

8. The relief strategy proposed by Itoh and Ichikawa (1983) is applicable to
protocols whose entity FSMs do not contain any cycle not passing the initial
states. In each global state, the admissible events of different entities are
executed simultaneously to derive the next global state. Moreover, if there is
some potentially admissibleevent in the current state of an entity E, additional
global state derivations by inhibiting the execution of all the admissible events
of E should also be performed. The purpose is to force entity E to wait in order
that any of its potentially admissible events may become executable later.
Following this algorithm, only part of the global state graph is explored. The
interaction sequences thus explored are called the reduced implementation
sequences and are used to verify the protocol against the given requirement
specification.

9. This group of strategies (Brand and Zafiropulo, 1983; Kakuda et al.,
1986) are called the tree (or acyclic form) protocol validation. Instead of
exploring the global states of a protocol, this strategy grows each entity of the
protocol into a tree or an acyclic form. During the growing process, protocol
design errors such as unspecified receptions, deadlocks, and channel overflows
can be detected. The algorithm of this strategy is much more complicated than
the traditional “global states” reachability analysis. Nevertheless, the val-
idation speed is improved.

10. Holzmann (1985, 1987) designed a tool called Trace, which also works
under two modes, either as a fast debugging tool or as a slower correctness
prover. The main emphasis is that the user can control the scope of each
search. When used as a debugging tool, Trace uses a search strategy called
scatter search to explore the global states graph, which basically is a depth-first
search guided by some simple heuristics and restricted by a depth limit.
Examples of the heuristics proposed by Holzmann are as follows:

(a) Restrict the amount of nondeterminism.
(b) Assign priorities among concurrent events.
(c) Limit queue sizes.
(d) Discard all the states after the depth-first exploration except those that

are loop states.
(e) Keep a limited size of cache for storing global states.
(f) Minimize the FSM models of protocol entities before verification.

11. This strategy (West, 1986) is called the random-walk state exploration.
From his experience in validating the OSI session layer protocol, West
observed that the majority of errors detected are found many times in different
global states for a complex protocol. This sugests that an analysis of a subset
of the reachable global states may be sufficient to identify a significant fraction
of errors. The random-walk strategy is thus proposed as a way to partially

PROTOCOL ENGINEERING 117

explore the global states graph. The strategy is as follows:

(a) If there is any event that may cause message collision when executed,
such an event is fired first; otherwise, arbitrarily choose any event to fire.

(b) The state exploration is stretched out continuously along a single path
without backtracking. As a result, none of the previous states needs to
be remembered and the states that have already been explored may be
explored again.

12. Vuong et al. (1986) proposed a new global state representation based on
which the reachability algorithm developed can generate “finite graphs” for all
non-FIFO and for a certain class of FIFO protocols even though these
protocols may produce an unbounded number of messages in the trans-
mission media. This approach thus solves a class of problems that the
conventional reachability analysis fails to deal with due to the infinity of the
reachable global states induced by unbounded accumulation of messages in
the media.

4.3 PROVAT Strategy

Most of the relief strategies described in Section 4.2 are ad hoc, utilizing
heuristic information. We believe that the problem should be attacked more
systematically by borrowing some ideas from the search strategies developed
in the field of Artificial Intelligence (AI). Instead of adopting any of the
aforementioned strategies in our validation tool, we have developed our own
from a new approach. We call the strategy PROVAT (PROtocol VAlidation
Testing) for the following two reasons (Lin er al., 1987):

1 . It is a strategy incorporated into a validation tool.
2. When the tool resorts to the PROVAT strategy, it is performing a task

of design testing instead of design validation since only some of the
reachable global states will be explored. The purpose is to show the
existence, not the absence of protocol design errors.

Compared to general search problems, the search done on the state space of
a protocol has the following distinguished features:

1 . Rather than searching for an optimum or satisfactory solution, Valida-
tion Testing searches for protocol design errors of unspecified receptions,
deadlock states, and channel overflows.

2. The quality of search strategy is judged by the discovered percentage of
the total number of errors in a limited amount of time and space. Better

118 MlNG T. LIU

strategies will discover higher percentages of errors in the same amount
of time and space.

3. When searching into the protocol state space, pruning can be done based
on how likely a subtree of states can be exercised by the protocol
operation. In case an exhaustive analysis is infeasible, those states that
are more frequently exercised by the protocol should be validated first.

4. An effective search will primarily focus on one type of error at a time
because the heuristics required in locating different types of errors may
contradict each other.

Like the best j r s t search developed in the A1 field, an ideal search in the
domain of protocol validation is called the error Jirst search. PROVAT is a
first attempt to characterize such an error first search.

As pointed out in the previous section, heuristics can be applied at three
points in a search process, namely, the points to decide which global states to
expand next, to decide which transitions to fire next, and to decide which
global states to discard. PROVAT is designed to employ heuristics at all three
points.

Following the definitions given by Peral(1984), a global state is said to be
generated when its data representation is computed from that of its parent.
When this occurs, the parent state is said to be expanded. A state is fully
expanded if all of its children are generated; otherwise, it is partially expanded.
At some point, each generated state has to be inspected to see whether it
reveals any of the protocol design errors. A state is called explored if it has been
inspected. In addition, during the validation process, the states generated are
dynamically partitioned into two sets: CLOSED and OPEN. In the search
algorithm of PROVAT, the generated states that are never or partially
expanded are placed in OPEN, and those that have been fully expanded are
moved to CLOSED. Since a state may remain in OPEN for a long time before
it is expanded, it is reasonable to explore the state immediately after it is
generated.

In the following, the heuristics used by PROVAT are explained. We assume
that the only available protocol operations are “send” and “receive.”

1. Heuristics in Deciding Which Global States to Expand Next. The
purpose is to expand those global states in OPEN that are closer to errors. The
heuristics are mainly concerned with the status of queues and entities. For
each type of protocol errors, a different heuristic is derived.

(a) Unspecified Reception. We count the number of queues that satisfy the
following two conditions: (1) the queue is nonempty, and (2) its
destination entity is willing to receive the message at the head of the

PROTOCOL ENGINEERING 119

queue. Global states having the largest number of this type of queue will
be expanded first.

Examine all the empty queues in a global state, and call N ,
the number of empty queues whose destination entities are in receiving
states (states without any outgoing “send” transitions), and N , the
number of empty queues whose destination entities are not. Global
states then are scored according to the weighted sum of N , and N,. The
states that receive the highest score will get the first attention.

(c) Channel Overflow. Global states are compared based on the length of
their longest queue. If a tie occurs, the comparison continues based on
the length of the second longest queue. States that win in this contest
will be explored first.

(b) Deadlock.

2. Heuristics in Deciding Which Transitions to Fire Next. The purpose is
to perform those actions that are more likely to lead to the error from a
selected state. The heuristics are concerned with either action types or queue
lengths. Different heuristics are developed for each type of error.

(a) Unspecified Reception. We choose a “receive” operation if that
operation is able to receive a message from the shortest queue that
contains at least two messages; otherwise, we choose a “send operation
that sends a message to an empty queue. For other operations, consider
“receive” before “send.” These heuristics tend to sustain the decision
made by the heuristics of choosing the next expanded global state.

(b) Deadlock. “Receive” operations are always considered first. Among
“receive” operations, we choose those which extract from the shortest
queue.

(c) Channel Ooerflow. “Send” operations are always considered first.
Among “sends,” those which add to the longest queue have the highest
priorities. If there is no send operation, “receives” that extract messages
from the shortest queue are chosen. The heuristics for the above two
types of error are also derived to be compatible with those in deciding
which global states to expand next.

3. Heuristics in Deciding Which Global States to Discard. The purpose is to
decide which global states should not be generated during the global state
expansion, which in fact prunes the subtree rooted by any state thus inhibited.
To bring in meaningful heuristics in making this decision, we first enhance the
original TG model (Lu, 1986), on which the validation tool is based, to include
probability specifications. Then a simple method is developed to estimate how
likely each of the global states will be reached in terms of probabilities (similar
work is done on CCS by Purushothaman and Subrahmanyam (1987) for a

120 MlNG T. LIU

different purpose). Global states being assigned smaller probabilities are less
likely to be reached by the protocol operation. Consequently, if speed is the
major concern to the protocol verifier, he or she can ask PROVAT to explore
only those states with probabilities of reachability higher than a specified
threshold.

All the heuristics informally defined above are quantified by the eoaluution

Another problem left out in the above discussion is when to terminate the
functions, which play major roles in guiding the reachability analysis.

partial state exploration. In PROVAT, this is decided by two criteria:

1. Specijying a probability threshold to explore only the states that ure more
likely to be exercised by the protocol. Those global states with
probabilities of reachability dropped below the threshold value will
never be generated.

2. Specifying an upper bound on the number of expansion steps. When a
state is expanded, some new or existing states will be generated. Each
step of generating a state, whether the resulting state is new or already
existing, is called an expansion step. When the number of expansion
steps exceeds the specified value, the analysis terminates.

The first criterion essentially is supported by the third kind of heuristics
discussed above. On the other hand, the second criterion gives an approximate
estimate on how much time will be taken by the analysis. In PROVAT, the first
criterion is used to tailor the state space to contain only those paths that are
more likely to be exercised by the protocol, then the second criterion is applied
to obtain a desirable response time.

4.4 Preliminary Results

The PROVAT strategy has been built into an exhaustive validation tool
based on the formal model of transmission grammar (TG) (Teng, 1980;
Umbaugh, 1983; Lu, 1986). In order to incorporate PROVAT into the TG
validation tool, the model is first enhanced to include probability specifica-
tions and is called PTG (Probabilistic Transmission Grammar) (Lin, 1988).
Then a part of the tool is recoded to encompass the PROVAT strategy based
on the new model.

The original TG validation tool runs under 4.3BSD UNIX and contains
about 3800 lines of C language code. The resulting PTG tool contains about
4500 lines of C code. Several real-life protocols have been extensively validated

PROTOCOL ENGINEERING 121

and tested to evaluate the effectiveness of PROVAT. Here only the tests
performed on the call establishment procedure of the CCITT X.21 as specified
in (West and Zafiropulo, 1978) are presented. Though the X.21 interface is
designed to operate in a physical environment where no more than one
message can be outstanding in the channel of either direction, as an exercise to
compare PROVAT with the other search strategies in a large state space, the
behaviors of the X.21 with other channel sizes are also tried. Also, when testing
the power of the heuristics for deadlock detection, we delete some of the
transitions from the X.21 specification in (West and Zafiropulo, 1978) to create
deadlock states uniformly scattered in the global state space.

Five search strategies are tested to compare their performance in locating
different types of design errors:

1 . D-search (DS for short).
2. Depth-first search (DFS for short).
3. Heuristic search based on state heuristics only (abbreviated SBHS: State-

Based Heuristic Search).
4. Heuristic search based on transition heuristics only (abbreviated TBHS:

Transition-Based Heuristic Search).
5. Heuristic search based on both state and transition heuristics.

Notice that PROVAT adopts the fifth search strategy, whereas the TG
validation tool used the first strategy. Also, the second, third, and fourth
strategies are special cases of the fifth.

The results of the X.21 testing are shown in Figs. 14 to 16 and Tables I to IV.
In these results, state pruning is not considered though it is also part of
PROVAT. Figure 14 compares the results of detecting unspecified receptions
for the aforementioned five search strategies when the channel size of the
X.21 is set to be I , which clearly shows the power of heuristics in guiding the
“error first” search. Then, in Fig. 15, the results of the PROVAT search and the
D-search in detecting unspecified receptions for the X.21 with channel size of 3
are compared, which exhibits the improvement of PROVAT over D-search.
Finally, Fig. 16 shows the superiority of the PROVAT search over all the other
strategies in quickly locating the first 20% of reception errors when the
channel size is also 3.

Tables I to IV compare the results of detecting deadlocks for the five search
strategies under the assumption of different channel sizes. Each table entry
gives the expansion steps needed to discover one more deadlock error. I t is
interesting to note that when the channel size is 4, PROVAT exercised only
3.4% of total expansion steps needed for an exhaustive search in order to
locate all the deadlock states. These results give a strong evidence that with

122 MlNG T. LIU

1 .o

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0 . 8 1 .o

Percentages of Expansion Steps

Fic;. 14. Detection of unspecified reception errors with channel size I

1 .o

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1 .o

Percentages of Expansion Steps

Fic. 15. Comparison of PROVAT vs. D-search in detecting reception errors

PROTOCOL ENGINEERING 123

0.20

0.1 6

0.1 2

0.08

0.04

0 .oo 1
0.000 0.002 0.004 0.006 0.008 0.010

Percentages o f Expansion Steps

Detection of the first 20:: of unspecified reception errors FIG. 16.

PROVAT incorporated, the validation tool is much more effective than
blindly performing the D-search used by Lu (1986).

The experimental results from these tests are optimistic in that when we
resort to PROVAT, it does help locate the errors in fewer steps than the other
strategies. Though these results are still insufficient to conclude that PROVAT
will also perform better in validating other protocols, it indicates that with
good heuristics the verification tool may do a better job when state explosion
prohibits a thorough analysis of protocol behavior.

The heuristics employed by PROVAT are based on the local information of
a global state. Thus only a little overhead is incurred in the reachability
algorithm. Though it seems difficult, if not impossible, to capture the
characteristics of the interactions leading to a protocol design error by some
heuristics, PROVAT has shown its effectiveness through our experimentation.

I t is also worth noting that among the heuristics of locating unspecified
receptions, deadlock states, and channel overflows, those for unspecified
receptions are the most difficult to capture. This seems to match with the

Suategy

Error

Channel Size = 1

DS DFS TBHS SBHS PROVAT

1

2

20 18 16 6 4

23 118 118 17 16

4

Percentages
ofsteps
Excercised

382 301 299 259 259

94.3% 74.3% 73.8% 64% 64%

1

2

3

4

Percentages
ofsteps

Excercised

20 18 16 6 4

23 221 221 19 16

336 222 222 220 212

1408 767 764 394 389

98% 53.4% 53.2% 27.4% 27%

1

2

3

4

Percentages
ofsteps

Excercised

TABLE IV

THE DETECTION OF DEADLOCK STATE ERRORS WITH A TOTAL SPACE OF I 1054 STATES

20 18 16 6 4

23 271 271 19 16

4930 272 272 260 248

5178 1374 1370 513 508

99.6% 26.4% 26.4% 9.8% 9.8%

Error

1

2

3

4

Percentages
of Steps

Exercised

Channel Size = 4

DS DFS TBHS SBHS PROVAT

20 18 16 6 4

23 290 290 19 16

17953 291 291 280 268

18275 2027 2023 624 619

99.8% 11% 11.1% 3.4% 3.4%

126 MlNG T. LIU

research efforts in protocol synthesis (see Section 6) where incompleteness of
receptions is always the major issue (Zafiropulo et al., 1980).

Though it is difficult to compare the effectiveness of PROVAT strategy with
that of the other approaches due to the lack of a common ground, the
advantage of PROVAT lies in its simplicity and systematic approach. Its
drawback is common to any heuristics-based approach in its lack of theoretic
support and predictability. Our experience shows that to perform protocol
validation via reachability analysis, care must be taken from the beginning. As
the classification we made for the relief strategies indicates, serious attention
should be paid to the early stages of validation such as modeling and function
abstraction/decomposition. Only through these combined efforts, the difficult
state explosion problem can be resolved more effectively.

5. Verification and Conformity Analysis

As mentioned in the previous section, protocol validation and verification
is a demonstration of the correctness of a protocol design. A protocol is
considered to be correct if it satisfies two kinds of properties, viz., syntactic
properties (or general properties) and functional properties (or specific prop-
erties). The syntactic properties are those desired properties common to all
protocols such as freedom from deadlock, completeness and progress. They
form the set of implicit requirements that any protocol should fulfill to ensure
that its logical structure has no syntactical errors. The absence of syntactical
errors, however, does not necessarily imply that the protocol will do what it is
supposed to do. In this regard, the functional properties of a protocol define
the specific objectives of the protocol. They are usually presented in terms of a
set of behaviors, called the communication service, as perceived by the protocol
users. As mentioned earlier, a protocol can engage in extremely complicated
interactions that are beyond human anticipation. A formal analysis is required
to ensure that the functional behavior of a protocol conforms to the designer’s
intention.

To date, while the syntactic properties of protocols have been extensively
studied and relatively well understood (see Section 4), much work remains to
be done on the functional analysis, also called conformity analysis. In this
section, we will briefly survey the work done in this area and present our
approach to it.

5.1 Service Concept

The service concept is receiving more and more attention in current
protocol design (Vissers and Logrippo, 1985). With the abstraction facility in
service specification, the complexity problem of protocol design can be

PROTOCOL ENGINEERING 127

- 0 0

I J 1 I

\J)-SAP 14 (N)-SAP n 4
I > + Service Provider

I -
E n t i t y of the (N)th Layer E n t i t y

n 1 0 0 0

-
I Service Provider of Lower Layers I

FIG. 17. Architectural model for layered protocol design

alleviated to such an extent that protocol designers are capable of dealing
with it competently. Employing the service concept, the architectural model
for layered protocol design in the OSI Reference Model (see Fig. 2) is elegant
and succinct. The architecture model shown in Fig. 17 may be considered as
an abstraction of the network architecture shown in Fig. 2.

As explained in Section 2.3, services represent the logical interfaces between
adjacent layers, while protocols represent the operations performed inside
layers. Accordingly, the service specification and the protocol specification
describe the behavior of a system at two different levels of abstraction. A
service specification is responsible for defining the valid sequences of
interactions visible at the boundary between two adjacent layers, whereas a
protocol specification defines the behavior of protocol entities inside a
particular layer in terms of the interactions between peer entities.

Referring to Fig. 17 for a specific protocol layer, say the Nth layer, the
communicating entities together provide a set of capabilities to the service
users through the (N)-Service Access Points (or (1)-SAPS for short) by
obeying the (N)-protocol and by making use of the service provided by the
layers below this one. In other words, the (N)-protocol combined with the
service provided by lower layers forms a service provider to the service users,
which may be end users or the communicating entities in the next higher layer,
ie., the (N + 1)th layer. Consequently, the (N)-protocol can be regarded as the
logical implementation of the (N)-service given the (N - 1)-service available
for use. Since the (1)-SAPS are the only places through which the (N)-service
can be accessed by the service users, the internal mechanism embedded in the
protocol and the interaction between communicatingentities are not visible to
the service users. For example, the Alternating Bit Protocol (ABP) provides a
service that guarantees the correct transfer of data in sequence from one

128 MlNG T. LIU

user to the other. However, the use of an alternating bit variable in each
communicating entity and the retransmission mechanism in the communicat-
ing entity serving the user that has data for transmission are not visible to both
service users.

The set of capabilities provided by the communicating entities in a protocol
layer is presented by the execution of a group of well-defined service primi-
tives. A service primitive is considered as an elementary interaction between
a service user and the service provider during which certain values for the
various parameters of the primitive are established to which both the user
and the provider are refer. Thus each (N)-service primitive is associated with
an (N)-SAP and executed at that (N)-SAP. The specification of an (N)-service
can be expressed in terms of the possible orderings of service primitives
associated with the (N)-SAPS and their parameter value dependencies (Vissers
and Logrippo, 1985). On the other hand, the specification of the (N)-protocol
can be expressed in terms of the possible orderings of service primitives
associated with the (N)-SAPS and the (N - 1)-SAPS and their parameter value
dependencies.

Several advantages of the service concept are as follows:

1. The main advantage of utilizing the service concept in communication
protocol design is to provide a framework on which the complexity of
protocol design can be better managed.

2. A protocol designed using the service concept can be changed without
affecting any layer other than the one the protocol resides in. This is due
to the principle of separation of concerns in the service concept.

3. Yet another advantage of using the service concept in protocol design is
to facilitate the correctness proofs. Without the service concept, the
verification of a communication system becomes an unsurmountably
difficult task.

5.2 Conformity Analysis

By conformity analysis it is meant to demonstrate that a protocol does
indeed provide the service for which it is intended. The purpose of the con-
formity analysis is to show that the composite behavior of the (N)-protocol
specification and the (N - 1)-service specification with respect to the upper
users conforms to the (N)-service specification. Consequently, any method for
conformity analysis should be able to establish properties of the communi-
cation behavior of a given specification, to integrate several specifications
into an overall behavior, to hide the internal communications, and to demon-
strate the equivalence of two communication behaviors.

PROTOCOL ENGINEERING 129

As mentioned earlier, the service specifications and protocol specifications
represent two levels of abstraction in the OSI Reference Model. At the higher
level, a service specification of a layer describes the externally visible service in
terms of the valid sequences of the interactions taking place at the upper
boundary. At the lower level, a protocol specification describes the logical
implementation of a service in terms of the behavior of the protocol entities
inside a layer. Due to their inherently distinct characteristics, past experience
has shown that sequence-oriented specification techniques are more suitable
for service specifications, whereas stute-oriented specification techniques are
better for protocol specifications. A good survey on a spectrum of various
specification methods is in (Schwartz and Melliar-Smith, 1982).

Although different description methods have been commonly used for
service specifications and protocol specifications, a single specification tech-
nique to describe both of them is needed to perform conformity analysis. First,
by using one technique, both the service and protocol specifications can be
interpreted and analyzed on a common semantic basis. Second, a major task
in the conformity analysis involves the composition of the protocol specifica-
tion at one layer and the service specification at the lower layer. A uniform
specification technique will facilitate this composition step.

We have developed a CSP-based language for both the service and protocol
specifications (Liu and Liu, 1984). The basic idea is summarized as follows:

1. To speci/ j I(service, one or more CSP processes are used to describe the
behavior of a service provider. Furthermore, these processes can only
communicate with the processes that represent the service users. In this
way, a CSP specifications can be viewed as a communication sequences
generator in the sense that a service is defined in terms of all the possible
communication sequences that may arise during its execution.

2. To specify LI protocol, the entities are described by CSP processes that
may communicate with the processes that represent the underlying
service provider and the upper users. Typically, a control point in a
process just before an input command reflects the major (or control) state
of a protocol entity, whereas the variables are used to represent the
“context variables” associated with a protocol entity, such as the
messages. Therefore, a CSP specification can be viewed as a stute-
trunsition machine.

In short, our experience has shown that, by using CSP in a disciplined
manner, one can make use of language constructs as mechanisms in
generating a set of communication sequences corresponding to the allowable
sequences of interactions of a service. On the other hand, one can also specify a
protocol entity as a CSP process that resembles a state-transition machine

130 MlNG T. LIU

with the state space determined by the variables and a set of control points in
the process. Therefore, even though CSP is a high-level language, we can
employ i t as a unified method of sequence-oriented techniques and state-
oriented techniques that can be used for both service and protocol
specifications.

In the context of CSP, if the (N)-entities and (N - 1)-service provider are
specified as a set of processes, the task of conformity analysis is to show that,
after hiding all the internal communications, the set of observable communi-
cation sequences of these processes with respect to the users should conjlorrn to
the set of communication sequences exhibited by the processes of the (1)-
service provider. There are two approaches to conformity analysis based on
CSP specifications. We will discuss each of the approaches in the following
subsections.

5.3 Axiomatic Approach

For CSP, a number of proof systems have been proposed (Apt er ul., 1980;
Levin and Gries, 1981; Soundararajan 1984). While each of these provides a
different way to prove correctness of the distributed programs written in CSP,
all are based on Hoare’s axiomatic approach (Hoare, 1969). In this approach,
one can make use of a set of axioms and inference rules to prove that the
behavior of a program has some desired properties.

The axiomatic approach has been considered a successful tool in the design
of sequential programs. Given an initial condition that is satisfied at the
beginning of a program, the prover can systematically derive the logic
assertions at different control points, ultimately establishing a desired
postcondition at the end of the program. The application of the axiomatic
approach to distributed programs is, however, far from well understood.
Unlike the simple input/output behavior presented by a sequential program, a
distributed program usually has a number of interacting processes that are
mutually dependent in the course of their executions. Despite the many
techniques that have been proposed to tackle the new problems associated
with distributed programs, more experience is needed before they can be of
practical use.

Besides the fact that the axiomatic approach is still in the experimental
stage, thcre are certain fundamental difficulties that prevent us from using
this approach for the conformity analysis of communication protocols, as
described below:

1. Most of the axiomatic-based systems can deal only with partial
correctness of CSP programs. I n other words, they are used to prove that

PROTOCOL ENGINEERING 131

certain properties will hold after the execution of a program, provided
that it terminates. In contrast, we are interested in the communication
sequence patterns presented by systems that usually involve injnire
computations.

2. In axiomatic-based systems, a program behavior is described by a set of
logic formulas. In general, it is difficult to guarantee that these formulas
can completely characterize the properties of the program; they can at
best serve as a substantial but incomplete description of the program
behavior. However, to establish the equivalence of two program behav-
iors, the strongest descriptions of the programs are required.

3. The axiomatic-based systems aim at proving some desired properties of
a CSP program, i.e., a closed set of processes communicating with each
other. However, we are concerned with the external behavior of a set of
processes that may interact with the environment, i.e., an open system.

Rather than taking the axiomatic approach, we have developed a trans-
formational approach for the conformity analysis of communication systems,
which is given in the following subsection.

5.4 Transformational Approach

The basic idea of our approach is as follows (Liu and Liu, 1986). Instead of
performing the logic reasoning on the CSP processes, we transform a CSP
process into a set of algebraic expressions. These algebraic expressions should
represent the complete description of the communication behavior of the
original process. Furthermore, the algebraic system itself should be equipped
with the appropriate operators to support the activities of conformity
analysis. Once we achieve this, we are able to perform the analysis of a set of
CSP processes by simple algebraic manipulations of their derived expressions.

The immediate advantage of this approach is that, in general, algebraic
manipulations can be carried out more systematically and mechanically than
the mathematical logic inferences performed in the axiomatic approach.
However, in order to obtain this advantage, a major premise is that the
transformation from CSP processes to algebraic expressions should be
performed in a simple and orderly manner. For this purpose, we developed a
transformation system consisting of a set of rules by which the transformation
is conducted. Milner’s Calculus of Communicating Systems (Milner, 1980)
was chosen as the target language of our transformation system for the
following reasons:

1. CCS bears many similarities with CSP, thus making the transforma-
tion system simple and straightforward. In particular, the concept of

132 MlNG T. LIU

“interaction” in both languages is based on synchronous
communication.

2. Besides being an elegant notation for describing communication behav-
iors, CCS provides a set of operators to manipulate communication
behaviors. Especially, the composition operator can be used to derive the
integrated behavior of a set of cooperating system components, while the
restriction operator can be used to hide internal communications.

3. CCS is associated with a sound underlying theory to show the equiv-
alence of two communication behaviors-an essential activity in con-
formity analysis.

To perform the conformity analysis, we have developed a transformation
system to extract from a CSP process the communication sequences that may
arise during its execution, and to express these sequences in terms of behavior
expressions in CCS. Based on this system, we are able to transform a set of
cooperating CSP processes into a set of CCS expressions, and then derive the
integrated behavior with respect to the environment by using the CCS
composition and restriction operators.

Also, the conformity of the (N)-protocol to its service can be shown by
proving that the CCS expression, representing the integrated behavior of the
(N)-entities and (N - 1)-service provider with respect to the users at the next
layer, is observation-equivalent to the CCS expression that represents the
behavior of (N)-service provider.

The overall steps in conformity analysis are outlined in Fig. 18. We have
used the transformation system to verify the functional properties of the ABP.
In addition, it was used to detect syntactic errors of the X.25 packet-level
DCE/DTE interface. The details can be found in (Liu, 1986).

The transformation system from CSP to CCS is quite straightforward and
syntax-directed. For a given CSP process, the system allows us to suppress
the local computations and deal with its communication behavior only.
In particular, for a process that performs cyclic operations, the derived
CCS expression can serve as an “invariant” property on its communication
behavior. This gives some advantage over axiomatic proof systems, since by
using these systems, it is the prover who has the responsibility to elaborate the
invariant properties for cyclic computations-a heavy burden.

In passing we like to point out that the transformational approach (Partsch
and Steinbruggen, 1983) has been used for software development. That is,
starting with a formal specification, a transformation process is performed for
transforming the specification into an implementation. In contrast, we use the
transformational approach to derive from the specifications the properties of
communication behaviors in terms of algebraic expressions, which are
subsequently used for functional analysis.

PROTOCOL ENGINEERING 133

0 - S e r v i c e Specifications
in CSP

h.an@omtion Communication Behavior
in CCS

t

(N)-Protocol specifications
and

(N-1)-Service Specifications
in CSP

tram$ormation A set of
*' Communication Behaviors

FIG. 18. An overview of conformity analysis

6. Protocol Synthesis

As mentioned in Section 1, two complementary approaches to ensuring
correctness of computer-communication protocols are analysis and synthesis.
By the analysis approach, a protocol is first examined to reveal some prop-
erties, desirable or undesirable, and then modified to get rid of the undesir-
able ones (see Sections 4 and 5) . By the synthesis approach, rules ensuring
some desirable properties are enforced during the protocol design process.

134 MlNG T. LIU

The synthesis approach has the advantage over the analysis approach in that
it can assist the protocol designer to reduce the possibility of making errors,
if not to prevent it totally, during the protocol design process. In this section,
we will briefly survey the work done previously by researchers in the area of
protocol synthesis, discuss the limitations of current protocol synthesis tech-
niques, present our protocol synthesis technique, and discuss future work on
this topic.

6.1 Previous Work

Previous work on protocol synthesis can be classified into two categories,
depending on whether a service specification (see Sections 2, 3 and 5.1) is
required or not.

6.1.1 No Service Specification Required

Protocol synthesis techniques in this category do not require the initial
existence of a service specification to which the synthesized protocol
specification has to conform. Therefore, the protocol designer is responsible
for the semantics of the synthesized protocol specification. The goal of these
techniques is to construct protocol specifications free from the following
logical errors: nonspecified reception, nonexecutable interaction, deadlock,
unboundedness, and improper termination. Each technique has achieved
either a portion or the whole of the goal. Generally speaking, the techniques
achieving just a portion of the goal have higher flexibility than those achiev-
ing the whole of the goal. Seven techniques are included in this category, each
of which is discussed in the following:

1. ZaJropulo’s Reception Production Rules. Zafiropulo et al. (1980) pro-
posed three reception production rules, which were used in an interactive
protocol synthesis system (see Section 10.1). As long as these rules are obeyed,
two protocol logical errors- unspecified reception and nonexecutable inter-
action-can be prevented for any synthesized protocol specification. These
rules, however, are only applicable to two-entity protocols. To handle multi-
entity protocols, Brand and Zafiropulo (1980) proposed a different set of
production rules which are much more complicated than those for two-entity
protocols. Protocol logical errors such as deadlock, though not preventable,
may be monitored by the system in the process of designing a protocol. The
internal representation of protocol behavior in the system is N trees for an
N-entity protocol.

2. Sidhu’s Protocol Design Rules. Sidhu (1982a) proposed four protocol
design rules that can be used to monitor all kinds of protocol logical errors.

PROTOCOL ENGINEERING 135

However, the protocol designer has to specify all the interactions (message
transmissions and receptions) between communicating entities. Thus the tech-
nique is just an algorithm to validate a protocol in the process of designing
it and is not a real synthesis technique. The internal representation of protocol
behavior in the technique is a global state-transition graph.

3. Zhang ’s Protocol Synthesis Algorithm. The protocol synthesis algo-
rithm proposed by Zhang et al. (1988a, 1988b) consists of three production
rules and two deadlock avoidance rules. Like Sidhu’s protocol design rules,
the internal representation of protocol behavior in his algorithm is a global
state-transition graph. Their technique can be considered as an improvement
over Sidhu’s technique in that they enhanced Sidhu’s technique by automat-
ically generating the specifications of all receptions that can occur and by
adding deadlock avoidance rules to prevent possible occurrence of deadlock.
Their technique is restricted to two-entity protocols and it is suspected that
the deadlock avoidance rules are not general enough to cover all deadlock-
free two-entity protocols.

4. Choi’s Sequence Method. Choi (1986) presented a method for con-
structing protocol specifications in the Finite State Machine (FSM) model
by first synthesizing a pair of regular expressions of star height zero or one
and then converting the regular expressions to equivalent FSMs. His method
can prevent all kinds of protocol logical errors mentioned above. However,
his technique is limited to two-entity protocols whose entity FSMs corre-
spond to regular expressions of star height at most one.

5 . Gouda’s Synthesis Algorithm. Given a partial specification of a com-
municating entity, the algorithm proposed by Gouda and Yu (1984b) enforces
a fixed communication pattern between two communicating entities in order
to construct the complete protocol specification in which all kinds of design
errors are not existent. One disadvantage of their algorithm, is that the
generated specification for the peer entity is just one of the possible correct
specifications and may not be the one intended by the protocol designer. Fur-
thermore, the algorithm is applicable only to two-entity protocols.

6. Ramamoorthy ’s Automated Protocol Synthesizer. The automated pro-
tocol synthesizer developed by Ramamoorthy and his associates (Rama-
moorthy and Dong, 1982; Ramamoorthy ef al., 1985) makes use of six trans-
formation rules to build up the specification for the peer entity from a given
specification for the local entity. All kinds of design errors can be prevented
by this synthesizer if the specification for the local entity possesses some
desirable properties. The synthesizer suffers the same drawbacks as Gouda’s
algorithm. We will discuss this system in more detail in Section 10.3.

136 MlNG T. LIU

7. Kakuda’s Component-Based Synthesis. Kakuda and Wakahara (1987)
generalized Ramamoorthy’s six rules to come up with 22 patterns of compo-
nents, which may be used to construct multi-entity protocols. Moreover, this
technique allows the protocol designer to interactively increase flexibility for
protocol construction. All kinds of protocol logical errors can be prevented.

6.1.2 Service Specification Required

Protocol synthesis techniques in this category require the initial provision
of a service specification to which the synthesized protocol specification has to
conform. The goal of these techniques is not only to construct protocols free
from protocol logical errors, but also to mandate the synthesized protocol
specification to conform to the given service specification (see Section 5.2). In
the following, we briefly describe three such techniques.

1. Merlin’s Submodule Construction Method. Merlin and Bochmann
(1983) proposed a method of determining the specification for the missing
entity from a given service specification and the specifications for the re-
maining entities. Unfortunately, the technique does not guarantee the dead-
lock-freedom for the synthesized protocol specification and thus must be
supplemented by an analysis procedure to detect the deadlock.

2. Prinoth’s Protocol Construction Algorithm. The input to Prinoth’s pro-
tocol construction algorithm (Prinoth, 1982) is actually a specification refined
from a service specification by adding some auxiliary action transitions, and
the output from the algorithm is a protocol specification. Therefore, the pro-
tocol designer has to refine the service specification to produce the input to
the algorithm. The algorithm itself does not include a method to perform the
refinement of the service specification.

3. Bochmann ‘s Protocol Derivation Algorithm. Bochmann and Gotzhein
(1986) proposed an algorithm to derive a protocol specification from a given
service specification. A service in his model is described by an expression of
service primitives connected by sequence, parallelism, and alternative oper-
ators. A syntax tree is employed to collect the necessary information for
the send and receive actions required for synchronizing service primitives.
Consequently, their specification language is not able to describe a service
containing an infinite number of possible execution paths. Inclusion of a re-
cursion operator, as suggested in their paper, may fill the deficiency but may
also complicate their algorithm to some extent.

PROTOCOL ENGINEERING 137

6.1.3 Comparison and Discussion

The protocol synthesis techniques in the first category (Section 6.1.1)
provide some rules or methods for obtaining the complete protocol specifica-
tion, starting from a partial protocol specification, either interactively or fully
automatically. However, they don’t have a service specification initially given
as a reference. The protocol designer is responsible for the semantics of the
synthesized protocol specification; thus he or she must resort to his or her
intuitive understanding of the intended service, a very informal task in current
protocol design. As a result, more burden is placed on the protocol designer in
the stage of protocol verification.

The protocol synthesis techniques in the second category (Section 6.1.2) do
consider service specifications in a formal manner. Merlin’s work, however,
additionally requires the existence of specifications for (n - 1) communicating
entities, where n is the total number of communicating entities in the protocol
layer of interest. Prinoth’s work and Bochmann’s work are more ambitious
since only the service specification of the interest layer is needed at the outset.
Nevertheless, in Prinoth‘s work, some auxiliary actions (similar to the syn-
chronization messages discussed in Section 6.2) are, in some cases, needed to
be added into the service specification prior to the application of his protocol
construction algorithm; yet the algorithm does not provide a method to per-
form the refinement of the service specification by including such auxiliary
actions. In Bochmann’s work, the required synchronization messages are
derived automatically; however, their service specification language is not
able to express a service containing an infinite number of possible execution
paths. In our protocol derivation algorithm given below, we follow the same
approach of Bochmann’s work, and thus inherit the advantages of his
approach. But we use a state-transition model, which can easily describe a
service containing an infinite number of possible execution paths by using
transition loops in FSMs and which seems to be a more natural and better
understood model. In the next subsection, we will briefly explain our protocol
synthesis technique.

6.2 Our Synthesis Technique

We believe the right approach to protocol design should be one that treats
the service concept formally. In particular, we feel that one should start from a
formal specifications of the (N)-service and the (N - 1)-service to construct
the desired formal specification of the (N)-protocol, as depicted in Fig. 19.
Within this architectural view, we are interested in automating the procedure
of deriving a protocol specification from given service specifications. That is,

138 MlNG T. LIU

I - I
(N-I)-Service Specification

protocol
derivation
problem

0 F l
(N) - s A ~ . r

(N)-Protocol Specification
Entity .(~,.+*.*"'+'" -.***.. '..,*,, IIIC Entity

n 1 0 0 0
L

(N-1)-SAP 1

FIG. 19. From the (N)-service specification and the (N - I)-service specification to the (N)-
protocol specification

PROTOCOL ENGINEERING 139

we want to find an algorithm for the protocol derivation problem. However,
this protocol derivation procedure for an arbitrary communication service
appears to be formidably difficult. As a result, we concentrate on a class of
communication services whose behavior can be described by a set of directly
coupled Finite State Machines (FSMs). This state-transition model allows the
specifications of both terminating and nonterminating communication
services. For a service specified in the state-transition model, we provide a
protocol derivation algorithm that produces the protocol specification
automatically once some further information about decision options and
initiation options is given by the protocol designer. The provision of the above
information is to make sure that the derived protocol specification is desired
by the protocol designer.

6.2.1 The Model

A service specification in our model (Chu and Liu, 1988a, 1988b) is
composed of local constraint FSMs and global constraint FSMs, directly
coupled with one another. One example is the connection establishment and
release phases of the simplified I S 0 transport service, as specified using the
modified Communicating Sequential Processes (CSP) of Liu and Liu (l984),
without the provider-initiated disconnections. In this service specification (see
Fig. 20) there are five service FSMs: two local constraint FSMs, M, and M,;
and three global constraint FSMs, N , , N 2 , and N , .

Using a set of directly coupled service FSMs to specify a service may re-
sult in an inconsistent description; therefore, we provide an “inconsistency
checking” algorithm to detect any inconsistency. An inconsistent nonter-
minating service specification is one that may deadlock, whereas an inconsis-
tent terminating service specification is one that may reach a global state from
which no final global state can be reached (called improper termination). The
inconsistency checking algorithm actually constructs the reachability graph in
which the deadlock (or improper termination) is checked.

A protocol specification consists of two entity specifications, each of which,
similar to a service specification, contains local protocol FSMs and syn-
chronizing protocol FSMs, directly coupled with one another.

6.2.2 Protocol Derivation Algorithm

In deriving a protocol specification from a given service specification, the
local constraint FSMs of the service specifications can be embedded directly
into entity specifications as the local protocol FSMs since local constraint
FSMs perform decision locally without requiring any communication be-
tween entities. On the other hand, global constraint FSMs enforce the relative

140 MlNG T. LIU

N2

Nl

N,

SeMce tnimitive P SadP)
crq - ComLectiOn request (from user 1)
c i -- (lmectiion iodication (to user 2)
Crer - C!m~~tiionmponse(fromUsa2)
ccont -- conaection confvmation (to User 1)
~ l - D h X U X C l nquestfromuser1
Dind2 -- Disconnect indication to user 2
Dreq2 - qaanmct request from User 2
Dindl -- Dlmnmeu indicationtouser 1
a : initial state pointer

SAP-1
SAP-2
SAP-2
SAP-1
SAP-1
SAP-2
SAP-2
SAP-1

0 :finalstate

FIG. 20. The specification of the simplified I S 0 transport service

execution order of service primitives associated with different Service Access
Points (SAPs), requiring protocol entities serving different SAPs to commu-
nicate with each other to synchronize the execution order of service primitives.
The algorithm to derive the synchronizing protocol FSM pair (two syn-
chronizing protocol FSMs, one for Entity 1 and the other for Entity 2) from a

PROTOCOL ENGINEERING 141

global constraint FSM has three major steps:

1. Insert some intermediate transitions between service primitive transi-
tions according to the specified decision option of a service state in a
global constraint FSM.

2. Adjust the initial state pointer according to the given initiation option.
3. Project the resultant refined FSM onto Entity 1 and Entity 2 indepen-

dently to produce the desired synchronizing protocol FSM pair.

6.2.3 Error-Recovery Transformation

To enable our algorithm to deal with erroneous underlying communication
services, we further devise an error-recovery transformation procedure. The
error-recovery transformation procedure consists of three transformation
rules applicable to three different patterns of transitions in the synchronizing
protocol FSM produced by the protocol derivation algorithm from a service
specification.

A problem, called the sink-state problem, has been created by sink states of
synchronizing protocol FSMs in the error-recoverable protocol produced by
applying the error-recovery transformation to a protocol derived from the
protocol derivation algorithm. The problem can be fixed by forcing an entity
to send a “sink command” to the other entity once it reaches a sink state.
This repair corresponds to another transformation working on the portions
of an error-recoverable protocol specification that cause the sink-state
problem.

The duplicate acceptance problem would result from applying the error-
recovery transformation to the protocol produced by the protocol derivation
algorithm. This problem can be resolved by performing another transfor-
mation on any error-recoverable protocol produced by the protocol deriva-
tion algorithm and the error-recovery transformation procedure.

In short, we have developed a protocol derivation algorithm, an error-
recovery transformation procedure, and transformations to fix the sink-state
problem and the duplicate acceptance problem, all of which are based on the
state-transition model (Chu, 1989). Due to the space limitation these are
omitted here.

As an example, let us apply the protocol derivation algorithm and the error-
recovery transformation procedure to the simplified I S 0 Transport Service as
shown in Fig. 20. We obtain the protocol specification shown in Fig. 21, where
M, and M, are local protocol FSMs for Entity 1 and Entity 2, respectively, and
the rest are synchronizing protocol FSMs for Entity 1 or Entity 2.

e4 h

c
)

c
.
)

.
I

r5
+

2

P

PROTOCOL ENGINEERING 143

6.3 Future Work

We would like to reemphasize that the right approach to protocol synthesis
should be one that treats the service concept formally. For protocol synthesis
using the service concept, the proposed protocol synthesis technique is our
first attempt in this direction. However, there is more to be done in order to
arrive at a truly satisfactory protocol synthesis technique. Several limitations
in our approach have been identified and itemized as follow, and future work
on removing the limitations are also discussed.

1. A high degree of concurrency in the execution of service primitives can
be achieved in our model through service FSMs running in parallel, but
synchronized by direct coupling of service primitives. Even so, any
synchronizing protocol FSM pair produced by the protocol derivation
algorithm is always closely synchronized in the sense that the communi-
cation pattern of the synchronization messages is “handshaking,” there
are no message collisions, and at most two messages are in transit at
any instant for the synchronizing protocol FSM pair. Therefore, the
expressive power of our state-transition model is still limited as far as the
control aspect of protocols is concerned. The study of an appropriate
way to enhance the expressive power of our model is in order.

2. For modeling real-life protocols, the addition of parameter, variable and
time specifications to our service model is mandatory. However, the
addition may have an extensive impact on the protocol derivation algo-
rithm, requiring more careful investigation.

3. The optimization issue for communication protocols raised in papers by
Bochmann and Gotzhein (1986), Merlin and Bochmann (1983), and
Ramamoorthy and Dong (1982) is still an open question. The issue in our
context for either error-free protocols or error-recoverable protocols is
also a challenging work. Two points about the optimization of the gen-
erated error-recoverable protocol specifications are identified, ie., the
elimination of redundant timers and the use of negative acknowledg-
ments. The discussion on them follows.

(a) Let us consider the optimization issue on a transformed error-
recoverable protocol specification. If we make stronger the fairness assump-
tion about the communication media, some timers may become redundant
and thus be eliminated. For example, many versions of the Alternating Bit
Protocol (ABP) only use a timer in the sender for retransmission of lost mes-
sages. But our error-recovery transformation would impose a timer in both
the sender and the receiver. However, the fairness assumptions about the
communication media in their specifications of the ABP and our speci-
fication are not the same. They assume that the communication media

144 MlNG T. LIU

will correctly deliver a message injnitely often if the message is retrans-
mitted an infinite number of times. On the other hand, our assumption is
that the communication media will correctly deliver a message at least once
if the message is retransmitted an infinite number of times. Obviously, their
assumption is stronger than ours, thus making the use of a timer only in the
sender justifiable. In case we also make our assumption as strong as theirs,
we should be able to remove the timer in the receiver without sacrificing the
functionality of the protocol. At present, we still do not have a general solu-
tion for eliminating redundant timers from any produced error-recoverable
protocol specification if the fairness assumption about the communication
media is made stronger.

(b) The use of negative acknowledgments in an error-recoverable protocol
may reduce the time period between two consecutive transmissions of the
same message, thereby increasing the average throughput of message delivery
between two service users. However, it also complicates protocols and intro-
duces some processing overhead. We believe that the use of negative
acknowledgments should depend on the actual environments in which the
protocol will be implemented. In case we do wish to use negative acknowl-
edgments in our error-recoverable protocol specifications, it is interesting to
study the right way to include them in the specifications.

7. Timed Models and Performance Analysis

As discussed in Sections 3 and 4, various untimed formal models have been
developed for protocol specification, validation and verification. However,
these untimed models cannot be used to verify a protocol in which time
constraints are essential for the correct functioning of the protocol. For
example, Shankar and Lam (1982) found that in order to prove a desired
timeout condition for a simple protocol, untimed modeling of that protocol is
not adequate; Merlin and Farber (1976) discovered that in order to study
recoverable protocols, a timed model (time Petri net) must be used to remove
inherent limitations of the untimed model; Walter (1983) also found the
inadequacy of untimed models when he tried to model and analyze a complex
surveillance protocol for distributed systems; and more recently, Jain and Lam
(1987) reported the necessity of timed protocol modeling when verifying a
real-time protocol. It is worth noting that even the alternating bit protocol
(ABP) used for illustration in Sections 3 and 4 is time-dependent should one
remove the assumption that the medium cannot lose any message in
transmission. In this case, the sender then has to employ a timer to do error
recovery, and correct functioning of the protocol depends highly on the
correlated time factors such as the timeout period, transmission delay, and
processing speed of the entities. Furthermore, as a question raised by the title

PROTOCOL ENGINEERING 145

of a paper by Yemini and Kurose (1982) (“Can current protocol verification
techniques guarantee correctness?”), functional correctness is not the only
concern in protocol design. Another indispensable aspect of the protocol is its
performance; and as a matter of fact, the foundation should be, once again,
timed models because without time specification performance analysis cannot
be done in a formal model.

Therefore, there seems to be two main goals for timed protocol modeling.
One goal is for verification of time-dependent protocols. The other goal is for
performance analysis of protocols. But very few models are targeted for both.
As pointed out by Yemini and Kurose (1982), there is indeed a need to provide
a unified approach to the functional and performance analysis of protocols. It
is also interesting to note that most effort in extending untimed models to
timed models is for performance analysis of protocols.

In this section we first briefly survey various timed models that have been
proposed in the literature. We then present several timed models we have
developed for both protocol verification and performance analysis.

7.1 Previous Timed Models

In this section we present a brief survey of the time extensions done on
various formal models described in Section 3: the CFSM model, the Petri nets
model, the CCS model, the CSP model, and the Abstract Machine model.

1. Timed CSFM Models. Most work in this domain is done by researchers
in the IBM Zurich Research Laboratory. Basically, there are three approaches
to adding time specifications to the CFSM model. Two are done to predict
performance of a protocol from its formal specification (Rudin, 1983, 1984;
Kritzinger, 1984). The remaining one is done to verify a protocol modeled
more realistically, namely by including time information of network compo-
nents as part of the model (Bolognesi and Rudin, 1984).

2. Timed Petri Nets Models. Enormous work has been done on extending
untimed Petri net models to timed models in order to model and analyze not
only communication protocols but also other systems such as real-time and
multiprocessor systems. Nevertheless, our major concern here is those models
related to protocols. Those models differ according to how time is associated
with the net and in what form. Three different terms have been used by various
researchers: Timed Petri Nets (Zuberek, 1986; Garg, 1985; Walter, 1983;
Razouk and Phelps, 1984; Holliday and Vernon, 1987), Time Petri Nets
(Merlin 1976; Berthomieu and Menasche, 1983; Menasche, 1985), and Sto-
chastic Petri Nets (Molloy, 1982; Marsan et al., 1984; Zuberek, 1985).

146 MlNG T. LIU

3. Timed C C S Models. The timed model proposed by Nounou and
Yemini (1984) is a timed CCS model even though they used a different set of
notations. Basically, time information is not specified on the level of individual
communicating entities, but on the level of the global behavior tree after all
the communicating entities are combined by parallel composition. The global
behavior tree captures all the possible interaction sequences and nondeter-
ministic behavior of a protocol.

4. Timed C S P Models. A timed CSP model was proposed by Reed and
Roscoe (1986) to verify real-time properties of communicating processes while
retaining compatibility with the semantics of the original untimed model. It
is an extension of Hoare's CSP trace model. Recently, Zic (1987) extended
the time CSP model by incorporating probability specification in the model.
This is done by associating probabilities with CSP's nondeterministic choice
operators. The purpose is to allow both protocol performance specification
and verification in timed CSP.

5 . Timed Abstract Machine Models. Shankar and Lam (1982,1984) have
proposed a timed abstract machine model that uses discrete-valued timer
variables to measure the elapse of the time and time events to age the timer.
Those time variables and time events are local to each process in the model.
Timer variables from different processes are uncoupled and can tick at dif-
ferent rates. Nevertheless, an ideal timer is assumed, based on which local
timers are constrained within a specified error bound by the accuracy axiom.

As all the timed protocol models -discussed above are extensions of the
corresponding untimed models, the major issues on timed protocol modeling
can be seen from two points of view, namely, in what form the time
specification is represented and with which component of the model it is
associated.

1. In What Form The Time Specification Is Represented. There are three
possible forms of time specifications:

(a) Constant (deterministic) time.
(b) Time interval.
(c) Stochastic time (random variable, mostly with exponential

distribution).

2. With Which Component Of The Model It Is Associated. There are two
aspects of model components the time can be associated with: model in large
or model in small.

PROTOCOL ENGINEERING 147

(a) Model in large. When we look at a model in large, there are two
ways to associate time specifications with the model. One way is to
associate time with the components of individual communicating
entities before they are composed together. The other way is to
associate time with the components of the global protocol behavior
after individual entities are composed together. Examples of the
former are time specifications in timed Petri nets and timed abstract
machines. Examples of the latter are time specifications in timed
ccs.

(b) Model in small. When we look at a model in small, the ways to
associate time specifications are quite model-dependent and, in fact,
any natural association is possible. For example, there are four major
components in a Petri net: place, transition, arc from a place to a
transition, and arc from a transition to a place. Likewise, time can be
associated with either states or transitions in the CFSM model, with
events in CCS and CSP, and with state variables in an abstract
machine.

Analytic power of the timed models can be discussed from two points of
views: (1) what purpose it is used for, verification or performance, and (2) how
it is related to its original untimed model. From this survey study, we have the
following observations:

1. Form of time specijcation.

(a) Stochastic time specification is only suited for performance analysis.
(b) Time interval specification is best suited for verification, but its

analytic method is hard to derive.
(c) Constant time specification can be used for verification and perfor-

mance analysis. But when used for verification, it is not as good as
time interval specification; when used for performance analysis, it is
not as good as stochastic time specification.

(d) Moreover, probability specifications need always be brought into the
model if performance analysis is going to be supported by non-
stochastic time specifications such as constants or intervals.

2. Time association with the model components.

(a) We believe that the association of time specification with individual
communicating entities is more realistic and more convenient than
with the global behavior of the protocol.

148 MlNG T. LIU

(b) How time is associated with the components of communicating
entities strongly decides how difficult it will be to derive an analytical
method. Thus it should be done with the analytic method in mind.

3. Which untimed model is better for time extension. It seems that time
extension in one model can often be also applied to another model. Thus, on
which untimed model the time extension is done is not as important as other
issues in the current research. One of these issues is the lack of a timed model
that can support both verification and performance analysis of protocols.

In summary, there is no doubt that time modeling choices made in a timed
protocol model greatly affect the analytic power it can provide. Normally,
there is a tradeoff between modeling and analytic power and it is not easy to
reach a balance point when making these choices. In the following two
subsections we briefly describe several timed models we have developed in the
past.

7.2 TTG and TTG' Models

The TTG model (Lu, 1986) is an extension of the untimed TG model (Teng,
1980) for the verification of time-dependent and time-independent, synchron-
ous and asynchronous protocols. The extension was done in several aspects.

1. The specification is divided into two classes, namely entities and channels.
They are component grammars modeling the communicating entity and
the medium connecting them, respectively.

2. Time specifications are added to the model. There are three kinds of time
information that can be specified in the model, namely timeout interual,
rule firing time, and transmission delay. The rule firing time is associated
with each production rule of the entities to denote the delay and execution
time of the rule. The transmission delay is associated with each
production rule of the channels to denote how long a message will take to
reach its destination. The timeout interval is specified when a timer is
activated.

3. Two more actions for setting and clearing timers are introduced to make
the notion of timers explicit. They are for activating and deactivating a
timer. Within an entity, there is a timeout handler for each timer used,
which specifies the service actions taken when the timer expires.

Each time specification in the TTG model is in the form of an interual [tminr
fmaX], where tmin is a nonnegative integer, t,,, is a nonnegative integer or co

PROTOCOL ENGINEERING 149

(infinity), and t,,, 2 tmin. When specified as a rule firing time, fmin is the
minimum delay time before the actions in a production rule can be executed
after the rule is enabled, and t,,, is the maximum elapsed time before which all
the actions in an enabled rule must be completed. When specified as a timeout
interval or as a transmission delay, tmin and t,,, are the minimum and
maximum times required for a timer to expire and for a message to reach its
destination, respectively.

Based on such an extended timed model, Lu (1986) derived a reachability
analysis algorithm to verify various properties of a protocol modeled by TTG.
The algorithm has been mechanized and used successfully to validate the ABP,
the X.21 and the IBM token-ring protocol (see Section 10.6).

Though the TTG model developed by Lu (1986) is capable of handling
time-dependent protocols, it can be applied to only a restricted class of
protocols. To overcome this drawback, we have modified the TTG model and
developed a novel algorithm of timed reachability analysis based on the new
model (Lin, 1988). In order to distinguish the new model from the old TTG
model, it is called the TTG+ model.

7.3 ITTG Model

In this section, we present an integrated approach to verifying general
properties of protocols and to analyzing their performance based on a formal
model called Integrated Time Transmission Grammar (ITTG). I t is an
extended and refined protocol model resulting from an evolutionary series of
the Transmission Grammar-based models: the TG (Teng, 1980), the TTG (Lu,
1986), and the TTG' (Lin, 1988), and ETG (Chu, 1989) models. Basically, the
extension on the TG-based models follows the same line of evolution as other
models, i.e., from untimed to timed modeling of protocols. But here we move
one step further to integrate two major purposes of timed protocol models,
viz., verification and performance analysis, in a single framework. The major
extension done to previous timed models (TTG and TTG+) is the in-
corporation of time specifications into the models. Now in order to facil-
itate performance analysis also, both time and probability specifications
are incorporated into the ITTG model. Figure 22 shows the relation between
these TG-based models.

Basically, the ITTG (Lin and Liu, 1988b) model is a set of regular grammars
consisting of three distinct parts: entities, channels, and timeout handlers. Each
of the entities, channels, or timeout handlers is a regular grammar or a set of
regular grammars. Together they specify a communication protocol elegantly.
Non-terminals and terminals in ITTG are referred to as states and actions
respectively in the following.

150 MlNG T. LIU

FIG. 22. Family of the transmission grammar-based models

1. Entities in the ITTG Model. An entity in ITTG is a regular grammar
preceded by ‘‘$entity entity-id.” The actions performed by an entity are the
following:

Q.entity-id [.entity-id.. . .].message-name
D.entity-id.message-name

S.timer-id time-interval
C.timer-id
internal-action-name

PROTOCOL ENGINEERING 151

where Q and D specify communicating actions corresponding to sending
(enQueueing) and receiving (Dequeueing) of a message; S and C are timer
actions to Set and Clear a timer; and internal-action specifies those operations
invisible to other entities.

Each production rule of an entity is of the form:

(current-state).[time-interval] ::= [probability-valuelaction-1

where action-1 is either a Q, a D, or an internal action, but any action that
follows must be a timer action. The (current-state) that appears in the first
production rule of the grammar is implicitly defined as the initial state of the
entity. Usually, a state may have more than one production rule. In ITTG,
these rules are grouped together and each of them is separated from others by
a comma (“,”).

A state is said to be passive if none of its production rules contains a Q or an
internal action; otherwise, it is actiue. For an active state, a time interval must
be specified and associated with it. Semantically, this time specification gives
the minimum and maximum delays that an active state must be held before it
can move to the next state. Conversely, for a passive state no time interval need
be specified because how long a passive state is held will be decided by other
external events. An active state with more than one production rule containing
a Q or an internal action is called a decision state. For a decision state a
probability value must be specified for each of its production rules containing
either a Q or an internal action, such that the sum of all the probability values
assigned to these rules is 1.

[acrion-2.. . (next-state).

2. Channels In The ITTG Model. A channel in ITTG is a regular gram-
mar preceded by “$channel [entity-id-1-) entity-id-21 of size number.”, which
specifies not only the source and destination of the medium but also the
capacity of the medium. Unlike an entity, a channel has only one state, called
the idle state, and its possible actions are the following:

T.in-message-name
L.in-message-name
U.in-message-name
G.in-message-name.out-message-name

where T denotes correct message Transmission through the medium; L
denotes message Loss in the medium; U denotes message duplication (from
one to two) by the medium; and G denotes that message in-message-name has
been Garbled during the transmission and the garbled message delivered by

152 MlNG T. LIU

the medium is out-message-name. In short, these actions specify possible
behaviors of a channel. For convenience of specification, if a medium has no
discrimination against the message type, message name “*” is used to indicate
any message sent through the medium.

The production rule of a channel is of the form:

(idle-state) ::= [probability-value] [time-interval] action (idle-state).

where action is either a T, L, U, or G and time-interval specifies how long it will
take for a message to get through the medium. Note that in order to accurately
estimate channel busy time, a time interval is specified even for the message
lost in the medium. A channel with multiple production rules for an in-
message-name is called an unreliable channel. For an unreliable channel a
probability value must be specified for each alternative production rule of the
in-message-name such that the sum of the probability values assigned to these
rules is 1.

3. Timeout Handler in the I TTG Model. A timeout handler in ITTG is a
set of regular grammars preceded by “$timeout-handler timer-id of entity
entity-id for (message-name, acknowledge-name) in channel entity-id = entity-
id, [(message-name, acknowledge-name) in channel entity-id = entity-id . . .].”,
where both the entity and the messages/acknowledgments served by a
particular timer are specified. Each grammar in the set consists of only one
production rule.

Unlike an entity or a channel, each production rule of a timeout handler
refers to the state of the entity that the handler serves rather than the state of
the handler itself; as such it carries different semantics. The form it takes is as
follows:

(current-state) ::= time-interval action-1 [action-2 . . .] (next-state).

where (current-state) must be unique for each timeout handler and a time-
interoal must be specified to indicate the time taken to execute this timeout
service.

The actions that can be performed by a timeout handler are Q.entity-
id [.entity-id. . . .].message-name and S.timer-id.time-interval, which model the
timeout-retransmission mechanism normally employed in communication
protocols. Seemantically, the rule specifies what kind of service should be done
when a timeout occursdue to a certain timer and in a certain state of the entity.

Based on the JTTG model, the techniques for both protocol verification and
performance analysis have been developed (Lin, 1988). Basically, verification
of a protocol is done based on the properties of both reachable states and their
reachability graph. On the other hand, performance analysis of a protocol is
done based on the extraction of timed probabilistic (TP) graphs from the

b
t

a2

P

E

- 5 L a

E
k

8
.
I

-3

3
e4

7

H 1

154 MlNG T. LIU

$entity 1.
<1>.[0,10] ::= IN <2>.
<2>.[1,1] ::= Q.2.W, S,Timer.[25,30] <3> .
<3> ::= D.2.Er. C.Timer <2>,

D.2.A1, C.Timer <2>,
D.2.AO, C.Timer <4>.

<4>.[0,10] ::= IN d> .
<5>.[1,1] ::= Q.2.D1, S.Timer.[25,30] <6>.
<6> ::= D.2.Er. C.Timer <5>,

D.2.AO, C.Timer <5> ,
D.2.A1, C.Timer e l > .

$timeout-handler Timer of entity 1 for (WBCKO)
in 1=2. (D1,ACKl) in 1=2.

<3> ::= [1,1] Q.2.DO, S."Imer.[25,30] <2> .
<6> ::= [1,1] Q.2.D1, S.Timer.[25,30] c5>.

$entity 2.
<1> ::= D.1.DO <2>,

D.L.Er <6>,
D.1.Dl <6>.

<3>.[1,1] :;=Q.I.AO <4>.
<4> ::= D.1.Er <3>,

D.1.W <3>,
D.1.Dl <5>.

<5>.[1,1] ::=OUT <6>.
<6>.[1,1] ::= Q.1.Al <1>.

<2>.[1,1] ::=OUT < 3 > .

$channel 1->2.
<idle> ::= 0.8 [5,10] T.* ,

::= 0.1 [5,10] L.* ,
::= 0.1 [5,10] G.*.Er .

$channel 2-> 1.
<idle> ::= 0.8 [5,10] T.* ,

::= 0.1 [5,10] L.* ,
::= 0.1 [5,10] G.*.Er .

FIG. 24. ITTG model of the alternating bit protocol

PROTOCOL ENGINEERING 155

global reachability graph. The final measures of protocol performance can be
represented in the form of an interval, indicating the performance parameters
of the protocol under the best and the worst cases. Due to space limitation,
those techniques are omitted here.

As an example, let us consider the alternating bit protocol (ABP) discussed
in Section 2. Unlike the ABP described in Section 3, the ABP illustrated here
takes into consideration the fact that the medium may lose a message in
transit. Figure 23 shows the state diagram of this more realistic ABP. Fig-
ure 24 lists the formal specification of the protocol in ITTG. After performing
the reachability analysis, the ABP is found to be free from all erroneous pro-
tocol properties such as unspecified reception, unspecified timeout service
state, deadlock, channel overflow, improper timer action, and premature
timeout. Nevertheless, four tempo-blocking cycles are identified: 29 + 27 +

28 + 39,9 + 23 + 13 + 14 + 8 + 9, and 14 -+ 16 + 17 + 14.
Once logical correctness of the protocol is verified, the next step is to

compute performance measures of the protocol based on the global state
graph already available after the verification. First, the T P graphs in the best
and the worst throughput cases are extracted. Then, based on the extracted T P
graphs we get the following performance measures after computation.

Channel Utilization
1 +2 : [0.291971,0.299774]
2 + 1: C0.294 102, 0.301 9631
Throughput: C0.02 1607,0.044370]
Efficiency: C0.57 1880, 0.6344221

The details of performance computation for the ABP can be found in (Lin,
1988). Basically, the ABP specified here can transfer from 21.7 up to 44.4
messages per second if one time unit is equal to 1 msec. Both channel
utilizations are approximately 30% without much difference under the best
and the worst cases, and about 60% of the time the protocol is doing
something effective.

8. Protocol Conversion

As discussed earlier, users on different computer networks cannot easily
communicate with each other due to the proliferation of different network
architectures and communication protocols. Protocol conoersion is to resolve
the incompatibility between protocols so that users on different networks can
communicate with each other. So far, most protocol converters have been

156 MlNG T. LIU

constructed manually with ad hoc approaches due to the lack of a formal
theory for protocol conversion (Green, 1986). Thus, protocol conversion is the
most recently established area in protocol engineering (Rudin, 1988).

In this section, previous work on the development of a formalism for
protocol conversion by other researchers is first presented. Then our effort in
developing a formalism, which is more powerful in modeling protocol
conversion and requires less human ingenuity, is discussed. Finally, we point
out possible directions for future research.

8.1 Previous Work

To the best of our knowledge, there are only two major formalisms that
have been proposed for protocol conversion by other researchers. We will
examine each of these two approaches in more detail.

Okumura’s Model. In the model proposed by Okumura (l986), a protocol
is modeled as a tuple (A o , . . . , A,) of Communicating Finite State Machines
(CFSMs) with message set M, where M is the union of the set Mij of mes-
sages from A, to Aj (i, j = 0,. . . , n), and each set Mij is mutually exclusive. A
four tuple A, = (q, Mif, a,, qi) is a CFSM which contains the following
components:

1. A non-empty finite set 6,.
2. A finite set M’.
3. A partial function di from a, x M f to a,.
4. A designated element q, in a,.

Suppose we have two protocols A and B, both of which contain two
CFSMs:

A = (A 0 9 A ,) B = (Boy B1).

Figure 25 is an example of protocols A and B, where A , and B, transmit
messages to A. and Bo, respectively. Protocol A is typical of the polling model,
whereas protocol B is typical of the ack-nack model. Each state is denoted by
a circle and each transition is denoted by an edge. The symbol - m on the edge
means “send message m” and + m means “receive message m.”

The goal of the conversion is to allow the communication components of
one architecture to communicate with those of another architecture. In Fig. 25
CFSMs A. and B , are assumed to be the components to communicate with
each other. A CFSM C is put between A. and B , to interpret messages
exchanged between these two components.

PROTOCOL ENGINEERING 157

A0 A1

+end -end

BO B1

+msg -nack

-Wk +msg +ack -msg

FIG. 25. Examples of two types of protocols
Protocol A is polling type protocols
Protocol B is ack-nack type protocols

In protocol (A o , C , B,), A. communicates with (C and B,) as if it
communicates with its original partner A,, and E , communicates with (A o and
C) as if it communicates with its original partner B,.

Furthermore, Okumura defined external equioalency, which guarantees a
similar environment for CFSM A . (B,) to the original protocol (A o , A,)
((B o , Bl)). Assume a protocol P = (A o , C, B,) is given, and protocol P
satisfies external equivalency iff for any executable sequence a, the subse-
quence of a, aIA(ctlE), which contains only the messages in message set MA
(M E) of CFSM A (B), is also executable in A (E).

In solving the problem of how to decide the appropriateness of exchanging
messages from a semantic viewpoint, Okumura proposed using the conversion
seed. She assumes that the rule for the occurrence of a significant message is
written in the form of a regular language and can be defined by an automaton.
Since how precisely the functions in one protocol will be interpreted in terms
of the functions in the other protocol may depend upon the design objectives,

158 MlNG T. LIU

the conversion seed should be given by the protocol converter designer after
carefully studying the two protocols to be converted.

In Okumura’s approach, conversion seed K is used to describe how the
protocols are converted. The conversion seed K = (nK, MK, d,, q K , F) is an
automaton over a significant message set MK c (M:, u Mi,) with final state
F = d,, and gives the guidelines and properties for protocol converter
generation.

Given the conversion seed, the message sequences in the newly constructed
protocol P = (A , , C, B,) can further be constrained to the ones that are
really meaningful to the protocol converter designer. Since not all the message
sequences accepted by A,(B,) is accepted by conversion seed K, Okumura
restricts that given any message sequence a E L(P), atK should be also accepted
by conversion seed K. This property is called semantics equivalency.

According to the previous arguments, Okumura further defines that
a CFSM C can be called a protocol converter for the given protocols
A = (A , , A ,) and B = (B , , B,) with conversion seed K iff protocol
(A , , C, El) satisfies the following conditions:

1. External equivalency.
2. Semantic equivalency.
3. Freedom from unexpected input.
4. Freedom from deadlock.

The existence of the protocol converter is also proved to be decidable for the
given protocols A, B and conversion seed K.

Some theorems proved by Okumura state that given CFSMs A = (A o , A ,)
and B = (B o , Bl), which are deadlock free and unexpected input free, and
conversion seed K; if there exists a converter C for P = (A, , C, B,) with K,
then there exists a converter D which is a sub-CFSM of (A , . B,) x R , where
the - operator denotes the arbitrary shuffle operation (Teng, 1980) and the x
operator denotes the intersection operation. CFSM K is the extension of
CFSM K, and extends K’s message set from MK to MA u ME. The transition
function of R is given as:

6 : (OK, M. u ME) + d K ,

With this upper limit (A , . B,) x K, Okumura proposed two protocol
construction rules to construct the protocol converter: one is the subtractive
approach from (A , B,) x K, and the other is the additive approach from a
null CFSM.

PROTOCOL ENGINEERING 159

Though Okumura did propose the construction algorithm for the protocol
converter, it is not satisfactory. For example, in Fig. 25, if we select A, and B ,
instead of A, and B1 as components of protocols to talk to each other, then we
would not be able to construct a protocol converter using this approach.

Lam and Culvert’s Model. Formal techniques are also proposed by Lam
(1986, 1988) and by Calvert and Lam (1987) to address the protocol
conversion problem. Their approach makes use of protocol projection, an
abstraction technique for verifying properties of complex protocols. The basic
idea of projection is that a property of the complex system can be proved by
finding a property preserving transformation to a simpler system, and by
proving the property of the simpler system. The image protocol preserves the
semantics of the original protocol.

Given a protocol A, a protocol projection is defined by partitioning the state
spaces of each of A’s processes. The idea is that process states that are to be
functionally equivalent in the image protocol are aggregated into the same
partition, and are mapped into the same image process state. Every message
(event) of the original protocol either maps into a message (event) in the image
protocol or has a null image. If the projection further meets some additional
requirement, then the image is said to be well-formed and the image of any fair
computation of the original protocol is also a fair computation of the image
protocol.

If two protocols can be projected onto the same image protocol, then
they share the inverse image of the safety properties of that image. Further-
more, if the image protocols are well-formed, then they have their safety and
liveness properties in common. Based upon this idea, Lam and Calvert
further proposed the following approach to solve the problem of protocol
conversion.

First the properties required of the conversion are specified; then a
projection of these two protocols onto a common image with the desired
properties is looked for. If such an image protocol is found, then the job is
done since we know that the protocols with the same image are semantically
equivalent.

If the protocols do not have a common image with the desired properties,
then a protocol converter has to be constructed. The candidate protocol
converter can be obtained by considering the properties required and the
structure of the processes involved in the conversion. If the candidate can be
projected onto each of the original protocols, the inverse images of their
properties are properties of the protocol converter. With this characteristic,
Lam and Calvert claim that the safety and liveness properties (correctness) of
the protocol converter constructed can be proved.

160 MlNG T. LIU

However, their formalism requires a careful study of the nature of the
protocols to be converted. Also, the properties of the protocols should be well
understood. Thus, a lot of human ingenuity is involved.

8.2 Our Conversion Approach

Our research effort is mainly concerned with automatic generation of
protocol converters using a state-transition model. More specifically, we are
interested in generating protocol converters for protocols specified in the
Communicating Finite State Machine (CFSM) model. Due to the formidable
difficulty and complexity of the problem, we are only concerned with a specific
category of protocols, namely, two-entity nonterminating protocols. Given
two protocols in this category along with the specification of the message
sequence translation between these two protocols, a reception-error-free pro-
tocol converter can be generated with our proposed algorithm. Further-
more, if more related information is specified on these two target protocols,
a deadlock-free protocol converter can be obtained.

The specification of how the translation between message sequences of the
target protocols should be performed is accomplished by a set of CFSMs
called the mapping CFSM set. Each CFSM in this set specifies the map-
ping between some message sequences of the two target protocols. Multiple
CFSMs give the designer the capability to specify the mapping sequences
that are independent. Moreover, each CFSM can be used to specify not only
the mapping sequences but also the order of the mapping when ordering is
critical. Semantically, all CFSMs in the mapping CFSM set are ORed to-
gether to establish the relation between the message sequences of two target
protocols.

The process of deriving a protocol converter from two target protocols can
be divided into four phases. In the first phase of the algorithm, a Universal
Converter (UC) is constructed. A UC allows a sequence of one protocol to
be mapped into any sequence of the other protocol and vice versa. Notice
that no ordering restriction is imposed on these mappings. This UC can
be constructed through an operation called Arbitrary Shuffle (Teng, 1980;
Okumura, 1986). Arbitrary Shuffle allows a sequence of two CFSMs to be
interleaved in any order (operator performs the same operation). By taking
one entity from each protocol and performing Arbitrary Shuffle between them,
the resulting CFSM is a UC for these two protocols (see Fig. 26).

In the second phase of the algorithm, the mapping CFSM set is combined
with the UC. The mapping CFSM set restricts the sequences allowed by the
UC. During this process a reception error and/or a deadlock error may occur
due to the logical conflict between the target protocols and the mapping
CFSM set. Therefore, reception-error states are identified in this phase. In

PROTOCOL ENGINEERING 161

the third phase of the algorithm, deadlock states can be recognized with more
information concerning the two target protocols. Finally during the last
phase, all reception-error states and deadlock states are removed to create
a correct protocol converter.

In order to combine the UC with the mapping CFSM set, a CFSM Protocol
Converter (PC) is created. Each state of the PC is labeled with a state of the
UC and a state matrix of the mapping CFSM set. Each state in the matrix
denotes the state of a CFSM in the mapping CFSM set. We call them the
current state of the UC and the current state matrix of the mapping CFSM set.
Accordingly, three rules are used for PC state transition:

1. Transition firing. Given a state of the PC, if a transition at the current
state of the UC matches a transition at a state in the current state matrix,
a new state of the PC is generated. The new state is labeled with the next
state of the UC and the next state matrix of the mapping CFSM set.

2. Regeneration of mapping C F S M . Given a state of the PC, if a transition
(T) at the current state of the UC does not match any transition at any
state of the current state matrix, but T is a transition from the initial
state of some mapping CFSMs, then this mapping CFSM is regenerated.
Also, a new state of the PC is created and labeled with the next state
of the UC and the next state matrix of the mapping CFSM set with the
newly generated CFSM added to that set. For each new mapping CFSM
regenerated, one new state of the PC is created.

162 MlNG T. LIU

3. Removal of mapping CFSMs. Given a state of the PC, if the current
state matrix contains more than one copy of the same mapping CFSM
(this is a result due to rule 2), and if any of those mapping CFSMs are
in their initial states, then they can be removed from the current state
matrix. This rule allows states to be removed once a regenerated map-
ping CFSM moves back to its initial state.

At a state of the PC, if a receive transition (7’) at current state of the UC
cannot find any identical transition at any state of the current state matrix,
and T is not a transition from the initial state of any mapping CFSM, this
state of the PC is labeled as a reception error state and no new states and
transitions are generated from it.

To prevent rule 2 from repeatedly regenerating mapping CFSMs and
causing the algorithm to run infinitely, a containment relationship between
states is defined. A state X of the PC contains another state Y of the PC if
they are labeled with the same current state of the UC, and Y’s current state
matrix is a submatrix of X’s current state matrix. If a state X of the PC to
which rule 2 is applied (called a regeneration state) contains an ancestor re-
generation state, X is defined as a loop state and no new states and transi-
tions are to be generated from state X. This criterion allows the algorithm
to detect a loop of regenerating mapping CFSMs and to discontinue the
process when it happens.

The third phase of the algorithm is for deadlock detection. Since deadlock
states may be created in the second phase of the algorithm, we need a method
to detect whether deadlock states exist and if they do, in what states the
deadlock states are. To achieve this purpose, a critical send transition state list
is needed for the target protocols. A critical send transition state is a state that
if all the send transitions are removed from it, that state becomes a deadlock
state. During the process of constructing the UC with arbitrary shuffle be-
tween the two target protocols, critical send transition states can be identified
on the UC. States in the PC that are labeled with a critical send transition
state of the UC are critical send transition states of the PC. By examining
all the critical send transition states of the PC, we can decide what states are
the deadlock states of the PC.

(Tf=D
FIG. 27. Mapping CFSM set of the example in figure 25

PROTOCOL ENGINEERING 163

Finally, the last phase of the algorithm removes all reception-error states,
loop states, and deadlock states created by the previous two phases. All
transitions in and out of these states are also removed. However, this process
may create more deadlock and reception-error states. Repeatedly removing
the error states eventually yields a correct protocol converter.

Applying the above algorithm to the example shown in Fig. 25 results in
the protocol converter shown in Figs. 28 and 29. Figure 27 shows the map-
ping CFSM set for the example in Fig. 25. In this example, there is only one
CFSM in the set. Figure 28 shows the protocol converter after the second
phase of the algorithm, whereas Fig. 29 shows the correct protocol converter.

FIG. 28. Protocol convertor after second phase of the algorithm

164 MlNG T. LIU

FIG. 29. The completely correct protocol convertor

The CFSM model has been used to model the ordered behavior of
communicating protocols successfully in the past. Our work suggested a
parallel CFSM model to describe relations between two protocols. This
parallel model is powerful enough to model behaviors between protocols
and yet it gives the designer the flexibility to specify either order or non-order
relations between sequences of the protocols. We have developed an algo-
rithm that can automatically generate a protocol converter according to the
model and it is guaranteed to follow all the restrictions specified by the map-
ping CFSM set. However, the algorithm we have developed will not guaran-
tee the existence of a protocol converter. An empty converter may be created
if the logical conflict between the target protocols and the mapping CFSM
set is very severe. More theoretical work is needed to determine when a con-
verter cannot be found.

PROTOCOL ENGINEERING 165

We are currently studying the possibility of incorporating priority into each
mapping CFSM. This extension allows the protocol converter to put priority
among different message sequences and enables the protocol converter to be
constructed between the two target protocols with message priority and the
protocols without message priority.

8.3 Future Work

Network interconnection has been studied by researchers for many years.
From their work we know that a protocol converter can be implemented in
two different architectures for network interconnection. One is the single
gateway approach. The algorithm proposed in the previous section suits this
model well. The other architecture model is the half gateway approach. To
connect two networks, a node called a half gateway is inserted into each
network. All messages from one network destined for the other network have
to go through the half gateway. The half gateway performs the translation of
messages and delivers the messages to its corresponding half gateway on the
other network. This architecture is more efficient than the single gateway
architecture since translation can be performed simultaneously. However,
how to design a protocol converter to fit this architecture is a challenging task.

One possibility is to use the algorithm proposed above to construct a
protocol converter for single gateway architecture. The protocol converter
can then be partitioned into two half protocol converters, one for each half
gateway. Partition of the protocol converter can be achieved by projection
according to the message types (messages for protocol A or messages for
protocol B). Synchronization messages then need to be added to each half
protocol converter to synchronize them so their combined behavior is the
same as the whole protocol converter. Synchronization messages in this
model serve two purposes. Firstly, they synchronize the two half gateways
to make sure they act properly, and secondly, actual information is also
delivered between the half gateways through them. Other approaches for
creating half protocol converters are also possible. It will be interesting to
see if half protocol converters can be generated without going through the
Universal Converter construction process.

The area of protocol conversion actually is only part of a more general area
called protocol interworking. There are three types of protocol interworking
behavior:

1. Protocol conversion. Gateways are inserted between networks.
Protocol converters are implemented on those gateways to translate
messages between different protocols. Users on different networks still

166 MlNG T. LIU

use the same access protocols to establish connection and transmit in-
formation to and from the network they are connected to. Insertion of
gateways and protocol converters is transparent to them.

Protocols of one network
(protocol A) is modified to absorb protocols of the other network
(protocol B). Protocol B executed under one phase of protocol A. Users
on network A first use protocol A to establish a connection to network B,
then they use protocol B to communicate with users on network B. Users
on network E still use the same access protocol (B). This approach is
transparent to users on one network but not to users on the other
network.

3. Protocol complementation. This type of interworking is related to the
layering of communicating protocols. Given protocol A of a layer in one
network that has to interwork with protocol B of a layer in another
network, a virtual layer can be added on top of A and E to provide a
uniform view to users. Users on both networks need not be aware of the
fact that there are different networks in the system. Gateways still need to
be inserted between the networks. However, unlike gateways for
protocol conversion, gateways for protocol complementation implement
the uniform protocol of the virtual layer. Access protocols are changed
for users in both networks. As a result, no transparency exists for users in
this approach.

2. Protocol overlap (Lin and Liu, 1988a).

There has been very little work on the formal modeling of the last two
approaches to protocol interworking. For the second approach, the sub-
stitution operation suggested in (Teng, 1980) seems to be promising. For the
third approach, service specification will be a key issue. Much work has been
done on protocol synthesis from service specification to protocol specification
(see Section 6). The third approach seems to require just the reverse process,
namely, how to generate a protocol for the new mutual layer from a given
protocol and a service specification. How can the synthesis process be applied
to this problem is a very challenging task.

9. Implementation and Conformance Testing

The final goal of a protocol design is successful incorporation of the
protocol into an actual implementation. In particular, we are interested in
computer-automated implementation of the protocol: the machine-readable
formal specification could be translated or compiled directly into software or
hardware for the final product. However, it is doubtful that the complete
protocol specification can ever be translated or compiled directly into a

PROTOCOL ENGINEERING 167

software or hardware implementation. Therefore, there is a need to test an
implementation to determine if the implementation is indeed in conformance
with the protocol specification; such a test is commonly called conformance
testing.

Because of the complexity and difficulty of the problems associated with
automatic implementation and conformance testing, there has been little
progress made in this area of protocol engineering. In this section, we briefly
describe some progress made in this area and suggest future research efforts
needed.

9.1 Automated Implementation

In the past few years, there have been several experimental efforts in direct
compilation of a protocol into parts of the code required for an implementa-
tion. Due to many hardware idiosyncracies, a substantial portion of an im-
plementation must be hand-coded; but there is the hope that up to 60% of
the necessary code can be automatically implemented.

For many years, IBM Systems Network Architecture (SNA) has been
formally defined in terms of a meta-implementation language, called Format
and Protocol Language (FAPL). The meta-implementation serves as a
reference for actual implementations of the communication protocol it
defines. Actual implementations must match the meta-implementation exter-
nally, but need not do so internally. Compilation of the protocol was carried
out in two major steps (Nash, 1983). First the FAPL compiler was used to
expand the FAPL specification into an intermediate language, PL/S, and the
required manual code was also written in PL/S. Then the entire code was
compiled and assembled into the appropriate machine code (in this case, the
IBM 8100 Information System). The use of a semi-automated technique
substantially reduced implementation time. Recently, Fleishmann et al. (1987)
have proposed a technique using a new language, called PASS, to compile a
protocol specification in the OSI session layer into Pascal.

Based on an EFSM model (see Section 3.3), the National Institute of
Standards and Technology (NIST; formerly, National Bureau of Standards,
NBS) has developed a language (actually a predecessor and subset of Estelle)
to describe a subset of the OSI File Transfer Protocol. The formal specifica-
tion was then compiled into the language C and about 40% of the code in
C could be produced automatically (Linn, 1984; Mills, 1984). Other semi-
automatic implementations based on Estelle include works by Serre et al.
(1986) and by Blumer and Tenney (1982). Both works were concerned with
a transport-level protocol and were able to automatically produce about half
of the code required for the implementations.

A majority of protocol implementations, including those mentioned above,

168 MlNG T. LIU

are software programs for conventional uniprocessor architectures. Such
programs have ranged from monolithic code to fairly complex software
systems. Due to recent advances in VLSI technology, Krishnakumar et al.
(1987) have proposed a systematic approach to the problem of protocol
implementation in hardware from formal specifications. They proposed a
method for generating VLSI layouts from formal protocol specifications,
which are based on the CFSM model (see Section 3.1). Their method is based
on a systematic partitioning of protocol functions in a hierarchical manner.
This decomposition results in a flexible architecture that can implement many
different protocols. They used the Link Access Protocol on the D-channel
ISDN protocol, LAPD, as an example to illustrate their methodology. The
major advantage of their approach lies in the area of design effort-reducing
the implementation time from a few years to a few months.

9.2 Conformance Testing

The testing of a protocol implementation is the final phase in the
development of a protocol design. In the context of the OSI Reference Model
(see Fig. 2), particular attention is given to the methods by which protocol
implementations can be tested for conformance with the protocol specifica-
tions. It is now widely accepted that OSI conformance testing is crucial to the
achievement of the objective of OSI (Rayner, 1987).

A considerable amount of work has already been done in the area of testing
OSI products for conformance to the standards. The major areas of research
in protocol testing are in (1) test methods, (2) test suite design, and (3) test
system implementation. Extensive efforts have been done in the United
Kingdom by the National Physical Laboratory (Rayner, 1985), in West
Germany at GMD (Burkhardt et al., 1985), in France (Ansart, 1982), in
Canada (Sarikaya and Bochmann, 1982, 1984) and in the United States at
NIST (Linn and McCoy, 1983; Linn and Nightingale, 1983; Linn, 1984). All
the work that has been done focuses on one of the three areas mentioned
above. An approach to conformance testing has already reached the draft
proposal stage in IS0 (Rayner, 1987).

A test suite is defined to be a number of tests designed to verify the
conformance of a protocol implementation to the protocol standard. A
conformance test suite for a particular protocol tests all mandatory and
optimal features of the protocol over the range of parameters and variations.
In order to verify dynamic conformance requirements, live testing using a
standard conformance test suite is performed.

Test methods are classified based on what outputs from the protocol entity
under test are observed and what inputs to it can be controlled. A given
method is described by identifying the points closest to the entity under test at

PROTOCOL ENGINEERING 169

Test Driver - Responder
Rotocol Test Driver

which control and observation are to be exercised. Three test methods have
been proposed: (1) local test, (2) distributed test, and (3) remote test. These
methods can be further classified according to the number of layers being
tested: single-layer vs. multi-layer.

Figure 30 shows the general logical design of a test system currently in use
by the National Physical Laboratory in the United Kingdom (Cowin et al.,
1983). The NIST system is similar and is discussed by Nightingale (1982). The
local and distributed test methods require the use of an upper tester (UT). In
Fig. 30, the UT is called the Test Responder (TR) and its purpose is to control
and observe the primitives within the system in which the Implementation
Under Test (IUT) being tested resides. The TR should be as simple as possible,
and at the same time it should be flexible enough to be able to perform any test
that is desired. The design of the TR depends on the environment it is going to

Test Responder

(N+n)-Control Service (N+n)-Service

FIG. 30. General logical architecture

Encoder/Decoder (N) to W+n)
(N) to (N+n)-Protocol * Implementation alp ... I ..-%...... "*.*.""..,.."..-. ".."" .-.... "..

JI"! under Test : + errors

(N-1)-Service (N-1)-Service

~ - l) - P ~ t ~ O l
Implementation

(N- l)-P~tocol (N-l)-Protocol
#,qJ " I-..... I "..* "..".." dl.

Implementation

170 MlNG T. LIU

run in. A number of different designs for the TR have been proposed in the
literature as follows:

1. The manual test responder (Palazzo et al., 1983).
2. The scenario interpreter (Nightingale, 1982).
3. Finite state machines (Pave1 and Dwyer, 1984).
4. Code interpreters (Burkhardt et al., 1985).
5. Ferry concepts (Zheng and Rayner, 1985).

All of the test methods require a lower tester (LT), whose purpose is to
control and observe the primitives within the system. In Fig. 30, the LT
is called the Active Tester (AT) and consists of two components: the Test
Driver (TD) and the Encoder/Decoder (E/D). The TD is the peer of the
TR in the system under test; its major purpose is to control the operation
of each test. The E/D is the peer of the IUT in the system under test; its
major purpose is to encode and decode the message of the protocol in the
IUT. Several different designs for the AT have been proposed in the literature
as follows:

1. Reference implementation AT (Nightingale, 1982).
2. Reference implementation with error generator AT (Cowin et al., 1983).
3. Protocol E/D AT (Cowin et al., 1983).

There is a need to synchronize the activity of the UT and the LT. This can be
accomplished by a Test Driver-Responder Protocol, as shown in Fig. 30.
There are two main design choices, depending on where to operate the con-
nection and how test events are related.

Even though many test systems have been implemented, more experience is
needed to find out how well they can detect all kinds of errors. In the area of
test design, work is needed to improve the way that the tests are generated.
Some automatic test generation from the protocol specification is currently
being done (Sabnani and Dahbura, 1983; Aho et al., 1988), but a large
percentage of the tests are still generated by hand. I S 0 is currently working to
standardize OSI conformance testing (Rayner, 1987).

10. Automated Protocol Design

In recent years some progress has been made in creating an integrated set of
tools for automated protocol design. The objective is to provide automated
tools to lighten the task of the protocol designer while at the same time
achieving a thorough analysis in the face of great complexity. These tools

PROTOCOL ENGINEERING 171

provide assistance in the specification, validation, verifications, (partial) imple-
mentation, and conformance testing of protocols. Several realistic protocols
have been analyzed and developed using such tools. In this section we pre-
sent some of the automated systems that have been reported in the literature.

10.1 IBM System

Zafiropulo et a/. (1980) at the IBM Zurich Research Laboratory have
developed an interactive tool to facilitate protocol design. In their approach
finite-state automata (FSA) are used as formal models. Two methods of
analyzing protocol behavior are incorporated into the system, both of which
can be used for either validation or synthesis.

The first method, the perturbation technique (West, 1978b; Zafiropulo,
1978a), has been used extensively to examine existing protocols, such as the
X.21 (West and Zafiropulo, 1978) and the IBM token ring (Rudin, 1982). The
second method, based on a set of production rules, has been incorporated into
an automated synthesis system. Their initial attempt at protocol synthesis is
one of the earliest in the field (Zafiropulo, 1978b; Zafiropulo et al., 1979).

However, their tool does not provide any guidelines for helping the designer
assign the entering state of each transition. If these states are not properly
assigned, the resulting protocol may create deadlocks or livelocks; thus, the
correctness is not guaranteed and further validation is required.

10.2 PROSPEC System

The PROSPEC system, developed at the University of Texas at Austin by
Lam et al. (1986), also uses the model of communicating finite-state automata.
It is constructed in a modular fashion, with each important function of the
system being realized by a tool. The hierarchy of tools in the system is
shown in Fig. 3 1. The protocol designer can invoke each tool independently to
specify protocols graphically and also to verify protocols by looking at
displays of reachability graphs. However, the graphical interface is not the
most important element of PROSPEC. Its attractiveness lies in the designer’s
ability to access tools that implement techniques for managing the complexity
of protocol specification and verification and for the modular construction of
protocols.

The resolution of a protocol system has been proposed by Lam and Shankar
(1984) as a basis for developing abstraction techniques to simplify the analysis
and construction of multifunction protocols. They have developed the method
of projections for constructing image protocols, each of which is specified just
like any real protocol but is smaller than the original protocol. Obviously,

172

& rotocol
Editing

MlNG T. LIU

brotocol
Design

Menu

--+ : fork

State

Menu Menu
Editing Exploration

Protocol Ed ting Tool

brotocol
Design

Menu

Projection

Protocol Machine

I Protocol Projection Tool I

Edit
Machin

State
Exploration

Tool

Multiphase
Construction

Menu

Multiphase Machine

I Multiphase Construction Tool

FIG. 31. Structure of the PROSPEC system (University of Texas at Austin)

fewer logical properties are observable and verifiable in an image protocol
than in the original protocol. This approach was found to be very effective for
the analysis of multifunction protocols that are not easily decomposable into
different modules for implementing different functions, due to the use of
shared variables and messages. A version of the HDLC protocol was verified
using this method (Shankar and Lam, 1983).

The construction of a multifunction protocol from a composition of simple-
function protocols is a much harder problem than the reverse problem

PROTOCOL ENGINEERING 173

described above (i.e., the resolution problem). There is no easy method that
corresponds to an inverse projection operation. However, Chow et al. (1984a)
have observed that many realistic protocols go through different phases
performing a distinct function in each phase. They presented a multiphase
model for protocols and a methodology for constructing multiphase protocols
(Chow et al., 1985). They illustrated their methodology with the construction
of several nontrivial multiphase protocols, including a version of the IBM
BSC protocol for data link control (Chow et al., 1985) and a high-level session
control protocol (Chow et al., 1984b).

PROSPEC has been developed on a SUN 2/120 workstation running
4.2 BSD UNIX. In addition to the graphical interface, the protocol designer
can interactively access various tools that implement the method of projec-
tions, multiphase protocol constructions, and other features. The menu-
selection facility relieves the designer of having to remember all the com-
mands for interaction with PROSPEC.

10.3 Berkeley System

Ramamoorthy et al. (1985) at the University of California, Berkeley, have
developed an automated protocol synthesizer (APS) that automatically
generates the peer protocol entity from a single given local entity. The given
entity is modeled by Petri nets, and if it satisfies certain prespecified
constraints, the resulting protocols are guaranteed to possess desirable
properties such as deadlock-freedom, boundedness, liveness, completeness,
and proper termination. Their procedure consists of the following five steps
(see Fig. 32):

1. Design a local entity model using Petri nets.
2. Translate the local entity model into its state-transition graph (STG1) by

a state exploration procedure.
3. Check local properties of the given local entity model to make sure that it

is well behaved. (This can be done by examining the structure of STG1).
4. Construct the peer state-transition graph (STG2) from STGl according

to certain well-designed transformation rules.
5. Construct the peer model in Petri nets from STG2.

Thus, the input of the APS is the Petri net specification of the giving entity,
and the output will be the Petri net specification of its peer entity.
Implemented on a VAX 11/780 machine using programming language C, the
code size is about 3500 lines long and occupies 20K bytes of memory. It can
accept a given entity model of up to 80 places and 150 transitions. It is a fairly

174 MlNG T. LIU

.*,.,.**+* I internal Data I

late Exoioratiod I
Procedure

**... ..*- , + ,

ModiiylRedesig n
the Original Design

Peer STQ-Generator

Pattern Matcher

?
Peer Entlty
Constructor

._._._... - --+ Data Reference Path

-L Control Path

FIG. 32. Structure of the automated protocol synthesizer (University of California at
Berkeley)

efficient computer-aided design tool and has been applied to a modified X.21
protocol to generate the peer entity model successfully. The X.21 protocol
has 72 places and 122 transitions in the given entity, and the APS takes
3.70 seconds of CPU time to generate its peer entity model.

PROTOCOL ENGINEERING

protocol
compiler -

-

175

Proco

10.4 PANDORA System

The PANDORA system, an acronym for Protocol ANalysis, Design and
OpeRation Assessment, aims to provide the protocol designer with a set of
tools that can be used to design correct and efficient protocols (Holzmann,
1984). It consists of three major parts: analysis, synthesis, and real-time
assessment (see Fig. 33).

In protocol analysis, the PANDORA system uses an algebraic model for
protocol validation. The behavior of each communicating protocol entity is
first modeled as a finite-state machine. The symbol sequences that can be
accepted by these machines are then expressed in protocol expressions
(Holzmann, 1982b), which are defined as regular expressions extended with

synthesis Prosey

hints & warnings
syntactic analysis

(partial)
protocol designs

176 MlNG T. LIU

two new operators: division and multiplication. The interaction of the
machines can be analyzed by combining protocol expressions via multiplica-
tion and algebraically manipulating the terms. Thus the problem of analyzing
a protocol is transformed into one of analyzing an expression. Further, it is
relatively easy to write a program that can accomplish this task efficiently for a
fairly large class of protocols.

Compared to global state-space exploration techniques (West, 1978a), the
validation method used in the PANDORA system allows for a number of
important reductions in size and complexity of an analysis. These reductions
are based on the notion of equivalent classes of execution sequences, and
the validation process can now be restricted to examining just one character-
istic sequence from each equivalent class. The gain over earlier reduction
techniques (Rudin and West, 1982) is indeed significant.

The PANDORA system runs on two PDP 11/23 computers and its
software is written in C and lives in a UNIX environment.

10.5 BBN/NIST System

Blumer and his associates have developed an automated technique for
protocol development and its application to the specification, verification,
and semi-automatic implementations of several realistic protocols (Blumer
and Sidhu, 1983; Sidhu and Blumer, 1984). The major features of this tech-
nique are an augmented FSA model for protocol entities, specification of
protocol entities in a Pascal-like language (Blumer and Tenney, 1982), a model
used in building implementations from these specifications, and a collection of
software tools. The software tools developed to support this technique pro-
vide the following services (see Fig. 34):

1. Syntax checking and type checking on specification.
2. Generation of FSM tables for a protocol entity, in various formats.
3. Compilation of a specification into a partial implementation.
4. Analyzing selected paths through protocol entity FSM.
5. Analyzing selected composite paths through several communicating

6. Verification of certain protocol properties.
protocol entity FSMs.

In this system a protocol is first specified in a formalized protocol
specification language. A specification compiler is then used to check the
specification syntax and to generate code for a partial implementation. The
compiler also generates FSM tables for the protocol, which are then used as
input to the FSM analyzer for protocol analysis and verification. The analyzer

PROTOCOL ENGINEERING 177

Protocol
Designer

c
Formal Text Published

Specification ’ P rocew spocnication

t
I
I
I

Protocol Protocol
Implementor Implementor Description Table

Generator

Automated Processing

......... + Done by lmplementor

FIG. 34. Software tools for protocol development. (BBN/NIST)

analyzes possible protocol paths, and checks for certain protocol p operties
along each path. Information about each protocol path may be printed in
several formats.

This technique has been used successfully in the development of several
realistic protocols from NBST (TP4, TP2, Session and Message Protocols),
DoD (TCP and IP), and IEEE 802.2 (LLC).

178

GSG Generator

Expansion Expansion

[State Analyzer I

MlNG T. LIU

2 Output ~ Validation
Processor Result

10.6 TTGIETG Systems

Liu and his students at the Ohio State University have developed two
automated validation systems for communication protocols. Called the
TTG/ETG systems, both are based on a formal grammar model (the
Transmission Grammar (Teng and Liu, 1978a, 1978b, 1980)). The TTG
System (Lu, 1986) can handle timing constraints such as execution time of a
protocol action, timeout intervals, timeout mechanisms, and transmission
delay. In addition, it represents the communication medium in a different way

Protocol Specification
in TTG/ETG Model

and GSG

FIG. 35. Software structure of the TTG/ETG systems (The Ohio State University)

PROTOCOL ENGINEERING 179

than other models, thereby allowing the protocol designer to model trans-
mission errors, loss of messages, and out-of-sequence messages in a natural
way. On the other hand the ETG System (Chu, 1989) can handle context
variables such as sequence numbers.

The incorporation of timing information into the TTG model has an
advantage of reducing validation efforts, since those global states that may not
be generated under given timing constraints are excluded from the analysis.
Moreover, the validation technique is based on a special kind of reachability
analysis (a combination of Micro and Macro expansions, see Fig. 35) and can
further reduce the global state space. Because of this expansion technique, the
TTG system can validate not only more complex protocols, but asynchronous
protocols as well as synchronous ones.

The TTG system has been developed on a VAX 11/780 machine, and its
software is written in C and lives in a UNIX environment. It is portable to
SUN workstations and has been used successfully to validate the ABP, the
X.21, and the IBM token-ring protocol. The ETG system has been developed
and runs under OSx on a Pyramid machine. It incorporates two global space
reduction techniques and has been used to validate the ABP with a con-
siderable amount of reduction in the total number of global states (Chu
and Liu, 1989).

10.7 KBPV System

It is well known that conventional protocol validation based on reachability
analysis suffers a great deal from the state explosion problem (see Section 4).
Consequently, many variants of reachability analysis have been proposed in
the literature to alleviate this problem. In Section 4.2, we have surveyed and
evaluated these variant algorithms. One of the conclusions we reached is that
none of the improved algorithms can totally supersede the others or even the
conventional, exhaustive reachability analysis itself. In other words, each
algorithm including the conventional one has advantages over the others
under certain requirements and conditions. Thus we believe that a better
protocol validation system should make these algorithms accessible to the
protocol designer. This simply means to provide the protocol designer with a
box of validation tools that implement various validation algorithms. We call
this way of implementing the validation system the tool box idea.

Nevertheless, only providing the protocol designer with a tool box is not
adequate unless the designer has the expertise of applying the right tool to the
protocol of his or her concern. Unfortunately, such a requirement to the
protocol designer is often too stringent to be realistic. First, the knowledge
required to select a right algorithm or tool is dispersed in the literature and
cannot be easily acquired by the designer. Secondly, the designer may be just a

180 MlNG T. LIU

Intelligent User-Interface
(Knowledge-Based Interface)

novice user of the validation tools and may not be interested in understanding
all the available validation algorithms.

Therefore, in addition to the tool box idea, we have proposed another idea
called the intelligent user-interface to construct a user-friendly protocol valida-
tion system. The idea is to develop a knowledge-based interface that not only
manages all the validation algorithms, but also acts as an intelligent assistant
to help the protocol designer select and use these algorithms. It is natural to
bring in the knowledge-based techniques here because the process of guiding a
designer to select and use the most appropriate validation algorithm is
basically symbolic.

The structure of such a knowledge-based protocol oalidation system (KBPV
system) is illustrated in Fig. 36. Note that the symbolic (non-procedural)
process of the system, namely the knowledge-based interface, is on the top of
the algorithmic (procedural) processes implemented as a tool box of collection
of validation algorithms. This kind of system is now getting attention from the
A1 community and is called the coupled system because both symbolic and
algorithmic computing are coupled in the same system.

Symbolic
Process

I I

FIG. 36. Structure of the knowledge-based protocol validation system

PROTOCOL ENGINEERING 181

In the first stage of our development, we have included the following six
validation algorithms in the tool box:

1. Fair Progress Validation (Rudin and West, 1982; Gouda and Han, 1985).
2. Maximal Progress Validation (Gouda and Yu, 1984a).
3. Reduced Reachability Analysis (Itoh and Ichikawa, 1983).
4. Vuong’s Reachability Analysis (Vuong and Cowan, 1982b).
5. Exhaustive Reachability Analysis (West, 1978a).
6. Protocol Validation Testing (Lin et al., 1987).

Among the algorithms listed above, the fifth and sixth are supported by the
PTG validation tool described in Section 4.4; the first four algorithms are
supported by four separate tools recently developed. In fact, all these tools are
developed by modifying an existing, conventional tool called TG (Lu, 1986).
Every tool can accept protocol specifications in either Transmission Grammar
(TG) or Probabilistic Transmission Grammar (PTG). Note that different tools
may have different uses, and some of them may be quite complicated.
Nevertheless, through the guidance and control of the intelligent user-
interface, the protocol designer should have no difficulty in utilizing the full
power of these tools. Our design of the intelligent user-interface is largely
influenced by the idea behind the CSRL (Conceptual Structures Representa-
tion Language), a high-level language tuned specifically for implementing
diagnostic expert systems (Bylander and Mittal, 1986). In CSRL, a specific
organizational technique called hierarchical classijcation and a specific
problem-solving strategy called establish-re$ne are employed to design a
knowledge-based system. We believe that the structure and problem-solving
strategy demonstrated by CSRL is quite suited in our domain of building an
intelligent user-interface for the protocol validation system. The reasons are
argued as follows:

1. The decision procedure of which algorithm to use in validating a
protocol can be organized as a classification hierarchy of three levels as
shown in Fig. 37.

2. The establish-refine control can be used as a search strategy in identifying
the protocol under validation with an appropriate algorithm at the tip of
the hierarchy.

To give more details, we briefly describe how this whole process works.
From the root of the tree, the specialist (or concept) “protocol validation” first
tries to establish itself. If successful, the succeeding refinement of it will pass

Protocol Validation

PROTOCOL ENGINEERING 183

the control to the second level of specialists. The specialists in the second level
then repeat the same process; they first try to establish themselves, and, if
successful, may refine further down the tree after being granted by its super-
specialist; otherwise, all its subspecialists will be excluded from further con-
sideration. If a specialist at the tip of the hierarchy (the third level of the
tree) establishes itself, it essentially means the feasibility of a specific validation
algorithm to the protocol. By this process the validation algorithms suited for
validating the protocol and their comparative scores can be determined. In
our domain, the establishment or rejection of a concept is primarily based
on (1) the formal protocol specification and (2) the interaction between the
designer and the system during the establish-refine process. Note that knowl-
edge rules are distributed to each specialist. We acquire those rules directly
from the literature. The rules used by each specialist are given by Liu (1988).

A prototype of the KBPV system has been developed. It consists of ap-
proximately 10,OOO lines of C code. A user manual for the KBPV System has
been prepared (Liu, 1988).

11. Conclusion

The preceding sections have described various aspects of protocol engineer-
ing, a rapidly growing area of research in computer communications. A
protocol engineering system allows the protocol designer to express the
protocol formally, test its specification for correctness (validation and
verification), obtain some early indication of how it would perform, compile
major parts of the implementation directly from the formal specification, and
finally, test the resultant implementation to assure that it conforms to the
specification (implementation verification or conformance testing). These
tasks are performed iteratively until a correct and efficient protocol is
developed. The protocol engineering system can also be used by the protocol
designer for protocol synthesis and protocol conversion.

As protocol design becomes more and more important due to the
proliferation of computer communications, the need to use computer-aided
design in the whole life cycle of protocol development becomes obvious. As
described in Section 10, current protocol design systems do not provide
enough support to help the designer make use of a variety of tools available
to him or her. We believe that the incorporation of a knowledge-based sys-
tem can help in those aspects, as they have already done so in other engineer-
ing disciplines (Sriram, 1986). A case in point is from the field of software
engineering as reported in (Mostow, 1985; Simon, 1986), where knowledge-
based systems are used to help automate the whole life cycle of software
development. Since protocols are a special class of concurrent programs that

184 MlNG T. LIU

are communication-intensive, it is expected that those ideas and techniques
developed for software engineering can be applied to protocol engineering
as well.

A knowledge-based system is a new way of encoding human expertise into
mechanically manipulable forms (Denning, 1986). It consists of two com-
ponents: knowledge base and inference engine. The knowledge base, which
corresponds to a program in conventional automatic problem-solving
systems is a collection of encoded knowledge expressed in some formal
representation. The inference engine, which corresponds to an interpreter in
conventional systems, is a control mechanism to manipulate the represen-
tation in the knowledge base. These two components together provide a new
regime of problem solving that deals with the encoding of the human’s
expertise much better than any standard procedure language.

The incorporation of knowledge-based systems into the protocol design
process can be done in many ways. For example, program transformation
techniques (Balzer, 1985; Fickas, 1985) can be used in deriving protocol
specifications from given service specifications. Other A1 techniques, such as
search algorithms and theorem-proving can be used to reduce the global space
search and to help correctness proving, respectively, in protocol validation
and verification. Therefore, it is expected that both A1 techniques and
computer-aided software engineering (CASE) methodologies will play an
important role in the future development of prootocol engineering.

ACKNOWLEDGMENTS

I wish to express my appreciation to many people who have been involved with the protocol
engineering project. Special thanks are due to my former students Drs. Albert Y. Teng, L. David
Umbaugh, H. A. Paul Lin, N. C. Liu, C. S. Lu, F. Joseph Lin. and P. Mark Chu. The research
results reported in this article are mainly based on their dissertation research under my
supervision. Thanks are also due to Dr. L. Chiu, Dr. Ian Y. Chiou, Dr. H. Yoon, W. S. Chen,
1. E. Liao, C. C. Wu and Y. W. Yao, who have contributed directly or indirectly, Other students
currently involved in the project are J. Chang, Y. I. Chang, C. M. Dorcy Huang, H. S. Jang,
J. C. Shu, H. W. Jeng, and S. H. Sarah Yu.

Research reported herein has been supported by a series of contracts from U. S. Army
Communications-Electronics Command (CECOM), Fort Monmouth, New Jersey. My students
and I are very grateful to Dr. Charles J. Graff, the project monitor, for his continuing support and
for his foresight in sponsoring the research project on protocol engineering.

REFERENCES

Aggarwal, S., and Sabnani, K. (1986). Formal specification of a file transfer protocol. Proc. 1EEE

Aggarwal, S., Kurshan, R. P., and Sabnani, K. (1983). A calculus for protocol specification and
validation. Proc. IFIP Int. Workshop on Protocol Specification, Testing. and Verification, 3rd.

INFOCOM, pp. 41-51.

pp. 19-34.

PROTOCOL ENGINEERING 185

Aho, A. V., et a/. (1988). An optimization technique for protocol conformance test generation
based on UIO sequences and Rural Chinese postman tours. Proc. IFIP Int. Workshop on
Protocol Specification, Testing, and Verification. 81h, pp. 75-76.

Amer, P. D., Ceceli, F., and Juanole, G . (1988). Formal specification of I S 0 virtual terminal in
Estelle. Proc. IEEE INFOCOM, pp. 623-630.

Amer, P. D., Pridor, A,, and Schmidt, J. (1988). Expansion of transitions in Estelle formal
specifications. Proc. IFIP Int. Workshop on Protocol Specification, Testing, and Verification. 81h,

Anderson, D. P., and Landweber, L. H. (1984a). Protocol specification by real time attribute
grammars. Proc. IFIP Int. Workshop on Protocol Specificaiion. Testing, and Verification, 4th.

Anderson, D. P., and Landweber, L. H. (1984b). A grammar-based methodology for protocol
specification and implementation. Proc. ACMIIEEE Data Comm. Symp., 9th, pp. 63-70.

Ansart, J. P. (1982). GENEPI/A-a protocol independent system for testing protocol im-
plementation. Proc. IFIP Int. Workshop on Protocol Specification. Testing, and Verification. 2nd.

Ansart, J. P. (1985). Issues and tools for protocol specification. In “Distributed Systems: Methods
and Tools for Specification’’ (W. W. Alford. et a/., eds.), pp. 481-538. Springer-Verlag, Berlin,
W. Germany.

Ansart, J. P., Rafiq, O., and Chari, V. (1982). PDIL-protocol description and implementation
language. Proc. IFIP Int. Workshop on Protocol Specification, Testing, and Verification, 2nd.

Apt, K. R., Francez, N., and De Roever, W. P. (1980). A proof system for communicating

Baker, R. (1985). A 15 year perspective on automatic programming. IEEE Trans. Software

Barbeau, M., and Sarikaya, B. (1988). A computer-aided design tool for protocol testing. Proc.

Bartlett, K. A., Scantlebury, R. A., and Wilkinson, P. T. (1969). A note on reliable full-duplex
transmission over half-duplex lines. Comm. ACM 12 (5), 260-261.

Berthomieu, B., and Menasche, M. (1983). An enumerative approach for analyzing time Petri nets.
Proc. IFIP Information Processing 83, pp. 41-46.

Billington, J., Wilbur-Ham, M. C., and Bearman, M. Y. (1985). Automated protocol vertification.
Proc. I F I P Int. Workshop on Protocol Specification. Testing, and Verification, 5th, pp. 59-70.

Blumer, T. P.. and Sidhu, D. P. (1983). Experience with an automated protocol development
system. Proc. IFIP lnt. Workshop on Protocol Specification, Testing, and Verification. 3rd.

Blumer, T. P., and Sidhu, D. P. (1986). Mechanical verification and automatic implementa-
tion of communication protocols. IEEE Trans. Software Engineering SE-I2 (8). 827-842.

Blumer, T. P., and Tenney, R. L. (1982). A formal specification technique and implementation
method for protocols. Computer Networks 6 (3). 201-217.

Bochmann, G. V. (1975). Logical verification and implementation of protocols. Proc. ACM/
IEEE Data Comm. Syrnp., 4th. pp. 8.5-8.20.

Bochmann, G. V. (1978). Finite state description of communication protocols. Computer Networks

Bochmann, G. V. (1980). A general transition model for protocols and communications services.

Bochmann, G. V. (1981). The use of formal description techniques for OSI protocols. Proc. Nat.

Bochmann, G. V., and Gecsei, J. (1977). A unified method for the specifications and verfication of

pp. 159- 170.

pp. 457-466.

pp. 523-528.

pp. 101-112.

sequential processes. ACM TOPLAS 2 (3), 359-385.

Engineering SE-11 (I l), 1257-1267.

IEEE INFOCOM, pp. 86-95.

pp. 369-380.

2,362-372.

IEEE Trans. Comm. COM-28 (4), 643-650.

Telecomm. Cony.., pp. F8.6.1- F8.6.6.

protocols. Proc. IFIP Information Processing 77, pp. 229-234.

186 MlNG T. LIU

Bochmann, G. V., and Gotzhein, R. (1986). Deriving protocol specifications from service
specifications. Proc. ACM SIGCOMM '86 Symp., pp. 148-156.

Bochmann, G. V., and Sunshine, C. A. (1980). Formal methods in communication protocol design.
IEEE Trans. Comm. COM-28 (4), 624-631.

Bochmann, G. V. et a/. (1982a). Some experience with the use of formal specifications. Proc.
IFIP Ini. Workshop on Protocol Specification, Testing. and Verification, 2nd. pp. 171-186.

Bochmann, G. V. et a/. (1982b). Experience with formal specifications using an extended state
transitions model. lEEE Trans. Comm. COM-30 (12), 2506-2513.

Bolognesi, T., and Brinksma, E. (1987). Introduction to the I S 0 specification language LOTOS.
Computer Networks and ISDN Systems 14 (I) , 25-29.

Bolognesi, T., and Rudin, T. (1984). On the analysis of time-dependent protocols by network
flow algorithms. Proc. IFIP Int. Workshop on Protocol Specification, Testing, and Verification,

Brand, D., and Zafiropulo, P. (1980). Synthesis of protocols for an unlimited number of processes.
Proc. NBS Trends and Applications Conf., pp. 29-40.

Brand, D., and Zafiropulo, P. (1983). On communicating finite-state machines J . ACM 30(2), 323-
342.

Brinksma, E., and Karjoth, G. (1984). A specification of the OSI transport service in LOTOS.
Proc. IFIP Int. Workshop on Protocol Specification. Testing, and Verification, 4th, pp. 227-252.

Budkowski, S., and Dembinski, P. (1987). An introduction to Estelle: a specification language
for distributed systems. Computer Networks and ISDN Systems 14 (I) , 3-23.

Burkhardt, H. J., Eckert, H., and Giessler, A. (1985). Testing of protocol implementation: a
systematic approach to derivation of test sequences from global protocol specifications.
Proc. IFIP Int. Workshop on Protocol Specification, Testing, and Verification, Sth, pp. 461-482.

Bylander, T., and Mittal, S. (1986). CSRL: a language for classificatory problem solving and
uncertainty handling. IEEE A1 Magazine 7 (3). 66-77.

Calvert, K. L., and Lam, S . S . (1987). A n exercise in deriving a protocol conversion. Proc. ACM
SlGCOMM '87 Workshop, pp. 151-160.

Castanet, R., Dupeux, A,, and Guitton, P. (1985). ADA, a well suited language for specification
and implementation of protocols. Proc. IFIP Int. Workshop on Protocol Specification, Testing,
and Verification, Sth, pp. 247-258.

Choi, T. Y. (1983). A structured approach to the analysis and design of finite state protocols. Ph.D.
dissertation, Georgia Institute of Technology, Atlanta, Georgia.

Choi, T. Y. (1986). A sequence method for protocol construction. Proc. IFlP Int. Workshop on
Protocol Specification, Testing. and Verification, 6th, pp. 307-321.

Choi, T. Y., and Miller, R. E. (1983). A decomposition method for the analysis and design of finite
state protocols. Proc. ACMIIEEE Data Comm. Symp.. 8th. pp. 167-176.

Chow, C. H. (1985). A discipline for the verification and modular construction of communication
protocols. Ph.D. dissertation, University of Texas, Austin, Texas.

Chow, C. H.. Gouda, M. G., and Lam, S . S. (1984a). On constructing multi-phase communication
protocols. Proc. IFlP Int. Woikshop on Protocol Specijication. Testing, and Verification, 4th,

Chow, C. H., Gouda, M. G., and Lam, S . S. (1984b). An exercise in constructing multi-phase

Chow, C. H., Gouda, M. G., and Lam, S. S. (1985). A discipline for constructing multiphase

Chu. P. M. (1989). Towards automating protocol synthesis and analysis. Ph.D. dissertation, Ohio

Chu, P. M., and Liu, M. T. (1988a). Synthesizing protocol specifications from service specifica-

4th. pp. 491-514.

pp. 57-68.

communication protocols. Proc. ACM SIGCOMM '84 Symp., pp. 42-44.

communication protocols. ACM Trans. Computer Systems 3 (40). 3 15-343.

State University, Columbus, Ohio.

tions in FSM models. Proc. IEEE Computer Networking Symp., pp. 173-182.

PROTOCOL ENGINEERING 187

Chu, P. M., and Liu, M. T. (l988b). Protocol synthesis in a state-transition model. Proc. IEEE

Chu, P. M., and Liu, M. T. (1989). Global state graph reduction techniques for protocol valida-
tion in the EFMS model. Proc. IEEE Phoenix Con!. on Computers and Comm.. 8th. pp. 371-377.

Chung, R. S. Y. (1984). A methodology for protocol design and specification based on an extended
state transition model. Proc. ACM SIGCOMM ’84 Symp., pp. 34-41.

Cowin, G. W., Hale, R. W. S., and Rayner, D. (1983). Protocol product testing-some
comparisons and lessons Proc. IFIP Int. Workshop on Protocol Specification. Testing, and
Verijication. 3rd. pp. 477-493.

Dahbura, A., and Sabnani, K. (1988). An experience in estimating fault coverage of a protocol test.
Proc. I E E E INFOCOM, pp. 71-79.

Danthine, A. (1980). Protocol representation with finite state models. IEEE Trans. Comm. COM-

Day, J. D., and Zimmerman, H. (1983). The OSI reference model. Proc. IEEE 71 (12), 1334-1340.
Denning, P. J. (1986). Towards a science of expert systems. IEEE Expert Magazine 1 (2), 80-85.
Diaz, M. (1982). Modelling and analysis of communication and cooperation protocols using Petri

Diaz M. Ansart, J. P., Azema, P., and Chari, V., eds. (1989). “The Formal Description Technique

Dickson. G. J., and de Chazal, P. (1983). Status of CCITT description techniques and application

DiVito, B. L. (1982). Verification of communication protocols and abstract process models. Ph.D.

Dong, S. T. (1983). The modeling, analysis and synthesis of communications protocols. Ph.D.

Duc, N. Q.. and Chew, E. K. (1986). ISDN protocol architecture. IEEE Comm. Magazine 23 (3).

Engelbrecht, J. R., Kritzinger, P. S., and Rudin, H. (1985). Predicting protocol performance from a
meta-implementation Proc. IFIP Int. Workshop on Protocol Specifcation. Testing, and
Verification, 5th. pp. 349- 362.

Fickas, S. F. (1985). Automating the transformational development of software. IEEE Trans.
Sofiware Engineering SE-I 1 (I I) , 1268-1 277.

Fleischmann, A., Chin, S. T., and Effelsberg, W. (1987). Specification and implementation of an
I S 0 layer. / E M Sys. Jour. 26 (3), 255-275.

Floyd, R. W. (1967). Assigning meanings to programs. Proc. Symp. in Applied Math. 19, 19-32.
Garg, K. (1985). An approach to performance specification of communication protocols using

timed Petri nets. IEEE Trans. Sojlware Engineering SE-11 (lo), 1216-1225.
Gerhart, S.. et al. (1980). An overview of AFFIRM: a specification and verification system. Proc.

I FI P Information Processing 80, pp. 343 - 348.
Good, D. J., and Cohen. R. M. (1979). Principles of proving concurrent programs in Gypsy. Proc.

ACM Symp. on Principles of Programming Languages. 6th, pp. 42-54.
Gouda, M. G. (1984). Closed covers: to verify progress for communicating finite state machines.

IEEE Trans. Sofiware Engineering SE-10 (6), 846-855.
Gouda, M. G., and Chang, C. K. (1984). A technique for proving liveness of communicating finite

state machines with examples. Proc. ACM Symp. on Principles of Distributed Computing, 3rd,

Gouda, M. G., and Han, J. Y. (1985). Protocol validation by fair progress state exploration.

Gouda, M. G., and The, K. S. (1985). Modeling physical layer protocols using communicating

COMPSAC, pp. 505-512.

28 (4), 632-643.

net based models. Computer Networks 6 (6), 419-441.

Estelle.” North-Holland, Amsterdam, The Netherlands.

to protocol specification. Proc. IEEE 71 (12), 1346-1355.

dissertation, University of Texas, Austin, Texas.

dissertation, University of California, Berkeley, California.

15-22.

pp. 38-49.

Computer Networks & ISDN Systems 9,353-361.

finite state machines. Proc. ACMIIEEE Data Comm. Symp.. 9th, pp. 54-62.

188 MlNG T. LIU

Gouda, M. G., and Yu, Y. T. (1984a). Protocol validation by maximal progress state exploration.
IEEE Trans. Comm. COM-32 (I) , 94-97.

Gouda, M. G.. and Yu, Y. T. (1984b). Synthesis of communicating finite-state machines with
guaranteed progress. IEEE Trans. Comm. COM-32 (7), 779-788.

Gouda, M. G., Chow, C. H., and Lam, S. S. (1984). On the decidability of livelock detection in
networks of communicating finite state machines. Proc. IFlP Int. Workshop on Protocol
Specification, Testing, and Verification. 4th, pp. 47-56.

Green, P. E. (1986). Protocol conversion. IEEE Trans. Comm. COM-34 (3), 257-268.
Guttag, J. V. (1975). The specification and application to programming of abstract data types.

Ph.D. dissertation, University of Toronto, Toronto, Canada.
Hailpern, B. T. (1980). Verifying concurrent processes using temporal logic. Ph.D. dissertation,

Stanford University, Stanford, California.
Hailpern, B. T., and Owicki, S. (1980). Verifying network protocols using temporal logic. Proc.
NBS Trends and Applications Con/., pp. 18-28.

Hailpern, B. T., and Owicki, S. (1983). Modular verification of computer communication
protocols. IEEE Trans. Comm. COM-31 (I) , 56-68.

Harangozo, J. (1977). An approach to describing a link level protocol with a formal language.
Proc. ACMIIEEE Data Comm. Symp., 5th, pp. 4.37-4.49.

Hoare, C. A. R.(1969). An axiomatic basis for computer programming. Comm. ACM 12 (lo), 567-
583.

Hoare, C. A. R. (1978). Communicating sequential processes. Comm. ACM 21 (8). 666-
677.

Holliday, M. A., and Vernon, M. K. (1987). A generalized timed Petri net model for performance
analysis. IEEE Transs. Software Engineering SE-I 3 (12), 1297- 1310.

Holzmann, G. J. (1982a). Algebraic validation methods-a comparison of three techniques.
Proc. IFIP Int. Workshop on Protocol Specification, Testing. and Verification, 2nd. pp. 383-
390.

Holzmann, G. J. (1982b). A theory for protocol validation. IEEE Trans. Computers C-31(8), 730-
738.

Holzmann, G. J. (1984). The Pandora system: an interactive system for the design of data
communication protocols. Computer Networks 8 (2), 71-79.

Holzmann, G. J. (1985). Tracing protocols. AT&T Tech. Jour. 64 (lo), 2413-2433.
Holzmann, G. J. (1987). Automatic protocol validation in Argos: assertion proving and scatter

Itoh, M., and Ichikawa, H. (1983). Protocol verification algorithm using reduced reachability

Jain, P., and Lam, S. S. (1987). Modeling and verification of real-time protocols for broadcast

Jurgensen, W., and Vuong, S. T. (1984). Formal specification and validation of I S 0 transport
protocol components using Petri nets. Proc. ACM SIGCOMM ‘84 Symp., pp. 75-82.

Kakuda, Y., and Wakahara, Y. (1987). Component-based synthesis of protocols for unlimited

Kakuda, Y., Wakahara, Y., and Norigoe, M. (1986). A new algorithm for fast protocol validation.

Keller. R. M. (1976). Formal verification of parallel programs. Comm. ACM 19 (7). 371-384.
Krishnakumar, A. S., Krishnamurthy, B., and Sabnani, K. (1987). Translation of formal protocol

specifications to VLSl devices. Proc. IFIP f n t . Workshop on Protocol Specification. Testing.
and Verification, 7th, pp. 375-390.

Kritzinger, P. S. (1984). Analyzing the time efficiency of a communication protocol. Proc. I F I P
Int. Workshop on Protocol Specification, Testing, and Verification. 4th, pp. 527-540.

Krogdahl, S. (1978). Verification of a class of link-level protocols. B f T 18, 436-448.

searching. I E E E Trans. Software Engineering SE13 (6). 683-696.

analysis. Trans of fECE of Japan EM (2), 88-93.

networks. I E E E Trans. Software Engineering SE13 (8). 924-937.

number of processes. Proc. I E E E COMPSAC, pp. 721-730.

Proc. IEEE COMPSAC, pp. 228-236.

PROTOCOL ENGINEERING 189

Krumm, H., and Drobnik, 0. (1983). Specification, implementation and verification of
communication services on the basis of CIL. Proc. IFIP Int. Workshop on Protocol
Specification, Testing, and Verification. 4th. pp. 301-316.

Krumm, H., and Drobnik, 0. (1984). Transformation of constructive specifications of services
and protocols into the logical language of CIL. Proc. IFIP Int. Workshop on Protocol
Specification, Testing, and Verification, 4th, pp. 3 1-46,

Lam, S. S. (1986). Protocol conversion-correctness problems. Proc. ACM SIGCOM '86 Symp.,

Lam, S. S. (1988). Protocol conversion. IEEE Trans. Software Engineering SE14 (3), 353-362.
Lam, S. S., and Shankar, A. U. (1982). Verification of communication protocols via protocol

Lam. S. S., and Shankar, A. U. (1984). Protocol verification via projections. IEEE Trans. Software

Lam, S . S., et al. (1986). Interactive verification and construction of communication protocols in

Lamport, L. (1983). Specifying concurrent program modules. ACM TOPLAS 5 (2), 190-222.
Lee, T. T., and Lai, M. Y. (1988). A relational algebraic approach to protocol verification. IEEE

Trans, Software Engineering SE14 (2), 184- 193.
Levin, G. M., and Cries, D. (1981). A proof technique for communicating sequential processes.

Acta Info. 15,28 1 - 302.
Liao, 1. E., and Liu, M. T. (1989). Incremental protocol verification using deductive database

systems. Proc. I E E E Int. Conf. on Data Engineering, Sfh, pp. 216-223.
Lin, F. J. (1988). An integrated approach to verification and performance analysis of communicat-

ion protocols. Ph.D. dissertation, Ohio State University, Columbus, Ohio.
Lin, F. J., and Liu, M. T. (1988a). A formal model for protocol interworking in ISDN. Proc. IEEE

Int. Conf. Comm., pp. 107-1 13.
Lin, F. J., and Liu, M. T. (l988b). An integrated approach to verification and performance of

communication protocols. Proc. IFIP Int. Workshop on Protocol Specifcation, Testing, and
Verification. 8th, pp. 125- 140.

Lin, F. J.. Chu, P. M., and Liu, M. T. (1987). Protocol verification using reachability analysis: the
state explosion problem and relief strategies. Proc. ACM SIGCOMM '87 Workshop, pp. 126-
135.

Lin, F. J., Liu, M. T.. and Grafl, C. J. (1989). On the verification of time-dependent protocol using
timed reachability analysis. Proc. Hawaii In?. Conf. on Sys. Sci., 22nd. z, pp. 285-294.

Lin, H. A. (1983). A methodology for designing reliable communication protocols. Ph.D.
dissertation, Ohio State University, Columbus, Ohio.

Lin, H. A,, and Liu, M. T. (1982). Priority driven communication protocol design. Proc. IEEE Int.
Conf. on Distributed Computing Systems, 3rd, pp. 371-378.

Lin, H. A,, and Liu, M. T. (1986). Verification of CSP programs based on communication
assertions. Proc. I E E E Phoenix Conf. on Computers and Comm.. 5th. pp. 412-417.

Lin, H. A,, Liu, M. T., and Grafl, C. J. (1983a). A methodology for reliable communications
protocol design. Proc. IEEE In?. Conf. Comm., pp. 1338-1343.

Lin, H. A., Liu, M. T., and Graff, C. J. (1983b). Verification of a methodology for designing reliable
communication protocols. Proc. ACMIIEEE Data Comm. Symp., 8th, pp. 141- 149.

Linn, R. J. (1984). An evaluation of the ICST test architecture after testing class 4 transport. Proc.
IFIP Int. Workshop on Protocol Specification, Testing, and Verification, 4th, pp. 61 1-622.

Linn, R. J. (1985). The features and facilities of ESTELLE: a formal description technique based
upon an extended finite state machine model. Proc. IFIP Int. Workshop on Protocol
Specification, Testinq. and Verification. Sth, pp. 271-296.

Linn, R. J., and Favreau, J. P. (1988). Application of formal description techniques to the
specification of distributed test systems. Proc. I E E E INFOCOM, pp. 96-109.

pp. 19-29.

projections. Proc. IEEE INFOCOM, pp. 229-240.

Engineering SE-I0 (4), 325-342.

PROSPEC, Proc. IEEE INFOCOM, pp. 67-75.

190 MlNG T. LIU

Linn, R. J., and McCoy, W. H. (1983). Producing tests for implementations of OSI protocols. Proc.
Int . Workshop on Protocol Specifcation, Testing, and Verification, 3rd, pp. 505-520.

Linn, R. J., and Nightingale, J. S. (1983). Some experience with testing tools for OSI protocol
implementations. Proc. IFIP Int. Workshop on Protocol Specifcation, Testing, and Verification,
3rd. pp. 521-530.

Liu, M. T. (1978). Distributed loop computer networks. In “Advances in Computers” (M. C.
Yovits, ed.), Vol. 17, pp. 163-221. Academic Press, New York.

Liu, M. T. (1988). Computer communication protocols for advanced communication systems.
Technical Report No. CECOM-TR-87-K-A005-3, Ohio State University, Columbus, Ohio.

Liu, N. C. (1986). A methodology for specifying and analyzing communication protocols and
services. Ph.D. dissertation, Ohio State University, Columbus, Ohio.

Liu, N. C., and Liu, M. T. (1984). CSP-based specification for network protocols and services.
Proc. I E E E Computer Networking Symp., pp. 95-102.

Liu, N. C., and Liu, M. T. (1986). Conformity analysis for communication protocols. Proc. A C M

Lu, C. S. (1986). Automated validation of communication protocols. Ph.D. dissertation, Ohio

Lynch, W. C. (1968). Reliable full-duplex transmission over half-duplex telephone lines. Comm.

Marsan, M. A., Conte, G., and Balbo, G. (1984). A class of generalized stochastic Petri nets for
performance evaluation of multiprocessor systems. ACM Trans. Computer Systems 2 (2), 93-
122.

Menasche, M. (1985). PAREDE: an automated tool for the analysis of time(d) Petri nets. Proc.
I E E E Int. Workshop on Time Petri Nets, 162-169.

Menasche, M., and Berthomieu, B. (1983). Time Petri nets for analyzing and verifying time
dependent communication protocols. Proc. IFIP Int. Workshop on Protocol Specification,
Testing. and Verification, Jrd, pp. 161-172.

Merlin, P. M. (1976). A methodology for the design and implementation of communication
protocols. IEEE Trans. Comm. COM-24 (6), 614-621.

Merlin, P. M., and Bochmann, G. V. (1983). On the construction of submodule specifications and
communication protocols. A C M TOPLAS 5 (I) , 1-25.

Merlin, P. M., and Farber, D. J. (1976). Recoverability of communication protocols-
implications of a theoretical study. I E E E E Trans. Comm. COM-24 (9). 1036-1043.

Mills, K. L. (1984). Testing OSI protocols: NBS advances the state of the art. Data Comm. 13 (3),

Milner, R. (1980). “A Calculus of Communicating System.” Springer-Verlag, Berlin, W. Germany.
Molloy, M. K. (1982). Performance analysis using stochastic Petri nets. I E E E Trans. Computers

Mostow, J. (1985). What is AI? and what does it have to do with software engineering? I E E E

Nash, S . C. (1983). Automated implementation of SNA communication protocols. Proc. I E E E Int.

Nash, S . C. (1987). Formal and protocol language (FAPL). Computer Networks and ISDN Systems

Nightingale, J. S. (1982). Protocol testing using a reference implementation. Proc. I F I P Int .
Workshop on Protocol Specification. Testing. and Verification, 2nd. pp. 5 13-522.

Nounou, N. (1986). Specification-based performance analysis of protocols. Ph.D. dissertation,
Columbia University, New York.

Nounou, N., and Yemini, Y. (1984). Algebraic specification-based performance analysis of
communication protocols. Proc. Int. Workshop on Protocol Specifcation. Testing, and
Verification, 4th, pp. 541-560.

S I G C O M M ‘86, pp. 216-226.

State University, Columbus, Ohio.

A C M 11 (6), 362-372.

277-285.

C-31 (9), 913-917.

Trans. Sojtware Engineering SE-11 (11). 1253-1255.

Con!. Comm., pp. 1316-1322.

14(1), 61-77.

PROTOCOL ENGINEERING 191

Nounou, N., and Yemini, Y. (1986). Development tools for communication protocols. In “Current
Advances in Distributed Computing and Communications” (Y. Yemini, ed.), pp. 257-304.
Computer Science Press, Rockville, Maryland.

Okumura, K. (1986). A formal protocol conversion method. Proc. ACM SIGCOMM ’86 Symp.,

Palauo, S., Fogliata, P., and Le Moli, G. (1983). A layer-independent architecture for a testing
system of protocol implementations. Proc. IFIP Int. Workshop on Protocol Specification,
Testing, and Verification, 3rd. pp. 393-406.

Partsch, H., and Steinbruggen, R. (1983). Program transformation systems. ACM Computing
Suroey 15 (3). 199-236.

Pavel, J. R., and Dwyer, D. J. (1984). Some experiences of testing protocol implementations. Proc.
IFIP Int. Workshop on Protocol Specification, Testing, and Verification, 4th, pp. 657-680.

Peral, J. (1984). “Heuristics-Intelligent Search Strategies for Computer Problem Solving.”
Addison-Wesley, Reading, Massachusetts.

Piatkowski, T. F. (1981). An engineering discipline for distributed protocol systems. Proc. IFIP
Workshop on Protocol Testing- Towards Proof ?, pp. 177-215.

Piatkowski, T. F. (1983). Protocol engineering. Proc. IEEE Int. Conf. Comm., pp. 1328-1332.
Piatkowski, T. F. (1986). The state of the art in protocol engineering. Proc. ACM SIGCOM ‘86

Pnueli, A. (1977). The temporal logic of programs. Proc. IEEEIACM Symp. on Foundations of

Postel, J., and Farber, D. J. (1976). Graph modeling of computer communications protocols. Proc.

Pozefsky, D. P., and Smith, F. D.(1982). A meta-implementation for system network architecture.

Prinoth, R. (1982). An algorithm to construct distributed systems from state-machines. Proc. IFIP

Purushothaman, S., and Subrahmanyam, P. A. (1987). Reasoning about probabilistic behavior in

Ramamoorthy, C. V., and Dong, S. T. (1982). Communication protocol synthesis. Proc. IEEE

Ramamoorthy, C. V., Dong, S. T., and Usuda, Y. (1985). An implementation of an automated
protocol synthesizer (APS) and its application to the X.-21 protocol. IEEE Trans. Software
Engineering SE-11 (9), 886-908.

Rayner, D. (1985). Towards standardized OSI conformance tests. Proc. IFIP Int. Workshop on
Protocol Specification. Testing. and Verification. Sth, pp. 44-460.

Rayner, D. (1987). OSI conformance testing. Computer Networks and ISDN Systems 14(l), 79-98.
Razouk, R. R. (1981). Computer-aided design and evaluation of digital computer systems. Ph.D.

Razouk, R. R. (1982). Modeling X.25 using the graph model of behavior. Proc. Int. Workshop on

Razouk, R. R., and Estrin, G. (1980). Modeling and verification of communication protocols in

Razouk, R. R., and Phelps, C. V. (1984). Performance analysis using timed Petri nets. Proc. IFIP

Reed, G. M., and Roscoe, A. W. (1986). A timed model for communicating sequential processes.

Rockstrom, A,, and Saracco, R. (1982). SDL-CCITT specification and description language. IEEE

Rudin, H. (1982). Validation of a token-ring protocol. Proc. IFIP Int. Symp. on Local Computer

pp. 30-38.

Symp., pp. 13-18.

Computer Science. 18th, pp. 46-57.

Texas Conf. on Computing Systems, 5th. pp. 66-77.

IEEE Trans. Comm. COM-30 (6), 1348-1355.

Int. Workshop on Protocol Specification, Testing. and Verification, 2nd, pp. 261 - 282.

concurrent systems. IEEE Trans. Software Engineering SE13 (6), 740-745.

COMPSAC, pp. 217-225.

dissertation, University of California, Los Angeles, California.

Protocol Specification, Testing. and Verification, 2nd, pp. 197-214.

SARA: the X.21 interface. IEEE Trans. Computers C-29 (12). 1038-1052.

Int. Workshop on Protocol Specification, Testing, and Verification. 4th, pp. 561-576.

Proc. Int. Colloquium on Automata, Languages, and Programming, I3th, pp. 3 14-321.

Trans. Comm. COM-30(6), 1310-1317.

Networks, pp. 373-387.

192 MlNG T. LIU

Rudin, H. (1983). From formal protocol specification towards automated performance prediction.
Proc. IFIP Int. Workshop on Protocol Specification. Testing. and Verification, 3rd. pp. 257-272.

Rudin, H. (1984). An improved algorithm for estimating protocol performance. Proc. IFIP Int.
Workshop on Protocol Specification, Testing. and verification, 4th, pp. 515- 526.

Rudin, H. (1985). An informal overview of formal protocol specification. IEEE Comm. Magazine

Rudin, H. (1988). Protocol engineering: a critical assessment. Proc. IFIP Int. Symp. Protocol
Specijication. Testing. and Verification, 8rh. pp. 3- 16.

Rudin, H., and West, C. H. (1982). An improved protocol validation technique. Computer
Networks 6 (2), 65-73.

Sabnani, K., and Dahbura, A. (1983). A new technique for generating protocol tests. Proc.
ACMIIEEE Data Comm. Symp.. 9th. pp. 36-43.

Sabnani, K., and Schwartz, M. (1984). Verification of a multidestination selective repeat
procedure. Computer Networks 8,463-478.

Saracco, R., and Tilanus, P. A. J. (1987). CCITT SDL: overview of the language and its
applications. Computer Networks and ISDN Systems 13 (2), 65-74.

Sarikaya, B., and Bochmann, G. (1982). Some experience with test sequence generation for
protocols. Proc. Int. Workshop on Protocol Specification. Testing, and Verification, Znd, pp. 555-
568.

Sarikaya, B., and Bochmann, G. (1984). Synchronization and specification issues in protocol
testing. IEEE Trans. Comm. COM-32 (4). 389-395.

Schindler, S. (1980). Algebraic and model specification techniques. Proc. Hawaii Int. Conf. on Sys.
Sci.. 3rd, pp. 20-34.

Schindler, S., and Steinacker, M. (1979). A formal specification of an X.25 protocol machine. Proc.
NBS Trends and Applications Conf., pp. 54-64.

Schindler, S., Didier, J., and Steinacker. M. (1978). Design and formal specification of an X.25
packet level protocol implementation. Proc. IEEE COMPSAC, pp. 686-691.

Schwabe, D. (1981). Formal techniques for specification and verification of protocols. Ph.D.
dissertation, University of California, Los Angeles, California.

Schwartz, R. L.. and Melliar-Smith, P. M. (1981). Temporal logic specification of distributed
systems. Proc. IEEE Int. Con$ on Distributed Computing Systems, 2nd, pp. 446-454.

Schwartz, R. L., and Melliar-Smith, P. M. (1982). From state machines to temporal logic:
specification methods for protocol standards. IEEE Trans. Comm. COM-30 (12),

Serre, J. M., Cerny, E., and Bochmann. G. V. (1986). A methodology for implementing high-level
communication protocols. Proc. Hawaii Int. Con$ on Sys. Sci. 19th, pp. 744-754.

Shankar, A. U. (1982). Analysis of communication protocols via protocol projections. Ph.D.
dissertation, University of Texas, Austin, Texas.

Shankar, A. U., and Lam, S. S. (1982). On time-dependent communication protocols and their
projections. Proc. IFIP Int. Workshop on Protocol Specification. Tesfing. and Verification. 2nd.

Shankar, A. U., and Lam, S. S. (1983). An HDLC protocol specification and its verification using
image protocols. ACM Trans. Compufer Systems 1 (4). 331-368.

Shankar, A. U., and Lam, S. S. (1984). Specification and verification of time-dependent
communication protocols. Proc. I FIP Int. Workshop on Protocol Specification. Testing. and
Verification, 4th, pp. 215-226.

Shiratori, N.. Takahashi. K.,and Noguchi, S. (1988). A software design method and its application
to protocol and communication software development. Computer Nerworks and 1SDN Systems

Sidhu, D. P. (1982a). Protocol design rules. Proc. IFIP Int. Workshop on Protocol Specification.

23 (3), 46-52.

2486-2496.

pp. 215-236.

15,245-267.

Tesring, and Verification, Znd, pp. 283-300.

PROTOCOL ENGINEERING 193

Sidhu, D. P. (l982b). Synthesis of communication protocols. Proc. IEEE Int . Con$ Comm.,

Sidhu, D. P., and Blumer, T. P. (1984). Automated verification of connection management of NBS

Sidhu, D. P., and Leung, T. K. (1988). Fault coverage of protocol test methods. Proc. IEEE

Simon, H. A. (1986). Whether software engineering needs to be artificially intelligent. IEEE Trans.

Soundararajan, N. (1984). Axiomatic semantics of communicating sequential processes. ACM

Sriram, D. (1986). Expert systems for engineering applications. IEEE Software Magazine 3 (2),

Stalling, W. (1988). “Data and Computer Communications” (second edition). Macmillan, New

Stenning, V. N. (1976). A data transfer protocol. Computer Networks I (2), 99-1 10.
Sunshine, C. A. (1979). Formal techniques for protocol specification and verification. IEEE

Sunshine, C. A. (1982a). Formal modeling of communication protocols. I n “Computer Networks

Sunshine, C. A. (1982b). Experience with four automated verification systems. Proc. IFIP Int.

Sunshine, C . A. (1983). Experience with automated protocol verification. Proc. IFIP Inr.

Symons, F. J. W. (1980). The verification of communication protocols using numerical Petri nets.

Tanenbaum, A. S. (1988). “Computer Networks” (second edition). Prentice Hall, New Jersey.
Teng, A. Y. (1980). Protocol construction for computer networks. Ph.D. dissertation, Ohio State

University, Columbus, Ohio.
Teng, A. Y.. and Liu, M. T. (1978a). A formal approach to the design and implementation of

network communication protocols. Proc. IEEE COMPSAC, pp. 722-727.
Teng, A. Y., and Liu. M. T. (1978b). A formal model for automatic implementation and logical

validation of network communication protocols. Proc. IEEE Computer Networking Symp.,

Teng, A. Y., and Liu, M. T. (1980). The transmission grammar model for protocol construction.

Tenney, R. L. (1983). One formal description technique for IS0 OSI. Proc. I E E E Int. Con$ Comm.,

Umbaugh, L. D. (1983). Automated techniques for specification and validation of communication
protocols. Ph.D. dissertation, Ohio State University, Columbus, Ohio.

Umbaugh, L. D., and Liu, M. T. (1982). A comparison of communications protocol validation
techniques. Proc. IEEE In!. Con$ Comm., pp. 4C.4.1-4C.4.7.

Umbaugh, L. D., Liu, M. T.. and GraK, C. J. (1983). Specification and validation of the
transmission control protocol using transmission grammar. P roc. l E E E COMPSAC, pp. 207-
216.

Ural, H., and Probert, R. L. (1984). Automated testing of protocol specifications and their
implementations. Proc. ACM SIGCOMM ‘84 Symp., pp. 148-155.

van Eijk, P. H. J., Vissers, C. A., and Diaz, M., eds. (1989). “The Formal Description Technique
LOTOS.” North-Holland, Amsterdam, The Netherlands.

Vissers, C. A., and Logrippo, L. (1985). The importance of the service concept in the design of data
communications protocols. Proc. IFIP I n t . Workshop on Protocol Specification. Testing, and
Verification. Sth, pp. 3-17.

pp. 4C.5.1-4C.5.4.

class 4 transport protocol. Proc. ACM SIGCOMM ’84 Symp., pp. 83-91.

INFOCOM, pp. 80-85.

Software Engineering SE-12 (7), 726-732.

TOPLAS, 6 (4). 647-662.

3-5.

York.

Computer Magazine I2 (9), 20-27.

and Simulation 11” (S. Shoemaker, ed.), pp. 53-75. North-Holland, Amsterdam.

Workshop on Protocol Specification, Testing, and Verification. Znd, pp. 373-380.

Workshop on Protocol Specification. Testing, and Verification, 3rd, pp. 229-236.

Australian Telecommunication Research 14 (I) , 34-38.

pp. 114-123.

Proc. NBS Trends and Applications Conf., pp. 110- 120.

pp. 1296- 1300.

194 MlNG T. LIU

Vissers, C. A., Tenney, R. L., and Bochmann, G. V. (1983). Formal description techniques. Proc.

Vuong, S . T. (1983). Reachability an. 4 of protocols with FIFO channels. Proc. ACM
SIGCOMM 8 3 Symp., pp. 49-58.

Vuong, S. T., and Cowan, D. D. (1982a). A decomposition method for the validation of structured
protocols. Proc. IEEE INFOCOM, pp. 209-220.

Vuong, S. T., and Cowan, D. D. (1982b). Reachability analysis of protocols with non-FIFO
channels. Proc. IEEE COMPCON Fall 82, pp. 267-276.

Vuong, S. T., and Cowan, D. D. (1983). UNISPEX-a unified model for protocol specification
and verification. Proc. IEEE INFOCOM, pp. 318-329.

Vuong, S. T., Hui, D. D., and Cowan, D. D. (1986). VALIRA: a tool for protocol validation via
reachability analysis. Proc. IFIP Int. Workshop on Protocol Specification. Testing, and
Verification. 6th, pp. 35-41.

Walter, B. (1983). Timed Petri nets for modelling and analyzing protocols with real-time
characteristics. Proc. IFIP Int. Workshop on Protocol Specification, Testing, and Verification,
3rd, pp. 148-160.

West, C. H. (1978a). Generalized technique for communication protocol validation. I B M .
Research and Development 22 (4). 393-404.

West, C. H. (1978b). An automated technique of communications protocol validation. l E E E
Trans. Comm. COM-26 (8), 1271-1275.

West, C. H. (1982). Applications and limitations of automated protocol validation. Proc. IFlP Int .
Workshop on Protocol Specification. Testing. and Verification, 2nd, pp. 361 -372.

West, C. H. (1986). Protocol validation by random state exploration. Proc. IFIP Int. Workshop on
Protocol Specification, Testing. and Verification. 6th, pp. 233-242.

West, C. H., and Zafiropulo, P. (1978). Automated validation of a communications protocol: the
CClTT X.21 recommendations. IBM. J. Research and Development 22 (I) , 60-71.

Yelowitz, L., Gerhart, L., and Hilborn, G. (1982). Modeling a network protocol in AFFIRM and
Ada. Proc. IFIP Int. Workshop on Protocol Specification. Testing, and Verification, 2nd, pp. 435-
450.

Yemini, Y., and Kurose, J. F. (1982). Can current protocol verification techniques guarantee
correctness? Computer Networks 6 (6). 377-381.

Yemini, Y., and Nounou, N. (1983). CUPID: a protocol development environment. Proc. IFIP
Int. Workshop on Protocol Specification, Testing. and Verifcation, 3rd. pp. 347-356.

Yu, Y. T. (1983). Communicating finite state machines: analysis and synthesis. Ph.D. dissertation.
University of Texas, Austin, Texas.

Yu, Y. T., and Gouda, M. G. (1982). Deadlock detection for a class of communicating finite state
machines. IEEE Trans. Comm. COM-30 (12), 2514-2518.

Zafiropulo, P. (1978a). Protocol validation by duologue-matrix analysis. IEEE Trans. Comm.

Zafiropulo, P. (1978b). Design rules for producing logically complete two-process interactions and

Zafiropulo, P.. Rudin, H., and Cowan, D. D. (1979). Towards synthesizing asynchronous two-

Zafiropulo, P., et al. (1980). Towards analyzing and synthesizing protocols. IEEE Trans. Comm.

Zhang, Y. X . , et al. (1988a). A knowledge-based system for protocol synthesis (KSPS). IEEE JSAC

Zhang, Y . X . , et al. (1988b). An interactive protocol synthesis algorithm using a global state

Zhao, J. R., and Bochmann, G. V. (1986). Reduced reachability analysis of communication

IEEE 71 (12), 1356-1364.

COM-26(8), 1187-1194.

communications protocols. Proc. IEEE COMPSAC, pp. 680-685.

process interactions. Proc. IEEE Computer Networking Symp., pp. 169-175.

COM-28 (4). 65 1 - 660.

6 (5) , 874-883.

transition graph. IEEE Trans. Software Engineering SE-14 (3), 394-404.

PROTOCOL ENGINEERING 195

protocols. Proc. IFIP Int. Workshop on Protocol Specification. Testing. and Verification, 6th.

Zheng, H. X . , and Rayner, D. (1985). The impact of the ferry concept on protocol testing. Proc.

Zic, J. J. (1987). Extensions to Hoare's communicating sequential processes to allow protocol

Zimmermann, H. (1983). On protocol engineering. Proc. IFIP InJormation Processing 83, pp. 283-

Zuberek, W. M. (1985). Performance evaluation usingextended timed Petri nets. Proc. IEEE Int.

Zuberek, W. M. (1986). Modified D-timed Petri nets, timeouts, and modeling of communication

pp. 243-253.

IFIP hi. Workshop on Protocol Specification, Testing. and Verification. 5th pp. 519-531.

performance specification. Proc. ACM SIGCOMM '87 Workshop, pp. 217-227.

292.

Workshop on Time Petri Nets, pp. 272-278.

protocols. Proc. IEEE Int. Con$ on Distributed Computing Systems. 6rh, pp. 452-457.

This Page Intentionally Left Blank

Computer Chess: Ten Years of
Significant Progress

MONROE NEWBORN

School of Computer Science
McGill University

Montreal. Quebec. Canada

1 . Introduction . 198
2 . Search Techniques in Chess Programs 198

2.1 The Search Tree and the Minimax Algorithm 199
2.2 Depth-first Minimax Search 201
2.3 The Alpha-beta Algorithm 206
2.4 Move Generation, the Principal Continuation. and the Killer Heuristic . . 210
2.5 Pruning Techniques and Variable Depth Quiescence Search 211
2.6 Transposition Tables . 212
2.7 Iterative Deepening . 222
2.8 Windows . 222
2.9 Parallel Search Techniques 226
2.10 Special-purpose Hardware 228
2.1 1 Time Control and Thinking on the Opponent's Time 230

3 . OpeningBooks . 231
4 . Endgame Play and Endgame Databases 231
5 . A Brief History of Computer Chess Tournament Play 232
6 . The Rating of Chess Players 233
7 . The Relation Between Computer Speed and Program Strength 237
8 . On the Chess Skill of Chess Programmers 238
9 . Languages Used by Chess Programs 239

10 . Testing Chess Programs . 240
I 1 . Debugging Chess Programs 240
12 . A Sample of Play: DEEP THOUGHT 0.02 (White) Versus HITECH (Black) . . 241
13 . Data on Programs: Computers, Languages, Authors, Affiliations, Etc 244
14 . The International Computer Chess Association and the ACM's Computer Chess

Committee . 246
15 . Conclusions . 246

References . 247

197

ADVANCES IN COMPUTERS. VOL . 29
Copyright 0 1989 by Academic Press . Inc .

All rights of reproduction in any form r r ~ e ~ e d .
ISBN 0-12-012129-8

198 MONROE NEWBORN

1. Introduction

Ten years ago, this writer contributed an article entitled “Recent Progress in
Computer Chess” to this series’ eighteenth volume (Newborn, 1979). It
surveyed developments in computer chess in the middle and late 1970s,
developments that raised the playing strength of chess programs to just over
the 2000 United States Chess Federation level, the level of a chess Expert.
Now, 10 years later, chess programs have improved at least another 500 rating
points and are playing almost at Grandmaster level. Grandmasters, of which
there are under 50 in North America, hold ratings that begin at approximately
2600 USCF.

The purpose of this article is to describe the technical developments that
have led to this remarkably strong level of play. Since 1979, there have been a
number of new developments including special-purpose hardware, parallel
search on multiprocessing systems, windowing techniques, and increased use
of transposition tables. This article describes these advances.

The first working chess programs came into existence in the middle 1950s
based on the ideas presented several years earlier by Shannon (1950) and
Turing (1953). These programs, developed at the Los Alamos Scientific
Laboratory (Kister et al., 1957), IBM in New York (Bernstein et al. 1958), and
Carnegie-Mellon University (Newell et al., 1958), played very poorly. Some
argued, based on the performance of these early programs, that computers
would never play strong chess. Gradually, as programmers learned how the
search process worked and as computer power increased, programs improved.
With programs now on the verge of becoming Grandmasters, and with all
signs indicating progress will continue, the day when they will be World
Champion cannot be too far off. In Newborn (1979), it was predicted that
“with advances in both hardware and software continuing at the same rates as
they have during the last 10 years, it is highly probable that programs will be
playing Master level chess by 1984, Grandmaster level chess by 1988, and
better than any human by 1992. (These are conservative estimates!)” BELLE,
in fact, was awarded the title of US Master in 1983, and this year, 1988, as said
previously, programs are playing at almost the Grandmaster level. A World
Champion by 1992 remains a good bet.

2. Search Techniques in Chess Programs

Chess programs have improved over the years due to the development and
refinement of a number of search techniques particularly suited to the
capabilities of computers. These techniques are reviewed in the following
sections. The minimax algorithm, the foundation of all chess programs, is

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 199

examined in Section 2.1. Depth-first search and the basic data structures for
chess trees are the subject of Section 2.2. The alpha-beta algorithm, which
supplements the minimax algorithm, is presented in Section 2.3 followed in
Section 2.4 by material on how moves are generated, how the principal
continuation is found and how the killer heuristic is used by chess programs.
Section 2.5 describes pruning techniques and variable depth quiescence
search. Transposition tables and hashing techniques are presented in Section
2.6. Iterative deepening is introduced in Section 2.7, and the use of search
windows is described in Section 2.8. Parallel search techniques are described in
Section 2.9. Special-purpose hardware, used by four of the leading programs
(BELLE, BEBE, HITECH, and DEEP THOUGHT 0.02) is surveyed in
Section 2.10. The problem of using time wisely is considered in Section 2.1 1 .

2.1 The Search Tree and the Minimax Algorithm

For any given chess position, there is a corresponding graph-theoretic game
tree in which nodes correspond to positions and branches correspond to
moves. The root of the tree corresponds to the position in which a move is to
be found. There are typically about 30 to 40 moves in a position. In the initial
position, there are exactly 20 moves for White. The rules of chess declare a
game drawn if 50 moves pass and no piece has been captured or no pawn has
advanced. These two rules imply that the game tree has a finite number of
nodes, but the number is astronomical, estimated to be Thus, except in
simple positions, it is impossible to search any more than a small part of the
entire game tree.

In the early 1970s, programs searched chess trees at rates of approximately
200 nodes per second. Today, that rate is nearing 1,OOO,OOO nodes per second,
an increase by a factor of 5000. The better programs now examine all
sequences of moves for approximately eight to ten levels (or plies) in the tree.
Certain continuations, those that the program thinks are crucial lines of play,
are searched more deeply. To the position at the end of each continuation,
called a terminal position, the program assigns a score which is a measure of
how good the position is. Functions that assign scores to positions, that is,
scoring functions, are much simpler than one might imagine. Shannon (1950)
originally proposed a scoring function that took into account material,
mobility, and pawn structure. A positive score meant that the computer is
winning, a negative one meant that the opponent is ahead. The larger the
score, the better the position, and conversely, the more negative the score the
worse the position.

Given the scores of these terminal positions, the minimax algorithm
provides the rule for determining which move the first player, usually the
computer itself, should make at the root of the tree. The minimax algorithm

200 MONROE NEWBORN

Root Node

4 2

8 3

8 9

18 18

FIG. 1. Five-level game tree showing how minimax algorithm backs up scores to the root.
Terminal nodes = 0, non-terminal nodes at which score is maximized = 0, non-terminal node
at which score is minimized = 0, and principal continuation = ... -.

says that at even levels in the tree (the root is at level 0), a non-terminal posi-
tion should be assigned a score equal to the maximum score of any of its
successor positions. At odd levels in the tree, the score assigned to a position
should be the minimum score of any of its successors. Scores are assigned
to nodes by working backward from the terminal nodes toward the root. The

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 201

tree in Fig. 1 illustrates this algorithm. Here, a depth-5 search is carried out.
There are 20 terminal nodes at level 5, and they are assigned scores by the
scoring function as indicated. Backed-up scores are assigned to the nonter-
minal nodes as shown, with a score of 4 being backed up to the root. The
computer should thus play the move that leads to the terminal node score
of 4. The alternative move leads to a score of 2, not as good for the first
player. The sequence of moves leading to the node with the score of 4 is called
the principal continuation, the continuation that the minimax algorithm cal-
culates is best for both sides to follow.

2.2 Depth-first Minimax Search

All chess programs of any note carry out the minimax algorithm by
searching the game tree in a depth-first fashion as opposed to either breadth-
first or some sort of best-first search (see Nilsson, 1980). This is mainly because
of three reasons. First, depth-first search requires very little memory space.
Memory space requirements grow linearly with the depth of search, as
opposed to exponentially when breadth-first search or best-first search is used.
This was particularly important in the 1960s and the 1970s when memory
space was at a premium. Today, with memories measured in megabytes, the
advantage of depth-first search over other kinds of search is losing its edge,
but as yet, no strong program has been developed that uses anything else.
Second, the control strategy used by depth-first search is particularly simple.
Deciding where to search next in the tree is well defined; there is no jumping
around in the tree as in other types of search. Third, depth-first search can be
parallelized more easily than other kinds of search. As a small fourth
advantage, printouts of trees produced by depth-first search are easier to
interpret in real time than those produced by other types of search.

The flow chart of a depth-first minimax search is shown in Fig. 2. It is based
on the data structures shown in Fig. 3. The search calls five subroutines not
shown: GENERATE, EVAL, UPDATE, UPDATEPRINC, and RESTORE.
The data structures include the following:

1. A representation of the chess board, usually a 64 square array,
BOARD(8, 8).

2. An array in which to store the moves at each level in the search tree as
they are generated, MOVE (100,20)-allowing for at most 100 moves in
any position and a search to a depth of at most 20 levels.

3. An array of move pointers, MP(20). MP(i) points to the move at level i
that is currently under search.

4. An array to keep track of the backed-up scores to nodes in the tree. This
array, SCORE(20), has elements SCORE(O), . . . , SCORE(19).

202 MONROE NEWBORN

UPDATE
I

5. An array to keep track of the principal continuation as it is being formed.
This triangular array, PC(20,20), will have the principal continuation
stored in its top row when the search finishes.

6. A stack called CLIST which saves the changes to the board and other
data structures when UPDATE is called. RESTORE examines CLIST to
see what changes have to be undone when backing up.

7. In addition, the program needs two variables: DMAX denotes the
maximum depth of search, while PLY indicates the current level of the
search.

SCORE(PLY) + +-(-) if ply is odd(even)

INITIALIZE

Decide DMAX; PLY + 0

No Yes .L &Yes No
SCOR (PLY - 1) + SCOR(PLY)

Call UPDATEPRINC

.*.*... , - Y I
Successor of Cumnt Position 1

GcncraQ moms, list in Column PLY of MOVE
beginning in MOVE(0,PLY). Put 0 at end of list.

P o s i a n + whan MOVE(MP(PLY),PLY)

I

EvnluaQ Poriobn:
SCORE(PLY) + EYAL (BOARD)

MINIMAX

I Odd I Is PLY e\n+norodd?] Even 1

I I I I I

I MP(PLY) + MP(PLY) + 1]

I -1 No Is MOYE(MP 1
-

FIG. 2. Flowchart of the depth-first minimax search algorithm.

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 203

MOVE(O.0)

MOVE (100.20) (Moves array)

MOVE(O.19)

SCOR(0) ScOR(1) . . .

BOARD(8.81

SCOR(19) SCOR(20)

a b c d e f g h

pq

...

I PLY I I I I

MOVE(99.0) I I I MOVE(99.19)

MP(20) (Move pointer array)
I MP(0) I ... I MP(19) I

PC(20,20) (Rincipal continuation array)

CLIST[lOOO) [A stack to keep track of changes]

FIG. 3. Basic data structures required by minimax search algorithm.

GENERATE accepts the current board position and the value for P L Y as
inputs. It returns a list of q moves for the position to the MOVES array and
places them in MOVES(0, P L Y) , MOVES(1, PLY) , . . . , MOVES(q-I, P L Y) .

EVAL determines a score for a terminal position. No two programs have the
same scoring functions, but most take into account material balance, pawn
structure considerations, mobility, king safety, center control (related to
mobility), as well as bonuses for trading pieces when ahead, avoiding draws

204 MONROE NEWBORN

when playing a weaker player, and mating in as few moves as possible when
two or more mating sequences are available. Programs generally assign
P = 1, N = 3, B = 3.2, R = 5, Q = 9, and K = 1O00, although these values
may vary during the course of the game, being conditional on various features
of the game. Two Bishops versus two Knights, for example, generally result
in a small bonus. Programs quantize features of a position to approximately
.01 pawns.

Many factors taken into account by the scoring function can be dif-
ferentially updated when going from one node to another in the search tree.
Material, for example, can be updated when a move is a capture or a pro-
motion. Otherwise material does not change when going from one node in
the tree to its successor. Other factors, once computed for one node, can be
saved in a hash table and retrieved for use at other nodes. This point is
discussed later in Section 2.6.

UPDATE has for its input the current position and the current move under
consideration. It updates the board based on the move and saves the changes
on the CLIST.

RESTORE has for input the current board and the changes on CLIST that
were made to its predecessor to yield the current board. It restores the board to
its predecessor.

UPDATEPRINC updates the principal continuation array, PC, when a
good move is found. The best move found at level PLY along with the
sequence of moves that the minimax algorithm calculates the game will follow
upon making that move are stored in the PC array in row PLY beginning in
location PC(PL Y, PL Y) as describe in the flow chart in Fig. 4. Essentially, in
order to obtain the principal continuation, it is necessary to save the best
continuation found thus far in the search at every node on the current

UPD ATEPRINC
1 I PC(PLY ,PLY) + MOVE(PM(PLY),PLY)] Pice move being backed up

1

1

on main diagonal.

j is a column pointer. Set it to
next element after element

J + PLY + 1

I on diaaonal.

Is PC(PLY,j) = O ? Stop once a zero has been
mwed up.

Return Return to main program.

FIG. 4. Algorithm for updating the principal continuation.

I s”h” I+- +

FIG. 5. Minimax algorithm showing where GENERATE, UPDATE, RESTORE, and EVAL
take place. Search carried out by computer follows path around tree. GENERATE = G,
EVAL = E, UPDATE = U, and RESTORE = R . Bold moves correspond to moves which are
the best yet found at a node as the search progresses.

205

206 MONROE NEWBORN

continuation under search. This implies that for a depth D search, D
continuations must be kept of lengths D, D-1, 0-2,. . . ,1, and this is done in
rows 1,2,3,. . . , D respectively of the PC array.

In a depth-first minimax search of the tree shown in Fig. 1 and reproduced
in Fig. 5, terminal nodes are scored from top (of the page) to bottom, or as is
said, top-down. The figure shows the search path around the tree, beginning
and ending at the root. Calls to subroutines are denoted in the figure by the
letters G, U, R, and E. Scores are initially assigned to the terminal nodes and
backed up to the non-terminal nodes as shown. The search path shows when
these events take place. For example, by following the path to the first terminal
node which has a score of 7, it can be seen that subroutines G, U, G, U, G, U,
G, U, G, U, E were executed. Moves placed in the PC array are indicated by
bold lines. The flowchart in Fig. 2 shows that a move is placed in the principal
continuation array(UPDATEPR1NC is called) whenever a score is backed up
from one node to its parent. Note that GENERATE was called 21 times,
EVAL was called 20 times, and UPDATE and RESTORE were each called
40 times.

2.3 The Alpha-beta Algorithm

A careful study of the minimax algorithm leads quickly to the realization
that there are many paths within the search tree that need not be examined
because they have no effect on the outcome of the search. This observation is
formalized in the alpha-beta algorithm. Specifically, the alpha-beta algorithm
says that once one move at a node refutes its predecessor, there is no need to
investigate other moves at that node. In the following two paragraphs, a
refutation is defined.

Consider the search tree shown in Fig. 6a. Moves are denoted by letters near
the end of the alphabet, nodes by letters near the beginning of the alphabet,
and scores of nodes by integers. The top-down, depth-first search examines
terminal nodes d, then e, and then f. After finding scores for d and e of 4 and 7
respectively, the minimax algorithm assigns a score of 4 to b. The root score
can now be bounded from below by 4. Next, node f is scored. Its score of 2
essentially says that no matter what the score of g is, the score of c is at most 2,
and given this knowledge, it would be an error to make move u when move u
has already been found to lead to a score of 4. And since the score of g is
irrelevant, there is no reason to search it. We say that move y is a refutation of
move u.

In the general case shown in Fig. 6b, a move x is a refutation of its
predecessor move y if the score of node A at even (odd) ply is greater (less) than
the score of node C also at any even (odd) ply higher in the tree. A cutoff of
search can take place at node B once move x has been searched. The

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 207

Note:

Move v is rehted by move y
and thus there is no reason to - search move z.

6

M w e f refutes move e because the score of node w (6) is less
than the beckedup score of node z (8).

(b)

FIG. 6. (a) Example of alpha-beta search, and (b) an example of how deep cutoffs occur in
alpha-beta search. In (a), move u is refuted by move y and thus there is no reason to search move 2.

In (b), move f refutes move e because the score of node w (6) is less than the backed-up score of
node z (8).

programming modifications that must be made to the minimax algorithm
shown in Fig. 2 to incorporate the alpha-beta algorithm are very minor. For a
few lines of code, very large time savings can be achieved. The flowchart of the
alpha-beta algorithm presented in Fig. 7 shows that code is added to the
flowchart of the minimax algorithm of Fig. 2 in three places. First, two
additional elements are necessary for the array SCORE, SCORE(-2), and
SCORE(- l) , which are initially set to -a and +a, respectively. Second,
before generating moves at each node, the score of that node’s grandparent is
assigned to the node itself. This has the effect of assigning to each nonterminal
node at even (odd) ply an initial score equal to the maximum score backed up

208 MONROE NEWBORN

FIG. 7. Flowchart of alpha-beta algorithm. Shaded code has been added to the flowchart of
the minimax algorithm in Fig. 2.

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 209

FIG. 8. Alpha-beta search of five-ply game tree showing cutoffs and moves placed in the
principal continuation array. GENERATE = G, EVAL = E, UPDATE = U, RESTORE = R,
and 8 = cutoff. Scores start at -co and + co. Moves in bold are placed in the PC array.

210 MONROE NEWBORN

to any node at even (odd) ply higher in the tree. Third, an ALPHA-BETA
block is added in which the test for a refutation takes place.

The reader might consider the larger tree shown in Fig. 8. Here an alpha-
beta search is carried out on the same tree searched in Fig. 5 by the minimax
search. Cutoffs of search are denoted by little circled crosses. Note that there
are six cutoffs, although only the first, third, and fourth actually result in
reducing the size of the tree searched. Note that EVAL was called 16 times,
GENERATE was called 20 times, and UPDATE and RESTORE were each
called 35 times.

Slagle and Dixon (1969) showed that for a uniform tree of fanout F and
depth D, the number of nodes scored by the alpha-beta algorithm must be at
least

2F”” - 1
F(”+’)12 + F‘D-1)/2 - 1

(for D even),
(for D odd).

Several studies have been carried out on the behavior of the alpha-beta
algorithm on models of search trees in which the terminal nodes are assigned
random scores. Knuth and Moore (1975) showed that if terminal nodes are
assigned random numbers for scores, on average O(F2/log, F) of the F2
terminal nodes in a uniform tree of depth 2 are scored. Newborn (1977b) later
showed that for games in which terminal node scores were related to the scores
of the branches, far fewer terminal node are scored on average. This seemed to
better model chess trees where terminal node scores are dominated by material
and the material at terminal nodes is dependent on the captures that take place
in the search tree. It was shown that in a uniform tree of depth 2, on average
O(F log, F) nodes must be scored. For deeper trees the question is still
somewhat open for the branch-dependent case, but it could quite well be
O(F@12) log, F) for trees of arbitrary depth D and fanout F.

In real games, however, terminal nodes are not assigned random scores.
Further, a certain amount of information can be gathered during the search
that can be used to help order moves at each node from best to worse. The
efficiency of the alpha-beta algorithm improves as this ordering improves. In
the limit, if moves are ordered from best to worst at each node, the alpha-beta
search examines the minimum number of nodes. Several techniques are thus
used to locally order moves. They are discussed in the following section.

2.4 Move Generation, the Principal Continuation,
and the Killer Heuristic

GENERATE is a sophisticated algorithm in most chess programs. Pro-
grams spend more time in this routine than in any other. It is primarily the
generation of moves that special-purpose chess hardware is designed to

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 21 1

perform at high speeds. The exact order in which moves are generated and
listed is crucial to the speed of the alpha-beta algorithm. It is very important
that good moves are listed at the top of the list. With good move ordering, the
number of refutations is maximized, and correspondingly the number of
cutoffs.

Move generation can be viewed as a two-step process: (1) generate a list of
moves, and (2) order the list so that good moves are placed at the top.
Programs integrate these two steps to some degree. For example, a move-
generation algorithm can generate King moves last in the opening and
middlegame, while generating them first in the endgame. What is needed are
simple, quick, and reliable algorithms for identifying good moves.

The simplest statistically good moves are captures, and most programs can
determine very quickly whether moves are captures and place them at the top
of the move list. Bettadapur (1986) showed that captures should be ordered
from the capture of the biggest piece to the capture of the smallest piece for
best results. Further, the capture of the last-moved piece of the opponent is
often a particularly good capture and deserves special placement. Other good
moves can be found in the principal continuation array (Akl and Newborn,
1977) and in the killer array.

The killer heuristic (Gillogly, 1972) is used by most chess programs to
increase the efficiency of the alpha-beta algorithm. Essentially, moves found to
be refutations are kept on a special list called the killer list. Each side has a list
of its own. At each node in the search tree when moves are generated, this list is
scanned and if one of these moves can be made, it is ordered to the top or near
the top of the list of legal moves. Various strategies exist for saving killer moves
and using them. By using killer moves, the number of cutoffs is higher than
otherwise, and the overall efficiency of the alpha-beta algorithm improves.

Schaeffer (1983) uses the history heuristic to help improve move ordering in
his program SUN PHOENIX. This heuristic is a generalization of the killer
heuristic. An array of 64 by 64 keeps track of all moves and their effectiveness.
This array is used to provide information on the quality of moves as they are
generated, using the same philosophy as the killer heuristic. That is, if a move
is good in one position, there is a good chance that it is good in another.

2.5 Pruning Techniques and Variable Depth
Quiescence Search

When chess programs were first developed they used forward pruning to
reduce the effective branching factor at each node (Newell, Shaw, and Simon,
1958). Programs used heuristics to eliminate a high percentage of the moves
at each node, hoping that this would allow deeper search along more crucial

21 2 MONROE NEWBORN

and relevant lines. However, forward pruning heuristics were not sufficiently
dependable and the programs made horrible blunders. Gradually throughout
the 1970s, forward pruning was eliminated from the most successful chess
programs.

While forward pruning has been unsuccessful, all the best programs carry
out variable depth quiescence searches beyond the arbitrary value D M A X set
at the beginning of the search. In particular, moves that put the king in check
usually require deeper search as do certain capturing moves. Slate and Atkin
(1977) report that CHESS 4.9’s search tree contains about 50% of its nodes at
search depths greater than D M A X , and they contend that this is a healthy
balance.

For the last year or so, DEEP THOUGHT 0.02 has been using the singular
extension heuristic. This heuristic re-searches a move at a node after all other
moves at that node are searched if every other move is found to lead to a
loss of material. The re-search is done to a greater depth. Singular extensions
cause highly forced lines to be searched more deeply than others, and ac-
cording to Anantharaman et al. (1988), this accounts for a significant part of
DEEP THOUGHT 0.02’s success.

2.6 Transposition Tables

When searching a chess tree containing millions of nodes, many positions
are arrived at more than once as a result of a transposition of moves. For
example, Fig. 9 depicts a partially-drawn tree rooted at the initial game
position. Note that the sequence of moves E2E4, C7C5, D2D4 leads to the
same position, say Q, as does the sequence of moves D2D4, C7C5, E2E4. In
this case, identical positions result when the moves at the first and third levels
of the tree are transposed. The five-move sequence E2E3, C7C6, E3E4, C6C5,
D2D4 also leads to Q. Of course, so does the four-move sequence E2E4, C7C6,
D2D4, C6C5, but in this latter case it is White’s turn to move and thus the
positions cannot be considered the same. Positions can be considered identical
only when, in addition to having pieces on identical squares, castling possi-
bilities, en passant possibilities, and whose turn it is are identical.

As the game progresses, a higher and higher percentage of moves transpose,
especially King moves. In deep endgames, programs with transposition tables
can often find principal continuations 20 plies long and sometimes longer. In
Fig. 10, a very deep search is necessary to determine that White should play
Kbl. Programs without transposition tables are unable to see how to proceed,
while programs with transposition tables are able to do so in less than a
minute.

Suppose now that position Q in Fig. 9 had been reached via the first
sequence E2E4, C7C5, D2D4 and had been assigned a score as a result of

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 213

FIG. 9. Partially drawn tree starting at initial position of the game.

FIG. 10. te to move.

214 MONROE NEWBORN

either scoring it (it would have been scored if the iteratively deepening search
was on the third iteration) or searching beyond it and backing up a score to it.
Then, when the second sequence D2D4, C7C5, E2E4 arrives at position Q, it is
not necessary to search beyond Q or even score Q if the results of the first
examination of Q were saved and provided sufficient information. This is what
most of the leading chess programs do. Large transposition tables are used to
save positions and information about them. When search arrives at each
position, the transposition table is examined to see whether that position has
been reached previously. If it has, and if the information saved about the
position is sufficient (what constitutes sufficient information will be discussed
shortly), then that position is considered to be a terminal position and assigned
a score from the transposition table. Whenever search backs up to a position,
the transposition table is search for a match and then the stored information is
updated appropriately.

More precisely, when search backs up from some position P, the alpha-beta
algorithm has available

1. The score of P which may be an exact value or which may be only an

2. The length of the principal continuation rooted at P, denoted by LPC(P).
3. The best move to make in P, denoted BM(P).
4. P, itself, whose turn it is to move, whether en passant is possible, and

upper or lower bound.

castling possibilities.

The transposition table is searched for a match with P. When found, if the
new information gathered about P is better than that currently stored, the
entry in the transposition table is updated appropriately. The improved in-
formation may be a more precise score or a larger value for LPC(P).

When search arrives at a position, say Y, the transposition table is searched
for a match. If there is a match, then Y can be considered a terminal position
and assigned the score which was saved in the table if

1. The value of LPC(Y) saved in the table is greater than or equal to

2. The score saved in the table entry is exact, or if not exact, the bound on
the score is sufficient to cause the move leading to Y to refute its
predecessor.

DMAX - ply.

If Y cannot be consided terminal, the move found best the last time Y was
searched is available and can be searched first on this try, thus increasing the
efficiency of the alpha-beta algorithm.

Figure 11 illustrates how transposition tables can be used to reduce the size
of an alpha-beta search. Assume a four-ply search is being carried out.

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 21 5

(3) When posiaon A u reached the second
pmc, the upper bound of 35 u enounh (D the search of move k

the mot u assxned a

is mnchcd, itu at alower
Lvelm b me thanit m a
prevlour1y I 0 SCOR cannot
be wed, but move n, found
best the k t pmc the posimn

setm 1

FIG. 11. A tree searched using a transposition table.

Position A arises four times. When search of the first occurence of A has been
completed, an upper bound of 35 is assigned to the score of A. When A is
reached for the second time, this upper bound of 35 is enough to terminate
search. The third time A is reached, the bound of 35 is insufficient to allow A to
be considered a terminal position. Its successors must be searched. When they
have been searched, a backed-up value of 32 is assigned to A, and move n is
remembered as the best move to make. The fourth time A is reached, it is only
at the first ply, in contrast with the third ply for each of the other three times.
The value of LPC saved with A is too small to permit the score obtained
previously for A at the third ply to be used to terminate search this time. If it
were used to terminate search, that would mean that not all positions in the

216

:NITIUI ZH
Decide DMAX: PLY+ 0

SCORE(-l) + w
SCORE(-2) + - 0 0

MONROE NEWBORN

NO

UPDATE 0

PLY + PLY * 1
Successor of C w n t Position
ia w e

SCORE(PLY) + SCORE(PLY - 2
MP PLY) + O

Posirion + when MOVE(MP(PLY),PLY) GENERA& 1
Generate moves, Ust in column PLY of MOVE
beg- inMOVE(0,PLY). Put 0 at end of list.

I

+ Pmdecessor of c w n i posirion when
MOVE(MP(PLY),PLY) Is undonc

ALPHA-BETA I
Even

1 I IS SCOR(PLY)< SCOR(PLY-l)? 1 I IS SCOR(PLY)< SCOR(PLY-I)?]

I Nol
I Predecessor of current osirion when I PosiUOn+ MOVE(MP(PLY),PLY! iC dOM I

I I ' I

FIG. 12. Flowchart of alpha-beta algorithm using transposition table. Shaded code has been
added to the flowchart of Fig. 7.

tree would have been searched to a depth of four plies, contrary to the original
objective. Move n, however, is stored in the table entry as the best reply in
position A, and as the search tree shows, this move is searched first this time.
After the tree rooted at the fourth occurence of A has been searched, an exact
value of 33 is determined for A.

The flowchart of the alpha-beta algorithm shown in Fig. 7, modified to

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 21 7

handle a transposition table, is shown in Fig. 12. Additional code over and
beyond that of Fig. 7 appears in four places. First, when each node is entered, it
is checked to see whether it is in the transposition table and, if so, whether it
can be considered a terminal node. Second, if this check gives an affirmative
answer, then the node is assigned the terminal score found in the table. Third,
when search backs up from a node, that node and the relevant information
about that node is placed in the transposition table. This happens in two places
in the flow table.

In Fig. 13, the effects of using a transposition table on our ongoing five-ply
tree are illustrated. Moves are assigned labels and it is arbitrarily assumed that
moves that transpose lead to the same positions. That is, move sequence a-b-c
leads to the same position as does the sequence c-b-a. In Fig. 13, three position
were found in the transposition table with useful scores. In the case of the
position resulting from move sequence w-c-a, the transposition table provided
a score which permitted search to be terminated without searching the subtree
rooted there as was necessary in Fig. 8. This also happened at the node at the
end of the move sequence a-l-.f-c. Note that EVAL was called 10 times,
GENERATE was called 16 times, UPDATE and RESTORE were each called
28 times, and the transposition table gave usable scores for three nodes in
the tree.

Transposition tables were used in an experiment in machine learning by
Slate (1987), perhaps the most significant work done in this interesting area.
Only one year earlier, Skienna (1986) reviewed machine learning in computer
chess, concluding that “with the exception of rote learning in the opening
book, few results have trickled into competitive programs.” Slate used a trans-
position table to store special positions found during the course of a game
and to retrieve these positions, when appropriate, in future games. More
specifically, positions for which the score changed on the deeper iterations
were saved. These positions were considered troublesome for the program.
Relative to the total number of positions, these troublesome positions repre-
sented a very small percentage. The program might, for example, save in the
transposition table a troublesome position which was searched eight plies
deep on the twelfth move of the game. Later, in another game on, say, the
eighth move, this position might be found at the fourth level in the search
tree, and the information learned in previous games and saved in the trans-
position table would effectively give that move a 12-ply continuation.

Transposition tables usually have 2k entries, where k ranges from 12 to 24.
Each entry can be several words, depending on the word size of the computer
and the information that the programmer wishes to save with each position.
The number of entries in a transposition table is far less than the number of
chess positions. Positions are assigned locations in the transposition table
by a hash function. A hash function should have two properties: (1) it should
randomly spread positions throughout the transposition table, and (2) it
should be easy to compute.

218 MONROE NEWBORN

FIG. 13. Ongoing example: five-ply search showing alpha-beta and use of the transposition
table. EVAL = E, GENERATE = G , UPDATE = U, RESTORE = R, and TRANS. TABLE
HIT = T.

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 219

Each position P is assigned a b-bit hash code H(P) by a hash function, and
then the information about P is stored in or retrieved from the transposition
table in the location given by the least significant k bits of H(P). The number of
bits b in H(P), of course, must be at least equal to k. During the course of
searching a tree, two different positions may have identical values for these k
bits assigned by the hash function, a situation that results in a clash, whereby
two different positions are assigned to the same memory location. To minimize
the effect of this type of error, extra information describing a position can
be kept with each table entry. If this extra information were a complete
description of the position, a clash could always be resolved correctly.
However, this is a lot of information. More often, additional bits from the hash
code are stored with the table entry as a key. A hashing error can still occur: two
different positions can be assigned the same table entry and the same key. Let m
denote the number of bits in the key in the following discussion. It should
be obvious that the greater the number of bits in the key, the smaller the
probability of a hashing error.

Programs have various strategies for resolving what to do when an attempt
is made to store a position at a location already occupied by another position
with a different key. The program can attempt to store the position at the next
location. If that location is found to be occupied also, the program can give up
or it can eliminate the older entry of the two that it just examined. Most
programs try more than once to find an unoccupied location; CRAY BLITZ
tries eight times. Some programs have frequency-of-hits counts saved with
each table entry, and entries with low frequency counts are thrown out of the
table first when a choice must be made.

Let us assume that a computer with a 32-bit word size is being used by a
chess program, that there are 2’’ words of memory (4 megawords) available
for a transposition table, and that each table entry requires two 32-bit words.
The table can thus hold information about 22’ positions. In the first word of
each table entry, 12 bits are used to denote the best move to make in the
position, 12 bits to denote the score assigned to the position, two bits to denote
whether the score is an upper bound, a lower bound or an exact value, and six
bits to denote the level of the position. The 32 bits of the second word are used
to store the hash key assigned to the position. This is shown in Fig. 14.

CRAY BLITZ, the current World Champion among computer programs, is
described in Nelson (1985), Hyatt et al. (1985), and Hyatt (1985). The program
uses a six million word transposition table with 64 bits per word. Each table
entry requires two words of memory, with the key consuming 40 bits. BEBE
uses a home-brewed transposition table with 96-bit words. It can hash up to
256K positions with each position requiring one word: 32 bits for a key, 16 bits
for the LPC, 16 bits for the move, 16 bits for a lower bound on the score, and 16
bits for an upper bound.

220

B cst move Scoxt

MONROE NEWBORN

LPC

WKIA2
0

0

0

WKlC3

WKlD3
0

0

0

WKIHB
0

0

0

wB183
0

0 .

I I

FIG. 14. Data structure for entry in the transposition table.

01 10 10 10 11 101 001
0

0

0

1101000101010001

01 1 1 1 10 101 10101 1
0

0

0

10000 10 10 100 100 1
0

0

0

00100011 11010101
0

0

0

WKlAl I 0110101011101001 I

I

wPIA2 1101011100010101

wPm2 1000101001001011 *I
BIC; 1 0100101~100111 1
BWGS 110010010101OOO1

BNIC7 I 0010010111100110
0 0

BPIH6 I 1110100101000010 I
I

Huh code for this position =

1101000101010001

Q 0010001111010101

Q 1101011100010101

Q 1000101001001011

@ 0100101000100111

e 11101001010o0O10
= 0000110010111111

@) Encoded chus position

(a) PWSqnars Tabb

FIG. 15. The assignment of a hash code to a chess position.

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 22 1

Most programs use a hash function similar to the one described by Zobrist
(1970). The hash function makes use of a piece-square table of 12 (pieces) by 64
(squares) random numbers each of k + rn bits. A position is then assigned a
hash code by exclusive-or’ing the random numbers assigned to appropriate
piece/squares. For example, suppose random numbers are assigned to the
piece/squares as shown in Fig. 15a. Then the position shown in Fig. 15b is
assigned a hash code as shown. To take into account that positions are
different if castling opportunities are different, if en passant opportunities are
different, or even if whose turn it is is different, extra entries can be included in
the piece-square table.

The beauty of this hash function is the ease in computing the hash code of
a position that results by making a move in a given position. One removes
a piece from one square by exclusive-or’ing the random number of the
corresponding piece-square with the hash code for the original position. The
piece is then placed on its destination square by exclusive-or’ing the modified
hash code with the new piece-square. Small variations on this idea are
necessary for capturing moves, queening moves, en passant capturing moves,
and castling moves. Figure 16 shows how to obtain the new hash code for
position that results when C3D3 is played in the position in Fig. 15b.

Hash code for successor position
= 0000110010111111

Hash code for new position when
move C3D3 is made

=0000110010111111

Q 1101000101010001

e 0111110101101011
= 1010000010000111

FIG. 16. Illustration of how to obtain a hash code for successor position of Q for the move
C3D3.

222 MONROE NEWBORN

Hash tables are also used in chess programs for hashing scores for pawn
structure and King safety. These hash tables can be much smaller than those
for transposition tables. Hit rates observed by Nelson (1985) were quite high
resulting in significant savings in time when compared with the alternative of
recalculating the value of these factors at each position.

2.7 Iterative Deepening

One of the problems with the early chess programs was deciding exactly
how deep to search on each move. It turned out to be a very difficult problem.
If the search depth was too shallow, the program made moves too quickly,
wasting valuable time. If the search depth was too great, the program might
take far more time than reasonable. In the early programs, if the depth setting
was too great, some moves at the root of the tree might not get searched at all;
the program would stop after some arbitrary time even if it had not searched
all first-level moves.

To get around this problem, iteratively deepening searches became popular
in the middle 1970s (see Slate and Atkin, 1977). It might be noted that more
recently the technique is finding applicability in other problems in artificial
intelligence, as discussed by Korf (1985) and Stickel and Tyson (1985).
Essentially, rather than carry out one depth-first search to some arbitrarily
predetermined depth, a sequence of deeper and deeper depth-first searches are
carried out, beginning with a depth of one, then two, and continuing until
times runs out. Each iteration finds a principal continuation which is searched
first on the next iteration. Each iteration also enters many positions in the
transposition table which are used on subsequent iterations. The net result is
an improvement in the efficiency of the alpha-beta algorithm, more than com-
pensating for the time required to carry out the extra shallower searches. More
importantly, iterative deepening allows search to stop at any time with no
serious negative consequences. At worst, when stopping in the middle of the
nth iteration, the computer has available the best continuation from the (n-1)th
iteration. When using iterative deepening, the search is balanced, i.e., every
move receives almost equal treatment. Stopping in the middle of an iteration
will miss the best move on that iteration only if the best move is ordered below
the stopping move on that final iteration. This happens when this best move
was also not found best or good enough on the penultimate iteration to
warrant being ordered above the stopping move on the final iteration.

2.8 Windows

In the late 1970s, windows began to be used in chess programs in conjunction
with iterative deepening. Pearl (1980) describes one windowing scheme used
by his Scout search algorithm. Programs use windows in different ways, but

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 223

what follows is typical. At the beginning of each iteration, an expected root
score (R S) is guessed, usually the root score found by the previous iteration.
Then on the current iteration, a narrow search window is placed about RS and
during the course of the search, continuations that return scores not inside the
window are cut off. The width of the window is typically two pawns, although
some programs use narrower windows. In practice, variables SCORE(- 2)
and SCORE(- 1) are used to keep track of these limits. At the beginning of
each iteration, SCORE(-2) and SCORE(- 1) are initialized to RS - P and
RS + P, respectively, where P is the value assigned to a pawn. The window is
said to be initialized to (R S - P, RS + P). If the guess turns out to be
correct, that is, if a move is found with a score within the window when the
iteration terminates, search goes on to the next iteration with a revised window
again one pawn wide centered about the most recently obtained root score. If
no move is found with a score within the window, search is said to fail. Search
fails high if the score returned is above the window, or low if the score returned
is below the window. If search fails, the iteration must be repeated to find the
true root score and principal continuation. On this second pass, the window is
determined as follows: If search failed high, the window is set to (RS + P,
+ 0 0) to ensure that no second failure will occur. If it failed low, the window
is set to (- 00, RS - P) . In general, the narrower the window, the faster the
search progresses, but the greater the chance of failure. When windows are
used, each iteration should be viewed as consisting of two passes, the second
pass being unnecessary if the first is successful. The flowchart for this process is
shown in Fig. 17.

When using a window of (0,8) to search our ongoing example, one
additional node is cut off as shown in Fig. 18. The search terminates with
success, finding a score of 4 for the root, within the limits of the window. Note
that EVAL is called 10 times, GENERATE is called 16 times, and UPDATE
and RESTORE are each called 27 times.

There are some improvements that can be made to the windowing strategy
described above. First, if some move at the root causes search to fail high on
the first pass, search can be stopped immediately and a second pass started
with a window (R S + P, +a). More effectively, the window can be reset to
(R S + P,RS + P + 1) and the first pass allowed to continue. If a second
move at the root causes search to fail high again, a second pass becomes
necessary to determine which move is best. If another high failure does not
occur, the best move is known at the end of the first pass although only a lower
bound on its score is available. When a second pass is necessary due to two
high failures, a re-search is required only of those two moves that caused
search to fail high and of those moves ordered lower than the second of these
two moves. Generally, it is not necessary to determine the precise score, and
thus gambling that the search will not fail high twice is more effective than

224 MONROE NEWBORN

FIG. 17. Flowchart of iteratively deepening search which uses a one-pawn window.

initiating a second pass after one failure. Thompson has used this idea in
BELLE for a number of years and is given credit for it by Marsland and
Popowich (1985). The process is illustrated in Fig. 19. Suppose moves M1,
M2,. . ., M6 have minimax scores of +3, + 18, + 15, +29, - 14, and -2,
respectively. The first pass arbitrarily uses a window of (- 1, + 16). Shaded
regions denote subtrees searched. On the first pass, search fails high for the first
time when searching M2. The window is raised to (16, 17) for the remaining
moves. M3’s subtree, with a score below + 16, fails low. When searching M4,
search fails high for the second time, causing the first pass to terminate. On the
second pass, it is not necessary to re-search moves M1 and M3. Futhermore,
M4 is searched first and then M2, since M4 failed with a higher score and,
knowing only this, is more likely to be the better move. Lastly, M5 and M6
must be searched.

The windowing schemes described above carry out researches only at the
root of the tree. More sophisticated windowing strategies that allow setting
narrow windows and carrying out re-searches of subtrees at all nodes in the
tree are used by a number of programs. These recursive procedures are
described in papers by Fish burn (198 11, Pearl (1980), and Reinfeld et al. (1 985).

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 225

CUTOFF CAUSED

FIG. 18. Five-ply search tree showing alpha-beta cutoffs, effect of transposition table, and
window cutoffs. Search window of (0.8) was used.

226 MONROE NEWBORN

I FIRST P b rSS: Window from - 1 t o +16j

1. First Mlure of window causes
window to be changed to <16,17>
for subsequent moves. True
score of mom not h n d .

I

Root Node

I score is not calculated 1
13. The second hlure above the1 c

Root node
h

1 M6

12. M 3 is refbted and its exact I

revised window, and thus a
second pess is necessary
These subtrees are not searched

.,
SECOND PASS: Window from +17 t o +INF

These moves are refuted
and an exact score for
them is not calculated

FIG. 19. Two-pass alpha-beta search using windows.

2.9 Parallel Search Techniques

A number of chess programs currently run on multiprocessors. Their
objective is to gain an N-fold speedup using N processors. While at first glance
this may seem easy to accomplish, in fact, it has been impossible thus far.
Nevertheless, impressive results have been recently obtained by WAYCOOL
when running on a large NCUBE multiprocessing machine. Felton and Otto
(1988) report that they have attained a speedup of 101 on a 256-processor
NCUBE and a speedup of 170 on a 5 12-processor NCUBE.

In 1981, OSTRICH (Newborn, 1982) became the first chess program to
compete in a major tournament using a multiprocessing system-five Data
General 16-bit computers connected together by a DG communications

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 227

package. The system used to principal variation splitting algorithm which is
described shortly. In subsequent years, eight DG computers were used.

In 1985, CRAY BLITZ (Hyatt, 1985) was moved onto the four-processor
Cray XMP computer, and its programmers also implemented the principal
variation splitting algorithm. Later SUN PHOENIX (Schaeffer, 1986) was
programmed to run on a network of SUN 3 computers. Again the PVSA was
implemented with some variations. Ron Nelson of Fidelity International
participated with CHESS CHALLENGER X in the ACM’s 17th NACCC in
1986 using 30 microcomputers. WAYCOOL, however, has the distinction of
using the most processors to play a game of chess in a major tournament,
using 256 processors when participating in the ACM’s 19th North American
Computer Chess Championship.

The principal variation splitting algorithm is a recursive procedure which
is based on iterative deepening (Marsland and Campbell, 1982; Newborn,
1985; Marsland and Popowich, 1985; Marsland et al., 1985). It is illustrated
in Fig. 20. On the nth iteration, all processors follow the principal variation
found on the (n - 1)th iteration to the (n - 1)th level. The tree is dynamically
divided up there among all processors. The processors independently search
all the moves at that node, and when they finish a final score is determined
for the node. Search then backs up one level, where again moves are dynam-
ically divided up and this time two-level subtrees are searched. Eventually,
moves at the root are dynamically divided up and the subtrees rooted
there are searched. Although interprocessor communication is not particu-
larly a problem, there is considerable waiting time by processors that have
no work to do. The scheduling of moves is not sufficiently fine-grained,
especially at the root. The granularity problem becomes more pronounced
as the ratio of the number of processors to the number of root moves in-
creases. Attempts by Schaeffer (1986) and Felton and Otto (1988) to remedy
the inefficiency of the PVSA involve modifying the algorithm to allow more
flexible decomposition rules.

Newborn (1988) recently proposed an alternative to the PVSA. The PVSA
works well when moves are well-ordered, but in complicated positions where
several moves look equally good, the PVSA performs its poorest. A simple
alternative called unsynchronized iteratively deepening parallel alpha-beta
search was used by OSTRICH beginning in 1985. While on average it does not
provide the speedup of the PVSA, it performs quite well in complicated
positions. The algorithm works as follows. Carry out two iterations to develop
an ordering of root moves, a root score, and a search window for subsequent
iterations. Next, distribute the root moves to the processors so that they all get
an equal number (maybe differing by one). Then, beginning on the third
iteration, have each processor set the narrow window about the expected root
score (based on information from the first two iterations) and have them

228 MONROE NEWBORN

2. Moves are dynamically divided up and searched at node p

3. A score is backed up to pn-1 when search of all moves is done.

1. All processors first search the principal continuation
determined by the lest iteration to node pn-l ~

dynamically distributed
among the processors end I searched. j>pa

5 . A score is backed up to

all moves is complete I .’ :’A

Pa

Eventually a score is backed up to the root of the tree
h r move m 1. The remaining moves at the root are
then dvnamicallv divided UD and searched.

FIG. 20. Partially drawn tree showing how the PVSA divides up search of the tree on the nth
iteration.

proceed to carry out a sequence of unsynchronized iteratively deepening
searches. The use of narrow windows partially compensates for the major
relative shortcoming of the algorithm, i.e., not having a provisional root score
available as quickly as does the PVSA.

2.10 Special-purpose Hardware

Created in the late 1970s, BELLE (Condon and Thompson, 1982, 1983)
serves as the pioneering effort in chess hardware. Three prototypes were built.
The first participated in the 1977 World Championship in Toronto. The third
won the 1980 World Championship in Linz, Austria. It used several hundred
integrated circuits allowing BELLE to search trees at rates in excess of 100,OOO

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 229

nodes per second. BEBE also used special-purpose hardware when participat-
ing in the 1980 World Championship. BEBE uses a pipeline approach to
generating moves and is able to search about 20,000 nodes/second.

More recently, a group of graduate students at Carnegie-Mellon University
under the supervision of Hans Berliner has developed a hardware move
generator and special-purpose circuitry to score positions quickly (Berliner
and Ebeling, 1986). Carl Ebeling and Andy Palay (1984) did most of the circuit
design. Their program, HITECH, searches approximately 200,000 nodes/
second. It won the 1987 and 1988 Pennsylvania State Championships, playing
against a strong group of human opponents and earning a performance rating
of approximately 2400.

A second group at Carnegie-Mellon, incorporating the ideas in BELLE and
to a lesser extent in HITECH, has developed the strongest program to date.
Initially named CHIPTEST-M, and then renamed DEEP THOUGHT 0.02 in
1988, it runs on a SUN 3 workstation that has a VLSI move generator
attached, the first move generator using VLSI technology. The system,
developed by Feng-hsiung Hsu (see Hsu, 1986) along with fellow graduate
students Thomas Anantharaman, Murray Campbell, Mike Browne, and
Andreas Nowatzyk won the ACM’s 18th and 19th North American Computer
Chess Championships.

FIG. 21. DEEP THOUGHT 0.02’s programmer Feng-hsiung Hsu watches Fidelity
International’s experimental Chess Challenger during their recent game at the ACM’s 19th North
American Computer Chess Championship.

230 MONROE NEWBORN

2.11 Time Control and Thinking on the Opponent’s Time

Time-control algorithms are crucial to the success of chess programs. The
approach of CRAY BLITZ is described in Hyatt (1984). In tournament play,
programs are usually allotted two hours to make the first 40 moves and then
an additional hour for the each 20 moves thereafter. This averages three
minutes per move. Computers are programmed to take all of this allotted time.
For the first few moves, when moves are found in their opening books, moves
are made in several seconds. This saved time gets stored up and used later in
the game. Most programs have algorithms that force them to take extra time
on the first move out of book. They also take extra time when they find their
scoring function begins to go negative, or returns a score below expectations.
Some are programmed to take less time on certain obvious moves, such as
Queen recaptures. Most programs rarely calculate for more than five or six
minutes on a move and rarely for less than one minute (unless they guessed
their opponent’s last move).

Chess programs think about their next move while their opponents are
working on their current move. Essentially, they use the principal contin-
uation found on their previous move, assume the opponent will make the sec-
ond move on that continuation, and then proceed to calculate a reply to

FIG. 22. Robert Hyatt, author of CRAY BLITZ, the current world champion.

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 231

the opponent’s anticipated move. If they guess incorrectly, they forget what
they have done so far and start over. If they guess correctly, they are then
in a position to respond immediately to the opponent’s move or to continue
calculating a while longer. The good programs guess their opponent’s move
correctly approximately 50% of the time, giving the program the same
advantageas running on a.computer 50% faster than the one they are run-
ning on.

3. Opening Books

Opening books in the better programs contain as many as several hundred
thousand positions. BELLE has the largest book, including most of Modern
Chess Openings along with countless other lines as well. Most programs that
compete in the major tournaments have at least several thousand positions.
Opening books help prevent programs from playing openings poorly.
Opening theory is very complex, and the scoring functions of most chess
programs are not sophisticated enough to avoid greedy play, which can often
lead to trouble in the opening. When leaving their opening books, programs
often play awkwardly because the book lines leave the programs in positions
for which the scoring function is not suited. Great care must be taken to avoid
this effect. In particular, many lines used by humans involve a sacrifice of a
pawn to gain faster piece development. Programs often are not able to take
advantage of the faster development and fail ever to recover from the sacrifice.
This may be seen in the game in Section 12.

4. Endgame Play and Endgame Databases

There have been a number of studies specifically on endgame play. There
are two general approaches. One is to study endgames in an attempt to
understand how expert knowledge can be synthesized and then used. The
second approach is at the other extreme: the development of large databases
on endgame positions. These databases permit perfect play, although there is
no understanding of the principles required to force the win (or draw).

Michie has led much of the effort to study endgame play in the context of
expert systems. He is interested in the process of developing rules that allow
perfect play if possible, although he settles for strong play if perfect play can-
not be achieved. Michie and Bratko (1987) describe rules that can be used to
guide play in a KBBKN endgame.

Newborn (1977a) developed a King and pawn endgame program called
PEASANT, and studied its effectiveness 0; a set of positions found in Fine
(1941). PEASANT showed that a brute-force search using a simple scoring
function could solve a good percentage of the test problems. The effectiveness

232 MONROE NEWBORN

of the program would have been much greater if it had had transposition
tables.

Thompson (1986) has been the leader in developing databases that allow
perfect play in certain endgames. His foremost work has been on the “five-
piece endgames,” the KBBKN, the KQPKQ, and the KRPKR endgames. In
1977, Thompson came to the world championship in Toronto with a program
that played perfect KQKR endgames and took on some of the best players in
North America. The players were surprised at how badly they played, being
unable to win when they were sure they could. Others have worked on
developing endgame databases, most notably KRPKR by Arlazarov and
Futer (1978), and KQPKQ by Komissarchik and Futer (1986).

The approach of those building databases is to do so by retrograde analysis
as described by Knuth (1973) in the context of the “military game.” Starting
with positions in which a win exists (either a mate or a move that transforms
the position to a won subgame), one works backward, generating predecessor
positions. Assuming each side will try to move optimally, each position is
assigned a value of win, loss, or draw, and the number of moves to that final
outcome.

5. A Brief History of Computer Chess Tournament Play

In 1966, the first recorded match between chess programs took place when a
chess program developed at MIT by Alan Kotok (1962) and one developed at
the Institute of Theoretical and Experimental Physics in Moscow (see
Adelson-Velsky et al., 1970, and Adelson-Velsky et al., 1988) played a four-
game match. The Soviet program won two games and drew two others. The
games were played by telegraphing moves back and forth across the Atlantic.
The match lasted for the better part of a year. In the two games that it won, the
Soviet program was searching all moves to a depth of five plies, while in the
two games it drew, it was searching all moves to a depth of only three plies.
Kotok’s program was searching to a depth of four plies in both games, but
using unreliable forward pruning.

In 1968, MAC HACK (Greenblatt et al., 1967) became the first chess
program that competed in a human tournament. It turned in a respectable
performance and earned a rating in the 1400s-the rating of a good high-
school player with one year of serious play.

Two years later in New York, the first of the ACM’s tournaments was held
with six programs participating. Every year since then, the ACM has hosted
what was first called the United States Computer Chess Championship, and
then renamed the ACM’s North American Computer Chess Championship.
In 1974, the first World Championship was held in Stockholm, Sweden, as part
of the IFIP Congress. That tournament was won by KAISSA, the Soviet

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 233

successor of the ITEP program. Since 1974, Soviet programs have been unable
to compete successfully with those in Western Europe and North America.
This is mainly due to the difficulty of getting computing time and facilities. In
the last year, however, the Soviets held a national microcomputer champion-
ship, indicating renewed interest on their part.

The results of the World Championships, the ACM Championships, and
the World Microcomputer Championships are described in a number of
books, including Newborn (1975), Frey (1977), Levy (1976), and Levy and
Newborn (1982). The first- and second-place finishers in these events are given
in Table I. In addition to the tournaments shown, there have been a number of
major tournaments in Europe, in particular, The Netherlands, where
computer chess is especially popular.

Programs for microcomputers appeared in the late 1970s. The husband and
wife team of Dan and Kathe Spracklen were the leading pioneers. Offsprings
of their first program SARGON are the most widely used, commercially
available software packages for playing chess. In recent years, they have been
developing programs for Fidelity International, Inc., a Miami, Florida-based
company. Their programs are used in Fidelity’s Chess Challenger series
products, the leading chess machine in North America. MEPHISTO,
currently the best of the microcomputers by a very narrow margin over
Fidelity’s best products, was developed by Richard Lang for West Germany’s
Hegener & Glaser, and it is the most popular chess machine in Europe. David
Kittenger’s programs used by NOVAG are also quite strong, as are David
Levy’s programs developed by Intelligent Chess Software in London. The top-
line commercial products are playing at the Master level, and soon will be
playing at the Grandmaster level.

6. The Rating of Chess Players

The best chess players in the world are given ratings and titles by FIDE, the
Federation Internationale des Echecs. Awarded are the titles of International
Master and International Grandmaster. A rating of approximately 2500 and
over corresponds to an International Grandmaster, while a rating of
approximately 2300 and over corresponds to an International Master. There
are currently approximately about 200 International Grandmasters and loo0
International Masters in active competition.

In the United States, the United States Chess Federation gives ratings to its
players that correspond closely, but not exactly, to those given by FIDE.
USCF ratings are approximately 100 points higher. In the USCF, a Senior
Master is rated over 2400 and a Master is rated over 2200. Other nations also
rate chess players with the objective of giving ratings that correspond closely
to those given by FIDE, as well as giving ratings to players of lesser abilities. In
the United States, in addition to Senior Masters and Masters, players are also

TABLE I

RFSULTS OF MAJOR COMPUTER CHESS TOURNAMENTS: WORLD CHAMPIONSHIPS, NACCC, AND WORLD
MICROCOMPUTER CHAMPIONSHIPS.

World Championships

Year City Winner Runner-up

1974 Stockholm KAISSA; Donskoy, Arlazarov, ICL 4/70
1977 Toronto CHESS 4.6; Slate, Atkin, CDC Cyber 176

1980 Liru BELLE; Thompson, Condon, PDP 11/23

1983 New York CRAY BLITZ; Hyatt, Gower, Nelson,

1986 Cologne CRAY BLITZ; Hyatt, Gower, Nelson,

with chess circuitry

Cray XMP 48

Cray XMP

~~ ~ ~

CHESS 4.0; Slate, Atkin, CDC 6600
DUCHESS; Truscott, Wright, Jensen, IBM

3701165
CHAOS; Alexander, Swartz, Berman

OKede, Amdahl47O/V8
BEBE; Scherzer, Chess engine

HITECH; Berliner, et ol., SUN workstation
with chess circuitry

ACM’s North American Computer Chess Championships

Year City Winner

I970 New York CHESS 3.0; Slate, Atkin, Gorlen, CDC 6400

1971 Chicago CHESS 3.5; Slate, Atkin, Gorlen, CDC 6400
1972 Boston CHESS 3.6; Slate, Atkin, Gorlen, CDC 6400
1973 Atlanta CHESS 4.0 Slate, Atkin, Gorlen, CDC 6400
1974 San Diego RIBBIT; Hansen, Crook, Parry,

Honeywell 6050

Runner-up

DALY CHESS PROGRAM; Daly, King

TECH; Gillogly, PDP 10
OSTRICH; Arnold, Newborn, DG Supernova
TECH 11; Baisley, PDP 10
CHESS 4.0; Slate, Atkin, CMJ 6400

Varian 620/i

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

Minneapolis

Houston

Seattle

Washington

Detroit

Nashville BELLE; Thompson, Condon, PDP 11/70 CHAOS; Alexander, OKeefe, Swartz,

Los Angeles BELLE; Thompson, Condon, PDP 11/23 NUCHESS; Blanchard, Slate,

Dallas

Not held as the ACMs North American Computer Chess Championship that year but as the
Fourth World Championship. See information above on this championship.
San Fran. CRAY BLITZ; Hyatt, Gower, Nelson,

CHESS 4.4; Slate, Atkin, CDC Cyber 175

CHESS 4.5; Slate, Atkin, CDC Cyber 176

CHESS 4.6; Slate, Atkin, CDC Cyber 176

BELLE; Thompson, Condon, PDP 11/70

CHESS 4.9; Slate, Atkin, CDC Cyber 176

TREEFROG; Hansen, Calnek, Crook,

CHAOS; Swartz, Ruben, Winograd, Berman,

DUCHESS; Truscott, Wright, Jensen. IBM

CHESS 4.7; Slate, Atkin, CDC Cyber 176

BELLE; Thompson, Condon, PDP 11/70

Honeywell 6080

Toikka, Alexander, Amdahl470

3701168

with chess hardware

with chess hardware

with chess hardware Berman, Amdahl470

with chess hardware

with chess hardware

CDC Cyber 176
BELLE; Thompson, Condon, PDP 11/23 CRAY BLITZ; Hyatt, Gower, Nelson, Cray 1

BEBE; Scherzer, Chess Engine, and
Cray XMP/4 FIDELITY EXPERIMENTAL; Spracklen,

Spracklen, Fidelity machine
Denver HITECH; Ebeling, Berliner, Goetsch, BEBE; Scherzer, Chess engine

Palay, Campbell, Slomer, SUN with
chess hardware

-
(continues)

ru
W
a,

TABLE 1 (Continued)

ACM’s North American Computer Chess Championships

Year City Winner Runner-up

1986 Dallas BELLE; Thompson, Condon, PDP 11/23 LACHEX, Wendroff, Cray X-MP

1987 Dallas CHIPTEST-M; Anantharaman, Hsu, SUN PHOENIX, Schaeffer, Olaffson,
with chess hardware

Campbell, SUN 3 with VLSI chess
hardware

Browne, Campbell, Hsu, Nowatzyk,
SUN 3 with VLSI chess hardware

20 SUN 3s

1988 Orlando DEEP THOUGHT 0.02, Anantharaman, CHESS CHALLENGER X, Spracklen,
Spracklen, Nelson, Fidelity machine

World Microcomputer Championships

Year City Winner Runner-up

1980 London CHESS CHALLENGER BORIS EXPERIMENTAL
198 1 Travemunde FIDELITY X CHESS CHAMPION MARK V
1983 Budapest ELITE A/S MEPHISTO X
1984 Glasgow
1985 Amsterdam MEPHISTO AMSTERDAM I MEPHISTO AMSTERDAM I1
1986 Dallas MEPHISTO DALLAS 3 FIDELITY “2533”
1987 Rome MEPHISTO CYRUS 68K
1988 Almeria MEPHISTO CHESS CHALLENGER

Four-way tie: ELITE X, MEPHISTO SjX, PRINCHESS, PSION CHESS

I
P
8
z

z
rn
5
0
9 z

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 237

TABLE JI

RATING OF HUMAN CHESS PLAYERS.

Estimated number of active players
Class USCF Rating Range in the world in this class

Kasparov, Karpov - 2800
Senior Master 2400+
Master 2200-2499
Expert 2000- 2 1 99
Class A 1800- I999
Class B 1600 - 1 799
Class C 1400-1599

2
400

4Ooo
40,000

300,000
3,000,000

20,000,000

classed as being Experts, Class A, Class B, and Class C. Other countries have
similar categories. Rating ranges are shown in Table I1 along with the number
of players worldwide estimated to be in each class.

7. The Relation Between Computer Speed and
Program Strength

For anyone who has ever developed a chess program, computer speed is of
paramount concern. Faster computers play better chess. How much faster has
been a question for debate since chess programs were first observed in action.
This writer (Newborn, 1978, 1979) suggested, based on observations of
programs that participated in major tournaments, that over a wide range of
ratings, performance seems to improve by about 100 points for every doubling
of speed. Since the effective average branching factor of the chess tree is about
five or six, this means that each additional level of search improves play by just
somewhat over 200 points. Thompson carried out experiments with BELLE
shortly thereafter and confirmed these results (Condon and Thompson, 1983;
Thompson, 1982). He had seven different versions of BELLE-BELLE(3),
BELLE(4), . . . , BELLE(9)-play 20 game matches against one another and he
tabulated the results. The only difference between the seven versions was the
depth to which they were set to search: BELLE(i) searched to a depth of i
levels. The data obtained by Thompson supported Newborn's 100-point
hypothesis for ratings between approximately 1300 and 2000, but the rate of
improvement dropped off for higher levels of play. Because of the constraint
of time, Thompson carried out his experiment only to search depths of nine
plies. Greater search depths, while of particular interest, would have taken
large amounts of time to play the 20 game matches.

238 MONROE NEWBORN

Subsequently, Newborn (1 985) modified his earlier observations in an
attempt to reconcile them with Thompson’s experimental data. He studied sets
of random positions, observing the rate at which programs found improved
principal continuations for these positions as search depths ranged from three
to 12 plies. He presented a hypothesis that correlated well with Thompson’s
results over search depths ranging from three to nine and, in addition, allowed
one to extrapolate Thompson’s results to greater search depths. As search
depths increase, Newborn found that a program is gradually less likely to find
a better root move than it currently has found, and he observed that this rate
correlated closely with rating improvements observed in the range considered
by Thompson. He hypothesized that over all search depths, the rate at which
the principal continuation is found to change when searching deeper
correlates directly with the rating improvement. Thus it is not necessary to
play 20 game matches with BELLE(lo), BELLE(1 l), . . . to determine the
ratings of these versions of BELLE. These matches would take great amounts
of time with present technology. One can simply test BELLE on a reasonable
variety of positions and observe the rate at which the principal continuation
changes with increasing search depth. This change will correlate with the
rating improvement.

8. On the Chess Skill of Chess Programmers

Early in the development of chess programs, some felt that strong chess
players were required to write successful chess programs. However, history has
shown this not to be the case. Most of the best chess programs have been
written by individuals who are not strong chess players. Furthermore, the
programs that they developed turned out to play stronger, sometimes much
stronger, than they themselves. Hans Berliner, former World Correspondence
Chess Champion is a major exception. Berliner, a strong Master, has devel-
oped a program that at this time is also a strong Master. Berliner, however,
feels that he is capable of developing a still stronger program. Generally,
several individuals have been involved in developing each program, and often
one or more of them is a strong player, but not usually the principal one.
Shown in Table 111 is a listing of several prominent programs and approxi-
mate ratings of their main programmer as estimated by this writer. The
ratings are correct to within approximately 100 points.

Good players, being perfectionist, often hamper the early development of
chess programs unless they also have a programmer’s mentality. There are a
million decisions that have to be made to launch a chess program, and exactly
which approach is best is not clear. For example, the board can be represented
as an 8 x 8 array, a 9 x 9 array or even a 10 x 10 array. Each representation

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 239

TABLE I11

RATINGS OF CHIS PROGRAMS AND THEIR PRINCIPAL PROGRAMMERS.

Program Estimated Rating Year Principal author Estimated rating

DEEP THOUGHT 0.02 2580 1988 Hsu 1200
HITECH 2350 1987 Berliner 2400
CRAY BLITZ 2250 1987 Hyatt 1400
BELLE 2200 1986 Thompson 1700
CHESS 4.9 2100 1980 Slate 2050
KAISSA 1800 1974 Donskoy 1600

has certain advantages and certain disadvantages. In the 8 x 8 representation,
it is hard for move generators to determine whether a piece is moving off the
edge of the board. In the 9 x 9 representation, the Knight can still jump over
the edge. In the 10 x 10 representation, it is easy to determine whether a piece
isjumping off the board. However, the added expense of 36 memory locations
costs money. It also prevents the board from being stored in the convenient
form of an 8 x 8 array, or in some cases, as a linear array of 64 elements. A
decision, however, must be made for a board representation, and once it is
made, the programmer must live with its consequences for a long time.

A chess programmer must arbitrarily decide on values to assign to pieces.
Most assign a value of one to a pawn and so on for the other pieces as
discussed earlier. Strong chess players would spend days attempting to refine
these values, perhaps making them position-dependent, and the actual writing
of the code might never get done.

9. Languages Used by Chess Programs

Most of the best current programs are written in either assembler or C. This
includes 21 of the 23 programs that competed in the ACM’s North American
Computer Chess Championships during the last three years (see Table IV).
The other two were written in PASCAL, but neither of these exceptions has
participated in the last two years. In fact, for the last two years, the only
languages used by programs that have competed in the ACM events have been
assembler and C. This widespead use of assembler is something that few would
have guessed 20 years ago. At that time it was felt that to develop an expert
chess program, a special-purpose chess language was necessary. To date, no
such language has appeared. Instead, even FORTRAN seems to be yielding to
lower-level languages. The coincidence of having the board being 64 squares,

240 MONROE NEWBORN

exactly the size of two computer words, is taken advantage of by all chess
programs. Coupled with its great speed, the 64-bit word of the CRAY makes
that computer very attractive to chess programmers.

When converting a program from C to assembler, it is possible to obtain a
speedup of approximately 20- 30%. When converting from other languages to
assembler, even more dramatic increases can be obtained. A1 Languages such
as LISP and PROLOG have not been used by any chess program that
participates in major tournaments.

10. Testing Chess Programs

A number of sets of chess positions have become almost standard for test-
ing chess programs. The three most popular are the 300 problems from
Reinfeld (1958), the endgame problems from Fine (1941) and the test positions
from Bratko and Kopec (1982). The Reinfeld positions are very good for
testing the tactical play of programs. Fine’s positions test the capabilities of
endgame play by programs, while the Bratko/Kopec test set was originally
designed to see whether one could distinguish between human style play and
that of computers. The Bratko/Kopec set has been used by those interested in
testing the efficiency of their search algorithms, in particular those involved in
studying the efficiency of various parallel search algorithms.

11. Debugging Chess Programs

Most chess programs, even the best, have bugs. Its only a question of how
many and how serious. Thus a large percentage of the time in developing chess
programs is spent debugging them. The debugging cycle generally involves
observing play until a move is made that does not seem correct, and then
rerunning the program on the same position in order to determine why it made
the apparently erroneous move. Sometimes, the bug is even more serious. The
program might crash in the middle of a long search, and it becomes necessary
to find what caused the crash. Most programs have the ability to print the
search tree on a terminal or to a file on disk. But the programs are searching
several million nodes per move and thus to save the entire tree for latter
examination is very awkward and best avoided.

OSTRICH uses a specially designed debugging package for finding errors in
the tree. I t allows the human debugger to selectively print moves in that part
of the tree that is of interest. Moves are printed out when an UPDATE is
performed. OSTRICH has two variables, LEVEL and K which are set before

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 24 1

search begins. LEVEL denotes how many levels of the tree to print out.
K denotes which iteration to begin printing moves. Further, whenever a move
is printed out, OSTRICH halts and waits for the human debugger to tell
it to proceed. At that point, the user can modify the value of LEVEL and
K: the debugger can increment or decrement LEVEL and K by 1. Lastly
the debugger can print out the current state of the board and other data
structures.

For example, suppose the program crashes looking at some node at level
four on the fifth iteration. To find out at which node the program crashes, the
program can be run on the same position four times. On the first run, set
LEVEL = 1 and K = 5 . The program will only print out first-level moves on
the fifth iteration, stopping after printing each one, and eventually crashing
on one of them, say move M,. On the second run, again set LEVEL= 1 and
K = 5. When search stops after updating on move M , on the fifth iteration,
increment the value of LEVEL, and then proceed searching. The program will
print each reply at level 2 to M ,, stopping after printing each, and eventually
crash while looking at one of them, say M,. The debugger will now know
that the program crashed while looking at move M, a t level 1 and move M,
at level 2. The third run will yield the three-ply sequence leading to the failure,
and finally, the fourth run will lead the debugger to the failing position.

It is often very hard to get a computer to search exactly the same tree when
asked to repeat the search of a position. The search of a position depends on
many factors in addition to the configuration of pieces on the board. Timing
routines can affect how long a position is searched. Draw detection algorithms
must be considered. Transposition tables, if they save positions from one move
to the next make it virtually impossible to rerun a search and have it be
identical to a previous one. When parallel search is used, the debugging
problem becomes even more complex.

12. A Sample of Play: DEEP THOUGHT 0.02 (White)
Versus HITECH (Black)

The following game was played between DEEP THOUGHT 0.02 and
HITECH in the third round of the ACM’s 19th North American Computer
Chess Championship in Orlando, Florida in November 1988. HITECH had
won its first two games and DEEP THOUGHT had a draw and a win and was
tied for second place with three other programs. The two programs had played
a number of times during the months leading up to this tournament, and this
time Berliner got to play an opening line of the Alekhine Defence that he had
prepared especially for DEEP THOUGHT 0.02. The opening sacrificed a
pawn in return for territory, but HITECH got saddled with weak Kingside

242 MONROE NEWBORN

pawns, and pieces that were not sufficiently active. DEEP THOUGHT 0.02
took a clear lead on the 18th move, and except for having to repel a halfhearted
counterattack by HITECH, had the game wrapped up after move 21.

DEEP THOUGHT 0.02 was searching between eight and ten plies on most
moves, searching trees a t a rate of approximately 720,000 nodes per second. A
printout of the log of the game created by DEEP THOUGHT 0.02 provided
information included below in the analysis of the game. On each non-book
move, DEEP THOUGHT 0.02 prints out the first eight moves of the principal
continuation and the score of that continuation. DEEP THOUGHT 0.02
anticipated 31 of 56 moves made by HITECH, including all but seven of the
moves after the 25th.

1. e4 Nf6 2. e5 Nd5 3. d4 d6 4. Nf3 Nc6 5. c4 Nb6 6. e6
fe 7. Ng5 g6

This move takes DEEP THOUGHT 0.02 out of its opening book.

8. Bd3

Note that 8. Qf3 looks interesting but it just fails: 8. Qf3 e5 (necessary)
9. Qf7 + Kd7 and while Black’s King is in an awkward position, Black should
be able to recover and maintain its pawn advantage. DEEP THOUGHT 0.02
saw the game continuing 8. . . . Nd4 9. Nh7 Nf5 10. Nf7 Rf8 11. Nd2 e5 with a
score of - .77 pawns.

8. ... Nd4 9. Nh7 Nf5 10. Nf8 Kf8 11. 0-0 ~5

Black might better have played e5 here, gaining some control of important
center squares and giving its pieces, in particular its Queen’s Bishop, a bit
more freedom.
12. b3 d5 13. Nd2 Qd6 14. Nf3 Nd7 15. Re1 d4 16. Ne5

DEEP THOUGHT 0.02, of course, realizes that this is not a sacrifice. If
16. . . . Ne5, then White plays 17. Bf4 pinning the Black Knight to its Queen.
White also threatens 17. Ng6. Thus Black is forced to continue:
16. ... Ne5 17. Bf4 Rh7 18. Re5

For the first time, DEEP THOUGHT 0.02’s scoring function goes positive.
The program expects the game to continue as follows: 18. . . . Qb6 19. g4 Nh4
20. Bg3 Bd7 21. Rh5 Rh5.

18. ... Qb6 19. g4 Nh4 20. Bg3

DEEP THOUGHT 0.02 now sees 20. . . . Kg8 21. f4 Bd7 22. Qe2 Kg7
23. Rg5 Rg8. But HITECH does not follow DEEP THOUGHT 0.02’s line.
20. ... Bd7

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 243

FIG. 23. Position after 20. .. . Bd7.

21. h5

An elegant move that caught the audience by surprise. DEEP THOUGHT
0.02’s scoring function now believes White is ahead by approximately one
pawn.
21. ... gh 22. Bh7

DEEP THOUGHT 0.02 now sees: 22. . . . Kg7 23. Qd3 e5 24. Bh4 Rh8
25. Bf5 e6, and assigns the continuation a score of + 2.69 pawns.

22. ... e5

A good move giving Black’s Queen some room to maneuver.

23. Bh4

This time, DEEP THOUGHT sees: 23. . . . hg 24. Bg3 Qf6 25. Qd3 b6
26. Re1 Kfl, leading to a score of + 2.79 pawns.

23. ... Bg4 24. Qd3 Rc8 25. Re1 Qe6 26. f3 Bh3 27. Qg6

DEEP THOUGHT 0.02 see: 27. . . . Qg6 28. Bg6 Rc6 29. Bh5 Re6 30. Bg3 d3,
leading to a score of + 3.32.
27. ... Qg6 28. Bg6 Rc6 29. Bh5 Re6 30. Bg3 Ra6

HITECH finds a way to hassle DEEP THOUGHT 0.02.

244 MONROE NEWBORN

31. a4 d3 32. Re5 Rd6 33. Re1 Rb6 34. Bf4 a5

HITECH has nothing better to do. Black's only chance now is somehow to
trade off all material, winning the lone White pawn in the process. This would
leave White with a single Bishop, insufficient to mate Black. White, however, is
a bit too strong to be led into this scenario. It knows that a lone Bishop is a
drawn game.

35. Be3 Rb3 36. Bc5 d2 37. Be7+ Kg7 38. Rdl Re3
39. Bh4 Ra3 40. Be8 Rf3 41. Bg5 Rf8 42. Bb5 Kg6
43. Be3 Rf3 44. Bd2 Rd3 45. c5 Rd5 46. c6 bc 47. Bc6 Rd6
48. Bf3 Rd4 49. Ba5 Ra4 50. Rd6+ Kf5 51. Bc3 Ra2
52. Rh6 Bg4 53. Bd5 Rc2 54. Rc6 Re2 55. h4 Kf4
56. Rc4+ Kg3 57. Ba5 and Black resigns.

DEEP THOUGHT 0.02 sees the game continuing as follows: 57.. . . Re7
58. Bc7+ Rc7 (not 58. ... Kh4 because of 59. Bd8 pinning the Rook)
59. Rc7 Kh4 60. Rg7.

13. Data on Programs: Computers, Languages,
Authors, Affiliations, etc.

Listed below in Table IV are all the programs that participated in the
ACM's North American Computer Chess Championships during the last
three years.

TABLE IV

PARTICIPANTS IN THE ACM's 1986, 1987, AND 1988 NORTH AMERICAN
COMPUTER CHFS CHAMPIONSHIPS.

Program, Computing System, Language, (Authors and affiliation); Book; Nodes/Sec.

A. 1. CHESS! X, IBM-compatible 80286 AT, assembler, 4 mips, (Martin Hirsch,

BEBE, SYS-I0 Chess Engine, assembler, 65Kb, 16 bits, 10 mips, (Tony Scherzer, Linda Scherzer,

BELLE, PDP 11/23 with special chess circuitry, C+microcode, (Ken Thompson, Joe Condon,

BP, Compaq 386, C+assernbler, IMb, 32 bits, 3-4 mips, (Robert Cullum, Chicago); 8K; OSK.
CHESS CHALLENGER X, 28 6502-based microprocessors controlled by a 2-80, assembler.

(Ron Nelson, Dan Spracklen, Kathe Spracklen, Danny Kopec, Boris Baczynskyj, Fidelity
International, Miami, Florida); 16K +; NA (Participated in 1986).

San Francisco); 8K; 2K.

SYS-I0 Inc., Hoffman Estates, Illinois); 4K; 40K.

Bell Laboratories, Murray Hill, New Jersey); 400K; 15OK.

(continues)

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 245

TABLE IV (Continued)

Program, Computing System. Language, (Authors and affiliation); Book; NodesiSec.

CHESS CHALLENGER X, 68030-based microprocessor, (Ron Nelson, Dan Spracklen,
Kathe Spracklen, Fidelity International, Miami, Florida): 16K +; NA (Participated in 1988).

DEEP THOUGHT 0.02 (a revised version of CHIPTEST-M, SUN-3 plus high-speed move
generator, C, (Thomas Anantharaman, Mike Browne, Feng-hsiung Hsu, Murrary Campbell,
and Andreas Nowatzyk, Carnegie-Mellon University, Pittsburgh); 5K; 720K.

CRAY BLITZ, Cray XMP 4/8, FORTRAN + assembler., 128Mb, 64 bits, 105 mips/proc,
(Robert Hyatt, Albert Cower, Harry Nelson, University of Alabama, Birmingham); 50K; 100K.

CYRUS 68K, 68020-based microprocessor, assembler, (Mark Taylor, David Levy, Intelligent
Chess Software, London, England); 16K; 4K.

FIDELITY X. 68020-based microprocessor, assembler, (Dan Spracklen, Kathe Spracklen,
Danny Kopec, Fidelity International Inc., Miami, Florida); 30K; NA.

GNU CHESS, VAX 8650, C, 8 Mb, 32 bits, 6 mips, (Stuart Cracraft, John Stanback, Jay Scott,
Jim Aspnes, San Fransisco); 5K; 0.5-].OK.

GRECO, AT Clone, 16 bits, Imips, 640Kb, (David Stafford, Dallas, Texas); 1K; 0.45K.
HITECH, SUN 4 with special chess hardware for search and pattern recognition, assembler,

(Carl Ebeling, Hans Berliner, Gordon Goetsch, Murray Campbell, Gruss, and Andy Palay,
Carnegie-Mellon University); NA, 1 IOK.

LACHEX, Cray XMP 4/16, FORTRAN and assembler, 16mw, 64bits. 105 mips,(Tony Warnock,
Burt WendrolT, Los Alamos National Laboratory, New Mexico); 4K; 50K.

MEPHISTO X, 68020-based microprocessor, assembler, 64 Kb RAM, 32 bits, 4 mips.
(Richard Lang, Hegener & Glaser A. G., Munich, West Germany); NA; NA.

MERLIN, IBM 3081, PASCAL, 12 mips, (Hermann Kaindl, Marcus Wagner, and Helmut
Horacek, Vienna, Austria); 6K; 0.6K.

NOVAG X, 6502 bit sliced microcomputer, 6502 assembler, 4 Kb RAM, 56 Kb ROM, (David
Kittinger, Novag Inc., Mobile, Alabama); 22K; 4K.

OSTRICH, 1 DG Eclipse 2/120,7 DG Nova's 4's, assembler, 64 Kbiproc., 16 bits,lmips/proc.,
(Monroe Newborn, McGill University, Montreal); 4K; 2K.

RECOM, 6502 gate array processor, assembler, 8Kb RAM, 8 bits, 4 mips, (Ed Schroder, Deventer,
The Netherlands); 7K; 1.5K.

REX 111, Intel 80286-based microprocessor, PASCAL, (Don Dailey, Roanoke, Virginia);
O.IK; 0.3K.

S U N PHOENIX, 20 SUN 3 Workstations, C. (Jonathan Schaeffer, Marius Olaffson, University
of Alberta, Edmonton); 8K; 20K.

VAXCHESS, Microvas 2, C + assembler, (Tony Guifoyle, Richard Hooker, Hitchen Herts,
England); 14K; IK.

WAYCOOL, 256 proc. NCUBE/IO, 1/2 Mb ram/proc., 1 mips/proc., C,(Ed Felton, Steve Otto,
Rod Morison, Rob Fatland, Cal Tech, Pasadena, California); NA; NA.

246 MONROE NEWBORN

14. The International Computer Chess Association
and the ACM’s Computer Chess Committee

The International Computer Chess Association was founded in 1977 at
the Second World Computer Chess Championship in Toronto. There are
currently approximately 700 members from all around the world. David Levy,
an International Master from London serves as its president. The first presi-
dent was Ben Mittman of Northwestern University. Mittman served until
1983 when this writer took over. Levy assumed the position in 1986. The
ICCA publishes the foremost journal in the world on the subject of com-
puter chess. Subscriptions are %25(US) and can be obtained by writing to
Prof. Jonathan Schaeffer, Department of Computing Science, University of
Alberta, Edmonton, Alberta, Canada T6G 2H1. The ICCA organizes a world
championship every three years. There has been an attempt to alternate these
championships between the two sides of the Atlantic. The next championship
is scheduled for Edmonton, Alberta in May 1989.

The ACM’s Computer Chess Committee was established in the early 1980s
with a mandate to coordinate computer chess activities within the ACM.
This writer has been the chairman of that committee since its formation.
Other members are Ken Thompson, Tony Marsland, Hans Berliner, and
Kathe Spracklen.

15. Conclusions

While the last decade has seen programs progress from playing chess at the
Expert level to almost that of Grandmasters, the coming decade should be
even more exciting for advances in computer chess. It is quite likely that
during this period, a computer will defeat the human world champion. There
seems to be no limit to the level of play that can be attained by computers,
and it seems that the game is sufficiently rich that there will always be room
for improvement. The chances are that neither man nor machine will ever dis-
cover the optimal way to play the game. Although the level of endgame play
by computers is significantly below the level of their middlegame play, it is
likely that this will not impede them from becoming better than the best of
humans. Their combinational play will give them material advantages in the
middlegame that assure victory before the endgame is ever reached.

Where will future improvements occur? Most fundamentally, hardware
technology will continue to improve to the advantage of chess programs.
There will be an increasing use of multiprocessing systems. Commercial
products will soon use multiprocessors. Thousands and eventually-maybe
even within the next decade-millions of processors will be used by chess

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 247

programs. Special-purpose circuitry will become easier to develop. Opening
books will continue to grow in size, and transposition tables will get much
larger, as search speeds increase. Improvements in search heuristics will
continue to add to the improvement, and increasingly better programming
environments will make testing and debugging easier.

How should Grandmasters view these developments? Currently, Grand-
masters are studying the games of DEEP THOUGHT 0.02 and HITECH
and other leading programs seeking weaknesses in the computers’ play.
There is nothing unusual about this; all their worthy potential opponents
receive this treatment. This puts these programs at a short-term disadvantage
since they cannot reciprocate. Grandmasters will find some weaknesses in
the programs’ inflexible style of play, and they may be able to exploit this
shortcoming for the next year or so. But it won’t be long before computers
become just too good. When that happens, Grandmasters will find they still
enjoy the game as they always have, and they will continue competing with one
another as well as with their new-found rivals. Those interested in the theory of
chess and chess openings, in particular, will use computers as tools.

While Grandmasters will be observing the programs, i t will become
increasingly important for the programs’ authors to become familiar with
their opponents’ openings and make sure their programs are able to handle
them. Learning by chess programs is still a long way off, leaving to the
programmers for some time to come the responsibility of updating their
programs’ books. This will have to be done by carefully following the tour-
nament play of top humans and computers. Eventually, only computer play
will be trusted for creating new book lines. Programs may generate their
own books during idle time, a development that is inevitable in the coming
decade. We may eventually have 14-ply books, 15-ply books, etc., where all
moves in the 14-ply book are optimal based on a 14-ply search using the
program’s scoring function.

For the average chess player who complained in the past about how slowly
and poorly programs play, I think you will find this no longer applies. It is now
possible for every chess buff to purchase a Master-level program for under
two hundred dollars, and that figure is dropping fast. The programs are
getting easier to use and are great for teaching young children. My daughter
has learned she never has to lose a game. Whenever she observes the program’s
scoring function go positive, indicating she is losing, she simply changes sides!

REFERENCES

Adelson-Velsky, G. M., Arlazarov, V. L., Bitman. A. R., Zhivotovsky, A. A., and Uskov, A. V.

Adelson-Velsky, G. M., Arlazarov, V. L. and Donskoy, M. V. (1988). “Algorithms for Games.”
(1970). Programming a computer to play chess. Russian Math. Suroeys 25,221-262.

Springer-Verlag, New York.

248 MONROE NEWBORN

Akl, S. G., and Newborn, M. M. (1977). The principal continuation and the killer heuristic. Proc.
Annual Con$ Assoc. Compur. Mach., pp. 466-473.

Akl, S. G., Barnard, D. T., and Doran, R. J. (1982). Design, analysis, and implementation of a
parallel tree-search algorithm. IEEE Trans. Pattern Recognition and Machine Intelligence,

Anantharaman, T., Campbell, M., and Hsu, F. (1988). Singular extensions: adding selectivity to
brute force searching. Proc. 1988 American Assoc. ArtiJicial Inte[ligence Spring Symposium
Series, pp. 8- 13.

Arlazarov, V. L., and Futer. A. V. (1978). Computer analysis of a Rook endgame. I n “Machine
Intelligence”9(J. E. Hayes, D. Michie, and L. I. Mikulich,eds.). University of Edinburgh Press,
Edinburgh, Scotland.

Baudet, G. M. (1978). The design and analysis of algorithms for asynchronous multiprocessors.
CMU-CS-78-116, Carnegie-Mellon Univ.

Berliner, H. J. (1986). Computer chess at Carnegie-Mellon University. I n “Advances in Computer
Chess” 4 (D. Beal, ed.). Pergamon Press, pp. 166-180.

Berliner, H.. and Ebeling, C. (1986). The SUPREM architecture: a new intelligent paradigm.
Artificial Intelligence 28,3-8.

Bernstein, A., De V. Roberts, M., Arbuckle, T., and Belsky, M. A. (1958). A chess playing program
for the IBM 704. Proc. Western Joint Computer Con$ 13, pp. 157-159.

Bettadapur, P. (1986). Influence of ordering on capture search. International Computer Chess

Bratko, I., and Kopec, D. (1982). A test for comparison of human and computer performance in
chess. I n “Advances in Computer Chess” 3 (M. R. B. Clarke, ed.). Pergamon Press, pp. 3 1-56.

Clark, M. R. B., ed. (1977). “Advances in Computer Chess” 1. University of Edinburgh Press,
Edinburgh, Scotland. (Note: Volume 2 was published in 1980. Volume 3 and Volume 4 were
published by Pergamon Press, London, in 1982 and 1986, respectively.)

Condon, J. H., and Thompson, K. (1982). Belle chess hardware. I n “Advances in Computer Chess”
3 (M. R. B. Clarke, ed.). Pergamon Press, pp. 45-54.

Condon, J. H., and Thompson, K. (1983). Belle. I n “Chess Skill in Man and Machine,” second
edition (P. Frey, ed.). Springer-Verlag. pp. 201-210.

Ebeling, C., and Palay, A. (1984). The design and implementation of a YLSI move generator.
IEEE 11th Ann. Int . Symp. on Computer Architecture. Ann Arbor, pp. 74-80.

Felton, E. W., and Otto, Steve W. (1988). A highly parallel chess prpgram. Unpublished
manuscript.

Fine, R. (1941). “Basic Chess Endings.” David McKay, Philadelphia.
Finkel, R., and Fishburn, J. (1982). Parallelism in alpha-beta search. Artificial Intelligence 19.

Fishburn, J. P. (1981). Analysis of speedup in distributed algorithms. Univ. of Wisconsin Tech.

Frey, P., ed. (1977). “Chess Skill in Man and Machine.” Springer-Verlag. New York. (Second

Gillogly, J. J. (1972). The Technology Chess Program. Artificial Intelligence 3, 145-163.
Greenblatt, R. D., Eastlake 111, D. E., and Crocker, S. D. (1967). The Greenblatt chess program.

Hsu, F. (1986). Two designs of functional units for VLSl based chess machines. CMU Dept.

Hyatt, R. M. (1984). Using time wisely. International Computer Chess Assoc. J . 7 (I), 4-9.
Hyatt, R. M. (1985). Parallel search on the Cray X-MP/48. International Computer Chess Assoc. J .

pp. 192-203.

ASSOC. J . 9 (4), 180- 188.

89-106.

Rep. 43 1.

edition published in 1983.)

Proc. Fall Joint Computing Con!., San Fransisco, pp. 801-810.

Computer Science Tech. Rep. CMU-CS-86-103.

8 (2). 90-99.

COMPUTER CHESS: TEN YEARS OF SIGNIFICANT PROGRESS 249

Hyatt, R. M., Gower, B. E., and Nelson, H. L. (1985). Cray Blitz. 1n“Advances in Computer Chess”

Kister, J., Stein, P.. Ulam, S., Walden, W., and Wells, M. (1957). Experiments in chess. J. Assoc.

Knuth, D. (1973). “The Art of Computer Programming” Vol. 1. Addison Wesley, pg. 546.
Knuth, D., and Moore, R. (1975). An analysis of alpha-beta pruning. Artificial Intelligence 6,

Komissarchik, E. A,. and Futer, A. L. (1986). Computer analysis of a Queen endgame. lnter-

Korf, R. E. (1985). Iteratively-Deepening-A*: An optimal admissible tree search. Proc. Ninth

Kotok, A. (1962). A chess playing program for the IBM 7090. B. S. Thesis, MIT. A1 Project Memo

Levy. D. N. L. (1976). “Chess and Computers.” Batsford Press, London.
Levy, D. N. L, and Newborn, M. M. (1982). “All About Chess and Computers.” Computer Science

Marsland, T. A,, and Campbell, M. (1982). Parallel search of strongly ordered game trees.

Marsland, T. A,, and Popowich, F. (1985). Parallel game-tree search. IEEE Trans. Pattern

Marsland, T. A., Olaffson, M., and Schaeffer, J. (1985). Multiprocessor tree-search experiments.

Michie, D., and Bratko, 1. (1987). Ideas on knowledge synthesis stemming from the KBBKN

Nelson, H. L. (1985). Hash tables in CRAY BLITZ. Internutional Computer Chess Assoc. J. 8 (I) ,

Newborn, M. M. (1975). “Computer Chess.” Academic Press, New York.
Newborn, M. (1977a). PEASANT: an endgame program for Kings and pawns. I n “Chess Skill in

Newborn, M. (1977b). Theefficiency of the alpha-beta algorithm on trees with branch-dependent

Newborn, M. (1978). Computer chess: recent progress and future expectations. Proc. Jerusalem

Newborn, M. (1979). Recent progress in computer chess. In “Advances in Computers” 18,

Newborn, M. (1982). Ostrich/P-a parallel search chess program. Tech. Report SOCS-82.3,

Newborn, M. (1985). A parallel search chess program. Proc. 1985 ACM Ann. Conf., pp. 272-277.
Newborn, M. (1986). An hypothesis concerning the strength of chess programs. International

Newborn, M. (1988). Unsynchronized iteratively deepening parallel alpha-beta search. IEEE

Newell, A., Shaw, J. C., and Simon, H. A., (1958). Chess playing programs and the problem of

Nilsson, N. J., (1980). “Principles of Artificial Intelligence.” Tioga Press, Palo Alto, California.
Pearl, J., (1980). Asymptotic properties of minimax trees and searching procedures. Arfifcial

Reinefeld, A,, Schaeffer, J., and Marsland, T. (1985). Information acquisition in minimal window

4 (D. Beal, ed.). Pergamon Press, Oxford, pp. 8- 18.

Comput. Mach. 4, 174-177.

293- 326.

national Computer Chess Assoc. J . 9 (4). 189-200.

International Joint Conf. Artificial Intelligence, Los Angeles, California, pp. 1034- 1036.

41, Computer Center, Cambridge Massachusetts.

Press, Potomac, Maryland.

Computing Suroeys 14 (4). 533-551.

Analysis and Machine Intelligence, 442-452.

In “Advances in Computer Chess” 4 (D. Beal, ed.). Pergamon Press, Oxford, pp. 37-51.

endgame. International Computer Chess. Assoc. J. 10 (I) , 3-13.

3-13.

Man and Machine” (P. Frey, ed.). Springer-Verlag. New York, pp. 119-130.

terminal node scores. Artificial Intelligence 8, 137- 153.

Conf. Info. Technology, North-Holland, pp. 21 6-222.

(M. Yovits, ed.). Academic Press, New York, pp. 58-1 18.

School of Computer Science, McGill University.

Computer Chess Assoc. J . 8 (4), 209-215.

Trans. Pattern Analysis and Machine Intelligence 10 (5) , 687-694.

complexity. IBM J . Research & Development 4 (2), 320-335.

Intelligence 14, 113-138.

search. Proc. Ninth International Joint Conf. Artificial Intelligence, p p . 1040- 1043.

250 MONROE NEWBORN

Reinfeld, F. (1958). “Win at Chess.” Dover Publications Inc., New York.
Schaeffer, J. (1983). The history heuristic. International Computer Chess Assoc. J. 6 (3). 16-19.
Schaeffer, J. (1986). Improved parallel alpha-beta search. I986 Proc. FJCC, pp. 519-527.
Shannon, C. E. (1950). Programming a computer for playing chess. Philosophical Magazine 41,

Skienna, S. S. (1986). An overview of machine learning in computer chess. International Computer
Chess Assoc. J. 9 (l), 20-28.

Slagle, J. R., and Dixon, 3. K. (1969). Experiments with some programs that search game trees. J.
Assoc. Comput. Mach. 16, 189-207.

Slate, D. J. (1987). A chess program that uses the transposition table to learn from experience.
International Computer Chess Assoc. J . 10 (2). 59-71.

Slate, D. J., and Atkin, L. R. (1977). CHESS 4.5-The Northwestern University Chess Program.
In “Chess Skill in Man and Machine” (P. Frey, 4.). Springer-Verlag. pp. 82-1 18.

Stickel. M. E., and Tyson, W. M. (1985). An analysis of consecutively bounded depth-first search
with applications in automated deduction. Proc. Ninth fnrernational Joint Con$ Artificial
Intelligence, Los Angeles, California, pp. 1073- 1075.

Thompson, K. (1982). Computer chess strength. In “Advances in Computer Chess” 3 (M. Clarke,
ed.). Pergamon Press, pp. 55-56.

Thompson, K. (1986). Retrograde analysis of certain endgames. International Computer Chess

Turing, A. M. (1953). Digital Computers applied to games. In “Faster than Thought” (B. V.

Zobrist. A. L. (1970). A hashing method with applications for game playing. Tech. Rep. 88,

256-275.

ASSOC. J . 9 (3), 13 1 - 139.

Bowden, ed.). Pitman, London, pp. 286-310.

Computer Sciences Dept., University of Wisconsin, Madison, Wisconsin.

Soviet Computers in the 1980s:
A Review of the Hardware

Richard W. Judy and Robert W. Clough*

Hudson Institute
Herman Kahn Center
Indianapolis, Indiana

1. Introduction
2. Soviet Computing Before 1980: A Brief Summary
3. Official Plans for the 1980s
4. Hardware Development in the 1980s

4.1 The Major Hardware Manufacturers
4.2 The Academy of Sciences and Soviet “Supercomputers” .
4.3 Components-A Survey of Important Integrated Circuits

5. Perestroika and Soviet Computing
5.1 The Reemergence of the Academy of Sciences
5.2 A New “Tsar” for Soviet Computing?
5.3 Bureaucratic Shuffling
5.4 Calls for More of the Same
Summary
References.

. 251

. 253

. 255

. 257

. 257

. 307

. 312

. 317

. 317

. 318

. 319

. 320

. 321

. 322

1. Introduction

Soviet computing in the 1980s has become a very interesting scene. This has
been the decade when the nation’s top political leadership finally recognized
the central role of computers and other information technologies in military,
economic, and social development. But that recognition came very late in the
day and not before the Soviet Union’s international competitors had attained
a huge, perhaps insurmountable, lead in both the technologies and their
applications.

It would be wrong to suppose that the Soviets have made no progress in
computer technology. As this paper demonstrates, there has indeed been
progress. But it has been progress of an absolute variety, or one relative to the
previously underdeveloped state of this technology in the USSR. Compared

* The views expressed herein are the authors’ own. The research reported for this paper was
supported in part by the National Council for Soviet and East European Research. The authors
gratefully thank Virginia Clough of the Hudson Institute and Steven Flinn of Indiana University
for their vital assistance.

25 1

ADVANCES IN COMPUTERS, VOL. 29
Copyright (i3 1989 by Academic Press, Inc.

All rights of production in any form reserved.
I S B N 6 12-01 2 129-8

252 RICHARD W. JUDY AND ROBERT W. CLOUGH

with Western and Japanese progress in developing and using information
technologies of all kinds, the Soviet Union has continued to lose ground
rapidly in the 1980s.

The lengthening qualitative lag will be obvious to the discerning reader. But
the quantitative lag is also huge. Total Soviet production of all computers
except personal computers (PCs) was stable from 1985 to 1987 at about 16,000
units per year. Production of PCs, where the Soviet lag is most pronounced,
amounted to merely 8800 units in 1985. In 1986, PC output had risen to 27,600
and in 1987, to 51,200.' Total PC production in the 12th Five Year Plan
(1986-1990) was originally planned to reach 1.1 million units. That target was
recently slashed to 500 thousand.2

The purpose of this paper is to provide a reasonably comprehensive survey
of the important Soviet civilian computer hardware produced in the 1980s.
This is done against a backdrop of previous developments that is sketched in
Section 2. Section 3 quickly summarizes the official plans for computer
technology in the 1980s.

Section 4 is the heart of the paper. Here we discuss the main computer
systems that have been designed or manufactured in this decade. The
exposition differs somewhat from that usually encountered in Western
discussions of Soviet computers in that we have organized it not by type of
computer but, rather, by manufacturing or designing organization. If this were
a treatise on American computer hardware, the reader would hardly be
surprised if the exposition were organized by manufacturer, e.g., IBM, DEC,
or Apple. Contrary to the impression often conveyed in the Western litera-
ture, the Soviet computer industry is far from monolithic. A peculiar kind
of competition prevails among its principal players. But is it a healthy
competition? We believe that an appreciation of the differing roles played by
the large manufacturing ministries and the Academy of Sciences is necessary
for a proper appreciation of the state of Soviet computer technology today. It
is even more necessary for an understanding of why matters have come to be as
they are.

Finally, Section 5 takes a look at the impact of Mikhail Gorbachev's
reforms (perestroika) on the Soviet computer hardware industry. The purpose
in doing this is t,o see what promise recent policy changes may hold for
bringing needed improvements.

Whatever its problems, the Soviet computer scene has become too ex-
pansive to encompass in a single article. In a sequel to be published in this
series, we intend to survey and evaluate Soviet computer software and appli-
cations developments in the 1980s.

' Veslnik Statisriki (1988) (7). 62.
' Velikhov (1988). 26.

SOVIET COMPUTERS IN THE 1980s 253

2. Soviet Computing Before 1980: A Brief Summary

The history of Soviet computing begins in the Institute of Electronics at the
Ukrainian Academy of Sciences in Kiev. There, in 1947, Academician Sergei
Alekseevich Lebedev founded a special laboratory to design an electronic
digital computer. In 1950, this design was completed and, in 1951, took form
as the MESM (Malaia Elektronaia Schetnaia mash in^)^, the first Soviet
electronic computer. It was there in the period 1946- 1951 that a core group of
future Soviet computer scientists was f ~ r m e d . ~

In 1950, Lebedev organized a new laboratory for computer design in the
Institute of Precise Mechanics and Computer Engineering of the USSR
Academy of Sciences (“IPMCE”) in Moscow. IPMCE was then headed by
Academician Mikhail Alekseevich Lavrent’ev who later became President of
the Siberian Division of the USSR Academy of Sciences where he strongly
encouraged the development of computer sciences. Lebedev moved his
residence to Moscow in 1951. Two years later, he became head of IPMCE
where he continued to guide computer research and design, and to train young
computer scientists, until his death in 1974. Lebedev’s place in Kiev was taken
by Viktor Mikhailovich Glushkov who guided what eventually became the
Institute of Cybernetics until his untimely death in 1982.

At IPMCE, the Lebedev group set about designing a large-scale computer,
the BESM-1 (Bol’shaia Elektronaia Schetnaia Mashinu)’ which was approved
by a state acceptance commission headed by Lavrent’ev in 1953. Serial
production of a somewhat modified version of this machine using ferrite core
memory, the BESM-2, began in 1958. As in the United States, the earliest
Soviet computers (e.g., MESM and BESM) were involved in scientific and
military computing, especially in computing centers organized at various
locations of the Academy of Sciences.

Automatic data processing for “commercial” purposes (ADP) made its
Soviet debut in the mid 1950s with the appearance of the MINSK and URAL
designs. The MINSK was designed by V. V. Przhiialkovskii and others in
Minsk at the design bureau of the Ordzhonikidze factory belonging to the
Ministry of the Radio Industry (Minradioprom). The URAL was designed by
B. I. Rameev in Penza. Both the MINSK and URAL were manufactured by
Minradioprom and they became the workhorses of Soviet ADP.

In the early 1960s, versions of BESM, MINSK and URAL machines using
solid-state circuitry and ferrite core memory made their appearance. A variety

“Small Electronic Calculating Machine.”
For more on the history of Soviet computing, see Burtsev (1985); Campbell (1976); Davis and

Goodman (1978); Ershov (1975); Glushkov (1979); Judy (1967); Judy (1970); Korolev and
Mel’nikov (1976); Mel’nikov (1986); Rudins (1970); and U S i M (1976, 1977, 1982).
’ “Large Electronic Calculating Machine”

254 RICHARD W. JUDY AND ROBERT W. CLOUGH

of other machines also appeared in the 1960s, but the Lebedev machines
dominated the field of scientific computing, while Minradioprom’s own
designs similarly dominated ADP.

The most significant second-generation Soviet computer was the BESM-6.
This strictly indigenous machine was designed in the first half of the 1960s by
Lebedev, V. A. Mel’nikov, and their associates at IPMCE. A prototype
appeared in 1965 and three more copies were built in 1967. The BESM-6
operated at 10 megahertz and was rated at more than 1 MIPS. It incorporated
a number of advanced architectural features for that time, e.g., instruction and
data pipelining, segmented memory, multi-programming, memory protection,
fast buffer registers, and paged virtual memory.

In the early 1960s, computer priorities began a major shift from scientific
toward industrial and data processing applications. Lebedev’s group designed
a new series of computers for information processing and control applications
that incorporated dual processors with common memory, multi-machine
complexes with shared memory, and real-time operations. But Minradioprom
looked askance at Lebedev’s (and the Academy of Sciences’) effort to expand
into the field of commercial and industrial computing where it was dominant.
A period of sharp bureaucratic infighting ensued in the mid 1960s, from which
Minradioprom emerged victorious.

Minradioprom, which had no new designs to replace the MINSK and
URAL machines, saw in IBM’s 1965 announcement of its new System/360 an
opportunity to counter what it perceived to be Lebedev’s threat to its
preeminence in ADP. In the second half of the decade, Minradioprom secured
top-level political support for its RIAD project which aimed to “reverse
engineer” the IBM System/360 family of upwardly compatible computers.
The late 1960s also saw another industrial ministry, the Ministry of
Instrument Making, Automation Equipment, and Control Systems (Min-
pribor), begin a determined effort to occupy a larger piece of the computer
field. With its ASVT systems, modeled after the PDP-8, Minpribor began a
policy of emulating Digital Equipment Corporation’s technology in much the
same manner that Minradioprom was emulating IBM’s.

These were difficult times for the Academy of Sciences. In the early
Brezhnev years, the Academy was stripped of its central role as chief computer
designer and was forced to give up many of its research and production
facilities. By the end of the decade, Minradioprom and Minpribor had
consolidated their positions not only as the nation’s computer manufacturers
but also as the leading centers of computer design. Not surprisingly, perhaps,
they showed an increasing preference for their own designs relative to those
emanating from the Academy of Sciences.

Although the Academy of Sciences was forced to concede ADP to

SOVIET COMPUTERS IN THE 1980s 255

Minradioprom and industrial process control to Minpribor, its research and
development in scientific computing continued. Lebedev’s group began work
on a successor to the BESM-6, a high-capacity scientific computer capable of
as much as 100 MIPS. Efforts to design a machine, called the EL‘BRUS, were
under way by the early 1970s.

In 1965, the Council of Ministers established the State Committee for
Science and Technology (GKNT) as a central coordinator of technological
development policy for the entire country. In practice, the GKNT proved
weak in comparison to the powerful industrial ministries and was restricted to
monitoring plan assignments, although statutes allowed it a much more active
role. During the 1970s, the Academy of Sciences was starved for resources and
effectively removed as a major player. In the wake of the GKNT’s failure to
manage and promote technological development and of the Academy’s
emasculation, the power and responsibility for computer design fell almost
completely to the manufacturing ministries. Minradioprom controlled the
CMEA (Council for Mutual Economic Assistance) effort to develop main-
frame computers based on IBM technology, and Minpribor did likewise for
CMEA’s program to develop a standard line of minicomputers based on DEC
designs. The Soviet computer industry was now established on the profoundly
conservative course of technological followership. Without effective leader-
ship from the GKNT, and lacking any mechanism to spur it, indigenous
computer development made little progress in the 1970s.

3. Official Plans for the 1980s

The technological stagnation of the 1970s led to a widening gap between
Soviet computer technology and that of the West. This growing gap, when it
was finally perceived by the Soviet political leadership, laid the groundwork
for a comeback by the Academy of Sciences. In late 1984, indications mounted
that a new “computer plan” was being developed in the Academy under the
direction of Academician E. P. Velikhov.6 This plan became official policy as
the reins of power passed from Chernenko to Gorbachev in 1985.

On January 4, 1985, Praoda announced that the Politburo had “considered
and basically approved a state-wide program to establish and develop the
production and effective utilization of computer technology and automated
systems up to the year 2000.” Raising economic productivity and efficiency by
accelerating scientific and technical progress, particularly in machine building
and electronics, was said to be the over-arching objective of this new program.

Samarskii (1984~ 27; Yasmann (1985). 3.

256 RICHARD W. JUDY AND ROBERT W. CLOUGH

Gorbachev, reporting to the Central Committee in June, 1985, put the
matter in the following words:

Machine building plays the dominant, key role in carrying out the scientific and
technological revolution.. . . Microelectronics, computer technology, instrument
making and the entire informatics industry are the catalyst of progress. They
require accelerated development.’

The new informatics program, which has not been publicly disseminated,
called for acceleration of production, improved quality, and the introduction
of new models of computer equipment.’ Applications of informatics tech-
nology, especially computers and microprocessors, and automation were to
lead to a “comprehensive intensification of the national economy.” Other
major provisions of the plan were the following:

0 Minradioprom and Minpribor should continue development and pro-
duction of mainframe and minicomputers along the RIAD and SM lines
that emulate IBM, DEC, and Hewlett-Packard designs.

0 Computer output should increase by 200-230% from 1986 to 1990.9
0 Computers already in service should be used more efficiently.
0 Greater attention should be paid to minicomputer and microprocessor

development for applications in specialized fields such as CAD, robotics,
flexible manufacturing systems (FMS), scientific research, process con-
trol, etc.

0 A major effort should be launched by the Academy of Sciences as
well as by the manufacturing ministries to develop high performance
“supercompu ters.”I0

0 A new course entitled “The Fundamentals of Computer Science and
Informatics” would become mandatory in the last two years of all Soviet
high schools.

0 A total of 1.1 million personal computers should be produced in the
period, with about half directed toward education.”

Under Gorbachev, information technology has moved toward center stage.
Both the Soviet political and scientific leadership clearly realize that the nation
lags far behind world levels in the development and application of computers

’ Pmuda, June 12, 1985, 2.
‘See Vinokurov and Zuev (1985).

Smirnitskii (1986), 10.
lo Marples (1985). I-footnotes Radio Moscow, January 20, 1985.
I ’ Ershov (1986). 2.

SOVIET COMPUTERS IN THE 1980s 257

and communications technologies. They realize, further, that these tech-
nologies are the key to progress across a broad spectrum of civilian and
military purposes. The decade of the 1980s has become one in which the
Soviets are struggling to stop the lag from widening and to create the con-
ditions for closing it in the decades to come.

4. Hardware Development in the 1980s

The decade of the 1980s has been one of great activity in the Soviet
computer industry. So far, it has also been one of serious disappointment for
Soviet computer policy makers and users. On the one hand, the Soviet civilian
computer manufacturing industry has expanded both in terms of the number
of its principle actors and in terms of the range of equipment produced. The
results achieved, on the other hand, continue to be disappointing both quan-
titatively and qualitatively.

4.1 The Major Hardware Manufacturers

At the end of the 1970s, only two Soviet industrial ministries, Minradio-
prom and Minpribor, were in the business of manufacturing general-purpose
digital computers for civilian use. Computer components were the domain of
the Ministry of the Electronics Industry (Minelektronprom). Both Minradio-
prom and Minelektronprom were (and are) “VPK ministries,” i.e., were
specifically designated members of the “military-industrial complex.” In
addition to radar and other radio-electronic equipment, Minradioprom
supplied mainframe computers to both civilian and military users. Minelek-
tronprom supplied electronic components for civilian and military purposes
and also supplied the military with a variety of “ELEKTRONIKA” general-
purpose and specialized digital computing systems.

Minradioprom and Minpribor remain important suppliers of civilian com-
puting equipment in the 1980s and have been joined by Minelektronprom
which has made its ELEKTRONIKA microcomputer systems available for
general civilian users. More recently, the Ministry of Communications Equip-
ment (Minpromsviazi) and several other producers have announced smaller
systems. The following discussion of Soviet computer hardware is organized
by major manufacturer.

4.1 . I .

Minradioprom is the veteran Soviet computer ministry. On the scene early
with its URAL and MINSK series, it solidified its position as the Soviet

The Ministry of Radio Technology (Minradioprom)

258 RICHARD W. JUDY AND ROBERT W. CLOUGH

Union’s producer of commercial data processing equipment in the 1970s with
its RIAD or “ES” systems of IBM-compatible mainframe computers. Like its
American model, Minradioprom was slow to embrace personal computers but
has finally done so. What follows is an account of recent Minradioprom
machines.

The RIAD or “Unified Series” of IBM-Compatible Mainframes. The
“RIAD” family of computers is not well known outside the Soviet bloc,
although probably more copies of RIAD are installed in the world than of any
other mainframe computer family except for those of the IBM Corporation.
Also known as the “Unified Series’’ (abbreviated “ES).), these machines have
been the backbone of general-purpose computing east of the Elbe since the
early 1 9 7 0 ~ ’ ~

Essentially, the RIAD machines are functional equivalents and technolog-
ical derivatives of IBM’s System/360, System/370, and Model 303x com-
puters. By 1988, three “generations” of RIAD computers had appeared and a
fourth was said to be on the drawing boards. Each of these has had a
generational “lifetime” of about seven years.

RIAD represented the first attempt by Minradioprom, and the Soviet
Union, at wholesale technological importation in the computer field. The
ministry’s earlier computer families, e.g., the URAL and MINSK series, were
indigenous designs. With its wholesale copying of American computer
architecture, the RIAD marked a dramatic turnabout in Soviet computer
policy, one that led not only to the production of a family of IBM-compatible
computers but also to the attenuation of efforts to develop indigenous
computer technology in the USSR. It launched the nation upon a path of
technological followership that, for all practical purposes, it has trod ever
since. The principal reasons for this fateful policy shift were the following:

0 Economic and political decisionmakers were dissatisfied with the results
of earlier indigenous efforts. The URAL and MINSK machines were
slow, unreliable, inflexible, with deficient peripherals generally and
pathetically poor disk drives in particular. Small main memory and slow
processor speeds dictated the use of machine language rather than
higher-order languages, and applications software was limited in quan-
tity and quality.

0 Bureaucratic infighting between the Academy of Sciences and Minradio-
prom over primary responsibility for computer development in the USSR
produced a victory for the latter.

0 Soviet political leaders wished the USSR and its East European partners
to be more independent of Western computer suppliers.

See Davis and Goodman (1978) for an account of the early RIAD computers.

SOVIET COMPUTERS IN THE 1980s 259

0 Standardization of computer designs across the entire CMEA market
area seemed to promise economies of scale and specialization.

0 It seemed reasonable to focus scarce scientific and engineering resources
on a coherent set of objectives rather than permitting them to be diffused
and largely dissipated over a multitude of smaller projects.

0 It appeared that technology transfer from the West could best be
accomplished by concentrating on designs that had achieved widespread
acceptance among users worldwide, not least of all in East Germany.

0 The large inventory of software written for IBM mainframes seemed
available at little cost.

What follows is a review of the three generations of Soviet RIAD computers
with emphasis on those designed and/or manufactured in the 1980s.

RIAD-1: 1970-1977. RIAD-1, the first generation of the ES computers, was
designed by a group of engineers at Minradioprom’s Scientific Research
Center for Electronic Computer Technology (NITsEVT) in Moscow. Alek-
sandr Maksimovich Larionov, NITsEVT’s director, and Viktor Vladimiro-
vich Przhiialkovskii, its deputy director, were the senior members of the
RIAD design team. After Larionov’s death in the late 1970s, Przhiialkovskii
became Director of NITsEVT and Chief Designer of the RIAD computers,
positions that he continues to hold.

Seven models of RIAD-1 computer systems were planned. These and some
of their planned specifications are displayed in Table I. As it turned out, only

TABLE I

RIAD-I COMPUTERS AS ORIGINALLY SPECIFIED

Input/Output Channels

Multiplex Selector
Operations Main ~

per second memory Rate Rate
Model Country (ooos) (Kb) (Kb/sec) Number (Kb/sec)

ES-1010 Hungary 10 8 160 1 240
ES-1021 Czech. 20 16-64 35-220 2 250
ES-1020 USSR, BuI. 10-20 64-256 25 2 300
ES-1030 USSR, POI. 60-100 128-512 40 3 800
ES-1040 GDR 320-400 128-1024 50-200 6 1200
ES-1050 USSR 500 128-1024 100-150 6 1300
ES-1060* USSR 1300-1500 256-2048 100-150 6 1300

* Note: The ES-1060 was shifted into the RIAD-2 era.
Source: Larionov et al. (1973), 3.

260 RICHARD W. JUDY AND ROBERT W. CLOUGH

six systems passed the requisite CMEA tests and went into series production in
1972 and 1973.

The ES-1010, ES-1020, ES-1021, ES-1030, and ES-1040 appeared in 1972.
The ES-1050 appeared in 1973. These six systems made their formal debut at a
Moscow exhibition during May and June of 1973. They were displayed
together with some 100 peripheral and other RIAD-1 devices. Of these, three
of the computers and about 40 of the peripherals were of Soviet design and
manufact~re.’~ Design difficulties plagued what was to have been the most
powerful of the RIAD-1 computers, the Soviet ES-1060, and when this system
finally surfaced in 1978 its design had been so modified that it is properly listed
among the RIAD-2 computers.

RIAD-2: 1978-1983. In 1970, IBM announced the System/370. This new
computer family provided upward software compatibility with the System 360
and offered new features such as cache memory and virtual storage.
Minradioprom computer designers identified several trends that they con-
sidered significant for their own program. Among them were the following: the
rapid development of LSI (Large Scale Integration) which provided greater
functionality and speed; fast and increasingly cheap semiconductor memory;
magnetic disk storage devices with very great capacity and rapid data
transmission rates; very fast cache memory; new input/output devices; virtual
memory; rapidly improving performance/cost ratios; new or greater capa-
bilities in the areas of large data base processing, multiprocessing, and
teleprocessing; and architectural continuity designed to protect investments in
existing software.I4

As the RIAD-1 computers were close approximations to the IBM
System/360, so the RIAD-2 systems closely resembled machines of the
System/370. Eleven RIAD-2 computers are listed in Table 11.’’ Included also
are two “carryovers” from the RIAD-1 era. These were the ES-1033 and the
ES-1060 whose gestation was so protracted that they were born into the next
generation of RIAD computers.

From the beginning, the RIAD objective was to achieve compatibility with
IBM at the level of logical architecture, software, and peripheral interfaces. As
time has passed and the Soviet computer designers have accumulated
experience and confidence, they have increasingly departed from IBM in
matters of design and performance.

” Larionov (1976).
l4 This summary of points made in 1976 by A. M. Larionov, Riad’s chief designer. See Larionov

(1976).
’’ Soviet sources are inconsistent in placing specific computers into the three Riad “gen-

erations.”The classification here generally follows the most recent Soviet source used in this study,
i.e., Artamonov (1988).

SOVIET COMPUTERS IN THE 1980s 26 1

TABLE I1

RIAD-2 COMPUTERS

Input/Output Channels

Multiplex Selector
Operations Main ___
per second memory Rate Rate

Model Country (000s) (Kb) (Kb/sec) Number (Kb/sec)

ES-1012
ES-1015
ES-1022
ES-1025
ES-1033
ES-1035
ES-1045
ES-1055
ES-1060
ES- 1061
ES-1065

Hungary
Hungary
Bul., USSR
Czech.
USSR
USSR
USSR
GDR
USSR
USSR
USSR

36
16
80

40-60
150- 200
40-160

530-860
435

1300
1500
5500

64
128

128-5 I2
128-256
256-51 2
256- 51 2

4096
2048

8192
16384

256-2048

20

50
24
40
40
40
40

110
110

15

2
1
4
4
4
5
6
6

15

500
800
800
740
1500
I500
3000
1250
3000

Sources: Judy (1986); Lomov (1987); Artamonov (1988).

RIAD-3 Mainframes of the 1980s. In 1978 and 1979, IBM introduced a
series of computers that were architecturally and functionally in the
System/370 family but which bore new model designations. These were the
4300 Series and the 3030 Series. A significant attribute of these series is their
adherence to the IBM 360-370 logical architecture whose memory addressing
convention limits the amount of main memory to 16 megabytes. The RIAD-3
computers are subject to the same constraint.

Initial planning for the third generation of RIAD computers began in the
mid 1970s, even before RIAD-2 was announced. In 1976 and 1977, a set of
design objectives was set forth by the Council of Chief Designers of the RIAD
Computers and was adopted by the Intergovernmental Commission for
Computer Technology.'6

The chief technical objectives of RIAD-3 were the following: to maintain
compatibility with existing software and peripherals; to improve performance
in terms of throughput capacity, input/output speed, memory capacity, and
number of attachable terminals; to make greater use of LSI logic chips which,
in turn, was to lead to reduced physical dimensions, lower power require-
ments, improved reliability, and higher speed; to employ more LSI memory

l6 See JS (I 984).

262 RICHARD W. JUDY AND ROBERT W. CLOUGH

chips-up to 4 Kb for high speed, special purpose storage and 64 Kb or
larger for main memories; to introduce new memory technology for very large
bulk storage; to make use of functionally oriented co-processors to con-
trol subsystems and peripherals, e.g., data flow, input/output; to use more
problem-oriented processors and co-processors, e.g., symbolic processors,
matrix processors, set processors, and other math processors; to improve
RIAD designs of multiprocessor systems as well as network structures for
remote and distributed data processing systems; to design and produce
improved hardware and software for large data base management; and
generally to promote greater flexibility and modularity in both hardware and
software design.

Beyond these technical objectives for RIAD-3, Minradioprom sought the
following results: improved price/performance ratios relative to RIAD-2;
increased networking capability; greater use of data base management
systems and other problem-oriented software; better implementation and
usage of computers for improved economic payoff.

The development of RIAD-3 systems was planned to be in two stages. In the
first stage, the primary focus was to be on (i) improving the component base of
the systems by further development and use of new semiconductor tech-
nologies, (i i) development of specialized processors and software for them, and
(iii) the transfer of selected operating system functions to hardware. This first
stage of RIAD-3 development was explicitly defined as one of enhancing the
performance of systems constructed according to RIAD-2 architecture. ”

The new RIAD-3 systems were evolutionary improvements upon the
preceding generation. RIAD-3 computers have maintained architectural,
software, and peripheral compatibility with RIAD-2 while incorporating
some technological improvements in microelectronics and design. In the
period 1983-1988, production began on more than a dozen new RIAD
computers, half of them being of Soviet manufacture. Those Soviet systems
are listed in Table 111.

The ES-1007, introduced in 1988, is the first in a new class of small RIAD
computers intended for stand-alone operation or as terminals in distributed
data-processing systems. Individual copies of the machine were being dis-
played in mid 1988 but serial production appeared not yet to have begun.
Though relatively small and probably intended to be roughly equivalent to
IBM’s PC/370, the ES-1007 physically was more the size of an IBM System 34.

The ES-1036 is a new Minradioprom computer in the line of the ES-1020,
ES-1022, and ES-1035. It offers virtual storage and dynamic microprogram-
ming said to provide for application-oriented tailoring of system architec-
ture to support user programs. It supports virtual machine system (VMS)

l 7 See JS (1984).

TABLE 111

SELECTED C H m n w s n n OF SOVIET RIAD-3 COMPUTERS

Model ES-1007 ES-1036 ES- 1046 ES-1061 ES-1065 ES-1066

Generation
Year of Appearance
In Serial Production?
Main Processor

Operating speed (k ops. sec.)
Selected performance times (psec)

Fixed point add
Floating point addisub.
Floating point multiply
Fixed point divide

Number of instructions
Special & Auxilliary Processors.
Primary Memory

Capacity (Mbytes)
Cycle time (psec)

Length of accessed word (bytes)
I/O Channels

Maximum channel capacity, (kbyteisec.)
Multiplexor channels

Maximum number
Data rate (kbyte/sec.)

Maximum number
Data rate (kbyteisec.)

Typical Operating System
Modes of Operating"

Programming Languages***

Selector channels

RIAD-3

Doubtful

100

1987-88

S

I

I

1

B. VM

AS. F.
PLI, c

RIAD-3

YeS
1984

400

0.9
4.81

10.1
14.3

220
FL, S

2-4

8-128

1
50

4
1.500

0 s ES
B. MP. VS.

VM, RT
AS, F, F4,

PLI. C, RPC

RIAD-3

Presumably

750.300

1986?

0.6
I .69
4.06
3.8
183

M, S

8
.7

8-128

2
160

4
3.000

0 s ES
B, MP, VM,

RT
AS, F4, A,

PLI, C, RPG

RIAD-2

Yes
1983

1500

183

8
.7

8-128

lO,S00

2
426

6
1.250

0 s ES 6.0
B, MP. VM,

RT
ASMC, F, C.

PLI, RPG

RIAD-3

Presumably

1600.2000

1985?

183
S

16
.85

8-128

30,000

4

15
3,000

0 s ES 6.0
B, MP, VM,

RT
ASMG, F, C.

PLI, RPG

RIAD-3

Possibly
1987-88

5000,200

0.16
0.32
4.6
1.6

M, T, MK, S

8-16
0.68

8-128

18,000

12 universal

12 universal

OS7 ES
B, MP, VS,

VM. RT
AS, F, PLI.

C. A

Keys to Abbreviations:
* FL-Floating point; S-Service; M-Matrix; T-Text; MK-Macro Conveyor
** B-Batch; MP-Multiprogramming; VS-Virtual storage; VM-Virtual machine; RT-Real time
*** AS-ASSEMBLER; F-FORTRAN; F4-FORTRAN IV; PLI-PL/I; C-COBOL; RPG-RPG; A-ALGOL
Sources: Artamonov (1988); Elektronno (1988); Judy (1986); Kezling (1986).

264 RICHARD W. JUDY AND ROBERT W. CLOUGH

operations under different operating systems. It, like other larger RIAD-3
machines, is available in multi-machine configurations. The machine went
into serial production at the Minsk computer plant in 1984.18

The ES-1046 is the latest in a line of Minradioprom machines that
previously have included the ES-1030, ES-1033, and ES-1045 computers. Like
its predecessors, it was designed by the Ministry’s Erevan Scientific Research
Institute of Mathematical Machines. It passed its international RIAD tests in
1984 and serial production had begun by 1985 at the Kazan computer plant.
The chief designer was A. Kuchukian, a Lenin Prize laureate.” The ES-1046 is
said to have greatly improved diagnostic and fault location capabilities that
can locate 99% of all failures to within two or three exchangeable components.
A full system checkout requires five minutes or less. The ES-1046 is said to be
available in 1 1 basic configurations including dual-processor and dual-
machine variants. It employs a service processor, a matrix processor, and a
machine graphics device. The performance/price ratio for the ES-1046 is said
to be twice as favorable as that for the ES-1045, its immediate predecessor in
the Armenian subfamily of Minradioprom computers.

The ES-1061 is the successor to the ES-1060 computer. Although Artamo-
nov (1988) designates it a RIAD-2 machine, it is discussed here because it
appeared first in this decade, contemporaneously with the RIAD-3 generation.
Design work is said to have begun in about 1980 by a team from Min-
radioprom’s Moscow NITsEVT and its Minsk Ordzhonikidze Computer
Association. The design team was headed by V. V. Przhiialkovskii, the General
Designer of the RIAD computers. Serial production began in 1983. I t was to
be offered for export in 1984.20 Reliability is said to be 150% of that of the

The ES-1065 is a high-performance Soviet computer that, like several other
top of the line Soviet systems such as the ES-1050 and ES-1060, has been a
long time aborning. The machine was originally intended to enter produc-
tion by 1977 as the most powerful of the RIAD-2 computers. In early 1984,
the ES-1065 was still in prototype and the Minsk computer factory was plan-
ning to begin production only in that year.21 The original specifications called

ES- 1060.

I’ Information on the ES-1036 is from Artamonov (1988). 192-195; Dujnic and Fundarek
(1983); Loeschner and Kasper (1984); Zamorin et a/. (1984); and Souetskaia Belorussiia (1984).

Information on the ES-1046 is from Artamonov (1988). 192-195; Dujnic and Fundarek
(1983); Zamorin et al. (1984); Kuchukian et a/. (1985); Selivanov (1987); Souetskaia Litua
(1985); and Musaelian (1985).

2o Information about the ES-1061 is from Artamonov (1988), 192-195; Dujnic and Fundarek
(1983); Szarnitasrechnika (1984). Souerskaia Belorussiia. April 3. 1983, 1 and January 8, 1984, I ; and
EIory Informirue! (1983).

I’ Larionov (1977).

SOVIET COMPUTERS IN THE 1980s 265

for it to be a 4.5 MIPS machine. Later information indicates that its speed is
no greater than 2 MIPS.”

The ES-1066 is another machine designed by the Armenian group at
Minradioprom’s Scientific Research Institute of Mathematical Machines in
Ere~an . ’~ Its maximum speed is rated at 12.5 MIPS, and it is said to perform
2 MIPS in data processing tasks and up to 5.5 MIPS in scientific comput-
ing. The ES-1066 is driven by the ES-2366 CPU, which is highly buffered and
pipelined with five-level interleaving. With a cycle time of 80 nanoseconds,
this is the fastest single processor that the Soviets had revealed by mid 1988.
It makes extensive use of specialized microprocessors and microprogram
control units. Input and output, for example, are controlled by the ES-2666
1 / 0 processor which supports up to 20 megabytes per second of data flow.

The ES-1066 is the first RIAD to be equipped with the ES-5080 disk drives
that offer reliability said to be much improved in comparison to previous
Soviet RIAD mainframes. From its specifications, the ES-1066 appears to be a
high-performance machine. Overall system performance is likely to be limited
by the shortage or unavailability of large-capacity disk drives and other
peripheral devices. Final judgement on its quality and operational perfor-
mance must be suspended until user reports become available. As with most
larger RIAD models, serial production of the ES-1066 posed production
difficulties. Volume production was underway in 1987, about two years behind
schedule.

RIAD-4. In late 1984, preliminary development work on the next generation
of RIAD computers was said to be in progress. Some of the goals of this
development effort were stated to be the following: maintenance of software
compatibility with previous RIAD systems; more advanced architecture
permitting greater expansion and efficiency; faster processor operating speeds;
greater real main storage capacity of the CPUs; greater external storage
capacity and faster data rates; improved ability to build local and extended
networks; improved 1 / 0 devices; greater user friendliness; improved operat-
ing systems that will increase throughput as well as provide more features and
functions; and better diagnostics, reliability, and main ta inabi l i t~ .~~

The next generation of RIAD computers is said to incorporate a new
multiprocessor architecture based on problem-oriented and functionally

’* Information about the ES-1065 is from Artamonov (1988). 192-195; Novak (1983).
’’ Information about the ES-1066 is from Artamonov (1988). 192-195; Lomov (1987);

Selivanov (1987); Zamorin et al. (1984); and Souetskaia Litoa (1985).
*4 Jungnickel(lY84). The author, Dr. Hang-Georg Jungnickel, was Chief Designer Engineer for

ES computers at the Robotron combine, which is the manufacturer of Riad systems in the GDR.

266 RICHARD W. JUDY AND ROBERT W. CLOUGH

oriented processors. The problem-oriented processors are for matrix opera-
tions, symbolic processing, and support of problem-oriented languages. The
functionally oriented processors include input/output processors, telecommu-
nication and set processors (which are to optimize processing of sets on
external memories). The individual processors are to be connected by a high-
speed bus.

Other aspects of the new systems are said to include large-capacity main
memories (potentially up to 2048 megabytes) built of 64 K b and larger
memory chips. The various specialized processors will be served by dedicated
storage of up to 256 kilobytes. External memory is to be controlled by
independent control processors which will also serve as virtual storage
control. Mention is made of external memory devices consisting of several
100-megabyte units on cylindrical magnetic “layers” that may be a variety of
drum storage. New operating systems, compatible with existing ones, are said
to be under development to support the transition to the multiprocessor
systems.

Without more information, it is difficult to divine the specific features of the
RIAD-4 generation of computers. From the hints provided, however, it
appears likely that new systems will display many characteristics of the IBM
308x Series. The references to “a more advanced architecture,” “multipro-
cessor systems,” and “greater real main storage capacity” point strongly in
that direction.

Minradioprom computer designers and their East European colleagues
have accumulated nearly 20 years of experience in the design, development,
and production of RIAD computers. That experience inevitably has devel-
oped a degree of expertise that was absent at the beginning. Increasingly, the
RIAD designers are departing from a strict adherence to IBM designs.

While preserving upward software compatibility with previous RIAD (and
IBM) systems, and remaining within the IBM “mainstream,” Minradioprom
is emulating other IBM-compatible manufacturers such as Amdahl, NAS,
Fujitsu, and Hitachi. In other words, they are trying to “add value” to the basic
IBM design, where “value” is to be understood in terms of the ministry’s
perceived needs and priorities.

The question remains as to when the next set of RIAD computers can be
expected to arise from the drawing board. Since 1972, a new group of RIAD
computers has appeared at approximately seven-year intervals. Thus, the
interval between RIAD-1 (1972-1973) and the RIAD-2 (1978-1981) com-
puters was six to eight years. Likewise, the interval between the RIAD-2s and
the RIAD-3s (1984-1988) was six or seven years. A seven to eleven year
technological lag of RIAD behind IBM has also been observed.

If the previous pattern of time lags behind IBM still held, more powerful
RIAD-3 computers, which could resemble the IBM 3080 Series, should have

SOVIET COMPUTERS IN THE 1980s 267

appeared by 1986 and 3090-like RIAD-4s should appear by about 1990. The
fact that RIAD-3 computers comparable to the IBM 3030 models entered
serial production only in the 1984 to 1988 timeframe suggests that Minradio-
prom is experiencing greater difficulty with the higher performance systems. It
now seems likely that the RIAD-4 machines will be delayed until the 13th Five
Year Plan, i.e., sometime in the early 1 9 9 0 ~ . ~ ~

One hint of Minradioprom plans was given in 1983 by a senior official who
spoke of a future RIAD computer dubbed the ES-1087.26 This machine, with
a MIPS rated two and one half times greater than that of the ES-1065, was
to be in production by 1990. Such a machine would have a capacity not too
dissimilar from that of an IBM 3081D which appeared in 1981.

Another tidbit of information was provided in an early 1988 reference to
the ES-1068. This new Soviet “computing complex” is said to be capable of
600 MOPS when equipped with “special matrix processors designed to ac-
complish specific tasks.” The principle ES-1068 architecture is said to be well
known to world computer science but the Soviet implementation is claimed
as a first. This, plus the indication that the ES-1068 is intended for “such
complex tasks as geological prospecting for major mineral deposits and con-
structing models of ecological processes,” leads us to conjecture that the
machine employs a massively parallel architecture of the MIMD (Multiple
Instruction, Multiple Data) type.” The ES-1068 may be Minradioprom’s re-
sponse to Minpribor’s rather successful PS-xO00 series of massively parallel
computers which also are used for geological work.

A summary chart of operational characteristics intended for future RIADs
is presented in Table IV.

Toward a Fifth Generation RIAD. A few clues to Minradioprom’s thinking
about a RIAD-5 have emerged.28 The first premise appears to be that
program compatibility with previous RIAD software continues to be a sine
qua non. The second is that improvements in reliability, service, usability, and
peripheral assortment are more important to Soviet users than the gains that
might be realized from greater architectural sophistication. That, of course,
does not preclude the use of better and less costly microcircuitry, micropro-
gramming, specialized processors, etc.

*’ This conjecture is lent credence by a Hungarian source in which the expectation is expressed
that the ES-1034, a Riad-3 computer, will remain in supply throughout the 1986-1990 period.
See Nanassy (1985).
’‘ Novak (1983). The author is quoting M. E. Rakovskii, the Director of CMEA’s Intergovern-

mental Committee for Computer Technology.
”See Marchuk (1986). 99-108.

In an article by the RIAD Chief Designer, Przhiialkovskii (1987).

268 RICHARD W. JUDY AND ROBERT W. CLOUGH

TABLE IV

BASIC PERFORMANCE TARGETS OF FUTURE RlAD COMPUTERS.

Time period
Characteristic I98 5 - 90 1990-95

Degree of IC integration,
(number of logical elements) 500-1000 5000

Processor speed, MIPS 10 100
Machine cycle time, ns 30-50 3-5

Fetch time from main memory, ns 150 20

Fetch time from buffer memory, ms 18 3-5

Number of ICs in CPU 600 50

Main memory chip size, Kbits 64 512

Fast buffer memory size, Kbytes 64 I024

Source: Maliarskii and Terekhov (1987).

A major thrust of future RIAD development is toward better user interfaces,
an interesting direction since “user friendliness” has never been a strong point
of Soviet mainframes. A second thrust is said to be toward integrated networks
combining systems from PCs to supercomputers. It appears, in short, that
Przhiialkovskii and his fellow Minradioprom designers continue their incli-
nation to follow Western and Japanese leads in creating future generations
of RIAD computers.

Measuring the IBM us. RIAD-3 Lag. From the beginning, RIAD designers
have followed the lead of IBM. It is fitting to provide a general assessment of
RIAD’s performance relative to that of IBM.

With the introduction of its 308x Seriescomputers in 1981, IBM moved to a
new architecture which permits vastly greater main memory as well as more
processing power.29 No Soviet computer with 3080 Series (much less 3090
Series) architecture was known to have been announced or shipped by mid
1988. The ES-1066 is the first Minradioprom RIAD computer to display
characteristics of the IBM 3080 Series.

29 The address portion of the instruction format common to the IBM 360-370-3030-4300
computers is 24 bits in size. Such an instruction can address a memory location up to 16,777,216
which is 16 megabytes. The IBM 3080 Series of computers employs what IBM calls its Extended
Architecture (XA) with 32 bit addressing. With this, the computer can address locations up 10

2,147,483,648 which is 2 gigabytes. Another feature of the 3080 and 3090series of IBM computers
is their use of multiprocessors packaged as integral central processing units.

SOVIET COMPUTERS IN THE 1980s 269

TABLE V

MATCHING SOVIET RIAD COMPUTERS WITH IBM COUNTERPARTS

Year RIAD
Year Closest IBM IBM Lag in

Model Country shipped counterpart shipped years

RIAD-1
ES- 1020
ES- I030
ES- I050
RIAD-2
ES-1022
ES-1033
ES-1035
ES-1045
ES-1060
ES-1061
RIAD-3
ES-1036
ES- I046
ES- I065
ES-1066

USSR
USSR
USSR

USSR
USSR
USSR
USSR
USSR
USSR

USSR
USSR
USSR
USSR

1972
1972
1973

1975
1976
1977
1982?
1977
1984

1984
1986?
1985?
1987

IBM 360/30
IBM 360/30
IBM 360/65

IBM 360/44
IBM 360/50
IBM 370/135
IBM 370/148
IBM 370/165
IBM 370/168

IBM 370/138
IBM 4341?
IBM 3033N?
IBM 3033U?

1965
1965
1965

1966
1965
1972
1977
1971
1973

1976
1979
1980
1978

7
7
8

Sources: Artamonov (1988); Data Decisions (1983); Judy (1986); Phister (1979).

Unlike the RIAD-1 machines, the RIAD-2 and RIAD-3 computers are
not close clones of IBM originals. One-to-one matching is not possible with
the later models. We have tried, nevertheless, to make some comparisons
and Table V shows a matching of recent Minradioprom RIAD computers
with IBM machines displaying similar architectural and performance
characteristics.

By definition, the imitator lags behind the imitatee. The discovery, therefore,
that RIAD lagged temporarily behind IBM in producing computers with
comparable CPU and memory capabilities provokes small surprise. The
interesting question is: How great is the Minradioprom mainframe lag and
how has it changed with the passage of time?

Soviet RIAD-1 computers lagged behind their IBM System/360 counter-
parts by seven or eight years; the average lag was 7.3 years. RIAD-2 computers
lagged behind similar IBM System/370 systems by from five to eleven years
with an average of 9.4 years. The four Soviet RIAD-3 computers so far
released have appeared from five to nine years after the IBM systems with
which they have been matched in this study; the average RIAD-3 lag has been
7.25 years.

270 RICHARD W. JUDY AND ROBERT W. CLOUGH

Minradioprom’s RIAD project is an effort to produce IBM-compatible
computers. How does the RIAD effort compare to Western and Japanese plug
compatible manufacturers, the so-called “ P C M S ” ? ~ ~

Taken as a group, the Western and Japanese PCMs offer an impressive
array of computers. In the mid 1980s, the PCMs were offering more than 54
computer models that were compatible with the IBM System/370 and the
4300,3030, and 3080 Series machines. This compared with 21 offered by IBM
itself and 11 RIAD computers announced by all the CMEA countries taken
together.

As a group, the PCMs have lagged very little behind IBM in bringing their
products to market. In contrast to an average RIAD-3 lag behind IBM of
more than seven years, the PCMs lagged an average of only 0.44 years behind
IBM. Furthermore, the alacrity with which the PCMs have brought forth their
clones has increased with time. Only a few PCM versions of System/370
machines were still for sale in 1985 but their average lag behind IBM was 4.33
years. The average lag for the 303x look-alikes was only 0.73 years. For the
4200 Series, it was 0.23 years, and for the 308x, the PCM competition actually
beat IBM to market by an average of 0.05 years.

Not only were the PCMs able virtually to eliminate the time lag behind
IBM, their computers were, on the average, 0.48 MIPS more powerful than the
IBM computers with which they were designed to compete. Some examples
illustrate the point. Amdahl/Fujitsu’s “imitation” of the IBM 3032 not only
beat IBM to market by a year but was 1.5 MIPS more powerful when it got
there. NAS/Hitachi’s product arrived two years earlier and 1.25 MIPS more
powerful than the IBM 30835. The PCMs led IBM also in a number of
important areas of technology, e.g., in the early use of very large scale
integrated (VLSI) circuitry.

The major PCMs have maintained a blistering pace of new product
introduction and technological innovation. In many cases, they have un-
doubtedly forced IBM to bring new computers to market earlier than it would
have preferred. Compared with this example of competitive markets at work,
the performance of CMEA’s RIAD effort is unimpressive. The RIAD-3
average lag of over seven years behind IBM was greater than the average lag
of any of the major PCMs. As a manufacturer of plug compatible compu-
ters, the Soviet-East European RIAD consortium brings up the rear.

That the RIAD lag behind IBM has remained essentially invariant during
the course of nearly two decades is rather surprising. Several factors might
have caused the Soviets to pick up the pace. For example, information about
Western computer technology in general and IBM’s designs and intentions in

’O Prominent among the PCMs are Amdahl, National Advanced Systems, Nixdorf, Hitachi,
and Fujitsu. For more on the PCMs’ performance, see Judy (1986), Appendix B.

SOVIET COMPUTERS IN THE 1980s 27 1

particular surely must come faster to RIAD engineers as the Soviet industrial
intelligence apparatus has m a t ~ r e d . ~ ’ RIAD engineers have accumulated
20 years of experience in building IBM-compatible computers. Has their
expertise not increased correspondingly?

I t would seem that, while the engineering and design sides probably have
improved over the years, the industrial basis of computer production has
failed to improve correspondingly. The ponderous Soviet planning and
industrial establishment has moved too slowly to support high-tech manu-
facturing. Many of the old problems of the economic system remain or even
worsened with the passage of time; among them are those of fractured
responsibility for R&D and production, monopolistic ministries, organiza-
tional infighting, bureaucratic bumbling, inappropriate success indicators,
disincentives for innovation, inattention to quality control standards, and
sluggish industrial supply.

Evaluating the R I A D Performance. In the space of two decades, the Soviet
Minradioprom and its CMEA partners have created the capability to design
and manufacture IBM compatible mainframes. Starting from a very modest
technological base, the RIAD consortium by 1985 had brought three
generations of computers to market.

Every RIAD generation has improved substantially on its predecessor. This
is true of both individual models and of the family as a whole. While the
RIADs have not gained technologically on either IBM or the PCMs,
Minradioprom computer engineers have proven themselves capable of
designing powerful mainframe computers. Furthermore, the RIAD designers
have apparently accomplished many of the objectives that were set before
them at each generation. Despite considerable improvement over the years,
however, the Soviet RIAD computers appear not to have developed strong
loyalties among their users. Indeed, even Soviet users prefer RIADs manu-
factured in East Germany to the domestic products.

Much of the users’ dissatisfaction with the Soviet RIADs can be traced
to Minradioprom and its suppliers, particularly Minelektronprom. Soviet
manufacturing weaknesses have adversely affected the design and production
of basic components and of peripherals, particularly of disk storage devices.
Minradioprom still uses 64 Kb memory chips, for example, at a time when
1 Mb chips are in widespread use in the United States and Japan. The RIAD
computers continue to employ old bit-slice processor chips. Until the early
1980s, RIAD central processors were using Minelektronprom’s K589 series

31 The “industrial intelligence apparatus” is understood here to include everything from
espionage, to imports in defiance of COCOM restrictions, to the processing of unclassified
western technical literature.

272 RICHARD W. JUDY AND ROBERT W. CLOUGH

chip and now they use the K1800 series. These and other families of Soviet
chips are described below in Section 4.3.

Other persisting problems of the RIAD mainframes have been unsatis-
factory reliability, inappropriate configurations for user purposes, shortages
of spare parts and supplies, software inadequacies, generally poor levels of
user support, high cost, and insufficient levels of output.

These problems, which are not confined to Minradioprom, must be solved
before the Soviet Union can be said to have developed a satisfactory main-
frame computer industry.

Personal Computers from Minradioprom.

Like IBM, Minradioprom was slow to climb aboard the PC bandwagon.
Admittedly, that bandwagon began to roll much later in the Soviet Union
than in the United States and Minradioprom may have had to contend with
certain negative official attitudes toward PCs until 1985. But it also seems
likely that Minradioprom engineers and managers were inveterate “main-
framers” just as were many engineers and managers in large American com-
puter companies before Philip Estridge sprung the product of his PC “skunk
works” in Boca Raton upon the computer world. In any case, Minradioprom
waited until 1982 to begin designing personal computers.

AGAT, An Apple4 Clone.

The AGAT was the Soviet Union’s first personal computer and, true to
Minradioprom tradition, was the clone of an American original, in this case
the Apple-IL3’ Since the AGAT was intended primarily for schools, it was
not unreasonable that Apple was taken as the model since more educational
software was available for the Apple family than for any other brand of per-
sonal computer^.^' Design work on the AGAT began in 1982 and early
models were in use by 1983. The machine entered serial production at the
Lianozovskii Electromechanical Factory in 1984.

Whereas Jobs and Wozniak were able to use the “off the shelf” Motorola
6502 chip for the Apple-11, Minradioprom found itself constrained to build up
the AGAT’s 8-bit CPU using Minelektronprom’s K588 CMOS bit-sliced
processor. This, combined with slow disc access, are probably what make the
AGAT run up to 30% slower than the Apple-II.34 In addition, the machine
provided CP/M compatibility via an Intel 8080-compatible Minelek-

’’ Information on the AGAT comes primarily from Artamonov (1988), 207; loffe (1984);
Savel’ev (1987a). 120-124; Injormatika i Ohrazooanie, 1987: 6, inside cover; and from the senior
author’s personal observations.
’’ Ershov (1987).
34 For some run-time comparisons performed by an American visitor to the USSR, see Bores

(1984). 135, passim

SOVIET COMPUTERS IN THE 1980s 273

tronprom K580 coprocessor. The AGAT was configured with 42 Kb of ROM
and 64 Kb (expandable to 256 Kb) of RAM. External storage could be on one
or two 258 Kb floppy disk drives (ES-5088 or ES-5089) or audio tape cassettes.
The RGB TV monitor provided either 40 x 24 or 80 x 24 character display as
well as three bit-mapped color graphics modes; an audio generator supplied
sound. Input-output was by two programmable parallel and one RS-232C
serial ports.

AGAT DOS, the operating system provided by Minradioprom, was strictly
analogous to Apple-DOS as was most of the rest of the machine’s basic
software endowment. BASIC-AGAT was the counterpart of Apple BASIC. A
version of Applesoft apparently was housed in ROM. The AGAT’s text editor,
file manager, and graphics editor all had their Apple counterparts.

Fortunately for students using the AGAT, another line of software for
the machine was developed by the Computing Center of the Siberian Division
of the USSR Academy of Sciences. This line, called “SCHOOLGIRL”
:SHKOL’NITSA) , included a much-improved DOS, a LOGO-like pro-
gramming language called “RAPIR,” and a graphics package called
“SH PAGA.”

The AGAT’s advantage over other Soviet PCs for educational purposes is
said to lie in its color graphics capability that makes possible interesting
instructional software. According to Soviet users, the AGAT’s main disadvan-
tage lies not in its sluggishness but, rather, in its extremely poor reliability. Its
floppy disk drives and keyboard are said to be particularly prone to failure.
According to one user, drive failures occur with “catastrophic frequency and
often with irreversible consequences.” Disks that read on one drive may be
unreadable on another. Machines are constantly in for repair and, even so,
minor failures (e.g., individual keys inoperable, one color unavailable) must
simply be o ~ e r l o o k e d . ~ ~

Because of its dubious quality, the AGAT has been the butt of much serious
criticism from Soviet officials as well as computer users. Rumors and reports
of its death, i.e, the discontinuation of its production, have been recurrent. The
most recent of these was a report that a state commission had decided to
withdraw the AGAT from production in early 1987 in order to replace it with
the KORVET.36 But the AGAT seems unwilling to die.37 Hundreds, perhaps
thousands, of them are installed in Soviet schools. Some of the Soviet Union’s
best educational software operates best on the AGAT and, of course, the
international library of Apple educational software continues to grow. I t
would not be surprising, therefore, to see an improved version of the AGAT

” Basin (1988); Yasmann, (1987).
36 Molodezh’ Estonii, June 3, 1987, as cited in Yasmann (1987).
’’ A journal article published early in 1988 indicated that the AGAT was still in serial

production. See Petrov (1988).

274 RICHARD W. JUDY AND ROBERT W. CLOUGH

make its appearance even though it has some formidable enemies in Soviet
official computerdom.

ES-l84x, IBM PC/XT Clones With the ES-1840 and ES-1841, Minradio-
prom returned to the familiar ground of copying IBM original^.^' The “ES”
model designation was rather surprising since it had always before been
reserved for RIAD mainframes. The explanation appears to lie in the fact that
Minradioprom, following the IBM lead, is touting these PC clones as
professional workstations that can be connected to the ministry’s RIAD
mainframes. Ministry officials also may harbor hopes that their designs can be
made the CMEA standard. If that were to occur, it would make a travesty of
CMEA computer collaboration since many better PC clones are made by
other countries in Eastern Europe and also by other ministries in the USSR.

The ES- 184x machines are manufactured by Minradioprom’s Minsk
Computer Works and are less-than-perfect copies of the IBM originals. They
differ, first of all, in that their motherboard layout differs substantially from
that of the IBM machines. PC-compatible graphics and other boards will not
fit the ES-184x expansion slots. No PC communications packages will work
on them because their 1 / 0 port is not RS-232-C compatible.

The ES-184x machines differ also in that they do not use the Intel 8088 or its
clone for its CPU. Rather, they employ the Soviet K 18 10VM86 chip which is a
4 megahertz Minelektronprom copy of Intel’s 8086 microprocessor. The
machines are configured with 256 Kb (expandable to 640 Kb) of RAM, a
Cyrillic and Latin character keyboard with 92 keys including 10 that are
programmable, a 80 x 25 monochromatic display, and “quasi” RS-232 and
Centronics ports.

The ES-1840, announced in 1986, offers two 320 Kb floppy disk drives and
differs from the IBM PC in that the drives are bulkier and are housed
separately from the main unit. Furthermore, the disks are not perfectly
compatible with the IBM format. The ES-1841, which appeared in 1987, is
an IBM-PC/XT semi-compatible machine equipped with a Bulgarian 10
megabyte Winchester disk. A mouse is available but is implemented differently
than on the IBM-PC and many programs intended for the latter do not work
on the ES-1841. Other peripherals include a color monitor and a plotter.
Although one of the present authors saw several ES-1840 systems on display
and in operation during his travels in the USSR during the summer of 1988, he
never saw a ES-1041 or any of the other peripherals described. The systems
displayed normally were equipped with Epson or Robotron (East German)
printers.

Information on the ES-1840 and ES-1841 comes from Pykhtin (1986) and marketing
brochures supplied by Minradioprom, and personal observations of the senior author.

SOVIET COMPUTERS IN THE 1980s 275

Like the machine itself, the ES-184x software supplied by Minradioprom is
copied or closely derived from American originals. The standard ES-184x
operating system is M86, a Soviet version of Digital Research’s CP/M-86,
which, according to Minradioprom, will support WORDSTAR,
SUPERCALC, D-BASE I1 and 111, SYMPHONY, and other popular
American software packages. Also available is ALFA-DOS, a Soviet version
of MS-DOS v. 3.2. Programming languages include ASM86 (a Soviet ver-
sion of Digital Research’s assembly language), as well as BASIC M86 and
PASCAL M86 which are Soviet versions of those popular languages.
Applications software packages for the ES-184x include ABAK (a Soviet
version of the SUPERCALC spreadsheet), SLOG (a WYSIWYG Russian
and Latin character version of the WORDSTAR wordprocessor), and
DELOGRAF (a business graphics package probably patterned after an
American original).

Users of the ES-184x dispute Minradioprom’s claims for software com-
patibility with the IBM-PC. They point out that the hardware differences
make the ES-184x incompatible not only with true IBM compatibles but also
with other Soviet “PC compatibles” like Minpribor’s ISKRA-1030 and
Minpromsviazi’s NEIRON series.39

PK-80xx; C P / M Compatible PCs. The PK-8001, PK-80lOand the PK-8020
are members of a new Minradioprom family of eight-bit computers based on
Minelektronprom’s KR580VM80A microprocessor, a 2.5 megahertz imita-
tion of Intel’s 8080A MikroDOS, a Soviet version of CP/M-80 is
the standard operating system for the PK-80xx machines.

The PK-8001 is configured as a small personal computer with main
memory of 16 to 64 kilobytes. Standard external memory is on audio cassette
although provision is also made for 8”, 5.25“, and 3” disk drives. Soviet
authors compare this machine to Radio Shack’s TRS-80 and put its speed at
625 thousand operations (register-to-register) per second or about 25% slower
than the IBM PC/XT.

The PK-8010 is normally equipped with 64 Kb of RAM, 24 Kb of ROM,
48 Kb of dedicated graphics memory, black and white monitor (512 x
256 pixels) and is intended primarily as a student’s workstation in a KORVET
classroom network. The PK-2020 may be configured with either monochro-
matic and/or color monitor, one or two 800 Kb floppy disk drives, dot ma-
trix printer, and an audio cassette tape storage device. It is intended to serve

’’ Shirokov (1988).
Information about the PK-8001 is from Velikhov et a/. (1986). Information on the PK-8010

and PK-8020 is from Sulim et al. (1986), 74; Velikhov (1987a), 28; Driga (1986), 66-68; and
Informatika i Ohrazovanie, (1987) (2). passim.

276 RICHARD W. JUDY AND ROBERT W. CLOUGH

as the teacher’s workstation in a KORVET classroom network. Main mem-
ory is said to be expandable to 256 Kb. The detachable keyboard, which
accepts input in both Cyrillic and Latin characters, is augmented by five
programmable function keys and a numeric keypad that doubles as cursor
control.

KORVET: A Classroom Network. The KORVET is a classroom con-
figuration of up to twelve PK-8010 student computer workstations networked
together with one PK-8020 teacher’s work~tat ion.~~ In network mode, the
KORVET’s operating system presumably operates a Soviet modification of
MP/M-80. Standard programming languages are said to include a Soviet
version of BASIC compatible with Microsoft’s MSX BASIC, PASCAL, and
RAPIR.

On the face of it, an 8-bit CP/M machine would seem an unlikely choice for
the Soviets as one of their main educational computers. In the past, the Soviets
have placed heavy weight on the quantity and quality of software that they
could “borrow” when they were deciding which American computer designs
to emulate. But in this case, very little Western educational software will run
under CP/M. The Apple 11, Commodore 64, and TRS-80, all with proprietary
operating systems, were the 8-bit computers of choice for American schools in
the early 1980s. In the pre-IBM PC era, the CP/M machines held sway only
in business applications. Even in that field, they were quickly eclipsed by
PC-DOS/MS-DOS machines after the IBM PC was announced in 1981.
Why, then, the choice of 8-bit CP/M machines for Soviet schools?

The history and tribulations of the PS-8Oxx and the KORVET classroom
network cast light on how that decision was made and also starkly illustrate
some of the fundamental problems of the Soviet computer industry.43 The
computer was conceived in 1985 in a laboratory of Moscow State University’s
(MSU) Institute of Nuclear Physics. Lacking an appropriate computer for
their experimental work in low-temperature plasma physics, Professor
Alexander T. Rakhimov and a young associate, Nikolai Roi, designed and
built their own machine. As it happened, their “dean” at MSU was the head of
the Department of Physics and Plasma Physics who was none other than
Academician Evgenii Pavlovich Velikhov, soon to become Vice President of
the Academy of Sciences and head of its Department of Informatics,
Computer Technology and Automation as well as chief scientific advisor to
Mikhail Gorbachev.

Velikhov was sufficiently impressed with his colleagues’ handiwork to

41 Information for the KORVET comes from the same sources as that for the PK-8Oxx

42 This KORVET case is based on the senior author’s interviews and Grif (1988).
machines described earlier.

SOVIET COMPUTERS IN THE 1980s 277

convene a meeting of computer specialists and industrialists at the Presidium
of the Academy of Sciences for the purpose of demonstrating the new
computer. At that meeting, the unanimous opinion was that the KORVET
should be mass produced. Another demonstration was scheduled, this one at
the Council of Ministers building, to be attended by top industrial leaders
including some ministers. Again, the response was enthusiastic and a decree
went forth from the Central Committee of the Communist Party and the
Council of Ministers calling for mass production of the machine which was,
by this time, named the KORVET. Production was planned to be in the
following numbers.

Year Planned Production

1987 10,000
1988 36,000
1989 84,000
1990 120,000
I992 250,000

The responsibility for preparing final documentation and prototypes
was assigned to the Scientific Research Institute of Calculating Machines
(“NIISchetmash”) while Minradioprom’s Baku factory “Radiostroenie” was
designated the producer. NIISchetmash said that it would take three (sic!)
years to complete the working documentation, an interesting indication of the
normal pace of design work in the Soviet computer industry. In the end,
however, they were able to complete the design and produce a prototype
school computer laboratory in one year. The KORVET was approved by a
state certification board in January, 1986 and its mass production was
recommended. The committee stated that the KORVET design satisfied the
requirements for educational computing and was technically superior to other
Soviet computers designed for this purpose.

At about the same time, a competing design for a school computer came
before the state certification board for approval. This machine, the UKNTs,
was to be produced by Minelektronprom and initially was not approved by
the certification board. More than 10 specialized integrated circuits were
required for the UKNTs, and the KORVET designers charge that Minelek-
tronprom, which is the Soviet Union’s monopoly producer of integrated
circuits and other electronic componentry, gave total priority to its “own
baby” and failed to meet commitments to Minradioprom.

According to Professor Rakhimov, a top Minelektronprom official explic-
itly invited the MSU designers to abandon Minradioprom and join forces

278 RICHARD W. JUDY AND ROBERT W. CLOUGH

with his own ministry. When Rakhimov refused to do this, citing the exist-
ing decision to manufacture the KORVET in Baku, his Minelektronprom
interlocutor cited the interministerial competition and predicted that UKNTs
would live and the KORVET would die.

As it turned out, Minradioprom’s Baku factory has been plagued by
inadequate quantity, inappropriate assortment, and low quality of compo-
nents from Minelektronprom. All parties associated with the KORVET are
convinced that their effort has been victimized by Mineletronprom’s favorit-
ism toward its own design, the UKNTs.

Early hopes that serial production of the KORVET would begin early in
1987 proved to be sanguine. Minradioprom was to begin serial production in
the fourth quarter of the year, but only a few systems were produced. Output
in 1988 is well below target and many otherwise completed machines are said
to be waiting at the factory for monitors that Minelektronprom has failed to

Concern about the longer-run feasibility of mass producing the KORVET
arises from the fact that the Baku Radiostroenie plant relies almost exclusively
on manual labor in its production. What equipment they have is said to be
mainly homemade. Entreaties to the planning authorities and Minradioprom
have failed to elicit the equipment necessary to ramp production to the
planned levels. The idea of purchasing a Japanese turnkey computer
manufacturing factory has attracted favorable attention. A television factory
in Lvov now produces a million television sets per year in such a Japanese
turnkey plant. For computers, however, not only foreign exchange short-
ages but also COCOM (Coordinating Committee for Multilateral Export
Controls) restrictions stand in the way.

The KORVET case illustrates the following weaknesses of the Soviet
computer industry:

supply.

1. Computer design, especially PC design, is frequently a haphazard matter:
The KORVET arose almost accidentally from a physics laboratory at
MSU.

2. The three functions of initial design, working documentation and
prototyping, and manufacturing are disjointed. Three totally different
organizations with three different sets of objectives have been involved in
the KORVET.

3. The oligopolistic structure of Soviet industry is a powerful brake on
progress in computer technology. Minelektronprom’s interest in and
favoritism toward its own computers conflicts with its position as the
USSR’s single supplier of computer components.

4. No satisfactory alternative to market competition exists in the Soviet

SOVIET COMPUTERS IN THE 1980s 279

economy to identify meritorious computer designs and to mobilize
resources for their production.

5. Shortages of components and manufacturing facilities impede the
expansion of Soviet computer production.

Future Directions f o r Minradioprom PCs. Minradioprom has provided
clear indication of its dreams of becoming a major Soviet PC producer.43
The ministry’s strategic orientation is primarily toward the professional
workstation market, especially where networking or other connections to
mainframes are desired, and secondarily toward the education market. The
truly “personal” computer user hardly enters the ministry’s present plans
for the future.

The IBM PC/XT semi-compatible ES-184x machines are the extent of
Minradioprom’s present and rather meager set of professional workstations, a
set the ministry calls the “first series”(hereafter “MRPC-1”) of its PC offerings.
The general specifications for Minradioprom’s “second series” (MRPC-2) call
for a set of machines to be built around a 32-bit processor analogous to the
Intel 80286 or 80386. There is no Soviet counterpart to either of these chips
and none is said to be on the horizon. State acceptance tests for the first
MRPC-2 machine, the ES-1842, were said to be in preparation in early 1 98tL4
Minradioprom may use an East German 80 x 86 clone which is thought to
be under development. Alternatively, Far Eastern 80x86 clones may be
imported in quantity. Minradioprom plans call for the MRPC-2 to execute the
RIAD instruction set either by emulation or by coprocessor. Main memory
would consist of one or two megabytes of RAM. Disk storage would be on
500 Kb floppy disks and hard disks with capacities of 12.76, 25.5, and
40 megabytes.

The MRPC-2 machines are intended to support a host of operating systems
including CP/M-86, MS/DOS, VM/PS, UNIX, and a synthetic system
CCP/M-86 said to combine the functions of CP/M-86 and MS/DOS.
Programming languages are to include those available under MS/DOS plus
those supported on the RIAD mainframes, e.g., ADA, FORTH, C, and
PROLOG. Application packages would include a word processor (probably
related to WORDSTAR), DBASE 11, and SUPERCALC.

Minradioprom’s business plan calls for the MRPC-2 to sell in the range of
8-10 thousand rubles ($13,000-17,000) and for annual output to be in the
“hundreds of thousands.” The plan also calls for the design and production of
a range of PC peripherals.

.a3 This section is based on the senior author’s interviews and Lopato et al. (1986).
44 Shirokov (1988).

280 RICHARD W. JUDY AND ROBERT W. CLOUGH

The ES-1840 and ES-1841 are clearly inferior to the IBM-PC/XT of 1981
vintage. Tomorrow’s Minradioprom ES-1842 probably will be inferior to
yesterday’s IBM-AT. The ministry is nowhere close to designing a computer
comparable to IBM’s PS/2 whose Intel 80386-based Model 80, as Shirokov
(1988) ruefully put it, “surpasses our most productive computer for scientific
and technical computations-the BESM-6.” The thought that American PCs
will be using the Intel-80486 chip in the early 1990s greatly depresses Soviet
computer users struggling to obtain and then use machines that are inferior to
Intel 8088-based PCs.

Minradioprom’s dreams of becoming a major supplier of PCs depend
critically on its ability to master the techniques of designing and then mass
producing high-quality, reliable, electronic consumer products, something
it has not demonstrated up to now. They also depend on vital factors over
which the ministry has little or no control, mainly an adequate supply of
components.

4.7.2. The Ministry of lnstrument Making, Automation Equipment,
and Control Systems (Minpribor)

In 1974, the Soviet Union and its partners in the RIAD program agreed to
start a complementary program to develop minicomputers within CMEA, the
so-called SM (Sistemaia Malaia, or small system) series. They created a
Council for General System Design of Minicomputers, with working sub-
groups for management information system and computer-assisted design.45

The CMEA countries agreed to develop the SM computer family as an
extension of Minpribor’s existing ASVT (Aggregate System of Computer
Technology) computers, such as the M-6000 and M-7000, which were pat-
terned after the PDP-8 and PDP-10 machines. As with RIAD and ASVT,
the SM line copied existing Western models, in this case the Hewlett Packard
HP-2116 and the Digital Equipment Corporation’s PDP-11 minicomputer
families.&

The SM machines were intended to fill the applications gap where RIAD
machines were simply too big or too expensive, especially in process control.
The original intent was to start testing initial SM models in 1977.47 Soviet
computer designer Boris Naumov, who had designed the ASVT computers,
headed up the SM project.

” Rakovskii (1979). The Soviet abbreviation corresponding to ADP and MIS is “ASU,” which

46 Goodman et al. (1984).
‘’ Naumov (1977).

means “Automated Control Systems,” and for CAD it is “SAPR.”

SOVIET COMPUTERS IN THE 1980s 28 1

The SM program initially was a minicomputer program. As the USSR
became able to produce more powerful integrated circuits, the “SM”
designation appeared on a number of much smaller systems, still preserving
HP or DEC compatibility, that the Soviets properly call “microcomputers.” In
the 1980s, the “SM” designation has also been applied to a new series of
Minpribor “personal” computers powered by Minelektronprom clones of
Intel 8080 and 8086 microprocessors.

Table VI provides an overview of the SM line of minicomputers. This
review does not cover those machines identified as being produced in East
European countries, even though they may use Soviet components.

Phase One: 1974-1977; Planning the SM-I. The first phase of SM
development laid out the basic designs for the first generation of SM
minicomputers (“SM-I”) and peripherals, and selected the countries re-
sponsiblefor each aspect of the p r~gram.~’ This phase was largely preparatory
in nature, in that no SM machine was produced. During this period, however,
Minpribor did produce the M400 computer, which operated at 0.1 MOPS,
had 64 Kb RAM, and was outfitted with a 5 Mb disk memory unit.

The CMEA member countries reached an agreement to produce four
central processors, the SM-1 P, SM-2P, SM-3P, and SM4P, which would
form the heart of four models of SM-I computers. The first two were based
on Hewlett Packard designs. The latter two were to be upwardly compatible,
third-generation 16-bit processors, based on the DEC PDP-11 line of
minicomputers.

Agreement was also reached regarding the applications that the SM
program would focus on in the development of the minicomputers. These
included: control systems for continuous and continuous-discrete technolog-
ical processes and production; complex scientific experiment control; net-
works with large minicomputers for data processing in non-industrial
applications; and automated design.

In June and July of 1977, Bulgaria, Hungary, GDR, Cuba, Poland,
Rumania, USSR, and Czechoslovakia attended the first international tests
for SM computers.49 Unfortunately, no computers were yet ready for inspec-
tion. The CMEA commission approved two central processors: the SM-1 P
(also called SM-2101) and the SM-3P (also called SM-2103). Two internal
memory units were approved: the SM-3100 and SM-3101 (latter produced in
Poland). In addition, a number of peripheral units received CMEA blessings.

Sources for the information on SM-I include: Ashastin (1980), 8 I ; Kabelevskii (1986). 31; and
Lavreniuk el al. (1979).

49 Lavreniuk et ul. (1979), 122.

TABLE VIA

SELECTED CHARACTERISTICS OF MtNPRIBoR SM-I MINICOMPUTERS

Model SM-1 SM-1M SM-2 SM-3 SM-4 SM-2M

Generation
Year of First Appearanw
Year Serial Production Ended
Main Processor

Soviet model(S) number of CPU

CMEA model nurnber(s) of CPU
Chip model used in CPU
Processor cycle time
Word Length (bits)
Byte size
Number of addressable registers
Data types

Operating speed
Selected performance times (fisec)

Register to register

SM-I
1978
1987

A- I3 1- 10
SM-P
SM-2101

16

4
fixed (8, 16 &

32 bits)
floating

(32 bits)
400 KOPS

SM-I + SM-I SM-I + SM-I
1981? 1978 1983 1978
???? ??r! nn m?

A- 13 I- I4 A-131-11 A-131-15 SM-3P
SM-2P
SM2102 SM-2M SM-2103

16 16 16 16

4 4 8
fixed@, 16& fixed(l6& fixed (16 bits)

floating (32 bits) floating (32 bits)

450 KOPS 480 KOPS 220 KOPS

32 bits) 32 bits) floating (48 bits)

5

SM-I
1978
1987

S M l P

SM-2104

16

8
fixed (8 &

32 bits)
floating (32 bits)

700 KOPS

2.1

Fixed point add
Fixed point multiply
Floating point add
Floating point multiply

Compatibility

Price of CPU (thousand rubles)
Number of processors in system
Primary Memory

Maximum capacity (8-bit bytes)
Access time (microseconds)
Length of accessed word (bits)

Throughput capacity
I/O Channels

Standard Operating Systems

Modes of Operating*

Programming Languages**
Price range for a system (000 rubles)

2.5 5
36.6 20

33 40
110 9

HP-3000 HP-3000?
M-6000
M-7000, SM-2

5
1 1

64K 128K
1200
18

250 K b 4 Mb
DOSRV

B, RT

Mn, F, A, B
7.1-67.9

2.2
10

18-40
23

HP-3000
M-6000
M-7000, SM-I

8.7
1 o r 2

256K
1200

250 Kb
DOSRV, OSRV

B, MP, RT

Mn, F, A
27 - 136.2

2.1
10
15
52

H P-3000?
SM-1, SM-2
SM 1210, PS3000

8.0
1 o r 2

256K
1200

2 Mb
ASPO, ROS
(multi-processor)
B, MP, RT,

Multiprocessor
F, A, B

20- 150

PDP-I 1 PDP-I 1
SM-4, SM 1420 SM-3, SM-1420
SM-1600, SM-1300 SM-1300

3 4.1
1

256K 248K
1200 1200

800 Kb 800 Kb
DOS SM, 0 s SM FOBOS, OSRV

RAFOS
B, MP, RT B, MP, RT

MA,F ,K,P ,B Mn,F ,K ,P ,B
46-160 30.7-62.15

Keys to Abbreviations
* B-Batch; MP-Multiprogramming; VS-Virtual storage; RT-Real time
** AS-ASSEMBLER; F-FORTRAN; PLI-PL/I; C-C language, K-COBOL; RPG-RPG; A-ALGOL, P-PASCAL, Mn-Symbolic
code, MA-MACROASSEMBLER
Sources: Artamonov (1988); Kezling (1986); Khatskevich and Protsenko (1988); Ostrovskii (1988); Prokhorov (1987); Prokhorov (1988a.b); Signaevskii
(1988); Zonis (1988).

TABLE VIB

SELECTED C w c m s n c s OF MINPRIEOR SM-I1 & SM-111 MINICOMPUTERS

Model
Alias

SM- 12 10
SM-53/50 SM-1410 SM-1420 SM-1600 SM-1700

Generation
Year of First Appearance
Year Serial Production Ended
Main Processor

Soviet mode@) number of CPU
CMEA model number(s) of CPU
Chip model used in CPU
Processor cycle time
Word Length (bits)
Byte sue
Number of addressable registers
Bytes per operation code
Bytes per instruction
Maximum operands per instruction

Number of instructions
Number of address modes
Data types

Operating speed
Selected performance times (psec)

Register to register
Fixed point add
Fixed point multiply
Floating point add
Floating point multiply

SM-I1
1986

16
8

37

2 o r 4

4
fixed (16 &

32 bits)
floating (32 &

64 bits)
logical

3.3 MOPS

0.9
1.8
3.0
2.5

SM-I1 SM-I1
198? 1983
1983?

SM-1204 SM-2420

16 16

9

152
12

fixed (8, 16 &
32 bits)

floating (32 &
64 bits)

logical

244 KOPS 1-8 MOPS

1 1
2.8
8.6

1 1
17

SM-I1 SM-111
1983 1987

SM-1700 ALP
SM- 1600.2620

K 18MVSl
360 ns 270 ns

16 32
8

8 16
l o r 2

2,4,6 1 to 17
6

107 304

fixed (8,16 &

floating (32 bits),

integer (8-128 bits)
32 bits) floating (32-129 bits)

decimal (to 32 digits)
logical decimal character string (to

64Kb)
bit field (to 32 bits)
2.8 MOPS

2.5
1.3
9.2

15
33

1.2

Maximim virtual memory addressable 256 Mbytes
Page size

Compatibility M7000, SM-2M
PS3OOO

Price of CPU (thousand rubles)

Special & Auxilliary Processors*
Number of processors in system l o r 2

Primary Memory
Maximum capacity (8-bit bytes)
Access time (microseconds) 0.54

4 Mbytes

1/0 Channels
Type of data bus (interface) IUS
Maximum number of peripherals

Typical hard disk storage capacity (Mb)
Standard Operating Systems

Modes of Operating**

Programming Languages***

Price range for a system (OOO rubles)

B, MP, RT,

F, K, P, G
MA

Multiprocessor

PDP- 1 1
SM-4, MIR-2,

MIR-3

SM-2410
MIR

512K

OSh

4.8
RAFOS

59

PDP- 1 1
S, -3, SM-4
SM-1600, SM-1300

4

3,940K

OSh
20

B, MP

Mn, AS, P, B

63-155

PDP-I 1
SM-3.SM-4
SM-1420. M5000

6

SM-2 104.0506
M-5000
compatible

1 Mbyte
0.72

OSh

42
DOS SM, OSRV
FOBOS

B. R T
DOS SM-1600

Mn, F, K, RPG,
PL 1

4 gigabytes
4096 bits
VAX-780
SM-3, SM-4,

SM- 1420,
SM-1600

FL

1-5 Mbytes
0.45

OSh

242 Mbytes
MOS VP
DEMOS

B, MP, RT, VM

F, C, K, P, PLl, B
BLISS-32

Keys to Abbreviations
* FL-Floating point; S-Service; M-Matrix; T-Text; MK-Macro Conveyor
** B-Batch; MP-Multiprogramming; VS-Virtual storage; RT-Real time
*** AS-ASSEMBLER; F-FORTRAN; PLI-PL/I; C-C language, K-COBOL; RPG-RPG; A-ALGOL, P-PASCAL, Mn-Symbolic
code, MA-MACROASSEMBLER
Sources: Artamonov (1988); Kezling (1986); Khatskevich and Protsenko (1988); Ostrovskii (1988); Prokhorov (1987); Prokhorov (1988a,b); Signaevskii
(1988); Zonis (1988).

286 RICHARD W. JUDY AND ROBERT W. CLOUGH

Phase Two: 1978-1 982. Production of SM-I; Introduction of
Micros. The actual production of SM-I computers began in this phase.50
So did the first design and production of SM microcomputers. Soviet
pronouncements identified a series of goals for this period, including the
increased production of higher-quality and more flexible computers, a wider
range of computer applications, improved upward compatibility, and con-
tinued development of peripheral components. The SM-I machines were
based on printed circuit boards with small or medium scale integration.
Kabalevskii (1986) reports that from 1977 to 1980, more than 100 different
SM devices were designed, tested, and produced. In addition, 16 operating
systems and 14 application packages were produced in the same period.

In 1979, the SM members held the Second International Meeting of the
CMEA SM Commission to introduce the following SM-I computer^.^'

SM-I. The SM-1 minicomputer is mainly used in technological process
control (ASUTP), both in industrial and laboratory experiments. It can
substitute for the earlier M-6000 machine, and is program-compatible with the
M-7000, SM-2, and SM-1210. The latter two are discussed below. Operating
with up to 64 Kb internal memory, the SM-1 can perform at 0.39 MOPS
in register-to-register addition operations. As usual, the speed is quickly re-
duced during other operations. Fixed-point multiplication is performed at
0.025 MOPS, and division at 0.015 MOPS. The SM-1 reportedly can be
equipped with an array of peripheral equipment, including external disk
memory from 860 Kb to 5 Mb. One available tape drive can store up to
100 Mb of data.

The SM-1 computer’s operating system is DOS RV, which supports
MNEMOCODE, a symbolic programming language, as well as FORTRAN,
ALGOL, MACRO, and BASIC.

SM-2. Used in automatic process control systems, equipment testing,
communication links, and engineering calculations, the SM-2 is fully com-
patible with the earlier M-7000, and program compatible with the M-6000,
SM-1, SM-2M, SM-1210 and PS-3000. Utilizing the SM-2P processor, which
follows the H P line discussed above, the SM-2 can perform 0.45 MOPS of
fixed-point addition, 0.1 MOPS fixed-point multiplication, between 0.025 and
0.055 MOPS of floating-point addition, and 0.043 MOPS of floating-point
multiplication. The computers internal memory can range between 64 Kb and
256 Kb.

50 For more information on the production of SM-I computers see Artamonov (1988) and

’’ Riabov (1981).
Kezling (1986).

SOVIET COMPUTERS IN THE 1980s 287

The SM-2 employs the DOS RV and 0s RV operating systems, which
can handle a symbolic program language, MNEMOCODE, as well as
FORTRAN and ALGOL.

S M - I M . Sometimes referred to as the “second generation” of the SM-1, the
SM-IM employs a slightly improved processor and has a larger operating
memory (128 Kb) and program memory than its predecessor. It is fully
compatible with the SM-1 and SM-2 computers, and program compatible
with the M-6000 and M-7000 as well. The SM-1M can perform 0.2 MOPS of
fixed-point addition, 0.05 fixed-point multiplication, 0.025 floating-point
addition, and 0.1 1 MOPS floating-point multiplication. Some configurations
of this machine utilize the SM-5211 cassette tape device for external memory.

S M - 2 M . Just as the SM-1M is an improvement of the SM-1, the SM-2M
is a “second generation” of the SM-2. Continuing along the HP path, the
SM-2M uses two central processors in applications such as process control
in energy and metallurgy, as well as ADP in small firms. With an internal
memory that can range between 64 Kb and 256 Kb, the SM-2M can perform
fixed-point addition at 0.48 MOPS, fixed-point multiplication at 0.1 MOPS,
floating-point addition between 0.025 and 0.055 MOPS, and floating-point
multiplication at 0.043 MOPS.

The SM-2M uses either the ASP0 or ROS operating systems, and the
program languages FORTRAN, ALGOL, and BASIC.

S M - 3 . The first of Minpribor’s DEC PDP-11 line of computers to appear in
the late 1970s was the SM-3. Intended for monitoring scientific experiments,
equipment testing and controlling, and various calculation duties, the SM-3
was also employed in multi-machine systems with RIAD computers, serving
as a remote terminal, peripheral processor, input-output processor, and in
other network capacities. The computer was shipped in eight standard
configurations, depending upon final application.

Operating at an average 0.126 MOPS, the SM-3 could also attain
0.2 MOPS in the faster register-to-register operations. The machine’s internal
memory could range from 16 Kb to 56 Kb, and was program compatible with
the SM-4, SM-1420, SM-1600, and SM-1300. It operated under the DOS SM
and 0s SM operating systems, and could use the program languages
MACROASSEMBLER, FORTRAN, COBOL, PASCAL, and BASIC. A
later version of this computer, the SM-3-20, was serially produced beginning
in 1980.

A distinguishing feature of the SM-3 and SM-4 (i.e., the DEC-like) families
of minicomputers is their use of a standardized data bus, the Obshchaia Shina
(“OSh”) which is the functional equivalent of DEC‘s UNIBUS. Like

288 RICHARD W. JUDY AND ROBERT W. CLOUGH

UNIBUS, the OSh is a parallel bus consisting of 56 data lines and is designed
to promote compatibility across a wide range of computers and peripheral
devices.

SM-4. Minpribor’s SM-4 has developed into the workhorse of Soviet
industrial, research, and design applications, and boasts the largest installed
base of all Soviet minicomputers. Intended for use as an automated design
workstation, technological process controller, or scientific experiment man-
ager, i t was first announced in 1978, and entered production at Minpribor’s
Kiev Elektronmash complex in 1980. Naumov once reported that the SM-4
was four times faster than the SM-3, and twice as expensive. The available
scattered evidence generally supports Naumov’s assertion.

The SM-4 computers have at least 64 Kb and no more than 256 Kb of
internal memory. They operate at an average 0.244 MOPS (Gibson-] test),
but can reach 0.7 MOPS in register-to-register operations, though there is
some discrepancy in official Soviet statistics. The SM-4 computers are pro-
gram compatible with the SM-3, SM-1420, and SM-1300 computers. They
run the FOBOS, 0s RV, and RAFOS operating systems. They can accom-
modate the following program languages: MNEMOCODE, FORTRAN,
COBOL, PASCAL, and BASIC.

Minpribor produces the SM-4 computer in at least seven different configu-
ration subfamilies each of which bears its own identification number ranging
from SM-1401 to SM-1407. To add even more confusion, the SM-1403 is also
referred to as the SM 52/11, and the SM-1404 is alternately known as the
SM 51/13. The general characteristics and distinctions of these subfamilies
follow immediately below.

The SM-1401 has at least eight common configurations, which differ mainly
by the size of internal and external memory. The SM-1401s operate under the
FOBOS operating system.

The SM-1402 comes in at least two configurations, with the only distinction
being the number of internal units used to achieve 64 Kb of memory. These
use the DOS operating system.

The SM-1403 (also known as the SM-52/11) is shipped in at least eight
different configurations that differ by the type of external memory and printer
devices installed with the computer. These machines operate under 0s RV.

The SM-1404 (also known as the SM-51/13) is a version of the SM-4
computer that comes in two different configurations, and each has two
processors, which sets the SM-1404 apart from other members of the SM-4
family. I t also has two transistor internal memory devices and can access up
to 29 Mb on attached fixed disk units. Like the SM-1403, i t operates under
0s RV.

SOVIET COMPUTERS IN THE 1980s 289

The SM-1405 computer has been identified in at least five different
configurations which vary somewhat by the type and size of internal memory,
but mostly by the communications devices employed. Noted applications
include automated systems of scientific experiments and process control
systems, and it utilizes both the FOBOS and 0s RV operating systems.

The SM-1406 is configured two ways and used mainly for database
processing. It operates under 0s RV and DIAMS.

The SM-1407 has been encountered in three configurations, both intended
for automated workstation applications and employing the 0s RV operating
system.

The year 1979 marked the appearance of the first SM microcomputer
systems, the SM-50 family.52 The model numbering system for this set of SM
machines was more elaborate and sometimes more confusing than for the first.
In general, most machines of this period bear a 50 series number. The SM-50
class computer is a microcomputer system used for numeric control, scien-
tific measuring, and network terminals. The SM-51 class marks a further
development of the SM-1 and aimed for compatibility with the earlier
machines. The SM-52 includes multiprocessor systems that can be used in
conjunction with RIAD computers. Multiprocessor and multimachine com-
puters fall under the SM-53 line, and the SM-54 involves specialized
processors for matrix operations, speech synthesis, seismic studies, etc. In
addition, a host of peripheral devices were designed and produced.

Phase Three: 1983-1986. Production of SM-11; Plans for SM-Ill. In
1983, Minpribor began production of the SM-1420 and SM-1600 minicom-
puters. These represent a continuation of the 16-bit, PDP-I 1-compatible,
SM-4 computer line and the beginning of SM-11.

The ministry’s general pronouncements regarding the progress and pros-
pects of the SM program at this time continue the usual exhortations for
improved quality. Hard disk memory devices were singled out for particular
emphasis, as was the need for improvements in servicing the installed com-
puter base.53 Soviet analysts and scientists emphasized that greater speeds
and memory storage were needed for improved CAD and scientific research
applications. LSI circuits were to be In the late 1970s, the Digital
Equipment Corporation had begun to ship its very successful 32-bit VAX/780
computers. It was not accidental, therefore, that this period marked the

” Naumov (1980).
s3 Zavartseva and lvanova (1986), 44
54 Prokhorov (1987), 8.

290 RICHARD W. JUDY AND ROBERT W. CLOUGH

beginning of Minpribor’s attempts to develop VAX-like 32-bit machines
compatible with the SM-4 m i n i c ~ m p u t e r . ~ ~

Minpribor’s SM-I1 computers included the following:

SM-1210 (SM-S3/50). Appearing in the mid 1980s as a continuation of the
HP-like SM line, the SM-1210 employs two central processors and can
operate in either dual-processor mode or dual-machine mode, meaning that
the processors can work in tandem with the same memory, or divide the
memory between them and operate separately. The second processor is the
input/output processor from the SM-50/60 computer. The SM-1210 is used
in management information systems and process control applications. The
speed of the machine is difficult to assess, since published Soviet sources
give different numbers. For example, fixed-point addition is rated at either
3.3 MOPS or 1.1 MOPS, a substantial discrepancy that is repeated for var-
ious operations. In any case, this machine appears to rate above the earlier
SM-1 and SM-2 models. The SM-1210 can utilize between 2 Mb and 4 Mb
of internal memory.

The SM-1210 is program compatible with the M-7000, SM-ZM, and PS-
3000. I t uses the 0s SM 1210 operating system, and supports FORTRAN,
COBOL, PASCAL, BASIC, and MACROASSEMBLER.

SM-1410. Used in automated systems of scientific experiments and for
numeric program control, the SM-1410 comes in three configurations, with
the third employing a special language processor. Operating at an average
0.24 MOPS but capable of 1 MOPS in register to register operations, the
SM-1410 can be installed with 64 to 512 Kb of memory.

SM-1420 (SM 51/20). In 1983, the Kiev Elektronmash plant began serial
production of the SM-1420 which marks a further development of the SM-4
line of computers. Appearing in at least 12 different configurations designed
for different applications, this computer is used in data processing, scientific
experiment control, scientific and economic calculations, and networks. I t is
both input-output compatible and program compatible with the SM-3 and
SM-4 computers, and program compatible with the SM-1600 and SM-1300.

The machine can access between 248 Kb and nearly 2 Mb of internal
memory, and usually has 4 Mb of external memory. It is clocked at 1 MOPS
during register-to-register fixed-point addition, but with a “special algorithm”
it reportedly can achieve 8 MOPS. The SM-1420 runs under three different
operating systems: 0s RV 2.0, RAFOS, and ROS RV. The following pro-

’’ Zavarlseva and lvanova (1986).

SOVIET COMPUTERS IN THE 1980s 29 1

gram languages are available: MNEMOCODE, ASSEMBLER, PASCAL,
and BASIC.

SM-1600. The SM-1600 is used for statistical and planning purposes, trade
management applications, as well as banking, transport, agriculture and small
industrial enterprises. In a rather strange design that apparently seeks to take
advantage of software written for the earlier generation M-5000 computer,
this machine employs two processors. The first is the same one used in the SM-
1420, ensuring SM-4 compatibility. The second processor actually comes from
the M-5000 computer line which is compatible with the PDP-I 1’s forerunner,
the PDP-8.

Operating at 0.045 MOPS during addition operations, the SM-1600 can
utilize between 256 Kb and 1 Mb of operating memory. Typical installations
employ three disk drives of 14 Mb each, and one tape drive with a 10.24 Mb
capacity.

Phase Four: 1987 and After. Production of SM-Ill. The VAX-
compatible SM-1700 marks the advent of SM-111 and the development of
more powerful Minpribor minicomputers that break the barrier of memory
limitations through virtual memory machines that can address up to four
gigabytes of data. Often referred to in the Soviet literature as the first model
of the “highly productive” 32-bit Soviet machines, the SM-1700 entered
production in September 1987 at the Sigma Production Association in
Vilnius. The announced plans were to produce “several scores.”56 This
machine is intended for CAD, flexible manufacturing systems, planning
calculations, scientific research applications, and automatic process control
systems. According to one source, the SM- 1700 can perform 2.8 MOPS during
“short operations,” but only 0.3 MOPS using the Whetstone benchmark^.^'

The Soviets managed to retain compatibility with earlier machines by giving
the SM-I 700 the ability to emulate the earlier 16-bit processors’command set.
Thus, the new VAX-compatible SM-1700 can still run the vast library of
software created for the PDP-11, SM-3, SM-4, SM-1420 and SM-1600
computers. In addition, the SM-1700 retains the same hardware interface as
the earlier models, so it can use the SM family peripherals and read the same
data files.

The SM-1700 is typically outfitted with two disk drives (SM-5504) that can
handle 121 Mb each, a tape drive unit that stores 40 Mb, as well as a host of
smaller external memory devices.

’’ Moscow Radio, September 23, 1987, as reported in FBIS-SOV-87-186, 54, September 9,

’’ Prokhorov (l988a), 7.
1987.

292 RICHARD W. JUDY AND ROBERT W. CLOUGH

TABLE VII

MATCHING MINPRIBOR SM COMPUTERS WITH HP AND DEC COUNTERPARTS

Year SM
Year Closest US . us. lag in

Model Country shipped counterpart shipped years

SM-I
SM-3 USSR 1978 DECPDPI 1/20 I970 8
SM-4 USSR 1978 DECPDPI 1/20 I970 8

SM-1410 USSR 1983? DECPDPI 1/45 1972 8 +
SM-1420 USSR 1983 DECPDPll/45 1972 I I

SM-1700 USSR 1987 DECVAXI 1/780 1978 9

SM-II

SM-Ill

Sources: Artamanov (1988); Kezling (1986); Phister (1979).

Comparing SM Systems With DEC and H P Originals. One way of evaluating
Soviet success or failure in computing is to compare Soviet with Western
achievements. While this assuredly is not the only standard that could be
applied, or even the best one, it has the advantage of being meaningful to
Western readers. It has the additional advantage of being feasible inasmuch as
it relies neither on dubious Soviet measures of effectiveness nor on ad hoc
reportage of scattered cases. Even so, direct comparisons are not always easy
to make because Minpribor computer designers have less slavishly followed
Western designs than their mainframe colleagues at Minradioprom. At the
risk, therefore, that some apples may be set alongside some oranges, the
following comparisons are offered. (Also, see Table VII.)

In the SM-I “generation” of machines, the SM-3 is roughly equivalent to the
DEC PDP 11/20. Both operated at about 0.2 MOPS, and both employed
about the same size operating memory. The DEC machine first entered
production in 1970, and the Soviet computer in 1978.

The SM-I1 “generation” involves a slightly more complicated comparison,
but themeasured result isabout thesame. Both theSM-1410and theSM-1420
are compared with the PDP 11/45. All of the machines operate at approx-
imately the same speed and are used for similar tasks, but the SM-1420 has
larger internal memory capabilities. The SM-1410 apparently was introduced
in 1983 along with the SM-1420, which would place it approximately 11 years
behind its DEC counterpart.

The SM-111 generation marked the advent of VAX-compatible Soviet
computers. The SM-1700 is roughly comparable with the VAX 11/780, which
appeared in the late 1970s. The SM-1700’s appearance in 1987 places it
approximately eight years behind DEC.

SOVIET COMPUTERS IN THE 1980s 293

This comparison of Minpribor SM minicomputers with their DEC coun-
terparts in each “generation” of the SM line finds that Minpribor lagged
about eight years in the late 1970s, and today lags by about the same interval
or slightly more. Unfortunately, it has not been possible to make comparisons
of performance, but all evidence suggests that SM computers substantially
underperform the “comparable” DEC and HP machines.

The differences between the SM machines and their American counterparts
are particularly notable at the component level. Whereas 32-bit single chip
processors are commonplace at DEC and HP, Minpribor continues to rely
on Minelektronprom’s bit-slice chips such as the 4-bit K1804VS1.58

Minpribor Microcomputers. In the 1980s, Minpribor has brought out
a variety of microcomputers under both the SM and the ISKRA labels.
Generally, the SM machines are intended for technical and scientific
applications while the ISKRA machines are more likely to be professional
workstations for planners, accountants, etc. Basic data on most of them are
provided in Table VIII and Table IX. Additional remarks about the most
important machines are described below.

The SM-1300 is a microcomputer version of Minpribor’s SM-4 (DEC) line
and said to be roughly equivalent to the PDP 11/03 or PDP 11/04. It uses the
8-bit KR1802 bit-sliced ALU and is software compatible with the SM-4 and
SM-1420. The basic box weighs less than 16 Ibs and can be configured with
peripherals in multiple ways including as a CAD workstation and LAN
server.59

The SM-1800 family, which appeared in 1981, was one of the first
Minpribor microcomputers. Its purpose was to replace Minpribor’s old SM-I
and even older M40 and M60 machines in laboratory, process control, and
data preparation applications. Based on Minelektronprom’s KR580 copy of
Intel’s 8080 8-bit microprocessor, the SM-I 800 comprises more than 40
modules. Submodels abound. For example, the SM-1801 is a bare-bones
processor box, the SM-1802 is equipped with laboratory control devices, the
SM-I 803 is for industrial process control and is shipped in at least nine major
configurations, the SM- 1804 is designed for operation in adverse environ-
ments, etc. Prices range from 20 to 34.6 thousand rubles ($33K to $58K).60

Ostrovskii (1988).
’’ Information on the SM-1300 is from Kezling (1986), 513-517; EIorg (1986), 6; Kuznetsov

et a/. (1988). 78.
6o Information on theSM-1800isfrom ProkhorovandSmirnov(1986),9;Shkamarda(1986),6;

Prokhorov and Landau (1984). 28; Giglavyi et a/. (1984). 33; Kezling(l986), 541-558; Kuleshova
(1987). 88; Rukavishnikov (1988); Oprishko et a/. (l987), 40; Ivanova (l987), 40; Grevtsev (1988).
41.

TABLE VIlI

MINPRIBOR SM-LINE MICROCOMPUTERS

Minpribor name SM 50160
also known as SM-1300 SM-1625 SM-1634 SM-1800 SM-18 10

Year First Produced
Chip

foreign analog
Speed (KOPS)

reg-reg
Word length
RAM (Kbytes)
ROM (Kbytes)
Max. Addressable

Space (Kbytes)
Number of Commands
Operating Systems

Program Languages

Compatibility

Type of Data Bus
Applications

KR 1802

400-500
16

64- 256

256

0s RV, RAFOS,
SM-3, SM-4 set

DlAMS

Usual SM set.

SM-4 family

OSh
ARM, SAP
LAN server

KR580?
Intel 8080

100-500
8
64
4

64

SM

I4 1
Process, lab,

& network
control

K589
Intel 3000

20-170
16

16-128
8-16

DOS ASP0

ALGOL, F-11,
F-IV, B, AS

SM-1, SM-2
PS-x000,

SM-1210

Terminal,
Process
control

1981
KR5801K80A
Intel 8080

125-500
8
64

2-10

64
78

DOS 1800,
MOS RV,
0 s 1800

F, PL/M, B
C (subset)
Mi (subset)
CP/M software

I4 1
Professional

Workstation

1986
KM1810VM86
Intel 8086

2500
16

256

4 Mbytes
135

DOS-16, ADOS,
DOS 1810

All MS-DOS
languages

IBM-PC

I4 1

Workstation
Professional

-
Keys to Abbreviations
Program Languages: As-ASSEMBLER; B-BASIC;C-C; F-FORTRAN; F-11-FORTRAN 11; F-IV-FORTRAN IV; I-IAMB;
Ma- MACROASSEMBLER; Mi- MIBOL; P- PASCAL
Sources: Abramovich et al. (1985); Artamanov (1988); Elorg (1986); Giglavyi er al. (1984); Iaroshevskaia (1986); Kezling (1986); Prokhorov
and Landau (1984); Prokhorov and Smirnov (1986); Savel’ev (1987a); Shkamarda (1986).

TABLE IX

MINPRIBOR ISKRA-SERIES MICROCOMPUTERS

Minpribor name ISKRA 226 ISKRA 555 ISKRA 2106 ISKRA 1030

Year First Produced 1981 1987
Chip Dual KR5801K80A KRS891K02 KR5801K8OA KM1810VM86

foreign analog Intel 8080 Intel 3000 Intel 8080 Intel 8086
Speed (KOPS)

Word length 16 16 16 16
RAM (Kbytes) 128 16-48 4-16 256
ROM (Kbytes) 16-24 20-28 8-16
Number of Commands 95
Operating Systems 0s ISKRA, DOS 0s ISKRA 0s ISKRA ADOS
Program Languages As, B, F 1 I B, Ma, P, C, I
Compatibility Wang 2200 Iskra Iskra MS DOS

SM (data)
Applications Ec. planning ARM, Ec. planning ARM, Ec. planning ARM. Professional

reg-reg 600 650 250-400 lo00

Science lab ASU ASU Workstation
control. ASU,
ASU TP

Keys to Abbreviations
Program Languages: As-ASSEMBLER; B-BASIC; C-C; F-FORTRAN; F-II-FORTRAN 11; F-IV-FORTRAN IV;
I-IAMB; Ma-MACROASSEMBLER; Mi-MIBOL; P-PASCAL
Sources: Abramovich et a/ . (1985); Artamanov (1988); Elorg (1986); Giglavyi et al. (1984); Iaroshevskaia (1986); Kezling (1986);
Prokhorov and Landau (1984); Prokhorov and Smirnov (1986); Savel’ev (1987a); Shkamarda (1986).

296 RICHARD W. JUDY AND ROBERT W. CLOUGH

The SM-1800’s main operating system is DOS-1800, an adaption of CP/M.
In addition to familiar programming languages running under CP/M, a
Russian version of WORDSTAR named TEXT is available.

Old-fashioned Minpribor printed circuit board fabrication has made for
substandard quality product. Nevertheless, Minpribor has produced fairly
large numbers of the SM-1800 and various versions of the machine have
found relatively widespread application in Soviet industry. Users complain
about chronic shortages of peripherals necessary for proper configurations.

The SM-1810 is an updated, 16-bit, version of the SM-1800. It uses
Minelektronprom’s KM1810 processsor which is a clone of the Intel 8086
chip. It is said to be an order of magnitude faster than its predecessor.
Production began in 1986. An “industrial version” is produced as the SM-
18 14?

The ISKRA 1030 may be a second Minpribor IBM-PC compatible or it
may be another brand name for the SM-1800. In any case, it is made by the
Kursk Schetmash factory and is targeted at the traditional users of ISKRA
computers and bookkeeping machines, particularly planning agencies and
central ministries. Like the SM-1800, this machine also uses the K1810VM86
microprocessor. Ministry sources say that it is to be shipped in three basic
configurations. The ISKRA 1030.1 1, which is the base model, is a dual floppy,
256 Kb machine. Another model, the ISKRA 1031 is presumably equipped
with a hard disk. The operating system is ADOS which is said to be MS-DOS
compatible.62

The ISKRA 226 is a WANG-2200 work-alike. The first half dozen WANG-
2200 machines produced were exported to the Soviet Union in 1972 and 1973
and many more followed them during the remainder of the decade. In total,
about 2000 were shipped to the USSR and Eastern Europe and they became
very popular as planners’ workstations. The tightening of U.S. and COCOM
export restrictions in the wake of the Afghanistan invasion not only ended
WANG’s exports but deprived Gosplan and other central planning agencies
of their supplier.”

Minpribor’s “Schetmash” factory in Kursk had been producing a variety of
ISKRA bookkeeping machines in the 1970s. On the basis of that experience,

6’ Information on the SM-1810 is from Prokhorov and Smirnov (1986), 9; Kuleshova (1987),

62 laroshevskaia (1986), 23.
63 Information on the ISKRA 226 is from Artamonov (1988). 207; Nikitin and Ostrovskii

(1988); Abramovich et a/. (1985), 35; Poom et a/. (1986); Sasov (1986). 53; Krilov et al. (1985), 43;
and the senior author’s observations.

88; Elorg (1986), 13; Korneichuk et al. (1986). 11.

SOVIET COMPUTERS IN THE 1980s 297

Minpribor designers reverse engineered the WANG-2200 as the ISKRA 226,
which entered serial production in 1981. The first copies of the new machine
went to the Academy of Sciences and Gosplan and by 1985 more than 800
ministries and departments were using it. The ISKRA 226.7 is shipped with a
variety of Soviet, Bulgarian, and East German peripherals in at least seven
main configurations. Their prices vary between 11 and 25 thousand rubles
($18000-$42OOO). Most of the software has been developed by Gosplan. So
pleased were the authorities with Minpribor’s work that Academician
Velikhov nominated the machine’s designers for the 1985 State Prize.

4.1.3. The Ministry of the Electronics Industry
(Minelektronprom)

Minelektronprom is the monopoly producer of electronic components in
the Soviet Union. It is a “VPK” ministry, i.e., it is an officially designated
member of the “military-industrial complex.” A long-time producer of
military computing systems, Minelektronprom has become a major supplier
of civilian computers in the 1980s. It produces a huge array of computing
devices, most of them bearing the “ELEKTRONIKA” brand name, and only
the most important are surveyed here.64

ELEKTRONKA Minicomputers. Minelektronprom offers a family of
PDP-11 compatible, 16-bit minicomputer systems that are hardware and
software compatible. They include: the ELEKTRONIKA 100-16 at the
bottom end, the ELEKTRONIKA 100-25 in the middle range, and the
ELEKTRONIKA 79 at the top end. Basic information on each is given in
Table X.

These ELEKTRONIKA minicomputers are software compatible with
Minpribor’s SM-3 and SM-4 families, and may be configured with SM
peripherals. They also share the OSh data bus as well as SM systems and
applications ~0ftwat-e.~’

The ELEKTRONIKA 100-16 can accommodate a limited range of periph-
erals. Its memory ranges from 8 to 56 Kb in blocks of 16 Kb ferrite core mem-
ory. The ELEKTRONIKA 100-25 offers greater storage-up to 248 Kb,
which Soviet sources claim give it the ability to work in multiprogram mode.
A wider selection of peripherals is available and its multiplexor can handle up

*The two best sources that we have encountered on Minelektronprom computers are

’’ For information on the ELEKTRONIKA minicomputers, see Savel’ev (1987b), 114;
Glushkova and lvanov (1986) and Tolstykh er a/. (1987).

lakubaitis (19XS), 183; Goodman (1984); Kezling (1986), 629-635; and Verner er a/. (1986), 7.

298 RICHARD W. JUDY AND ROBERT W. CLOUGH

TABLE X

BASIC OPERATING CHARACTERISTICS OF THE ELEKTRONIKA MINICOMPUTERS

Model Model Model
Characteristic 100-16 100-25 79

Word Size
Max Main Memory (Kbytes)
Data types
Precision, float, bits
Number of Commands
Speed/ MOPS
General Purpose

Registers
Process Work Regime

Price (rubles)

16
56

fixed
32
73

0.25

8
User

I6
248

fixed/float
32 & 64

89
0.8

8

Supervisor
User &

16
4088 (2)

fixed/float

I37
3

16
User,

Supervisor,
& Internal

12,000

Source: Tolstykh el a/. (1987); Veitsman (1988).

to 16 terminals. Recent Soviet sources of the late 1980s state that it is being
used in CAD and R&D applications. The ELEKTRONIKA 79 command set
includes 56 additional commands of a floating-point processor and it has a
high-speed buffer of 2 Kb capacity. It supports up to eight external memory
devices.

No production data are available on these ELEKTRONIKA minicom-
puters, but frequent references to them in the Soviet literature indicate that
they are relatively abundant. The indications are that the ELEKTRONIKA
minis originated in the 1970s as a line of military computers that are now
seeing such civilian applications as data processing, data base management,
automatic control systems, and scientific research. They are produced at the
Electronic Computer and Control Machines Plant (VUM) in Kiev.

ELEK TRONIKA Microcomputers. Minelektronprom has produced a
wide assortment of military and civilian microcomputers. Table XI provides
technical details on many of these, and the most important are discussed
below.

The ELEKTRONIKA 60furnily. The ELEKTRONIKA 60 and its descen-
dants are probably the most numerous family of computers in the Soviet
Union. These are 16-bit machines, mutually compatible and software compat-
ible with the ELEKTRONIKA 100/25 and with Minpribor’s SM-3, SM-4

TABLE XI

MINELEKTRONPROM MICRWOMPUTERS

Elektronika name 60-1 60-1 60-1 80- 1 85
also known as 60 60M MS-1211.01 MS-1211.02 MS-1212 MS- 12 13 MS 0585

Year Produced
Chip

aka

1987 (?)
K1804 K1811
M5

K581 K581
MI M2

K1811
M6
MS 1601

K1811
M6
MS 1601

K181 I
M6
MS 1601

Speed (KOPS)
reg-reg

Word length
RAM (Kbytes)
ROM (Kbytes)
Max. Addressable

Space (Kbytes)
Number of

Commands
Operating

Systems

250
16 16
8 8

4

500
16

500
16

128
48

600
16

256
48

800 600
16 16

248 512
48 48

64 64 256 256-1000 4 Mbytes 256-4096 4 Mbytes

81 '

RAFOS PLOS, FODOS,
TMOS

138
PLOS, FODOS,

TMOS

138
PLOS, FODOS,

TMOS

138
PLOS, FODOS,

TMOS

95 138
FODOS, MDOS PROS, FODOS,

DEMOS, MOS-80,
MIKRO-80, SP-80

TMOS

F, P, B, K, MA, M2 AS, F, B

SM SM
MA, M2

Program
Languages
Compatibility

AS, F, B MA. F

SM SM SM SM SM

(continues)

TABLE XI (Continued)

Elektronika name
also known as

K1-20 S5-41
MS-2702 S5-2IM MS12102.1

DVK-2M DVK-3M2
BK-0010 NTs-80-20/~ NTs-80-201~

DVK-4
NTs-80-20/~ T3-29M

Year Produced
Chip

aka
Speed (KOPS)

reg-reg
Word length
RAM (Kbytes)
ROM (Kbytes)
Max. Addressable

Space (Kbytes)
Number of Commands
Operating Systems

Program Languages
Compatibility

KR580 K586 Kl8OlVMl

500 206 500
8 16 16
1 0.5 2
8 6 16

64 64 64

78 256 64
Resident DS-81 Resident

As
NotSM NotSM SM

DOS

K 1801 VM 1
MS 1201.01

500
16
32
32
64

64

Fk, B
SM

1981-4
K1801VMI
MS 1201.01

500
16
56
8

64

64
OSDVK

M, B, F, P, M2
SM

1984-
K 1801VM2
MS 1201.02

lo00
16

64-248
8

64-4096

64 or 72
OSDVK

AS, B, F, P
SM

1986-
K I801 VM3

1200
16

64-248
?

64-4096

64 or 72
OSDV

M, B, F, P, M2
SM

1983/4
K589

500
16

128-25
64

2048

139
Resident

AS, B
H P 98xx

Keys to Abbreviations:
Operating Systems: PLOS-Punched-Tape Op Sys; FODOS-Background Disk Op Sys; TMOS-Test Monitoring O p Sys; DEMOS-OS UNIX
2.9 Bell Labs
Programming Languages: As- ASSEMBLER; F-FORTRAN; B-BASIC; K-COBOL; M-MACRO; P-PASCAL; M2-MODULA-2;

Sources: Elorg (1986); Glushkova and Ivanov (1986); Khatskevich and Protsenko (1988); Kokorin et al. (1986); Lopatin et al. (1985); Murenko et a/.
(1986); Popov et a/. (1984); Tolstykh et a/ . (1987).

Fk-FOKAL

SOVIET COMPUTERS IN THE 1980s 30 1

families of minicomputers. It represents, obviously, yet another Soviet deriva-
tive of DEC's PDP-11.66

The ELEKTRONIKA 60 appeared first around 1980, probably as the
outgrowth of an effort to supply the Soviet military with small-scale com-
puters. This machine has found widespread employment in control devices
of all sorts, computer-controlled machine tools, etc. Despite its limited ca-
pacity (250 KOPS, 8 Kb RAM, 4 Kb ROM), the ELEKTRONIKA 60 has
been fitted with peripherals and asked, in the 1980s, to play roles ranging from
that of network terminal to CAD workstation. Modestly enhanced versions,
such as the multi-board ELEKTRONIKA 60M, ELEKTRONIKA 60-1,
ELEKTRONIKA 85, and MS-121X machines are currently produced and
widely used in Soviet science and industry. Single-board members of the
family include the ELEKTRONIKA-41, ELEKTRONIKA NTs 80-01D
(alias MS1201.0X). These machines use the NMOS K581, K1801, and K1811
chips.

An important group of ELEKTRONIKA 60 descendants is the modular
DVK (Dialogouii Vychislitel'nyi Kornpleks, which translates as Interactive
Computer Complex). The DVK-1, DVK-2 (1983) and DVK-2M (1984) are
table-top systems intended primarily for classroom use. Both consist of an
ELEKTRONIKA NTs 80-OlD computer using the K1801VM 1 processor
configured with 56 Kb RAM and character monitor. The DVK-1 consists of
nothing else and is intended as a student workstation. The DVK-2 and DVK-
2M are also equipped with a 5 12 Kb floppy disk and printer to serve as teacher
workstations in classroom networks. The DVK-4 (1985) and DVK (1986) are
equipped with from 64 Kb to 4 Mb of RAM, 440 Kb or 800 Kb floppy disk
drives, monochromatic graphics monitor, and graphics plotter. The DVK
(1987) offers a color graphics monitor.

Minelektronprom claims considerable versatility for its DVK machines.
For example, K580VM80A and K1801VM86 processor boards are said to be
available for the DVK machines which would, theoretically, provide software
compatibility with the ES 1840, ISKRA 1030.1 1 and other CP/M or CP/M-86
machines. No reports of using such coprocessors have been encountered in the
literature. A UNIX operating system was reported under development in
1986. Reliability is a major problem for the DVK systems. Although the mean
time before failure is claimed to be 3000 hours for all DVK systems, reports
from the field indicate that it is far less. One Karangada computer instructor,
responsible for teaching high school teachers the elements of computing,

66 Information on the ELEKTRONIKA 60family comes from Glushkova and lvanov (1986);
Kokorin et a / . (1986); Tolstykh et a / . (1987); Kezling (1986); Grigor'ev (1987), 23; Legavko and
Vasilenko (1988); Savinov and Gritsyk (1988). 33; and Lopatin et al. (1985).

302 RICHARD W. JUDY AND ROBERT W. CLOUGH

recently complained bitterly that her institution’s DVK-2M crashed daily and
caused her much embarrassment before the teacher trainee^.^'

Another member of this family is the ELEKTRONIKA BK-0010 which
Minelektronprom bills as the Soviet Union’s “first home computer.” This little
machine is essentially identical to the DVK-1 described above and fulfills
the same role in classroom computer networks. Output began in 1985 at
Minelektronprom’s “Eksiton” factory in Pavlovskii Posak. Some 20,000
reportedly were produced in 1987 and an equal number were to be produced in
1988. Priced at 650 rubles (about $loo0 at the official exchange rate or $135
at the black market rate), some 194 units were sold at the Ministry’s
ELEKTRONIKA retail store in Moscow in 1985. In 1986, sales were planned
to be 2000 units.68

A visit to the ELEKTRONIKA store in the summer of 1988 found the
BK-0010 on display, but would-be customers were barred from touching
it. No sales personnel were available and no machines were available for
purchase. Customers were invited to enter their names on a waiting list but
no indication was given of how long the waiting period might be. The
same ELEKTRONIKA store was quoting a four-year wait for videocassette
recorders.

The vast majority of BK-0010 machines are going to classroom computer
laboratories. From 10 to 15 BK-0010s serve as student workstations net-
worked to a teacher’s DVK-2M. This configuration, termed the “KUVT-86,”
was Minelektronprom’s 1987 response to the Soviet school system’s cry for
educational computers. But it is so inadequate and performs so poorly in
practice that it bodes to give computing a bad reputation with Soviet high
school students.69

The most recent version of this educational system, the one intended to
compete with Minradioprom’s KORVET, is called the “UKNTs” and made at
the Elektronmash factory in Mo~cow.’~ This system differs in certain minor
respects from the earlier versions. It features the dual processor DVK-3 (alias
ELEKTRONIKA NTs80-O1D) at the teacher’s desk. The first, dubbed the
“central machine,” has 64 Kb of RAM and a K1801VM2 processor said to be
capable of 800 register-to-register operations per second and operates as
server to a 57,600 baud ring network connecting student workstations. The
teacher’s second machine, called the “peripheral machine,” is like the first
except with only 32 Kb RAM and is intended to control peripherals such as the
keyboard, bit-mapped monitor, tape cassette recorder, sound generator,

67 Koisina (1988).
68 Shekhovtsev (1988), 126; and Gorelov (1988).
69 See, for example, Denisenko (1986) and Koisina (1988).
’O Information on the ELEKTRONIKA UKNTs is from Driga (1986) and Polosin er al. (1986).

SOVIET COMPUTERS IN THE 1980s 303

printer, and 400 Kb or 800 Kb floppy disk drives. Student workstations look
very similar to’the BK-0010.

Other E E K 7RONI K A microcomputers. Minelektronprom manufactures a
variety of other small computers intended mainly as imbedded automatic
controllers. Examples of these are the ELEKTRONIKA S5 machines. The S5-
21 controller uses the K586 chip, which has no known foreign analog and is
incompatible with other known Soviet computers. It is a 16-bit machine with
small (0.5 Kb RAM and 6 Kb ROM) memory. The slightly larger S5-41 uses
the ELEKTRONIKA 60 instruction set.

The ministry also makes the ELEKTRONIKA K series of computers.
These are small KR58O-based systems (8080 work-alikes) with very small
memory which are used in equipment controllers, testing devices, checkout
equipment, etc. The most recent of these that we have encountered is the
ELEKTRONIKA K1-20 (alias MX2702).

The story of the ELEKTRONIKA-60 and its descendants strikingly
illustrates a fundamental characteristic of Minelektronprom’s approach to
computer technology. That approach is one of tiny, incremental changes in
existing products accompanied by name changes and price increases. Whether
we look at the basic components produced by Minelektronprom or its
computer systems, an identical picture of extreme technological conserva-
tism emerges. It is remarkable that the ministry has been able to preserve
such a fundamentally unresponsive posture in the face of users’ entreaties
and complaints, of prestigious commissions’ proddings, and even of the
Politburo’s decrees.

“Home Brew” and Other Soviet Microcomputers. A variety of other
microcomputers have appeared in the 1980s. Most of these are based on
Minelektronprom’s KR580 or KM1810 copies of Intel’s 8080 and 8086
microprocessors. The development of these machines indicates that many
organizations and individuals in the USSR have the technical ability to “home
brew” computers using off-the-shelf components. On the other hand, it also
indicates that many users and would-be users find their needs unmet by the
computers supplied through normal channels and feel it necessary to develop
their own equipment. Soviet research laboratories, in particular, seem to have
been forced to develop micros for themselves. Alternatively, some “home
brewers” may have worked for the fun of it. Table XI1 gives an overview of
some of the machines identified in Soviet computer periodicals. There are
some interesting stories behind many of these machines.

NElRON 79.66. This IBM PC/XT compatible is manufactured by the
Ministry of the Communications Equipment Industry (Minpromsviazi) and

TABLE XI1

OTHER MICROCOMPUTERS

Name IRISHA OKEAN 240 NEIRON 19.66 MIKROSHA KVANT KRISTA

Year First Produced
Chip

foreign analog
Speed (KOPS)

reg-reg
Word length
RAM (Kbytes)
ROM (Kbytes)
Max. Addressable

Space (Kbytes)
Operating Systems

Program Languages
Compatibility

Applications

Price (rubles)

KR580VM86
Intel 8080

8
48-128
4-64

0s 1800
0 s lrisha
CP/M 3.0
B, F, P, C, Ma

(software)
Education,

ASNI

SM-1800

lo00

K580VM80

600
8

128
16

0s 240

F
CP/M 80

Field Research

K1810VM86
Intel 8086

lo00
16

256-1 Mbyte

1 Mbyte
Neiron DOS 1
Neiron DOS2

P, A. B
MS DOS
CP/M 86
Professional

Work Station

1986
KR580VM80A
Intel 8080

8
32 +
2+

B, A
Krista

School. Home

1987
KR581 K580VM 80A

16 8
256-4 Mbyte 32 +

2+

RAFOS

Mikrosha Elektronika 60

Automated Design,
ASUTP, Smart
Terminal

510

Name NEVA 501 ISTRA PK-11 SURA UMPK-48 UMPK-80 LVOV-01

Year First Produced
Chip

foreign analog
Speed (KOPS)

reg-reg
Word length
RAM (Kbytes)
ROM (Kbytes)
Max. Addressable

Space (Kbytes)
Operating Systems

Program Languages
Compatibility

Applications

Price (rubles)

K580 KR580 and
Intel 8080 K R 18 lOVM 86

400
8 8 & 16

32 I256
64

Internal ROM

Bookkeeping

1986-7
KM 1801VM2

256
128

BOS
RAFOS/PK

B

Elektronika 60
SM-4

1987-8
K580VM80A
Intel 8080

8
64+
16+

B
None Known

995

1984-5 1987-8
K M 18 16VE48 K R5801K80 K580VM80A

8 8 8
64-256 2 64

2 16

B
None Known

Lab, Education,

750
Home

Keys to Abbreviations:
Program Languages: As-ASSEMBLER: B-BASIC; C-C; F-FORTRAN; F-11-FORTRAN 11; F-IV-FORTRAN IV; I-IAMB; Ma-
MACROASSEMBLER: Mi-MIBOL; P-PASCAL
Sources: Artamonov (1988); Baryshnikov et al. (1985,1986a. 1986b); Elorg (1986); Gorelov (1988); Kushnir et a/. (1986); Nauka (1988b); Pogorelyi et a / .
(1986): Romanov et al. (1986): Tilinin (1986): Tilinin et al. (1986); VDNKh; Vigdorchuk et al. (1987a.b); Vorob’ev et a!. (1987)

306 RICHARD W. JUDY AND ROBERT W. CLOUGH

is not a “home brew” machine.” Like Minradioprom’s ES-1841 and
Minpribor’s ISKRA-1031, it uses Minelektronprom’s K 1810VM86 copy of
Intel’s 8086. The machine is normally configured with 256 Kb of RAM and
dual 360 Kb floppy drives. A hard disk controller is available for users lucky
enough to locate the 5 MB hard disk.

The NEIRON 19.66 supports two operating systems; NEIRON-DOSl is
analogous to MS-DOS and NEIRON-DOS2 corresponds to CP/M-86.
These operating systems appear to have been developed (copied) separately
from similar software offered by Minradioprom and Minpribor. The manu-
facturer supplies several productivity software packages with the NEIRON
19.66. They include a word processor, spreadsheet, a relational data base
manager, and a file manager operating under DOSl. The first three of these
appear to be copies of WORDSTAR, SUPERCALC, and DBASE 11.

/REHA. The IRISHA is a “home brew” machine and a classic example of
researchers and educators developing and using informal connections in the
Soviet system to meet their needs for an adequate personal computer.’*
Developed by three members of the Chemistry department of Moscow State
University (MSU) and with software supplied by the Moscow Institute of
Informatics Problems, this machine uses the Soviet 8080 look-alike chip with
up to 128 Kb memory to provide a basic educational computer. It first
appeared in 1986 and is priced at loo0 rubles.

There are essentially two versions of the IRISHA, one with some form of
external memory (tape recorder or floppy disk) and one diskless setup
intended for network environments commonly found in Soviet classrooms.
The IRISHA runs the 0s 1800 operating system and, therefore, can run
software written for the SM-1800 personal computer from Minpribor.

The IRISHA development story also gives interesting insight into the
process by which these machines are introduced for use. Although serial
production had yet to begin by 1986, considerable numbers of the IRISHA
were already installed and running in the Moldavian educational system. I t
appears that the Central Committee of the Moldavian Communist Party,
working with the designers from MSU and officials from the Academy of
Sciences, managed to get enough of the machines produced with adequate
software to supply some schools in the Moldavian Republic. As of 1986,

71 Information on the NEIRON 19.66 comes from a marketing brochure published by
Minpromsviazi, Personalhaia mikro-EVA4 N E I R O N 19.66; Pogorelyi et al. (1986); and the
senior author’s observations.

72 Information on the IRISHA comes from Baryshnikov er a/. (1985); Baryshnikov et a/.
(1986a.b.c); Korneichuk and Rastorugev (1986); Romanov er a/. (1985); and Romanov et a/.
(1986).

SOVIET COMPUTERS IN THE 1980s 307

programmers were beginning to develop software in the Moldavian language
for educational applications. One of the reasons cited for this republic’s use of
the IRISHA educational computer is said to be its relatively low cost.

OKEAN 240. The OKEAN 240 is another result of the centralized system’s
inability to supply necessary machines, thus leaving the user to meet his own
demands.’j In this case, the user is the Moscow Institute of Oceanography
of the Academy of Sciences, which required a rugged and transportable
microcomputer that could withstand the rigors of field and ocean research
environments and would require minimal power. Based on the 8080 look-alike
chip and with 128 Kb memory available, the OKEAN 240 reportedly
performs 600 KOPS and uses an operating system named 0s 240 that is
compatible with CP/M and allows the user to attach nonstandard peripherals,
presumably some types of scientific measuring equipment. One author
specifically notes the machine’s ability to run Microsoft FORTRAN-80.

4.2 The Academy of Sciences and Soviet “Supercomputers”

The Academy of Sciences was predominant in the field of computer design
in the USSR until the mid 1960s when it went into decline. By the mid 1970s,
the Academy was completely overshadowed by the computer producing
ministries, and the policy of technological followership was firmly ensconced.
Leadership of Lebedev’s design group in the IPMCE passed to B. S. Burtsev
after Lebedev’s death in 1974. The Academy was short of funds and personnel.
Morale was low and much of the momentum for indigenous computer
development was lost.

In the 1980s, the Academy has regained some of its former luster although
the power of the industrial ministries remains intact. The foci of computer
design work inside the Academy in this decade, a few microcomputers such as
the KORVET and OKEAN notwithstanding, has been on high-performance
machines. The Soviet Union has lagged badly behind the United States, Japan,
and others in the design and production of supercomputers.

Soviet scientists have finally made their political superiors aware that their
nation’s supercomputer gap has become a serious drag on other fields of basic
and applied research. The Western policy of denying this technology to the
Soviets has caused serious pain in certain technological fields, most noticeably
in CAD. By 1985, Gorbachev and other top political leaders appeared to have
grasped the importance of this issue.

’3 Information on the OKEAN 240 comes from Tilinin (1986); Tilinin et al. (1986); and Tilinin
et a!. (1987).

308 RICHARD W. JUDY AND ROBERT W. CLOUGH

The 15-year plan for the development of the computer industry in the
USSR, referred to earlier in this paper, features a section on the design and
construction of supercomputers. In addition, the Soviet Union has prodded
the members of the CMEA to produce a “coordinated” plan to begin serial
production of a one billion floating-point operations per second (GFLOPS)
machine by 1990 and a 10 GFLOPS machine by 1995.

4.2.1. EL’BRUS

In the early 1970s, Lebedev began to design a computer that would be
capable of 100 MOPS, a machine that he named EL‘BRUS. After he took
over the IPMCE, Burtsev continued this effort.74 From the beginning,
the important design objectives were to achieve maximum integration of
hardware and software design, high reliability, and very high performance.
The first of this series, the EL’BRUS-1 was produced in 1978, and the
improved EL’BRUS-2 appeared first in 1983. The architecture of the two
machines is the same, and the superior performance of the EL‘BRUS-2 is
derived mainly from improved componentry.

The EL’BRUS is a modular, multi-processor, stack-based computer. I t may
employ as many as 10 central processors each with its associative stack
memory. Basic performance data of each processor are as follows:

Fixed-point addition 520 ns.
Floating-point addition 780 ns.
Multiplication of 32-bit number 780 ns.
Multiplication of 64-bit number 1300 ns.
Logical operations 520 ns.
Million operations per second 1.5

Soviet scientists accustomed to programming the familiar BESM-6 were
not particularly enthralled with the EL‘BRUS-1. To attract them and to
permit BESM-6 software to run on the new machine, the EL’BRUS-1
designers arranged for a special BESM-6 processor to be optionally sub-
stituted for one of the 10 regular processors. That special processor is rated
at 3 MOPS. The ELBRUS-2 may not provide for the BESM-6 proces-
sor. Depending on its configuration, the EL‘BRUS-1 is rated at from 1.5
to 13 MOPS; the EL’BRUS-2 is usually rated at from 10 to 100 MOPS

l4 Information on the EL‘BRUS is from Burtsev (1985); Mishchenko et ul. (1985); Artamonov
(1988); and Wolcott and Goodman (1988).

SOVIET COMPUTERS IN THE 1980s 309

although Artamonov claims that it is capable of up to 200 fixed-point
operations.

The EL’BRUS-1 main memory is interleaved among from four to 32
modules of 16K 72-bit words. Memory cycle time is 1.2 microseconds. The
EL’BRUS-2 can accommodate twice as much memory capacity. Both models
may have up to four 1/0 processors each with four high-speed channel
(4 million bytes/second) connections to as many as 64 ES-1066 disk drives
(100 Mb each) or magnetic drum storage units. Only four of these devices
may be simultaneously accessed by each 1 /0 controller. In addition, each
controller may connect with as many as 256 (16 at a time) 1/0 and storage
devices at slower speeds (one million bytes/second).

The EL‘BRUS machines may be configured with up to 16 data transmission
processors, each capable of handling 160 telecommunication lines for a total
of 2560. They are normally configured with RIAD peripherals.

The EL’BRUS operating system is unique in that several standard
programming languages are accommodated, including FORTRAN-IV, PL/ 1,
PASCAL, and SIMULA-67. These machines are similar in design and rated
capacity to the Burroughs B-7800 which first appeared in 1979.

The EL’BRUS machines are respectable computers, at least on paper,
although users have voiced the usual complaints about unsatisfactory reli-
ability and poor peripherals. In addition, very few of the machines have
been produced and that makes it very difficult for scientists to gain access to
them. Development work on this line of computers continues in IPMCE and,
in early 1988, Academician Velikhov reported that prototypes of an
EL‘BRUS-3-1 supercomputer capable of more than one billion operations per
second were under con~ t ruc t ion .~~

4.2.2. The PS-2000 and PS-3000

The PS-2OOO and PS-3OOO are two separate multi-processor computers
that appeared in 1982. The design group included representatives from the
Moscow Institute of Control Problems, the Ministry of Geology, and
Minpribor which now manufactures the machines.76

The PS-2000 is configured with from eight to 64 8-bit processors. When fully
equipped, it is said to be capable of up to 200 million fixed-point and 66.2
million floating-point operations per second. That makes it the fastest Soviet
computer in serial production. Software for this machine is very limited,
consisting only of a symbolic programming language and macro generator. It

’’ Velikhov (1988).
76 Information on the PS-xO00 machines is from Artamonov (1988); Mishchenko et a/. (1985);

and Wolcott and Goodman (1988).

310 RICHARD W. JUDY AND ROBERT W. CLOUGH

has been manufactured in relatively small numbers and found applications in
geophysics .as well as elsewhere where image processing is important.

The PS-3OO0, which is software compatible with the PS-2OOO, may be
equipped with up to four 32-bit scalar processors and two vector processors.
Each vector processor is connected to two scalar processors. It has eight
megabytes of main memory and is rated at up to eight million fixed-point
scalar operations and 20 million fixed-point vector operations per second.
The vector processor is said to be capable of adding 12 million additions of
32-bit floating-point numbers per second. Software for PS-3OOO includes
FORTRAN-11, FORTRAN-IV, ALGOL-60, and BASIC. Virtual memory,
multiprogramming, and real-time processing are supported.

4.2.3. The MARS

A major, integrated effort to design and build a supercomputer in the 1980s
was mounted by a design group called “START.”77 This effort brought the
talents of IMPCE, the computer centers of Academies of Sciences in Moscow,
Novosibirsk, and Tallinn together with those of Minpribor. The group’s
headquarters were at Akademgorodok in Novosibirsk and its purpose was to
design and build the prototype of a supercomputer called “MARS (Modular
Asynchronous Expandable System).

One sub-project of the MARS effort was the design of a “mini-MARS”
processor. The mini-MARS employs a modular, highly parallel, architec-
ture. It is to be capable of 20 million floating-point operations per second
(MFLOPS) with 48-bit words. Although the START group was formed only
in March, 1985, the ideas behind it have been brewing with Lebedev’s disciples
since the late 1970s. Velikhov reported in early 1988 that the MARS design had
been completed but that serial production had not yet begun. The START
group has also been responsible for MARS software development.

4.2.4. Other New Academic Computer Designs

As in the United States, although in fewer numbers, various academic
institutions in the USSR are designing computer systems reportedly capable
of various levels of high performan~e.~~ For example, the Glushkov Institute
of Cybernetics in Kiev reportedly has tested a prototype of a machine capable

77 Information on the MARS computer is from Kotov and Marchuk (1985); and Vyshnevskii

Information on these computers is from Marchuk (1987); Velikhov (1987a); Velikhov (1988);
(1985).

and personal interviews of the senior author.

SOVIET COMPUTERS IN THE 1980s 31 1

of up to 135 MOPS. This computer is said to employ a unique, “macro-
pipeline,” massively parallel architecture. This machine reportedly has passed
its state inspections and been approved for serial production. Many research
organizations have ordered this machine but it is slated to be produced in very
limited quantities.

In Leningrad, the Institute of Informatics and Automation of the Academy
of Sciences developed a multi-processor system with speed to 100 MOPS. This
machine also is said to have passed state inspection and been approved for
serial production. The Keldysh Institute of Applied Mathematics in Moscow
has cooperated with Minradioprom and Minpribor to build and operate a
system said to be capable of 125 MFLOPS.

In 1988, Minelektronprom was slated to begin production of a new 32-bit
microprocessor, the ELEKTRONIKA-32. The New Institute of Automatic
Design reportedly has designed a new system based on this microprocessor.

Velikhov reported that the Institute of Cosmological Research together
with certain Bulgarian scientists have created a parallel computer using 10
processors with “dynamic architecture and high productivity.” He also said
that this new machine, which is being manufactured in Bulgaria, “already
enjoys p~pularity.”’~

In 1986, a state commission accepted the design of a supercomputer for
“serial production.” This machine, designed by the Academy’s Institute of
Cybernetics Problems and Minelektronprom, is said to be capable of 100 mil-
lion operations per second. This may be the machine Velikhov called “a vector
pipelined supercomputer with two levels of external memory” and may
already be in limited production.80

Little is known about most of these various designs and prototypes. The
reported association of various computer-producing ministries in these design
efforts may raise the probability that some will find their way to volume
production. It seems probable that many are destined to remain one-of-a-kind
models. Velikhov (1988) complained that the volume of production on all
Soviet high performance computers was manifestly inadequate.

One development in peripherals seems noteworthy. The Siberian Division
of the Academy of Sciences together with Minelektronprom reportedly has
built the prototype of a compact Winchester drive with 100 megabyte
capacity.

It is clear from this brief survey that the Academy of Sciences is again very
much involved in the design of high-productivity computer systems. The effort
to develop and produce supercomputers is limited by several factors.

’9 Velikhov (1988), 25.
fhid.

31 2 RICHARD W. JUDY AND ROBERT W. CLOUGH

Prominent among them are

0 A shortage of CAD suitable for computer design.
0 COCOM and other trade restrictions on technology imports.
0 An underdeveloped technology base in component manufacturing.
0 A semi-centralized, bureaucratic decisionmaking structure and oligopol-

istic industrial structure.
0 A tradition of poor cooperation among production ministries and R&D

organizations.
0 A legacy of isolation of the Soviet computer science community from the

larger world community.
0 A management system that fails to reward superior performance of

design and production groups, as well as to punish substandard
performance.

Added to these seven factors is an eighth, namely that supercomputing was
not a priority item with the Soviet leadership, at least not until 1985. The
priority level has been raised in the Gorbachev regime, and computer-savvy
leaders have been installed in top scientific leadership positions. Ambitious
targets have been set for 1990 and 1995. Considerable progress is now being
claimed, but many of the familiar ills still plague Soviet efforts to accelerate
developments in this area.

4.3 Components-A Survey of Important
Integrated Circuits

The Soviet Union’s development of microchips and microprocessors
reveals no significant exceptions to the overall pattern already seen through-
out the country’s entire computer development program. Much of the
component base is copied from Western manufacturers, and internal or-
ganizational problems restrict the Soviet Union’s efforts to develop their own
technological base. Yet the desire to establish an indigenous ability to design
and produce state-of-the-art micro-circuitry is complicated by the Soviet’s
belief that a country that finds itself technologically behind can catch up
quickly by simply skipping developmental stages. I t is almost as if the Soviet
Union intended to design and produce industrial lathes capable of tolerances
measured in millimeters, with an industrial base capable of only centimeter-
level precision. They need the new machines, but the old ones cannot make
them.

Soviet microchip and microprocessor technology finds itself in just such a
chicken-and-egg dilemma. They want to produce 1 Mb memory chips, but
have yet to ramp production of 256 Kb chips. (Their East German partners

SOVIET COMPUTERS IN THE 1980s 313

reportedly are now beginning 1 Mb production, however.) They would like to
achieve the West’s I micron capability in integrated circuitry, but have trouble
at the 3 micron level. Velikhov, the head of computing for the Academy of
Sciences, states the problem this way:

The capabilities of the organizations that design and manufacture the required
technical equipment are not up to the task of the accelerated development of our
microelectronics or the necessary rates of modernization. Quantitatively, we
produce about 10% of the output of analogous equipment in the West.
Qualitatively, we lag significantly behind foreign producers. But given that we
have little equipment, we are unable to design new generations of ICs. As a result,
in both logical design and “memory”-the most fundamental work-we lag by
two generations. At present, we have a dearth of 64 K b memory media while
abroad, they are beginning to sell megabyte media more than ten times
cheaper.”

The following brief survey of Soviet microprocessors and memory chips
will reveal how much they have relied on technology followership. During the
remainder of this century, the only way for the Soviet Union to catch up to
current Western state-of-the-art standards would be to import Western
designs and manufacturing machinery. The likelihood of that, even with more
perestroika and glasnost’, remains slim. Thus, Soviet development in the near
term seems dependent on how much they can garner from their East German
partners.

4.3.1. Soviet Microprocessor Chips

Any review of Soviet capabilities in microprocessor technology must begin
with a note about the availability of source materials. First and foremost, the
Soviet Union does not publish production figures of these components.
Because Minelektronprom, the monopoly producer of Soviet micropro-
cessors, is a VPK ministry, its production activities are difficult to track down
precisely. Despite this lack of production information, however, the numerous
journals and books that are available do indicate the sources, uses, and
capabilities of Soviet microprocessors.

Table XI11 outlines the main processors identified with applications in
Soviet computing. The list is not an exhaustive treatment of all Soviet
processors. It does reveal a traditional, and continued, reliance on bit-slice
technology, which undoubtedly is a reflection of Soviet manufacturing
capabilities. It also reveals limited design capabilities that, undoubtedly, stem

Velikhov (1987b). 23.

TABLE XI11

SAMPLE LIST OF Sovm MICROPROCFSORS

Chip Series K589 K 1802 K1804 K1800 K587 K588 K536 K583 K584

Processor Chip
Foreign Analog
Manuf. Tech.
Chip Type
Word Length (bits)
Cycle Time (msec)
Clock Speed (MHz)
Production Began
Applications

K589IK02 KR1802VS1*
Intel 3000 NK
TrLS TTLS
Bit-slice Bit-slice

2 8
0.1 0.15
6 8

late 1970s
ES, SM, SM-1300, ES

ISKRA 555,
T3-29MK

KR 1804VS 1
AM 2900
TTLS
Bit-slice

4
0.12

8
early 1980s
Elek 80-1,

SM, ES

K 1800VSI.
MI0800
ECL
Bit-slice

4
0.04
36

early 1980s
ES

Chip Series K581 K586 K l 8 l l

K587IK2 KR588VS2*
NK NK
CMOS CMOS
Bit-slice Bit-slice

4 16

0.5 1
2 2-5

NTs series AGAT,
PKlOxx,
NTs series

K1801

NK
PMOS
Bit-slice

8
10

mid 1970s
S5 micros

K583IK3
NK
IIL
Bit-slice

8
1
1

ES

KR584IKIA
SBP O400
IIL
Bit-slice

4
2

0.5
late 1970s
Calculators

K580 K1810

Processor Chip KR581VEl K586IK1 KN181 lVMI* K 1 801 VM 1 KR5801K80A K 18 10VM8
Foreign Analog LS1-11/2 NK NK NK Intel 8080 Intel 8086

Manuf. Tech. NMOS NMOS NMOS NMOS NMOS NMOS
Chip Type Multichip Multichip Multichip Single Single Single

TI602

Word Length (bits) 16 16 16 16

Clock Speed (MHz) 2.5-3.3 8
Production Began late 1970s
Applications ELEK. 60, S5-21 ELEK 60-1 S5-41,

Cycle Time (msec) 0.4 0.5 2

60M, KVANT, BK-0010,
SM DVK series,

NTs series

8 16
2 1

4-5
mid 1980s

SM-1800, ES- 1840,
1979

OKEAN 240, NEIRON,
KORVET, SM-1810,
et al PK-11, ISTRA

ISKRA 255

Keys to Abbreviations:
*-Arithmetic-Logic Unit
NK-None Known or Cited in Soviet Sources
Chip Type: Multichip-Multichip Microprocessor

Single- Singlechip Microprocessor
Manuf. Tech.: CMOS-Complementary Metal-oxide Semiconductors

ECL-Emitter-Coupled Logic
IIL-Integrated Injection Logic
NMOS-nchannel Metal-oxide Semiconductor
PMOS-pchannel Metal-oxide Semiconductor
TTLS-Transistor-Transitor Logic with Schottky

Sources: Dshkhunian et al. (1984); Faizulaev and Tarabrina (1986); Govorun et al. (1986); Grishin and Ugol’kov (1985);
Heuertz (1983, 1984); Iakubovskii et al. (1984); Ivanov et al. (1986); Khvoshch et al. (1985);
Kobylinskii et al. (1986); Korneichuk and Rastorguev (1986); Kuleshova (1987); Lopatin et al. (1985);
Luk’ianov (1985); Malashevich (1984); Nesterov et al. (1986); Presnukhin (1986a,b);
Proleiko (1984); Shaknov (1984); Solov’ev (1985); Stapleton (1985).

31 6 RICHARD W. JUDY AND ROBERT W. CLOUGH

from a lack of CAD. It is not without reason that the Soviets decided to copy
the Intel 8080 and Intel 8086 microprocessor chips. In addition, it is not
surprising to note the absence of an 80286 or 80386 analog. That level of
design and manufacturing ability remains out of reach. As one Soviet author
writes,"At this time there is no domestic analog to [the 802863 microprocessor
and it is not visible 'on the horizon.' ' '82

4.3.2. Soviet Memory Chips

It is difficult to compare Soviet memory chips to present Western chips
because the West continues to develop so quickly. Suffice it to say that at this
point the West is producing 1 Mb dynamic random access memory (DRAM)
chips and is about to begin production of 4 Mb DRAM chips. The Soviet

TABLE XIV

SOVIET MEMORY CHIPS

Type
KR188RU2A
564RU2
505RU4
I32RU4
KR565RU2A
KR185RU5
500RU415
KR537RU2A
KR541 RU 1 A
K R 54 1 R U3
KR132RU6A. B

Static RAMS

Man. tech.
CMOS
CMOS
PMOS
nMOS
nMOS
TTL
ECL
CMOS
IIL
IIL
nMOS

Capacity
(bits)

256
256
256

1024
1024
I024
1024
4096
4096

16384
16384

Access
time (ns)

500
650
850
25

450
330

30
300
120
100

?

Dynamic RAMS

Capacity Access
Type Man. tech. (bits) time (ns)

K R 507R U 1 PMOS I024 400
KR565RUIA nMOS 4096 150-200
K565RU3A nMOS I6384 150-200
K565RU5B nMOS 64K '?

Sources: Baranov et al. (1986); lakubovskii et a/. (1984); Solov'ev
(I 985).

Shirokov (1988). 43.

SOVIET COMPUTERS IN THE 1980s 317

Union, on the other hand, can competently produce 16K chips, only recently
began volume production of 64K chips, and, while it has prototypes, has yet to
produce 256K chips in quantity. In short, there is no contest in this area.83
Table XIV gives a sample of current Soviet memory chips.

4.3.3. General-Purpose lntegrated Circuits

The Soviet Union’s decision to copy Western component designs is revealed
most starkly by a quick survey of general-purpose integrated circuits. For
each type of manufacturing process, Soviet computer engineers copied a
specific Western series. In transistor-transistor logic, the SN54/74 series
served, and serves, as the model. The MC10000 series of ICs provided the
Soviets with the model for Emitter-Coupled Logic chips. And finally, in the
CMOS area, the RCA CD4000 series served as the example to copy.

5. Perestroika and Soviet Computing

The fragmented, isolated, and ill-managed Soviet computer development
effort not only proved incapable of keeping pace with Western developments,
but also failed to fulfill its own goals. It was evident to Western analysts many
years ago that the bureaucratic structure of Soviet science and technology
severely restricted technological development. The question now is whether
the Soviet leadership recognizes the same, and is able to do anything about
it. A first glance at the effects of perestroika, or economic restructuring, on the
computer industry would give much hope for improvement. A deeper view,
however, reveals that much of what perestroika has achieved so far amounts
simply to bureaucratic reshuffling. Soviet insistence on centrally managed
development, coupled with their inability to do it, continues to impede the
development of the Soviet computer industry to the end of the 1980s.

5.1 The Reemergence of the Academy of Sciences

Essentially shut out from general developments in Soviet computing since
the mid 1960s, the Academy of Sciences undertook a significant organi-
zational restructuring in its computer development program in 1983, in-
cluding the establishment of a new Department of Informatics, Computer
Technology and Automation (OIVTA) as well as a series of new research
institutes. The developer of the SM minicomputer line and advocate of the

83 Information on Soviet memory chips is from lakubovskii el al. (1984); Solov’ev (1985), 240-
241; and Baranov (1986). 357-358.

318 RICHARD W. JUDY AND ROBERT W. CLOUGH

Academy’s reemergence into computer developments, B. N. Naumov, stated,
“In order not to repeat these mistakes [of leaving the Academy out of
computers], the newly created Department of Informatics, Computer Tech-
nology, and Automation of the USSR Academy of Sciences should take upon
itself the leading role in the design and implementation of a unified scientific-
technological policy in this area.”84

The Academy is now involved in a full range of computer development
programs, including the EL’BRUS supercomputer, mini- and microcom-
puters, and computer chip manufacturing processes. One Western analyst
notes that this reorganization “. . . means that the control over a substantial
portion of the research-production process in the computer field now passes
from industry to the A~ademy.”’~ While it is quite clear Velikhov and
colleagues have brought the Academy back into the computer field, whether it
is the leader is yet to be seen.

5.2 A New “Tsar” for Soviet Computing?

Our skepticism is based on additional administrative restructuring that
occurred after the Academy reorganization supposedly placed it a t the head of
technological development. Created March 21, 1986 by the Presidium of the
Supreme Soviet, the USSR State Committee for Computer Technology and
Informatics (GKVTI) is supposed to coordinate the creation, production,
utilization, and servicing of computer technology. The new committee
chairman, Nikolai Vasil’evich Gorshkov, who was appointed April 7, 1 986,86
stated that the “new committee effectively is the lead organization of the
powerful interdepartmental scientific technological complex (MNTK) for the
development, production, and implementation of the means of computer
technology.”” Despite the resolution’s and Gorshkov’s statements, however,
it remains doubtful as to whether the GKVTI is or will be the coordinating
entity of the Soviet computer industry.

The first indication of resistance to GKVTI coordination is simply the
amount of time from the formation of the committee, March 1986, to the
ratification of the Council of Ministers’ statute in April 1987. In an April 1986
interview, Gorshkov stated that “we must . , . work out and determine the
organizational documents in a three-month term.”” The fact that it took
more than a year indicates that considerable resistance was encountered.

84 Naumov (1984).
Kassel(1986), ui.
Prauda, April 8, 1986.

Ibid
13’ Ekonomicheskaia Gazera, (18), 1986.

SOVIET COMPUTERS IN THE 1980s 319

The Council of Ministers statute assigns a great deal of responsibility to the
GKVTI, and at least on paper, considerable power.89 But those institutional
powers conflict with the interests of existing organs, especially the powerful
manufacturing ministries. In the area of planning, the GKVTI is responsible
for determining the basic directions, priorities, future demands, etc., for
computer technology in the Soviet Union. The GKVTI, according to the
statute, prepares proposals for annual and five-year plans. It remains unclear
how this fits into other reports that Velikhov drafted the long-term computer
development plan from his base at the Academy of Sciences.

The Academy-Industry confusion and conflict is also apparent in the
leadership of the GKVTI. Gorshkov, the Committee’s chairman, is a trained
engineer and served in Minradioprom management since 1964. He was a
Deputy Minister for Minradioprom beginning in 1974.90 Given this back-
ground and the existing feud, it appears that the GKVTI might tend to
represent industrial interests in the turf wars.

On paper, the GKVTI is a powerful organ. The statute gives arbitration
rights to the GKVTI for settling interdepartmental quarrels, and it allows the
GKVTI to set out “binding” resolutions on ministries, departments, enter-
prises, institutions, and organizations “within its jurisdiction.” The GKVTI
“can create, reorganize, and abolish enterprises, institutions, and organiza-
tions within its competency.” But some of the inconsistencies noted above,
along with the historical record of past failed attempts to do similar things,
leaves significant doubts as to whether the GKVTI is the bureaucratic entity
that will coordinate Soviet computer development. Much as the GKNT
remained a rather feeble centralizing and coordinating body for all of Soviet
science and technology, the new GKVTI appears to suffer from the same
maladies.

5.3 Bureaucratic Shuffling Continues

The situation becomes even more confused with the introduction of a
new bureaucratic entity in Soviet technological development, the MNTK.
MNTKs are designed to provide administrative flexibility and a connection
between research, development, and production by including appropriate
academic institutes, scientific-production associations, enterprises, and minis-
tries in consortiums to tackle specific problems. Since 1985, more than 20
MNTKs have been formed to coordinate efforts in developing personal
computers, robots, biogenetics, fiber optics, cotton harvesters, etc. As with the
GKVTI, MNTKs are afforded a fair amount of power on paper, but in

B9 Sobranie Postanovlenii Pravitel ‘stva SSSR Pervyi Otdel, 596-603.
yo Kassel(1986). 26.

320 RICHARD W. JUDY AND ROBERT W. CLOUGH

practice have been unable to improve the situation. Naumov, Director of the
MNTK for personal computers, noted in a letter to the editor in Pravda,

I t is approximately two-and-a-half years sincc the decision to create intersector
scientific and technical complexes was adopted, but there is still no economic
mechanism for their work, and an experimental and experimental-production
base has not been created.”’

Thus, this most recent attempt to improve upon the centralized management
of technological development fails to improve the research-design-production
connections.

One of the most novel administrative entities to appear in Soviet teclino-
logical development is the Temporary Scientific Collective (TSC). Restricted
to a life of three years by Council of Minister statute, this type of organiza-
tion is intended to solve a specific problem in a short time, and then dissolve
itself when other priorities come to the fore. As of March 1987, approxi-
mately 10 TSCs were in operation.

Created in 1985, the START Collective was one of the first to be organized
and served a s a test case for the entire concept. Its role in developing the
MARS computer was described in Section 4.2.3, above. Now out of existence,
i t employed a total of 155 people, including researchers from the computer
center. the Cybcrnetics Institute of the Estonian Academy of Sciences, and
specialists from the Severodonetsk lmpuls Scientific Production Association
of Minpribor.

Yet, even this most flexible organizational entity has encountered problems.
As with the MNTKs, the inter-departmental nature of the TSC lcavcs i t
bureaucratically “orphaned.” Supplies are difficult to acquire. Office space is
hard to find. Even housing for staff can be a major headache. The director of
START, V. E. Kotov, admits breaking administrative statutes by hiring
managerial staff under phony job descriptions in order to get the necessary
work done. Although collectives have the right to hire short-term workers,
they often lack the funds to do so. Thus, the TSC collides with the very
problems it is designed to overcome.

5.4 Calls for More of the Same

The organizational problems within the Soviet computer industry were
recently discussed by the Supreme Soviet Standing Commission on Science
and Technology, the Soviet equivalent of a parliamentary committee on

‘)I Prcwdtr. May 4, 1988, 3.

SOVIET COMPUTERS IN THE 1980s 32 1

science policy.’2 The committee discussed delays in both plant development
and serial production of computers, the inability to achieve world standards,
the continued production of non-compatible PCs, and the poor level of
computer training. A TASS report on the committee meeting stated,

The calamity is that our planningorgans cannot part at all from gross indicators.
Financially, our plans for electronics are being fulfilled, in a manner of speaking,
but in terms of the range of goods, it is a total catastrophe.’-’

The committee then cited organizational problems as the cause of this “total
catastrophe.” First and foremost, they note that the GKVTI lacks the financial
levers with which to manage the computer industry. The ministries continue to
hold the purse strings, leaving these new bureaucratic entities stranded unless
they can attach themselves to a ministry. The Supreme Soviet committee’s
response to the problem, however, is to t ry more of the same centralized effort
that has failed for the last 20 years. The report states,

Obviously, i t is expedient to examine the issue of setting up a national economic
complex that will unite the sectors and implement a unified scientific and
technical p ~ l i c y . ” ~

They recognize a problem, but always come back to the same solution, a
new and improved centralized effort. When will they learn?

Summary

The Soviet policy of copying Western hardware design, combined with
international isolation and an industrial structure that retards domestic de-
velopment, production, and support, effectively doomed Soviet computer-
dom to an expanding lag behind the West during the 1980s. The strategy of
technological followership, by itself, did not cause the problem. After all, many
other countries successfully rode the high-tech wave of the 1980s while pur-
suing such a strategy. Their success, however, was due to their integration
into the world economy and the necessity of their producers to compete in
open markets. Isolated from the stimulation of such competition, Soviet
computer development wallowed in a “hot house” domestic economy that
purposely shunned competition in favor of centralized bureaucratic control.

’)’ See lvakhnov (1988).
Deputies See ‘Critical’ Science, Technology Lag. Moscow Radio, August 15, 1988. as 9 3

reported by FBIS-SOV-88-158.63.
y4 Ihitl.

322 RICHARD W. JUDY AND ROBERT W. CLOUGH

In summary, there is both good news and bad news for the Soviet com-
puter user of the late 1980s. The bad news is that available hardware and
software continues to fall farther behind what their Western counterparts are
using at every level, from supercomputers to microcomputers. The good news
is that the Soviet’s scientific and political leadership now openly recognizes
the problem and vows to resolve it. But it seems doubtful that the attempted
solutions, which so far have been limited to industrial reorganization and
bureaucratic reshuffling, will be sufficient to slow the rate at which they are
falling behind, much less actually begin to close the gap. Unfortunately, for
the Soviet computing community, the headlines for the 1990s will probably
read: Soviet computer industry continues to lag; Soviet leadership continues
to do something about it.

REFERENCES

Abramovich, S. N., et a / . (1985). Professional’nye Personal’n ye EVM “Iskra 226.” Mikroprotses-

Adamovich, A. I., and Leonas, V. V. (1988). Virtual’nye Diski v MNOS. Programmirooanie (3).

Artamonov, G. T., ed. (1988). “Sredstva Informatsionnoi Tekhniki.” Energoatomizdat, Moscow.
Ashastin, R. (1980). Sotrudnichestvo v Oblasti Vychislitel’noi Tekhniki na Pod’eme. Ekonomi-

Baranov, V. V., et al. (1986). Poluprooodnikouye E I S Zapominaiushchikh Ustroistu: Spraoochnik.

Baryshnikov, V. N., et a/ . (1985). Personal’naia EVM “Irisha” Dlia Kabinetov Informatiki

Baryshnikov, V. N., et a/ . (1986a). Modul’ Protsessora Personal’noi EVM “Irisha”. Mikroprotses-

Baryshnikov, V. N., et al. (l986b). Programmnoe Obespechenie PEVM “Irisha”. Mikroprotses-

Baryshnikov, V. N., et a / . (19864. Programma Vyvoda Simvol’noi i Graficheskoi Informatsii

Basin, A. (1988). “Agat” v nashei shkole. Informatika i Obrazouanie (3), 98-100.
Birbilas, A. lu., and Strishka, V. Ch. (1988). Avtomatizatsiia Podgotovitel’nykh Operatsii

Boiko, V. V., and Savinkov, V. M. (1987). Sravnitel’nyi Analiz Promyshlennykh SUBD.

Bores, L. D. (1984). Agat: a Soviet Apple 11 Computer. BYTE (I I), 135-136, 486-490.
Briabrin, V. M., and Chizhov, A. A. (1986). Arkhitektura Operatsionnoi Sistemy Al’fa-DOS/

Broczko, P. (1985). The Microcomputer Manufacture of Socialist Countries in 1984. Szamitas-

Broczko, P. (1988). A Szocialista Orszagok Mikroszamitogepgyartasa. Szamitastechnika (Hun-

Burtsev, V. S. (1985). Nauchnoe Nasledie Akademika S. A. Lebedeva. Kibernetika i Vychislitel’naia

Buzin, A. (1988). Agat v Nashei Shkole. Informatika i Obrazouanie (3), 98-100.

sornye Sredstua i Sistemy (2), 29-36.

92-94.

cheskoe Sotrudnichestuo Stran-chlenov S E V (3) . 80-84.

Radio i Sviaz’, Moscow.

i Vychislitel’noi Tekhniki. Mikroprotsessornye Sredstoa i Sistemy (3), 5 - 8 .

sornye Sredstua i Sistemy (2). 52-62.

sornye Sredstoa i Sistemy (3), 59-64.

Personal’noi EVM “Irisha”. Mikroprotsessornye Sredstoa i Sistemy (4), 79-89.

v Proizvodstve Magnitnykh Diskov. Pribory i Sistemy Uprauleniia (3), 35-37.

Prikladnaiu Informatika 1 (12).

DOS-I 6. Mikroprotsessornye Sredstua i Sistemy (4), 5 1 - 56.

technika (4), 8-9.

garian), May 15, 12-14.

Tekhnika I, 5-10,

SOVIET COMPUTERS IN THE 1980s 323

Campbell, H. (1976). Organization of Research, Development and Production in the Soviet

Computer Review 1987.27 (2). GML Corporation.
Dale, A. G. (1979). Database Management Systems Development in the USSR. Computer Surveys

Data Decisions: Computer Systems (July 1983) Business Publications Division, ZitT-Davis

Davis, N. C., and Goodman, S. E. (1978). The Soviet Bloc’s Unified System of Computers.

Denisenko, A. (1986). Ispytaniia KUVT-86. Informatika i Obrazooanie (2). 69-74.
“Deputies See ‘Critical’ Science,” Technology Lag. Moscow Domestic Service, August 15, 1988,

Driga, I. (1986). Oborudovanie dlia KVT. Informatika i Ohrazovanie (2), 66-69.
Dshkhunian, V. L., et a/ (1984). Odnokristal’nye Mikroprotsessory Komplekta BIS Serii K1801.

Dshkhunian, V. L., et a/. (1985). Odnoplatnye MikroEVM Riada “Elektronika MS 1201.”

Dujnic, P., and Fund.tr :k, M. (1983). Automation trends in management. Informacne Systemy (4),

Elektronno-vychisli’el’naia mashina ES 1007. (1988) (brochure) Minradioprom.
EIorg Information (!986). (I) , Vneshtorgreklama.
EIorg Informiruet (1983). (6), 38. Vneshtorgreklama.
Ershov, A. P. (1975). A History of Computing in the U.S.S.R. Datamation 21 (6), 80-88.
Ershov, A. P. (1986). 1,100,OOO PEVM: vovremia podgotovit’sia, nichego ne upustit’ iz vidu.

Ershov, A. P. (1987). Shkol’naia informatika v SSSR: ot gramotnosti k kulture. Informatika

Faizulaev, B. N., and Tarabrina, B. V. (1 986). “Spravochnik: Primenenie Integral’nykh

Filinova, E. N. (1985). “Diskovaia Operatsionnaia Sistema Kollektivnogo Pol’sovaniia dlia SM

Fortunov, 1. (1985). Programmnaia Sistema dlia Obrabotki Tekstov TOS-83 na Mini-EVM Tipa

Giglavyi, A. V., et a/ . (1984). “MikroEVM SM-1800.” Finansy i Statistika, Moscow.
Glushkov, V. M. (1979). Vychislitel’naia Tekhnika v SSSR. I n ”Kibernetika: Voprosy Teorii

Glushkova, G. G., and Ivanov, E. A. (1986). MikroEVM Semeistva “Elektronika.” Mikroprotses-

Goodman, S . E. (1979). Software in the Soviet Union: Progress and Problems. Advances in

Goodman, S . E., et a / . (1984). General-Purpose Computer Systems in the Warsaw Pact Countries.

Gorelov, S. (1988). Bytovye PEVM Stanoviatsia Blizhe. Radio (8), 62.
Goskomstata SSSR (1988). “Paket Programm DIALOG na PEVM.” (brochure), VNIPlstat-

Govorun, V. N., et a / . (1986). MikroEVM i Upravliaiushchie Moduli na Baze BIS Serii K1810.

Grevtsev, V. V. (1988). Sredstva peredachi dannykh mikroEVM semeistva SM 1800. Mikroprotses-

Grif, A. (1988). “Korvet” na meli, kto vinovat? Radio (7), 2-4.

Computer Industry. RAND Corporation, R-1617-PR, Santa Monica, California.

I 1 (3), 213-226.

Publishing Company, New York.

Computing Surveys 10 (2), 93 - 122.

as reported by FBIS-SOV-88-158,63.

Mikroprotsessornye Srtsdstua i Sistemy (4), 12- 18.

Mikroprotsessornye S vdstva i Sistemy (2). 8-13.

302- 394.

Mikroprotsessornye Sredstva i Sistemy (4), 2.

i Obrazovanie (6), 3-1 1 .

Mikroskhem v Elektronnoi Vychislitel’noi Tekhnike.” Radio i Sviaz’, Moscow.

EVM.” Finansy i Statistika, Moscow.

SM-4. Vychislitel’naia Tekhnika Sotsialisticheskikh Stran 17.68- 72.

i Praktiki” (V. M. Glushkov), pp. 219-228. Nauka, Moscow.

sornye Sredstva i Sistemy (4), 7-1 1.

Computers 18.23 1 - 287.

Signal, December, 97- 101.

inform Goskomstata SSSR, Moscow, 1/20/88.

Mikroprotsessornye Sredstva i Sistemy (S) , 13 - 15.

sornye Sredstva i Sistemy (2), 41-43.

324 RICHARD W. JUDY AND ROBERT W. CLOUGH

Grigor’ev, A. G . (1987). Adaptirovannaia Operatsionnaia Sistema ADOS dlia SM EVM.

Grishin, V. A,, and Ugol’kov, V. N. (1985). “Sektsionnye Mikroprotsessory i Ikh Programmi-

Heuertz, R. (1983). “Microcomputer Development in the U.S.S.R.” MA Thesis, University of

Heuertz, R. (1984). Soviet Microprocessors and Microcomputers. Byte, April, 351 -362.
lakubaitis, E. A. (1985). “Lokal’nye Informatsionno-Vychislitel’nye Seti.” Zinatne, Riga.
lakubovskii, S. V., ef al. (1984). “Analogovye i Tsifrovye lntegralnye Mikroshkemy.” Radio i Sviaz,

Iaroshevskaia, M. B. (1986). Personal’naia EVM “lskra” 1030. I 1. Mikroprotsessornye Sredsfua

loffe, A. G . (1984). Massovye personal’nye EVM serii “Agat.” Mikroprotsessornye Sredstua

Isaev, M. A. (1987). E-Praktikum dlia ES EVM. Mikroprotsessornye Sredstua i Sistemy (3). 76.
Ivakhnov, A. (1988). Elektronika: Vdogonku za Bcherashnim Dnem. Izuestiia, August 15.3.
Ivanov, G. (1988). Tekstovye Protsessory. Radio (7), 26-28.
Ivanov, S. N., et ul. (1986). Odnoplatnaia MikroEVM na MPK BIS Serii K1810. Mikroprorses-

Ivanova, S. B. (1987). Vsesoiuznyi nauchno-tekhnicheskii seminar. Prihory i Sistemy Uprauleniia

JS (1984). JSEP 3-Next Stage of Development of the Uniform System of Electronic Computers.
Vyber Injormacz z Organizachi a Vypocetni Techniky (in Czech) (2). 195-196.

Judy, R. W. (1967). Information, Control, and Soviet Economic Management (and Appendix:
Characteristics of Some Contemporary Soviet Computers). In “Mathematics and Computers
in Soviet Economic Planning”(J. P. Hardt, M. Hoffenberg, N. Kaplan, and H. S. Levine, eds.),
pp. 1-67 (and 261-265). Yale University Press, New Haven.

Judy, R. W. (1970). The Case of Computer Technology. In “East-West Trade and the Technology
Gap” (Stanislaw Wasowski, ed.), pp. 43-72. Praeger Publishers, New York.

Judy, R. W. (1986). The Riad Computers of the Soviet Union and Eastern Europe, 1970-1985: A
Survey and Comparative Analysis. HI-3872, Hudson Institute, Indianapolis.

Jungnickel, H. G. (1984). The work at the ESER. Rechentechnik-datauerarbeitung 21, (10). 5 - 8 .
Kabelevskii, A. N. (1986). “Malye EVM: Funktsional’noe Proektirovanie.” Nauka, Moscow.
Kaloshkin, E. P., et ul. (1985). Mikroprotsessornyi Komplekt BIS Serii K583. Mikroprotsessornye

Karpilovich. Yu. V. (1983). Yes-1061 Is on Good Path. Souerskaia Belorussiia. 3 April, 1.
Karrasko, L. Kh. (1980). Razvitie Malykh EVM Na Kube. Vychislitefhaia Tekhnika Sotsialist-

Kassel, Simon (1986). A New Force in the Soviet Computer Industry: The Reorganization of the

Kezling, G. B., ed. (1986). “Tekhnicheskie Sredstva ASU: Spravochnik 2.” Mashinostroenie,

Khanov, M., and Eremin, A. (1983). Minicomputers in Automated Control Systems: Elektronika-

Khatskevich, L. D., and Protsenko, 1. G. (1988). Professional’naia Personal’naia EVM “Elektro-

Khvoshch, S. T., el al. (1985). “lnzhektsionnye Mikroprotsessory v Upravlenii Promyshlennym

Kobylinskii, A. V., et al. (1986). Odnokristal’nyi Vysokoproisvoditel’nyi 16-razriadnyi Mikroprot-

Mikroprotsessornye Sredstua i Sistemy (4). 23-25.

rovanie.” Nauka, Novosibirsk.

Kansas. University Microfilms International, Ann Arbor, Michigan.

Moscow .

i Sistemy (4). 23 - 24.

i Sistemy (l), 56-60.

sornye Sredstua i Sistemy (6). 8-13.

(12), 40-41.

Sredstua i Sistemy (2), 18-23.

icheskikh Stran (8). 19-23.

USSR Academy of Sciences in the Computer Field, Rand Note N-2486-ARPA.

Leningrad.

100-25. Tekhnika i Vooruzhenie (5) , 4-5.

nika MS 0585.” Mikroprotsessornye Sredstua i Sistemy (2). 3-6.

Oborudovaniem.” Mashinostroenie, Leningrad.

sessor KM 1810VM86. Mikroprotsessornye Sredstua i Sistemy (I), 28-33.

SOVIET COMPUTERS IN THE 1980s 325

Koisina, L. (1988). Otkrytoe pis’mo direktory zavoda “Kvant.” Informatika i Ohrazouanie (5),
118.

Kokorin, V. S., et al. (1986). Tendentsiia Razvitiia Dialogovykh Vychislitel’nykh Kompleksov.
Mikroprotsessornye Sredstua i Sistemy (4), 1 I - 15.

Korneichuk, A. A., and Rastorguev, A. A. (1986). Kruglyi Stol s Ostrymi Uglami. Mikroprotses-
sornye Sredstua i Sisterny (2), 92-93.

Korneichuk, V. I.. et a/. (1986). “Vychislitel’nyie Ustroistva na Mikro-Skhemakh: Spravochnik.”
Tekhnika, Kiev.

Korolev, L. N., and Mel’nikov, V. A. (1976). Vychislitel’nye Sredstva i Vspomogatel’noe
Oborudovanie Sistem. Uprauliaiushchie Sistemy i Mashiny (6). 7- I 1.

Kostelianskii. V. M., and Resanov, V. V. (1980). Upravliaiushchie Vychislitel’nye Kompleksy
SM-I i SM-2. Vychislitel’naia Tekhnika Sotsialisticheskikh Stran (8), 30-38.

Kotov, V. E.. and Marchuk, A. G. (1985). Proekt MARS-Kompleksnyi podkhod k rasrabotke
vychislitel’nykh sistem. I n “Kibernetika i vychislitel’naia tekhnika” (A. Mel’nikov, ed.) (I) ,
pp. 69-77. Nauka, Moscow.

Kozirev, S., and Sokolov, S. (1987). Computer with an Accent: Why are They Going to the Black
Market for Personal Computer Software and Not to Stores? Kornsomolskaia Praoda, March 3,
2, as translated in JPRS-UCC-87-018, September 28, 1987,8-11.

Krilov, V. V. (1985). Nauka o programmakh. Mikroprotsessornye Sredstua i Sistemy (I) , 42-43.
Kuchukian, A. T., Sarkisian, T. E., and Ter-lsraelian, V. A. (1985). ES-1046-EVM vysokoi

proizvoitel’nosti. Vychislitel’naia Tekhnika Sotsialislicheskikh Stran 18, 174- 179.
Kuleshova. V. 1. (1987). Mikroprotsessornyi Komplekt Serii KR580. Mikroprotsessornye Sredstua

i Sistemy (5). 87-94.
Kushnir. V. E., et a/. (1986). Uchebnaia MikroEVM na Osnove Odnokristal’noi EVM KM

I8 16VE48. Mikroprotsessornye Sredsfua i Sisterny (6), 75-82.
Kuznetsov, C. 0.. Lanko, A. A,, Leont’ev, D. I . , Matveev,O. B., Prokhorov, N. L., Raev, V. K., and

Shotov, A. E. (1988). Elektronnyi Disk SM 5803 Dlia MikroEVM S lnterfeisom “Obshchaia
Shina.” Mikroprotsessornye Sredstua i Sistemy (2). 78-81.

Larionov, A. M. (1976). Edinaia sistema EVM i perspektivy ee razvitiia. Voprosy Kihernetiki 20,
61-74.

Larionov, A. M. (1977). Osnovnye kontseptsii razvitiia ES EVM. Vychislitel’naia Tekhnika
Sotsiolisricheskikh Stran 1,41-51.

Larionov, A. M., Levin, V. K., Przhiialkovskii, V. V., and Fateev, A. E. (1973) Osnovye printsipy
postroeniia i tekhniko-ekonomicheskie kharakteristiki Edinoi Sistemy EVM (ES EVM).
Upruuliaiushchie Sistemy i Mashiny (3), 1 - 12.

Lavreniuk, Iu. A., Belynskii, V. V., Golubev, B. P., and Zenin, V. M. (1979). Pervye sovmestnye
ispytaniia tekhnicheskikh i programmykh sredstv SM EVM. Vychislitel’naia Tekhnika
Sofsicilisticheskikh Stran 5, 117-122.

Legavko, A. V., and Vasilenko, S. N. (1988). Organizatsiia mezhmashinnoi sviazi mezhdu
mikroEVM “Elektronika 60M” i mini-EVM SM-I. Prihory i Sistemy Uprauleniia (4), 31.

Lemko, L. M., et a/. (1987). Personal’nyi Mikrokomp’iuter “Elektronika MK 85.” Mikroprotses-
sornye Sredstua i Sistemy (4). 10- 12.

Levnina. G. A. (1988). Vychislitel’nyi Kompleks SM 1700: Arkhitektura i Tekhnicheskie Sredstva.
Prihory i Sisremy Uprauleniia (3), 1.

Lipaev, V. V., et al. (1985). Sistema Avtomatizatsii Proektirovaniia Programm na Baze Personal’
nykh EVM (Sistema PRA). Mikroprotsessornye Sredstua i Sistemy (4). 42-45.

Loeschner, V., and Kasper, B. (1984). Computer equipment at the 1984 Leipzig Spring Fair. Radio
Fernsehen Elektronik 33 (7). 430-463.

Lomov, lu. S. (1987). EVM vuysoiki proizvoditel’nosti ES-1066 i ES-1065. In “Elektronnaia
Vychislitel’naia Tekhnika” 1 (V. V. Przhiialkovskii, ed.), pp. 177-188. Radio i Sviaz’, Moscow.

326 RICHARD W. JUDY AND ROBERT W. CLOUGH

Lopatin, V. S., et a/. (1985). MikroEVM “Elektronika MS 1211,” “Elektronika MS 1212.”
Mikroprotsessornye Sredstva i Sistemy (2). 14- 15.

Lopato, G. P., Smirnov, G. D., and Pykhtin, V. la. (1986). Sovetskie personal’nye professional’nye
EVM edinoi sistemy. Vychislitel’naia Tekhnika Sotsialisticheskikh Stran 20.3- 1 1.

Luk’ianov, D. A. (1985). KR58O- Avtomatizatsiia Bez Problem! Mikroprotsessornye Sredstva i
Sistemy (I) , 85-90.

Malashevich, B. M. (1 984). Magistral’no-Modul’nye Mikroprotsessornye Sistemy. Mikroprotses-
sornye Sredstua i Sistemy (4), 3-11.

Maliarskii, N. M., and Terekhov. lu. V. (1987). Mikroelektronnaia elementnaia basa sredstv
vychislitel’noi tekhniki. In “Elektronnaia Vychislitel’naia Tekhnika” 1 (V. V. Pnhiialkovskii,
ed.), pp. 210-216. Radio i Sviaz’, Moscow.

Marchuk, G. 1. (1986). “Vychislitel’nye protsessy i sistemy” 2. Nauka. Moscow.
Marchuk, G. 1. (1987). Vystupitel’noe slovo presidenta Akademii Nauk SSSR. Vestnik Akademii

Marples, D. (1985). The Computer in the Ukraine: Some New Developments. Radio Liberty

Mel’nikov, V. A. (1986). S. A. Lebedev-osnovopolozhnik otechestvennoi vychislitel’noi tekhniki.

Mikrodos. (1985). MIKRODOS-Mobil’naia Operatsionnaia Sistema dlia MikroEVM.

Mishchenko, V. A.. Lazarevich, E. G., and Aksenov, A. I. (1985). “Raschet proizvoditel’nosti

Murenko, L. L., et a/. (1986). Personal’naia EVM “Elektronika T3-29MK.” Mikroprotsessornye

Musaelian, V. (1985). Kommunist, 7 July, I .
Muzychkin, P. A.. et al. (1988). Avtomatizirovannaia Obychaiushchaia Sistema dlia EVM

Nanassy, T. (1985). A comparison of the ES 1034 and 1032 computers. Szamitastechnika.

Nauka. (1988a). Komp’iuternyi Klass k Pod“ ezdu Podan. Nauka i Zhizn’(4). 13.
Nauka. (1988b). Ne Tol’ko BK. Nauka i Zhizn’(4), 123-124.
Naumov, B. N. (1977). Sozdanie SM EVM-Novyi Etap Razvitiia Sredstv Vychislitel’noi

Naumov, B. N. (1980). Etapy Razvitiia Sistemy Malykh Elektronnykh Vychislitel’nykh Mashin.

Naumov, B. N. (1984). Kolonka Redaktora. Mikroprotsessornye Sredstua i Sistemy (2), 2.
Naumov, B. N., Glukhov, Iu. N., Kabalevskii, A. N., and Panferov, B. 1. (1979). Upravliaiushchie

Kompleksy SM-3 i SM-4. Vychislitel’naia Tekhnika Sotsialisticheskikh Stran (6), 62-67.
Nesterov, P. V., et a/. (1986). “Mikroprotsessory: Kn. 1. Arkhitektura i Proektirovanie mikro-

EVM.” Vysshaia Shkola, Moscow.
Nikitin, A. N., and Ostrovskii, V. P. (1988). Kompleks programmno-apparatnoi otkladki

mikroprotsessornykh sistem na baze PEVM “Iskra-226”. P ribory i Sistemy Uprauleniia (4),

Novak, S. (1983). Results and outlooks in Computer Technology. Mechanizace a Automarizace
Administratiuy (12), 453-454. (This article is a summary of an article published earlier in
Rechentechnik und Datenuerarbeitung.)

Nauk(7), 7-18.

Research Report 179/85, May 30,1985.

Injormatika i Obrazooanie (I) , 6-13.

Mikroprotsessornye Sredstva i Sistemy (2). 92.

mnogoprotsessornykh vychislitel’nykh sistem.” Vyssheishaia Shkola, Minsk.

Sredstua i Sistemy (4), 20-23.

Personal’nogo Uspol’zovania. Programmirouanie (3), 70-80.

March 4.

Tekhniki. Vychislitel’naia Tekhnika Sotsialisticheskikh Stran 1,84-96.

Vychislitel’naia Tekhnika Sotsialisticheskikh Stran (8), 5 - 10.

29-30.

Operat. (l988a). Operatsionnaia Sistema “Al’fa-DOS.” (brochure) VDNKh CCCP, (2).
Operat. (l988b). Operatsionnaia Sistema M86. (brochure) VDNKh SSSR, (2).
Oprishko, A. A., Afonin, L. A., Arekel’ian, V. V., Babaiants, A. B., and Pis’mennyi, V. V. (1987).

Sostoianie i perspektivy avtomatizatsii biotekhnologicheskikh protsessov. Pribory i Sistemy
Uprauleniia (I I) , 40-41.

SOVIET COMPUTERS IN THE 1980s 327

Ostapenko, G. P., and Filinov, E. N. (1987). Sovershenstvovanie Programmnogo Obespecheniia
SM EVM. Vychislitel’naia Tekhnika Sotsialisticheskikh Stran 21,48-55.

Ostapenko, G. P., and Fridman, A. L. (1985). Instrumental’naia Sistema Postroeniia SUBD na
Malykh i Puti Povysheniia ee Effektivnosti. Vychislitel’naia Tekhnika Sotsialisticheskikh Sfran

Ostrovskii, M. A. (1988). Mikroprogrammnaia struktura arifmetiko-logicheskogo protsessora

Paket. (1988a). Paket Prikladnykh Programm SLOG. (brochure) VDNKh SSSR(2).
Paket. (1988b). Paket Prikladnykh Programm ABAK. (brochure) VDNKh SSSR (2).
Pankratov, V. S., ef a/ . (1987). Opyt Primeneniia Personal’nykh EVM. Gazouaia Promyshlennost ’

Personnal’naia mikro-EVM Neiron 19.66. (brochure) Minpromsviazi.
Petrov, M. (1988). Nuzhen li spetsshkole “Agat.” Informatika i Obrazouanie (I) , 125.
Phister, M., Jr. (1979). “Data Processing Technology and Economics” (2nd ed.). Digital Press,

Pogorelyi, S. D., Slobodianiuk, A. I., Suvorov, A. E., and lurasov, A. A. (1986). Personal’naia EVM

Pogudin, lu. M. (1987). MIASS-Sistemma Mikroprogrammirovanniia na Iazyke AMDASM

Polosin, A. N., el a/ . (1986). Uchebnyi komp’iuter “elektronika UKNTs.” Mikroprotsessornye

Poom, K. E., Moor, A. E., Rebane, R. V., and Arulaane, T. E. (1986). Operatsionnaia Sistema dlia

Popov. A. A,, et a / . (1984). Dialogovye Vychislitel’nye Kompleksy “Elektronika NTs-80-20.”

Popsuev, A. N. (1985). Opyt i Perspektivy Tsentralizovannogo Obespecheniia Razrabotchikov

frauda. (1985). June 12.2.
Presnukhin, D. L., ed. (1986a). “Mikroprotsessory: Kniga 1- Arkhitekura i Proektirovanie

mikro-EVM.” Vysshaia Shkola, Moscow.
Presnukhin, D. L., ed. (1986b). “Mikroprotsessory: Kniga 2-Sredstva Sopriazheniia, Kontro-

liruiushchie i Informatsionno-Upravliaiushchie Sistemy.” Vysshaia Shkola, Moscow.
Presnukhin, L. N., and Shakhnov, V. A. (1986). “Konstruirovanie Elektronnykh Vychislitel’nykh

Mashin i Sistem.” Vysshaia Shkola, Moscow.
Presnukhin, L. N., et al. (1985). Laboratoriia PO lzucheniiu Mikroprotsessornykh Komplektov s

Fiksirovannym Naborom Komand. Mikroprotsessornye Sredstua i Sistemy(l), 77-81.
Priklad. (1985). “Prikladnoe Programmnoe Obespechenie Edinoi Sistemy EVM i Sistemy Mini-

EVM.” Vypusk 9. Koordinatsionnyi Tsentr Mezhpravitel’stvennoi Komissii PO Sotrudniches-
tvu Sotsialisticheskikh Stran v Oblasti Vychislitel’noi Tekhniki, Moscow.

Prokhorov, N. L. (1987). Perspektivy Razvitiia SM EVM. Vychislitel’naia Tekhnika Sotsialist-
icheskikh Stran 21, 3-12.

Prokhorov, N. L. (1988a). Osobennosti Arkhitektury i Programmnogo Obespecheniia
Vychislitel’nogo Kompleksa. Mikroprotsessornye Sredstva i Sisfemy (2), 6-9.

Prokhorov, N. L. (1988b). Funktsional’nye Vozmozhnosti i Sostav VK SM 1700. Pribory i Sistemy
Uprauleniia (3). 2-3.

Prokhorov, N. L., and Landau, 1. la. (1984). MikroEVM SM-1800 i Ee Programmnoe
Obespechenie. Mikroprotsessornye Sredstua i Sistemy (2). 28- 30.

Prokhorov. N. L., and Smirnov, E. B. (1986). SM EVM: Sostoianie i Perspektivy Razvitiia.
Pribory i Sistemy Uprauleniia (2), 8- I t .

Proleiko, V. M. (1984). Mikroprotsessornye Sredstva Vychislitel’noi Tekhniki i ikh Primenenie.
Mikroprotsessornye Sredstua i Sistemy (I) , 11- 16.

17.90-95.

VK SM 1700. Pribory i Sistemy Upravleniia (3), 11-12.

(5) . 26-29.

Bedford, Massachusetts.

“Neiron 19.66.” Mikroprotsessornye Sredstva i Sistemy (4). 16- 19.

Mikroprotsessornye Sredstva i Sistemy (5) , 19-23.

Sredstua i Sisfemy (6), 14-16.

PEVM “lskra 226.” Mikroprotsessornye Sredstua i Sistemy (6), 21.

Mikroprotsessornye Sredstua i Sistemy (4), 61 -64.

ASU Programmnymi Sredstvami. Uprauliaiushchie Sistemy i Mashiny (4), 9- 14.

328 RICHARD W. JUDY AND ROBERT W. CLOUGH

Przhiialkovskii, V. V., ed. (1987). “Elektronnaia Vychislitel’naia Tekhnika” 1. Radio i Sviaz’,
Moscow.

Pykhtin, V. la. (1986). ES 1840-Bazovaia personal’naia EVM edinoi sistemy. Mikroprofses-
sornye Sredstua i Sistemy (4). 15-16.

Raikov, D. D., and Rubanov, V. 0. (1976). Prikhdnye Programmy v Sisteme Programmnogo
Obespecheniia ES EVM. Upraoliaiushchie Sistemy i Mashiny (2), 33- 39.

Rakovskii, M. E. (1 979). Mezhdunarodnie Sotrudnichestvo Sotsialisticheskikh Stran v Oblasti
Vychislitel’noi Tekhniki: Desiatiletie Sotrudnichestva. Vychislitel ’naia Tekhnika Sotsialistiches-
kikh Stran 6,7-17.

Raud, R. K. (1982). The State of the Art in Microcomputer Programming. Programming. and
Computer Software (7). (Translation of Programmirouanie (5). 31 -43.)

Riabov, la. (1981). Problemy Uskoreniia Nauchno-tekhnicheskogo Progressa: Sotrudnichestvo
Sotsialisticheskikh Stran v oblasti Vychislitel’noi Tekhniki-utogo i perspektivy. Ekonomi-
cheskoe Sotrudnichestuo Stran-Chlenoo S E V (2). 20-25.

Romanov, V. lu., et a / . (1985). Personal’naia EVM “Irisha”: Periferiinye Ustroistva, lstochnik
Pitaniia. Mikroprorsessornye Sredstua i Sistemy (3), 53-59.

Romanov, V. lu., et a / . (1986). Graficheskie Vozmozhnosti Personal’noi EVM “Irisha.”
Mikroprotsessornye Sredstua i Sistemy (I) , 61 -72.

Romashkin, F. Z., and Giglavyi, A. V. (1987). 0 Razvitii Programmnogo Obespecheniia dlia
MikroEVM. Pribory i Sistemy Uprauleniia (5) , 2-4.

Rudins, G . (1970). Soviet Computers: A Historical Survey. Soviet Cybernetics Reuiew (I) , 6-44.
Rukavishnikov, V. D. (1988). Organizatsiia vychislitel’nogo protsessa v mnogomashinnom

Safonov, V. 0.. and Tsoi, V. N. (1987). Nekotorye Problemy Razvitiia lazykov i Sistem

Samarskii, A. A. (1984). Problemi primeneniia vychislitel’noi tekhniki. Vestnik Akademii Nauk

Sasov, A. lu. (1986) Mikrotomografiia i Tsifrovaia obrabotka izobrazhenii na mikroEVM “lskra

Savel’ev, A. la., ed. (1987a). “Osnovy informatiki.” Kniga 2, Vysshaia Shkola, Moscow.
Savel’ev, A. la., ed. (l987b). “Elektronnye Vychislitel’nye Mashiny: Sredstva Obshcheniia s

EVM.” Book 6, Vysshaia Shkola, Moscow.
Savinov, V. I., and Gritsyk, V. V. (1988). Sistema vyvoda graficheskoi informatsii v VK na baze

mikroEVM “Elektronika-60. Prihory i Sisterny Uprauleniia (I), 33-34.
Selivanov, lu. P. (1987). Novye tekhnicheskie sredstva ES i SM EVM. I n “Elektronnaia

Vychislitel’naia Tekhnika” 1 (V. V. Przhiialkovskii, ed.), pp. 210-216. Radio i Sviaz’, Moscow.
Semenkov, 0. I., et a / . (1987). Mikroprotsessornaia Graficheskaia Stantsiia GT-80. Mikroprotses-

sornye Sredstua i Sistemy (4). 54-56.
Shakhnov, V. A. (1984). Razvitie i Primenenie Mikroprotsessorov i Mikroprotsessornykh

Komplektov BIS. Mikroprorsessornye Sredstua i Sistemy (1). 17-22.
Shekhovtsev, K. (1988). 0 pechal’nom i zabavnom. Informatika i Obrazouanie (4). 126-127.
Shirokov, F.(1988). WhybeTricky? NTR(8) . 19April-2 May,4.(Astranslated in JPRS-UST-88-

Shkamarda, A. N. (1986). Shestnadtsatirazriadnye MikroEVM Semeistva SM 1800. Mikroprorses-

Signaevskii, V. A. (1988). Ob upravlenii pamiat’iu v EVM SM 1700. Pribory i Sisfemy Uprauleniia

Sinitsin, N. V., Petropavlovskii, V. P., and Nikitin, A. M. (1987). Nouoe IJ Zhizni, Nauke, Tekhnike:
Seriia Radioelektronika i Suiaz (I) , as translated in JPRS-UCC-87-017, September 23, 1987,32-
80.

“Sistemnye Programmnye Sredstva ES EVM i SM EVM.” (1987). (I) , Mezhdunarodnoe tsentr
nauchnoe i tekhnicheskoi informatsii, Moscow.

komplekce no baze EVM CM 1800. Pribory i Sistemy Uprauleniia (4), 1-3.

Programmirovaniia. Vychislitel ’naia Tekhnika Sotsialisticheskikh Stran 21, 88-94.

(11). 17-29.

226.“ Mikroprotsessornye Sredstoa i Sistemy (I) , 53-58.

01 I, 42-44).

sornye Sredstua i Sistemy (5) . 6-10.

(3), 5-6.

SOVIET COMPUTERS IN THE 1980s 329

Smirnitskii, E. K. (1986). “Dvenadtsataia Piatiletka.” Politisdat, Moscow.
Sobranie Postanoulenii Prauitel’stu S S S R Otdel Peruyi (1987). 29, 596-603.
Solomatin. N. M., et a/. (1987). “Vybor MikroEVM dlia lnformatsionnykh Sistem.” Vysshaia

Solov’ev, G. N., ed. (1985). “Skhemotekhnika EVM.” Vysshaia Shkola, Moscow.
Souetskaia Belorussiia (1983). 3 April, 1.
Souetskaia Belorussiia (1984). 8 January, I .
Souetskaia Liiua (1985). 22 February, 4.
Stapleton. R. A. (1985). Soviet and East European Microcomputer Systems. Signal (4), 69-76.
SUBD. (1988). SUBD REBUS. Pribory i Sisfemy Uprauleniia (7), advertising insert.
Sulim, M., Lazarev, A., and Safanov, V. (1986). Znakom’tes: “Korvet.” Injiormatika i Ohrazouanie

Szamitastechnika (1984). November, 1, 10.
Szuprowicz, B. 0. (1973). Soviet Bloc’s RlAD Computer System. Datamation. September, 80-85.
Talov, 1. L.. el al. (1982). Novaia Vysokoproizvoditel’naia miniEVM “Elektronika-79” i

Effectivnost’ ee Primeneniia v Sistemakh Skhemotekhnicheskogo Proektirovaniia BIS.
Uprauliaushchie Sistemy i Mashiny (6). 105- 108.

Shkola, Moscow.

(I) , 74-75.

TASS Report. (1983). July 7.
Tilinin, D. A. (1986). Personal’naia EVM “Okedn 240.” Mikroprotsessornye Sredstua i Sistemy (2),

Tilinin, D. A., et a/. (1986). Personal’naia EVM “Okean 240.” Mikroprotsessornye Sredstua i

Tilinin, D. A.. et ul. (1987). PEVM “Okean 2 4 : Konstruktsiia i Metodika Otladki. Mikroprotses-

Tolstov, V. (1987). Elektronika u Nas Doma. Izuesfiia, 21 March, 4.
Tolstykh, B. L., et al. (1987). “Mini- i Mikro EVM Semeistva ‘Elektronika.‘” Radio i Sviaz’,

USiM. (1976). K 25-letiiu Sozdaniia Pervoi Otechestvennoi EVM. Uprauliaiushchie Sistemy i

USiM. (1977). Ordena Lenina Institutu Kibernetiki AN Ukrainskoi SSR-Dvadtsat’ Let.

USiM. (1982). Ordena Lenina Institutu Kibernetiki im. V. M. Glushkova-25 Let. Uprauliaiush-

Veitsman, V. (1988). Start v informatiky. Inforrnatika i Obrazouanie (5), 65-71.
Velikhov, E. P., et al. (1986). Personal’nyi komp’iuter v sisteme avtomatizatsii fizicheskogo

eksperimenta. Mikroprotsessornye Sredsfua i Sisfemy (I) , 34-36.
Velikhov, E. P. (19874. Ob osnovykh itogakh razvitiia fiziko-tekhnicheskikh i matematicheskikh

nauk v 1986 g. Vestnik Akademii Nauk. SSSR (7). 19-31.
Velikhov, E. P. (1987b). 0 Zadachakh Akademii Nauk SSSR v Svete Reshenii liun’skogo (1987)

Plenuma TsK KPSS. Vestnik Akademii Nauk, S S S R (12), 14-26.
Velikhov, E. P. (1988). 0 dostizheniiakh Akademii Nauk SSSR, v oblasti fiziko-tekhnicheskikh i

matematicheskikh nauk v 1987. Vestnik Akademii Nauk S S S R (7), 22-26.
Verner. V. D., et al. (1986). “Mikroprotsessory.” Vysshaia Shkola. Moscow.
Vestnik Statistiki. (1988). Nauchno-tekhnicheskii progress. (7), 58-69.
Vigdorchik, G. V., et al. (1987a). Personal’naia EVM PK-I 1. Mikroprotsessornye Sredstua i

Vigdorchik, G. V., el al. (1987b). Personal’naia EVM “Kvant.” Mikroprofsessornye Sredstua i

Vinokurov, V.. and Zuev, K. (1985). Aktual’nye problemy razvitiia vychislitel’noi tekhniki.

Vodiankin, A. G., and Moiseenko, V. 1. (1987). Uchebnaia Lokal’naia Set’ MikroEVM.

24-25.

Sistemy (4). 69 - 78.

sornye Sredstua i Sistemy (3), 77-86.

Moscow.

Mashiny (6). 3-6.

Uprauliaiushchie Sistemy i Mashiny (6). 3-6.

chie Sistemy i Mashiny (5), 3-8.

Sistemy (I) , 16- 18.

Sistemy (I), 18 - 20.

Kommunist (5). 18-29.

Mikroprotsessornye Sredstua i Sistemy (4). 83-84.

330 RICHARD W. JUDY AND ROBERT W. CLOUGH

Vorob’ev, A. D., et a/. (1987). PPEVM “lstra”: Arkhitektura, Tekhnicheskie Kharakteristiki.
Mikroprotsessornye Sredstua i Sistemy (I), 15- 16.

Vyshnevskii, lu. L. (1985). Printsipy sistemy MARS v arkhitekture vysokoproizboditel’nogo
protsessora. In “Kibernetika i vychislitel’naia tekhnika” (A. Mel’nikov. ed.) (l), pp. 79-87.
Nauka, Moscow.

Wasowski, S., ed. (1970). “East-West Trade and the Technology Gap.” Praeger Publishers, New
York.

Wolcott, P., and Goodman, S. E. (1988). High-speed Computers of the Soviet Union. Computer,
September, 32-41.

Yasmann, V. (1985). Soviet Leaders Grapple with the Scientific and Technological Revolution.
Radio Liberty Research Report 192/85, June 14.

Yasmann, V. (1987). Personal Computers in ,die USSR-Will Help Come From the West? Radio
Liberty Research Report 388/87, September 23.

Zamorin, A. P., Selivanov, Iu. P., and Lokshin, la. P. (1984). Novye vychislitel’nye mashiny,
razrabotannye v SSSR. Vychislitel’naia Tekhnika Sotsialisticheskikh Stran 16, 159-166.

Zavartseva, N. M., and Ivanova, S. V. (1986). Vsesoiuznaia Nauchno-tekhnicheskaia Konfer-
entsiia “Problemy Sozdaniia i ispol’sovaniia mini- i mikro-EVM.” Pribory i Sistemy Uprauleniia

Zonis, V. S. (1988). Protsessor arifmetiki s plavaiushchei zapiatoi VK SM 1700. Pribory i Sistemy
(7). 42-44.

Uprauleniia (3). 4-5.

AUTHOR INDEX
Numbers in italics indicate the pages on which the complete references are given.

A

Aaronson, A. P., 67, 73
Abramovich, S. N., 294,295,296,322
Adamovich, A. I., 322
Adelson, B., 57. R
Adelson-Velsky, G. M . ,232,247
Afonin, L. A,, 326
Aggarwal, S., 109,184
Aho, A. V., lm, 185
Akl, S. G., 29, 44, 211, 248
Aksenov, A. I., 326
Alpert, S., 63.67, 76
Amer, P. D., I85
Ames, S. R., 5, 12, 21, 45
Anantharaman, T., 212,229,236,245.248
Anderson, D. P.. 95, 185
Anderson, J. P., 3, 6, 43
Anderson, J. R., 63, R, 73
Ansart, J. P., 99, 108, 115, 168, 185. 187
Apt, K. R., 130, 185
Arbuckle, T., 198,248
Arekel'ian, V. V., 326
Arlazarov, V. L.. 232,234,247,248
Artamonov, G. T., 260,261,263,264,265,269,

'272,283,285,286,292,294,295,296,
305,308, 309,322

Arulaane, T. E., 327
Ashastin, R., 281,322
Aspnes, J., 245
Atkin, L. R., 222,234,235,250
h m a , P., 108, 187

B

Babaiants, A. B., 326
Baczynskyj, B., 244
Balbo, G., 145, 190
Balm. R., 184, 185
Baranov, V. V., 316, 317,322
Barbeau, M., 185
Barnard, D. T., 248
Barnard, P. J., 57, 73

Bartlen, K. A., 89, 185
Baryshnikov, V. N., 305,306,322
Basin, A,, 273,322
Baudet, G. M., 248
Bearman, M. Y., 185
Bell, D. E., 4, 6, 12, 17-18, 19, 21,22, 43, 44
Belsky, M. A, 198,248
Belynskii, V. V., 325
Bennett, J., 67, 73, 77
Benzel. T. C. V., 32, 43
Bergendorff, K., 66, 75
Berliner, H., 229, 234, 235, 238, 239, 241, 245,

246,248
Bernstein, A., 198,248
Berthomieu, B., 96, 145, 185, I90
Bettadapur, P., 211, 248
Biba, K. J., 12, 24, 43, 45
Billington, J., 185
Birbilas, A. Iu., 322
Bitman, A. R., 232,247
Black, J. B., 59, 73
Blumer, T. P., 167, 176, 185, 193
Bobrow, D., 62, 76
Bochmann, G. V., 81, 89,91, 97, 107-108, 111,

115. 136, 137, 143, 167, 185, 186, 190,
192, 194-19s

Boehm-Davis, D. A., 51, 75
Boies, S. J., 67, 74
Boiko, V. V., 322
Bolognesi, T., 109, 145, 186
Bonar, J. G., 63, 7.3
Bores, L. D., 272,322
Boyer, R. S., 7, 23, 45
Bradshaw, F. T., 5, 12, 21, 45
Brand, D., 116, 134, 186
Bratko, I., 231,240, 248, 249
Briabrin, V. M., 322
Brinksma, E., 109, 186
Bmczko. P., 322
Brooks, F. P., 60, 7.3
Browne, M., 229,236,245
Budkowski, S., 108. 186
Burke, E. L., 6, 43

B ~ b e r t , W., 26-27,43

331

332 AUTHOR INDEX

Burkhardt, H. J., 168, 170, 186
Burr, B. J., 59, 73
Burtsev, V. S., 253, 307,308,322
Buzin, A., 322
Bylander, T., 181, 186

C

Calvert, K. L., E9. 160, 186
Campbell, H., 253,323
Campbell, M., 212,227,229,235,236,245,

248,249
Campbell, R. L., 48. 59, 63, 66, 67, 73
Card, S. K., 48, 55, 58, 59,62. 66, 68, 71, 73,

Carlisle, J. H., 54, 73
Carroll. J. M., 48. 50, 52, 56, 57, 59, 61, 62,

Casey, T. A., 41, 43
Castanet, R.. 99, 186
Ceceli, F., 185
Cerniglia, C. M., 2. 45
Cerny, E., 167. 192
Chang, C. K., 91, I87
Chapanis. A., 51, 74
Chari, V., 108, 185, 187
Chase, W. C., 56-57, 74
Cheheyl, M. H., 8.43
Chew, E. K., 83, 187
Chi, M. T., 57, 74
Chin, S. T.. 167, /87
Chizhov, A. A , , 322
Choi, T. Y., 114. 135, 186
Chomsky, A. N., 64, 74
Chow, C. H., 114, 173. 186, 188
Chu, P. M., 107. 139, 141. 149, 179. 186, 187, 189
Chung, R. S. Y., 187
Clark. D. D.. 2, 26. 43
Clark, I. A,, 57, 73
Clark, M. R. B., 248
Codd, E. F., 27,43
Cohen, E., 32.43
Cohen, R. M., I87
Condon, J. H.. 228,234,235,236,237,244,

248
Conte, G., 145, 190
Conti. J . , 67, 74
Cowan, D. D.. 114. 117. 171. 181. 194

75

63, 64,66,67, 73, 74

Cracraft, S., 245
Crocker, S. D., 232,248
Crowder. R. G., 59, 74
Cullum. R., 244
Curtis, B., 49, 50, 52, 54, 65, 74, 76

D

Dahbura, A,, 170, 187, 192
Dailey, D., 245
Dale, A. G . , 323
Danthine, A,, 187
Davis, N. C., 253,258, 323
Day, J. D., 84, 187
de Chazal, P., 109, 187
De Roever, W. P., 185
De V. Roberts, M., 198.248
Dembinski, P., 108. 186
Denisenko, A,, 302, 323
Denning, D. E., 5, 29-30, 32, 44
Denning, P. J., 3, 32. 44, 184, 187
DiVito, B. L., 187
Diaz, M., 95, 108, 109, 187, 193
Dickson, G. J., 109, I87
Didier, J., 95, 192
Dijkstra, E. W., 49, 74
Dixon, J. K., 210, 250
Dong, S. T., 135, 143, 173, 187, 191
Donskoy. M. V., 232,234.239.247
Doran, R. J., 248
Dreyfus, H. L., 57, 74
Dreyfus, S. E.. 57. 74
Driga, I . , 275, 302,323
Drobnik, 0.. 110, 189
Dshkhunian. V. L.. 315, 323
Due, N. Q., 83,187
Dujnic, P., 264, 323
Dumais, S. T., 62, 74
Dupeux, A., 186
Dwyer, D. J., 170, 191

Eastlake, D. E. 111, 232, 248
Ebeling, C., 229, 235, 245, 248
Ecken, H.. 186
Effelsberg, W., 167, 187

Cowin. G. W.. 169, 187 Ehrlich, K., 63, 76

AUTHOR INDEX 333

Engelbrecht, J. R., 187
English, W. K., 59, 73
Eremin, A,, 324
Ershov, A. P., 253,256,2?2,323
Esper, E. A., 57, 74
Estrin, G., 96, I91

F

Faizulaev. B. N. , 315,323
Farber, D. J., 96, 144, 190, 191
Farr, M. J., 57, 74
Farrell, R., 63, 73
Fateev, A. E . ,325
Fatland, R., 245
Favreau, J. P., 189
Feiertag, R. J., 7, 23, 32, 44, 45
Felton, E. W., 226,227,245,248
Fickas, S. F., 184, 187
Filinova, E. N., 323, 327
Fine, R.. 231, 240, 248
Finkel, R., 248
Fishburn, J. , 248
Fishburn, J. P., 224, 248
Fleischmann, A., 167, 187
Flores, F., 65. 71, 77
Floyd, R. W., 98, 187
Fodor, J. A,, 64, 74
Fogliata, P., 170, 191
Fortunov, I., 323
Foster, G., 62, 76
Fraim, L. J., 8,23.44
Francez, N., 185
Frey, P.. 233, 248
Fridman, A. L., 327
Friedman, P., 63. 76
Fundarek, M . , 264,323
Furnas, G. W.. 62, 74
Futer, A. L.. 249
Futer, A. V., 232,248

G

Galotti, K. M., 57, 75
Garg, K., 145, 187
Gasser, M., 8, 43
Gerhart, L., 99, 194
Gerhart, S., 99, 187

Gevins, J., 63, 76
Giessler, A., 186
Giglavyi, A. V., 193, 294, 295,323, 328
Gilligan, J. M., 12, 45
Gillogly, J. J. , 211, 234, 248
Glaser, R., 57, 74
Glasgow, J. I., 30, 44
Gleick, J., 56, 74
Glukhov, Iu. N., 326
Glushkov, V. M., 253,323
Glushkova, G. G., 297, 300,301,323
Goetsch, G., 235,245
Goguen, J. A., 32, 33-34, 35,44
Golubev. B. P., 325
Gomez, L. M., 59, 62, 74
Gomory, R. D., 70, 74
Good, D. J., 187
Good, M., 77
Goodman, S. E., 253,258,280,297,308,309,

323,330
Gorelov, S . , 302,305,323
Gorshkov, N. V., 318, 319
Gotzhein, R., 136, 143, 186
Gouda, M. G., 91, 115, 135, 181, 186, 187, 188,

Could, J. D., 50, 67, 74
Govorun, V. N., 315,323
Cower, A., 234,235,245
Cower, B. E., 219, 249
Graff, C. J., 95, 117, 181, 189, 193
Graham, G. S., 3.44
Graubart, R. D., 28,44
Green, B. F., 54, 74
Green, P., 52, 74
Green, P. E., 81, l56, 188
Greenblatt, R. D., 232, 248
Grevtsev, V. V., 293, 323
Cries, D., 130, 189
Grif, A., 276, 323
Grigor’ev, A. G, 301, 324
Grischkowsky, N. L., 66, 75
Grishin, V. A., 315,324
Gritsyk, V. V., 301, 328
Grohn, M. J., 28, 44
Grudin, J., 61, 74
GNSS, 245
Guifoyle, T., 245
Guitton, P.. 186
Guttag, J. V., 104, 188
Guttman, J. D., 8-9, 44

194

334 AUTHOR INDEX

H

Haigh, J. T., 32,35, 44
Hailpern, B. T., 103, 104, 188
Hale, R. W. S., 187
Hammond, N. V., 57, 73
Han, J. Y., 115, 181, 187
Harangozo, J., 92, 188
Hamson, M. A., 2, 12,44
Hartwell, S., 57, 75
Hauptmann, A. G., 54, 74
Hayek, F. A., 65, 75
Heckman, M., 29-30.44
Henderson, D. A., 62,66,68, 73
Herder, R. E., 63.66, 74
Hem, H., 245
Heuertz, R., 315,324
Hilborn, G. , 99,198
Hindle, B., 69, 75
Hinke, T. H., 28, 44
Hirsch, M., 244
Hide , S. C., 57, 75
Hoare, C. A. R., 98, lU7, 130, 188
Holliday, M. A., 145, 188
Holt, R. W., 51, 75
Holtzblatt, K., 67, 77
Holzmann, 0. J., 95, 116, 175, 188
Hooker, R., 245
Horacek, H., 245
Hovanyecz, T., 67, 74
Hsu, F., 212,229,236,239,245,248
Huff, 0. A., 8,43
Hui, D. D., 117, I94
Hutchins, C. M., 69, 70, 71. 75
Hyatt, R. M., 219,227,230,234,235,239,245,

248,249

I

Iakubaitis, E. A., 297,324
Iakubovskii, S. V., 315, 317.324
Iaroshevskaia, M. B., 294,295,2%, 324
Ichbwa, H., 116, 181, 188
Id&, A. G., 272,324
Isaev, M. A., 324
Iscoe. N.. 65, 74
Itoh, M., 116, 181, 188
IUraSW, A. A,, 327
Ivakhnov, A.. 321,324

Ivanw, E. A., 297,300, 301, 315,324
Ivanov, G., 324
Ivanw, S. N., 324
Ivanova, S. B., 293,324
Ivanwa, S. V., 289,290.330

J

Jain, P., 144,188
Jones, A. K., 32,44
Jones, S., 66, 77
Juanole, G., 185
Judy, R. W., 253,261,263,269, no, 324
Jungnickcl, H. G., 265,324
Jurgensen, W., %, 188

K

Kabelevskii, A. N., 281, 286, 324,326
Kahn, K., 62, 76
Kain, R., 26-27.43
Kaindl, H., 245
K h d a , Y., 116, 136, 188
Kaloshkin, E. P., 324
Karat, J. , 52, 75
Karjoth, G., 109, 186
Karpilwich, Yu. V., 324
Kamko, L. Kh., 324
Kasper, 8.. 264,325
KasSel, S., 318, 319,324
Keller, R. M., 107, 188
Kelley, J. F., 67, 75
Kellogg, W. A., 62.66.67. 74, 76
Kemmerer, R. A., 32,35.44
Kezling, G. B., 263, 283, 285, 286,292, 293,

294,295,297,301,324
Khanov, M., 324
Khatskevich, L. D., 283,285,300,324
Khvoahch. S. T., 315,324
Kieras, D., 71. 76
Kimberg, D. Y., 63, 76
Kister, J., 198, 249
Kittinger, D., 233, 245
Knuth, D.. 210,232,249
Kobyhskii, A. V., 3U,324
Koinina, L.. 302, 325
Kokorin. V. S., 300, 301,325
Komissarchik, E. A., 232,249

AUTHOR INDEX 335

K o p , D., 240, 244,245,248
Korf, R. E., 222,249
Korneichuk, A. A., 306,315,325
Korneichuk, V. I., 296, 325
Korolev, L. N., 253,325
Kostelianskii, V. M., 325
Kotok, A., 232,249
K o W V. E., 310, 320,325
Kozirev, S., 325
Krasner, H., 65, 74
Krilov, V. V., 296,324
Krishnakumar, A. S., 168, 188
Krishnamurthy, B., 168, I88
KritZinger, P. S., 145, 187, 188
Krogdahl, S., 98, I88
Krumm, H., 110, 189
Kuchukian, A.. 264
Kuchukian, A. T., 264,325
Kuleshova, V. I., 293,296, 315,325
Kurose, J. F., 645, 194
Kurshan, R. P., I84
Kushnir, V. E., 305, 325
Kuznetsov, C. O., 293,325

L

Lai, M. Y., 92, 189
Lam, S. S., 81, 107, 114, 144, 146, l59, 160, 171,

172, 173,186, 188,189, I92
Lamport, L., 189
Lampson, B. W., 2,3,32,44
Landau, I. la., 293,294,295,327
Landauer, T. K., 57, 58, 62, 74, 75
Landweber, L. H., 95,185
Landwehr, C. E., 2,32.44
Lang, R., 245
Lanko. A. A., 325
Lanning, S., 62, 76
LaPadula, L. J., 4,6, 12, 17-18, 19,21,43, 44
Larionov, A. M., 259,260,264,325
Lavemiuk, Iu. A., 281,325
Lazarev, A., 328
Lazarevich. E. G., 326
Lebedev, S. A., 253,254, 307
Ledgard, H., 51.52, 75
Lee, E. S., 59, 75

Lee, T. T., 92, I89
Legavko, A. V., 301, 325

~ e e , T. M. P., n, 44

Lemko, L. M., 325
Le Moli, G., 170, I91
Lamas, V. V., 322
Leont’ev, D. I., 325
Leung, T. K., 193
Levin, G. M., UO, 189
Levin, V. K., 325
Levin, K. N., 7,23,32,44, 45
Levnina, G. A,, 325
Levy, D. N. L., 233,245,246,249
Levy, P. S., 66, 77
Levy, S., 67, 74
Lewis, C. H., 50, 74
Liao, I. E., 189
Liebelt, L. S., 52, 75
Liffck, B. W., 63, 73
Lin, F. J., 117, 120, 149, 155, 166, 181, 183, I 8 9
Lin, H. A., I89
Linn, R. J., 107, 167, I89, 190
Lipaev, V. V., 325
Lipner, S. B., 2, 44
Lipton. R. J., 32, 44
Liu, M. T., 92,95, 117, 129, 131, 139, 149, 166,

Liu, N. C., 129, U1, 139, 190
Lochbaum, C. C.. 59, 74
Loeschner, V., 264,325
Logrippo, L., 126, 193
Lokshin, Ia. F!, 330
Lomov, lu. S., 261,265,325
Long, J. B., 57, 73
Lopatin, V. S., 300, 301, 315, 326
Lopato, G. P., 279, 326
Love, T., 49, 51, 52, 54, 75, 76
Lu, C. S., 119, 120, 123, 148, 149, 178, 181, 190
Luk’ianov, D. A., 315,326

Lynch, W. C., 89, I90

178, 181, 183, 186, I8Z 189, 190, I93

Lunt, T. F., 29-30, 44

M

Maass, S., 66, 76
MacGregor, J. N., 59, 75
Mack, R. L., 62, 66.67, 74, 75
Malashevich, B. M., 315,326
Maliarskii, N. M., 268,326
Marchuk, A. G., 325
Marchuk, G. I., 267,310,326

336 AUTHOR INDEX

Marples, D., 256,326
Marsan, M. A., 145. I90
Marsland, T., 224
Marsland, T. A., 224,227, 246,249
Matveev, 0. B., 325
Mazur, S. A., 64, 66, 67, 73
McCoy, W. H., 168,190
McCracken, D., 59, 76
McCullough, D.. 36, 38, 39, 41, 44, 45
McDonald, I. E., 52, 75
McEwen, G. H., 30, 44

McKay, D., 51, 76
McKeithen, K. B., 57, 75
McLean, J., 22,23,45
Melliar-Smith, P. M., 103, 104, 129, 192
Mel'nikov, V. A., 253,254,326
Menasche, M., 96, 145, 185. 190
Merlin, P. M., 96, 136. 137, 143, 144, 145, 190
Meseguer, J., 32,33-34,35,44
Michie, D., 231, 249
Millen, J. K., 2, 8, 21, 32, 43, 45
Miller, G. A., 55, 59, 60, 75
Miller, R. E., 114, 186
Millman, P., 49, 52, 54, 76
Mills, K. L., 167, I90
Milner, R., 102, 108, U1, I90
Mishchenko, V. A., 308, 309,326
Mittal, S., 181, 186
Mittman, B., 246
Moiseenko, V. I., 329
Molloy, M. K., 145, 190
Moor, A. E., 327
Moore, A. P., 31, 45
MOOR, R., 210,249
Moran, T. P., 55, 58, 73. 75
Morgenstern, M., 29,44
Morison, R., 245
Morton, J., 57, 73
Mostow, J., 183, I90
Muncher, E., 71, 76
Murenko. L. L., 300,326
Murrel, S., 51, 75
Musaelian, V., 326
Muzychkin, P. A,, 326

McHugh, J., 29-30,31,44,45

N

Nanassy, T., 267, 326
Nash, S. C., 109. 167, 190

Naumov, B. N.. 280, 288, 289, 320, 317-318,

Nelson, H., 245
Nelson, H. L., 219, 222, 249
Nelson, R., 227,244,245
Nesterov, P. V., 315, 326
Neumann. P. G., 7,23,29,44,45
Newborn, M. M., 198,210,211,226,227, 231,

233,234,237,238,245,248
Newell, A., 48, 53, 55. 56. 58, 59, 64, 71, 73,

75, 76, 198, 211. 249
Nielsen, J., 66. 75
Nightingale, J. S., 168, 169, 190
Nikitin, A. M.. 328
Nikitin, A. N., 296, 326
Nilsson, N. J., 201, 249
Noguchi, S . , 192
Norigoe, M., 116, 188
Norman, D. A., 56,61,63, 67, 75
Nounou, N., 146, 190, 191, I94
Novak, S., 265,267,326
Nowatzyk, A., 229, 236,245

326

0

ONeil, H. F., 54, 76
Ogden, W. F., 5, 12,21,45
Okumura, K., 156, l57, 158, 159, 160, 191
Olafsson, M . , 227, 236,245,249
Oprishko, A. A., 293, 326
Ostapenko, G. P., 327
Ostmskii, M. A., 283,285,293,327
Ostrovskii, V. P., 296, 326

Owicki, S. , 103, 104, 188
Otto, s. w., 226,227,245,248

P

Paivio, A., 56, 76
Palay. A., 229, 235, 245, 248
Palazzo, S., 170, 191
Panferov, B.I., 326
Pankratov, V. S., 327
Parnas, D. L., 6, 8, 45
Partsch, H., 132, 191
Pavel, J. R., 170, 191
Pearl, J., 222,224,249
Peral, J., 118, 191

AUTHOR INDEX 337

Petropavlovskii, V. P., 328
Petm, M., 273,327
Phelps, C. V., 145, 191
Phister, M., Jr., 269, 292, 327
Piatkowski, R. F., 83, 191
Pis'mennyi. V. V., 326
Pnueli. A., 103, 191
Pogorelyi, S. D., 305, 306,327
Pogudin, Iu. M., 327
Polosin, A. N., 302,327
Polson, P., 60, 71, 76
Poom, K. E., 296,327
Popov, A. A. , 300,327
Popowich, F., 224,227,249
Popper, K., 54,63, 76
Popsuev, A. N., 327
Postel, J., 96, 191
Postman, L., 57, 76
Pozefsky, D. P.. 109, 191
Presnukhin, D. L., 315,327
Presnukhin, L. N., 326
Pridor, A ., 185
Prinoth, R., 136, 137,191
Probert, R. L., 193
Pr~khom~, N. L.. 283,285,289,291,293,294,

295,296,325, 327
Proleiko, V. M., 315, 327
Protsenko, I. G., 283,285,300,324
Przhiialkovskii, V. V., 259,264. 267,325,328
Purushothaman, S., 119, 191
F'ykhtin, V. Ia., 274, 326,328
Pylyshyn, Z., 56, 76

R

Raev, V. K., 325
Rafiq, 0.. 185
Raikov. D. D., 328
Rakhimov, A. T., 276,277,278
Rakovskii, M. E., 280,328
Ramamoorthy, C. V., 135, 143, 173, 191
Ranney, M., 63, 76
Rastorguev, A. A,, 306,315,325
Raud, R. K., 328
Rayner, D., 168, 170, 187, 191, 195
Razouk, R. R., 96, 145, 191
Rebane. R. V., 327
Reed, G. M., 146, 191
Reinefeld, A ., 249

Reinfeld, F., 224,240, 250
Reiser, B. J., 63, 76
Reitman, J. S. , 57, 75
Resanov, V. V., 325
Reuter, H. H., 57, 73
Riabov, Ia., 286,328
Richards, J. T., 67, 74
Robertson, G., 59, 76
Robinson, L., I, 23,32,44, 45
Rockstrom, A., 109,191
Roi, N., 276
Romanov, V. Iu . , 305, 306,328
Romashkin, F. Z., 328
Romero, A., 63, 76
Roscoe, A. W., 146, 191
Ross, K. M., 59, 76
Rosson, M. B., 50, 63.66, 67, 73, 76
Rounds, W. C., 5, 12.21.45
Rubanov, V. O., 328
Rudin, H., 81, 83, 115, 145, 156, 171, 176, 181,

Rudin, T., 145, 186
Rudins, G., 253,328
Rukavishnikov, V. D., 293,328
Rushby, I . , 33,34,35,45
Ruzzo, W. L., 2, 12,44

IU, 191. 192, 194

S

Sabnani, K., 104, 109-110, 168, 170, 184, 187,
188, 192

Safanov, V., 328
Safonov, V. O., 328
Samarskii, A. A., 255,328
Saracco, R., 109, 191, 192
Sarikaya, B., 168, 185, 192
Sarkisian, T. E., 325
Sasov, A. Iu., 296,328
Sauers, R., 63, 73
Savel'ev, A. la., 2?2,294.295,297,328
Savinkov, V. M., 322
Savinov, V. I., 301, 328
Sawtelle, D. S., 63, 66, 74
Scantlebury, R. A,, 185
Schaefer, M., 28, 44
Schaeffer, D. D., 12, 45
Schaeffer, J., 211, 224, 227, 236, 245, 246, 249.

Schaen, S. I., 12.45
250

338 AUTHOR INDEX

Schell, R. R., 29-30, 44
Schelleng, J. C., 71, 75
Schener, L., 235,244
Schener, T., 235, 244
Schindler, S., 95, 192
Schmidt, J., 185
Schoonard, J., 67, 74
Schroder, E., 245
Schultz, A. C., 51, 75
Schwabe, D., 192
Schwartz, M., 104.192
Schwartz, R. L., 103, 104, 129,192
Scott, J., 245
Sebrechts, M. M., 59, 73
Selivanov, Iu. P., 264,265,328,330
Semenkav, 0. I., 328
Serre, J. M., 167, 192
Seymour, W.. 51.52, 75
Shakhnav. V. A., 315,327, 328
Shankar. A. U.. 107, 114, 144, 146, 172, 173,189,

Shannon, C. E., 198, 199,250
Shaw, J. C.. 198, 211, 249
Sheil, B. A., 54, 76
Shekhovtsev, K., 302,328
Sheppard, S. B., 49.52.54, 76
Shiratori, N., 192
Shimkov, F., 275,279,280, 316,328
Shkamarda, A. N., 293,294,295,328
Shneiderman, B., 49, 51, 54,55,57,59,60, 63,

192

76

Shorn, A. E.. 325
Shumway, D. G., 5, 12,21,45
Sidhu, D. P., 134, 176, 18.5, 192, 193
Signaevskii, V. A., 283,285,328
Simon, H. A., 56-57, 64, 74, 75, 183, 193. 198,

211, 249
Singers, A.. 51.52, 75
Sinitsin. N. V., 328
Skienna, S. S., 217,250
Skwarecki, E.. 63, 72
Slagle, J. R., 210, 250
Slate, D. J., 217,222,234,235,239,250
Slobodianiuk. A. I., 327
Slomer, 235
Smirnitskii, E. K., 256,329
Smirnav, E. B.. 293,294,295,296,327
Smirnov. G. D.. 326
Smith. F. D.. 109. I91

Shwkley, W., 29-30,44

Sokolov, S., 325
Solomatin, N. M., 329
Solov'ev, G. N., 315,316,317,329
Soloway, E., 63, 73, 76
Soundararajan, N., 130, 193
Spracklen. D., 233,235,236,244,245
Spracklen, K., 233,235,236,244,245,246
Sriram, D., 183, 193
Stafford, D., 245
Stalling, W., 80,84,85,193
Stanback, S., 245
Stapleton, R. A., 315, 329
Stark, K., 57, 76
Stefik. M., 62, 76
Stein, P., 198,249
Steinacker, M., 95, 192
Steinbruggen, R., U2, 191
Stenning, V. N., 98, 193
Stickel, M. E., 222,250
Stone, J. D., 52, 75
Strishka, V. Ch., 322
SUBD, 329
Subrahmanyam, P. A., 119, 191
Suchman, L., 62.65, 76
Sulim, M., 275, 329
Sunshine, C. A., 81, 89, 104, 110, 186, 193
Suvorov, A. E.. 327
Symons, F. J. W., 193
Szamitastechnika. 264,328
Szuprowicz, B. 0.. 329

T

Takahashi, K., 192
Wcw, I. L., 329
Einenbaum, A. S., 80,84,85,193
'Igrabrina, B. V., 315, 323
'bylor, M., 245
Teng, A. Y.. 92, 120, 148, 149. 160, 166, 178,

Tennant, H. R., 59, 76
TeMey, R. L., 107, 167, 176, 185, 193, 194
Ter-Israelian, V. A., 325
Terekhov, Iu. V., 268,326
The, K. S., 91, 187
Thomas, J. C., 62,66, 73
Thompson, C. W., 59, 76
Thompson, K.. 224,228,232,234,235,236,

193

237,238,239,244,246,248,250

AUTHOR INDEX 339

Tilanus, P. A. J.. 109, 192
Tilinin, D. A., 305,307,329
Tolstov, V., 329
'Iblstykh, B. L., 297,298,300,301,329
noi, V. N., 328
Thing, A. M., 198.250
Qson. W. M., 222,250

U

Uebbing, J., 60, 76
Ugol'kov, V. N.. 315,324
Ulam, S., 198,249
Ullman, J. D., 2. 12.44
Umbaugh, L. D., 95, 120,193
Ural, H., 193
Uskov, A. V., 232,247
Usuda, Y., 135, 173, 191

Wamock, T., 245

Weber, D. G., 41, 43
Weissman, L., 51, 76
Wlls, M., 198, 249
Wendroff, B., 236,245
West, C. H., 91, U1, 114. 115, 116, 121, 171, 176,

Whiteside, J., 48, 51, 52, 65, 66, 67, 71, 75, 74

Wilbur-Ham, M. C., 185
Wilkinson, P. T., 185
Williams, M. D., 62, 77
Wilson, D. R., 2,26, 43
Winograd, T., 65, 71, 77,235
Wixon, D., 48, 65, 65, 66, 71, 76, 77
Wolcott, P., 308, 309, 330
Woodward, J. P. L., 28, 44
Wright, 234, 235

wasowski, s., 33a

181, 192, 194

77

V
Y

van Eijk, P. H. J., 109, 193
Varadarajan, R., 41, 43
Vasilenko, S. N., 301, 325
Veitsman, V., 298,329
Velikhov, E. P., 252, 275, 276, 309, 310, 311, 3l3,

Vemer, V. D., 297,329
Vernon, M. K., 145,188
Vigdorchik, G. V., 305,329
Vinokumv, V., 256,329
Vinter. S. T., 41, 43
Vissers. C. A., 107, 109, 126, 193, 194
Vodiankin, A., 329
Vorolfev, A. D., 305,330
Vuong, S. T., 96, 114, 117, 181, 188, 194
Vyshnevskii, Iu. L., 310,330

318, 319,329

W

Wagner, M., 245
Wakahara, Y., ll6, 136, 188
Walden, W., 198, 249
Walter, B., %, 144, 145, 194
Walter, K. G., 5, 12,21,45
Walther, G. H., 54, 76

Yasmann, V., 255, 2?3,330
Yelowitz, L., 99,194
Yemini, Y., 145, 146, 190, 191, 194
Young, W. D., 29-30, 44
Yu, Y. T., 91, 115, 135, 181, 188, 194

Z

Zafiropulo, P., 81. 91, 116, 121, 126, 134, 171,

Zamorin, A. P.. 264,265,330
Zavartseva, N. M., 289,290,330
Zenin, V. M., 325
Zhang, Y. X., 135, 194
Zhao, J. R., 115, 194-195
Zheng, H. X.. 170, 195
Zhivotovsky, A. A., 232,247
Zic, J.J., 146, 195
Zimmermann, H., 83,84, IU, 195
Zobrist, A. L., 221, 250
Zonis, V. S., 283, 285, 330
Zuberek, W. M., 145,195
Zuev, K., 256,329

186, 194

This Page Intentionally Left Blank

*-property, 17, 19,42
multilevel access-control system, 11
strict integrity, 25-26

A

Abstract machine model, 105-107
alternating bit protocol, 106-107
timed, 146

alternating bit protocol, 97-99

reemergence, 3 17-3 18
Soviet computing, 307-312

Access-control model, 42
erasure. 22-23

Access modes, 3
transactions and, 4

Ack-nack model, 156-157
ACM's Computer Chess Committee, 246
Active Tester, 170
Acyclic form protocol validation, 116
Ada, 99

Abstract program, 97-99

Academy of Sciences

AGAT, 272-274
advantage, 273
DOS, 273

flowchart, 207-208

iterative deepening, 222
number of nodes scored by, 210
search backed up to a position, 214
search trees, 206-207, 209
two-pass search, 233-234,236
unsynchronized iteratively deepening parallel

Alpha-beta algorithm, 206-2 10

using transposition tables, 2 16-217

search, 227-228
Alternating bit protocol, 89-90

assumptions, 143-144
CCS model, 102-103
CFSM model, 90-91
CSP model, 100-101
ETG model, 107-108
FSAmodel, 111-112
global state graph, 112-1 13
ITTG model, 153-155

Petri net model, 96-97
TG model, 93-95

Anderson report, 6
Apple-I1 clone, AGAT, 272-274
Arbitrary Shuffle, 160-161
Automated protocol synthesizer, 136
Axiomatic approach, 130-131
Axioms, 12

B

Backed-up scores, 201
BBN/NIST system, 176-178
BEBE, 229

Bell-LaPadula model, 6, 12-13, 17-27
BELLE, 228,237-238

*-property, 19
abstract model, 18-20
Biba's integrity model, 24-25
discretionary security property, 19
downgrading or upgrading objects, 23
evolution, 17-18
label set, 26
network model, 31
security levels, 18
simple security property, 18
strict integrity, 25-26
System Z and tranquility, 21-23
transition rules, 20-21
trusted subjects, 24
type enforcement, 26-27

Berkeley system, automated protocol design,
173-175

BESM, 253-254
BESM-6 processor, 308
Biba's integrity model, 24-25
BLP machine, 18
Bochrnann's protocol derivation algorithm, 136

C

Calculus of Communicating Systems, 100,

CCS model, 100, 102-103, 131-132
102-103, 131-132

341

SUBJECT INDEX

alternating bit protocol, 102-103
timed, 146
transformation from CSP, 132

CFSM model
deadlock detection, 162
alternating bit protocol, 90-91
mapping set, 161, 164
multiple, 160
Okumura’s model. 156-159
parallel model, 164
protocol conversion, 160-165
Protocol Converter, 161-165
regeneration of mapping, 161
removal of mapping, 162
timed, 145
tmsition firing, 161

piece groupings, 57
players, rating of, 233,237
programmers. chess skill of, 238-239

debugging, 240-241
endgame play and databases, 231-232
future improvements, 246-247
languages used by, 239-240
opening books, 231
participants in computer chess

championships, 244-245
ratings, 238-239
relation between computer speed and program

search techniques, 198,231
alpha-beta algorithm, 206-210
backed-up scores. 201
depth-first minimax search, 201-206
iterative deepening, 222
killer heuristic, 211

move generation, 2lO-211
parallel search techniques, 226-228
principal continuation, 211
pruning techniques, 211-212

Chess

Chess programs

smngth, 237-238

minimax algorithm, 199-201

m h t m , 199-201
~ p e ~ i a l - p ~ r p ~ s e hardwa~, 228-229
thinking on opponent’s time, 230-231
time-control algorithms. 230
transposition tables, see Transposition

variable depth quiescence searches, 212
windows, 222-226

tables

testing, 240
tournament play, 232-236
weaknesses, 247

Choi’s sequence method, 135
CIL, 110
Classification constraints, 29
Clear, 93
Communicating Sequential processes, 100-101,

Communication protocols, see Pmtocol
Communication sequences generator, 129
Communication service, 126
Communication Service Implementation

Language, 110
Compatibility, 21
Component-based synthesis, 136
Composability, 37-39
Computercommunication networks, 80
Conceptual Structures Representation

Language, 181
Concrete model, 12-13
Conformance testing, 166-170

logical architecture, 169-170
test suite, 168-169

Conformity analysis, 128-130
axiomatic approach, UO-I31

103

purpose, 128
steps, I32-l33

Constrained data items, 26-27
Conversion seed, 157-158
Covert channel, 2,32

analysis, 32-36
CPlM

compatible PCs, PK-~OXX, 275-276
Soviet computing, KORVET, 276-279

CRAY BLITZ, 219,227,230
CSP-based language, 129
CSPmodel, 100-101, 103

algebraic manipulations, 131
alternating bit protocol, 100-101
axiomatic approach, l30-131
conformity analysis, 129-130
timed, 146
transformation system to CCS, 132

CSRL, 181

D

Database management systems

SUBJECT INDEX 343

classification constraint, 29
key fields, 27
location information, 29
models

I. P. Sharp model, 28
multilevel security, 27-30
Naval DBMS model, 28-29

polyinstantiation, 30
relation, 27-28
view, 29

Deadlock, detection, 162
state errors, 124-125

DEC, compared with SM counterparts,

DEEP THOUGHT 0.02,212,229

Depth-first minimax search, 201-206

292-293

sample of play, 241-244

data structures, 201-203
EVAL, 203-204
flowchart, 202
GENERATE, 203
RE!TTORE, 204
UPDATE, 204
UPDATEPRINC, 204,206
updating principal continuation, 204,206

Dequeue, 93
Discretionary security property, 19
Dominance, 4
D-search, versus PROVAT in reception error

detection, 121-123
Duplicate acceptance problem, 141
W K machines, 301-302

E

Ecological analysis
goal, 67
humancomputer interaction, 65-68

EFSM model, 167-168
ELBRUS, 308-309
ELEKTRONIKA 60,298, 301-303
ELEKTRONIKA BK-0010.302
ELEKTRONIKA K, 303
ELEKTRONIKA microcomputers, 298-303
ELEKTRONIKA minicomputers, 297-298
ELEKTRONIKA S5.303
Empty, 93
Empty medium abstraction, 111-113
Encoder/Decoder, 170

Error-recovery transformation, 141-143
ES-1036,262,264
ES-1046,264
ES-1061,264
ES-1065,264-265
ES-1066,265
Es-iax, 274-275, m-280
Establish-refine, 181
Estelle, 107-108

ETG model, 178-179

Event separability, 37
Extended finite-state machine model, 105-107
Extended State Transmission Language, 107-108
Extended Transmission Grammar model,

External equivalency, 157

ESTL, 107-108

alternating bit protocol. 107-108

107-108

F

Fair progress state exploration, 115
FAPL, 109, 167
Fetch, 93
Finite-state automata, 89-92, 171
Finite State Machine analyzer, 115
Finite State Machine model, see FSM model
Floyd-Hoare technique, 98-99
Formal grammars, 92-95
Format and Protocol Language, 109, 167
Forward pruning, 211-212
Four-stage approach, multilevel security, 6-7
Frame-oriented transmission technique, 90
FSA model, 89-92, 171

advantage, 112-113
alternating bit protocol, 111-112
validation techniques used by, 111

analyzer, 115
global constraint, 139, 141
local constraint, 139, 140-141
sequence method, 135
synchronizing protocol pair, 143

FSM model

Full. 93

G

GENERATE, 203,210

344 SUBJECT INDEX

GKVTI, 318-319
Global state graph, alternating bit protocol.

GOMS model, 58-59
Gouda's Synthesis Algorithm, 135

112-113

H

Half gateway, 165
Hash code, 219-221
Hash function, 217,221
Hashing error, 219
HITECH, 229

HP, compared with SM counterparts, 292-293
Human-computer interaction, 47-49

sample of play, 241-244

artifacts, 63-65
assessment of symbolic conventions, 51-52
case-study task analysis, 66
cognitive description, 55-61

breadth versus depth, 56-58
design by deduction, 58-61
"experts have chunks," 57-58
frictionless contact, 56
GOMS model, 58-59
OOTO prescription, 55, 59-60
menu selection, 59
point-mass mechanics, 56
programming, 57

constraints of direct-contrast laboratory

contrasting natural language with menus, 54
direct empirical contrast, 49-53
ecology of computing, 68-72

current perplexity, 71-72
science and invention, 69-71

dilemma, 52
paradigm, 55

methods, 50-51

evaluation studies, 49-55

implicit division of labor, 61
laboratory studies, 50
lack of theory, 53-55
monitoring use patterns, 66-67
paradigms for psychology, 61
product-development ideas, 68
race between function and usability, 68
research goals, 48
simulations, 64-65
software design process, 65-66

structured programming, 54
task-artifact cycle, 66
theories, 63-64
usability data, 67
usability-innervated invention, 61-68

ecological analysis, 65-68
new basis for organizational dynamics, 69
psychology as mother of invention, 62-65
role, 68

use of indentation, 51
use of toy-scale problem domains, 53
user-interface metaphors, 62

Human factors evaluation, constraints, 52
Hybrid models

abstract machines, 105-107
CIL, 110
ESTL and LOTOS, 107-109
FAPL, 109
SDL, 109
selection/resolution model, 109

1

IBM-compatible mainframes, "Unified Series,"

IBM PC&betaXT clones, ES-184~. 274-275
IBM system, automated protocol design, 171
Image protocol, 159, 172
Information flow models, 31-41

abstract machines, 32
covert channel, 32
delays, 36
mandatory access-control system, 41
non-interference, 33-36
philosophy, 32
restrictiveness, 36-41
set of traces, 37

see MAD

Information flow policy, 4-524-25
Input totality, 37
Institute of Precise Mechanics and Computer

Integrated circuits, general-purpose, Soviet, 317
Integrated Services Digital Network, 83
Integrated Time Transmission Grammar, see

Intelligent tutoring systems, 63
Intelligent user-interface, 180

International Computer Chess Association, 246

Engineering, 253-254

ITTG model

classification hierarchy, 181-182

SUBJECT INDEX 345

International Organization for Standardization,

Invention, relationship with science, 69-71
83-84

IRISHA, 306-307
ISKRA 226,296-297
ISKRA 1030,296
IS0 transport service, U9, 140

error-recoverable protocol, 141-142
Iteratively deepening search, 222

flowchart, 223-224
ITTG model, 149-155

alternating bit protocol, 153-155
channels, 151-152
entities, 150-151
timeout handler, 152

K

Kakuda’s component-based synthesis, 136
KBBKN, 232
KBPV system. 179-183, 184

structure, 180
validation algorithms, 181

Killer heuristic, 211
Knowledge-based protocol validation system,

see KBPV system
KORVET, n6-279

production, 277
KQPKO, 232
KRPKR, 232
KUVT-86.302

L

Label-based policy, 4-6
dominance relation on labels, 4
information flow policy, 4-5
property, 5-6

Lam and Calvert’s model, 159-160
Language for Temporal Ordering Specification,

Leakage channels, 2

Low-water mark policy, 25

108-109

LOIOS, 108-109

M

Machine language, transposition tables, 217

MAC system models, 41-42
Mapping

from model to specification terms, 14-17
validation, 15

MARS, 310
Maximal progress state exploration, 115
Memory chips, Soviet, 316-317
Merlin’s submodule construction method, I36
MESM, 253
Microcomputers

ELEKTRONIKA, 298-303
ISKRA-series, 295-296
Minpribor, 293-297
SM-line, 293-294

Microprocessor chips, Soviet, 313-316
Minelektronprom, 297-307
Minicomputers, ELEKTRONIKA, 297-298
Mini-MARS, 310
Minimax algorithm, 199-201; see also Depth-

first minimax search
Ministry of Instrument Making, Automation

Equipment, and Control Systems, see
Minpribor

Ministry of Radio Technology, see
Minradioprom

Minpribor, 254-255.280-281
ISKRA-series microcomputers, 295-296
microcomputers, 293-297
see also SM

personal computers, 272

see also RIAD

Minradioprom, 253-255,257-280

future directions. 279-280

MINSK, 253-254
MNTKs, 319-320
Multifunction protocol, 173
Multilevel access-control system, 11
Multilevel security

access-control models, 2-3
database management system models, n-30
discretionary policy, 2
example of security flaw discovery, 8-10
formal top-level specifications, 8
label assignments, 2
label-based policy, 4-6
model-to-specification correspondence, 10-17

axioms and valid interpretations, 12
concrete models and transition rules, 12-13
mappings, 14-17
models as logical systems, 12-14

346 SUBJECT INDEX

secure system definition, 10-11
transition rule example, 13-14

network models, 30-31
non-interference, 34
reference monitor, 3-4
restrictiveness, 39-41
successive refinement approach, 6-8
unwinding application, 35-36
see also Bell-Lahdula model; Information

flow models

N

Naval DBMS model, 28-29
NEIRON 19.66,303,306
Network architecture, 83-88

layering and abstraction, 85-88
OSI Reference Model, 83-85
pmtocol and service specifications, 88

Network models, multilevel security, 30-31
Nondiscretionary accesscontrol models, 2
Noncmpty, 93
Non-interference, 33-36

definitions, 33-34
multilevel security, 34
unwinding, 34-35

application to multilevel security, 35-36
(N)-pmtocol specification, 137-138

(N)-Service Access Points, 127-128
(N)-SAR, 127-128

0

OMAN 240,307
Okumura's model, 156-159
Open Systems Interconnection Reference

Model, see OSI Reference Model
Book, 7-8

OSI Reference Model, 83-85
abstraction, 87-88
atchite-ctural model, lZ7

conformance testing, 168
layers, 84-87
network architecture based on, 84
service specification, 129

debugging package, 240-241

ar~hitecture, 87

OSTRICH, 226-227

Bochmann's protocol derivation algorithm,

Choi's sequence method, U5
comparison and discussion, 137
error-recovery transformation, 141-143
future work, 143-144

l37

P

PANWRA system, 175-176
Parallel search techniques, 226-228
PDIL. 99

Perestroika, Soviet computing and, 317-321
Personal computer, Soviet production, 252

PEASANT, 231-232

Minradioprom, 2?2

Petri nets model, 95-96
future directions, 279-280

alternating bit protocol, 96-97
automated protocol synthesizer, 173-174
timed, 145

Pipelining, 26-27

Point-mass mechanics, 56
Polling model, 156-157
Polyinstantiation, 30
Pop, 93
Principal variation splitting algorithm, 227
Prinoth's protocol construction algorithm, 136
Priority queue, 93
Probabilistic Transmission Grammar, 120
Production rule

channel, 152
entity, 151
timeout handler, 152

abstract data types, 104
abstract programs, 97-99
advantages, 104
CSP and CCS, 100-103
protocol specifications. 104
temporal logic techniques, 103-104

PK-~OXX, 275-276

Pmgnunming language models, 96-I04

Projection approach, 114
PROSPEC system, 171-173
Pmtocol

analysis. 81
axiomatic approach, DO-131
complementation, 166

SUBJECT INDEX 347

conformity analysis, 128-130
correctness properties, 110
decomposition, 114
definition, 80
expressions, 95
functional properties, 126
interworking, 165-166
layered design, architectural model, 127
layered structure, 85-86
multifunction, 173
multiphase, 173
optimization issue, 143
overlap, 166
projection, 159
service concept, 126-128
skeletons, 98-99
syntactic properties, 126
transformational approach, 131-133

Protocol consttuction algorithm, 136
Protocol conversion, 81, 155-166

CFSM model, 160-163
future work, 165-166
half gateway, 165
Lam and Calvert’s model, 159-160
Okumura’s model, 156-159
synchronization messages, 165
using state-transition model, 160

Protocol derivation algorithm, l36, 139-141
Protocol Description and Implementation

Language, 99
Protocol engineering, 80-83

automated design, 171-183
BBNlNIST system, 176-178
Berkeley system, 173-175
IBM system, 171
KBPV system, 178-183
PANDORA system, 175-176
PROSPEC system, 171-173
TTG/ETG system, 178-179

automated implementation, 166-168
conformance testing, 166-170
definition, 81
design mles, l34-135
domain, 81-82
timed models, 145-148
time factors, 145

formal models, 88-110
hybrid models, 105-110
programming language models, 96

h t o c o l specification. 88, 129, l37

state-transition models, 89-96
programming language models, 104

Bochmann’s protocol derivation algorithm,

Choi’s sequence method, l35
comparison and discussion, 137
error-recovery transformation, 141-143
future work, 143-144
Gouda’s synthesis algorithm, l35
Kakuda’s component-based synthesis, 136
Merlin’s submodule construction method, 136
model, 138-140
no service specification required, 134-136
Prinoth’s protocol construction algorithm, 136
protocol derivation algorithm, 140-141
Ramamoorthy’s automated protocol

service specification required, 136
Sidhu’s protocol design rules, l35
Zafiropulo’s reception production rules, 134
Zhang’s protocol synthesis algorithm, 135

Protocol synthesis, 81, 133-143

l37

synthesizer, 135

Protocol synthesis algorithm, 135
Protocol validation, UO, 126

detection of deadlock state errors, 124-125
error first search, 118
Finite State Machine. analyzer, 115
performance in locating design errors, 121
projection approach, 114

reachability analysis, Ill-W
relief strategies, 114-117
X.21 testing, 121-125
see also PROVAT strategy

PROVAT Strategy, 117-120

PROtocol VAlidation Testing, see PROVAT
strategy

PROVAT strategy, 117-120, 120-126
advantage, 126
heuristics, 118-120
reception error detection, 121-123

PS-2000,309
PS-3oO0, 309-310
Psychology

as mother of invention, 62-65
paradigms for, 61

user-interface metaphors, 62

validation tool, ’181

usability, 55

PTG, 120

PVSA, 221-228

348 SUBJECT INDEX

Q
Queue, 93

R

Ramamoorthy's automated protocol synthesizer,

Random-walk state exploration, 116-117
Reachability analysis, Ill-113, 178-179
Reachability analysis algorithm, TTG model,

Real-Time Asynchronous Grammars, 95
Reception production rules, 134-135
Reduced implementation sequences, 116
Reference monitor, 3-4, 11
Relief strategy, 114-117

techniques, 114
Restrictiveness, 36-41, 43

composability. 37-39
multilevel security, 39-41
nondeterministic systems, 36-37

compared to Western and Japanese PCMs,

fifth generation, 267-268
manufacturing weaknesses, 271
matching with IBM counterparts, 269
performance

135

149

MAD. 258-259

270

evaluation, 271-272
targets of future computers, 268

RIAD-1,259-260
lag behind IBM, 269

lag behind IBM, 269

characteristics, 263
development, 262
lag behind IBM, 268-271
technical objectives, 261-262

RIAD-2,260-261

RIAD3,261-265

RIAD-4.265-267
RTAG model, 95

S

Scatter search, 116
SCHOOLGIRL, 273
Science, relationship with invention, 69-71

SDL, 109
Search tree, 199-201
Secure system, abstract definition, 10-11
Security, nondiscretionary policy, 1-3
Selection/Resolution model, 109
Selective repeat procedure, 104
Semantics equivalency, 158
Service concept, 126-128
Service primitive, 128
Service specification, 88, 126-127

Sharp (1.P.) model, 28
Sidhu's protocol design rules, 134-135
Simple security property, 18
Simulations, human-computer interaction,

Sink-srate problem, 141

OSI Reference Model, 129

64-65

SM, 280-281
compared with HP and DEC counterparts,

microcomputers, 293-294
292-293

SM-I, 286
SM-lM, 287
SM-2,286-287
SM-2M, 287
SM-3,287-288
SM-4.288-289
SM-50,289
SM-1210, 290
SM-UOO, 293
SM-1410, 290
SM-1420,290-291
SM-1700,291
SM-1800,293,296
SM-11600,291
SM-I, 292

characteristics, 282-283
planning, 281
production, 286-289

characteristics, 284-285
production, 289-291

characteristics, 284-285
production, 291-293

SM-11, 292

SM-111, 292

SNA, 167
SNet model, 30-31
software

design process, human-computer interaction,
65-66

SUBJECT INDEX 349

kernel protection, 24
laboratory studies, 50

Soviet computing, 251-252
Academy of Sciences, 307-312, 317-318
administrative restructuring, 318-319
AGAT, 272-n4
before 1980,253-255
bureaucratic shuffling, 319-320
components, 312-317

general-purpose integrated circuits, 317
memory chips, 316-317
microprocessor chips, 313-316

DEC, lag behind, 293

ELEKTRONIKA microcomputers. 298-303
ELEKTRONIKA minicomputers, 297-298

EL'BRUS, 308-309

ES-IIU~, n4-275
GKVTI. 318-319
informatics program, 256
Institute of Precise Mechanics and Computer

Engineering, 253-254
IRISHA, 306-307
ISKRA-series microcomputers. 295-296

MARS, 310
Minpribor, see Minpribor
Minradioprom, see Minradioprom

NEIRON 19.66, 303, 306
official plans for the 1980s, 255-257
OKEAN 240,307
perestroika and, 317-321
personal computer

future directions, 279-280
production, 252

KORVET, 276-279

MNTKs, 319-320

PK-~OXX, 275-276
PS-2000,309
PS-3O00, 309-310
MAD, see RIAD
SM, see SM
supercomputers, 307,310-312
Supreme Soviet Standing Commission on

technological followership, 258-259
weaknesses, 278-279

Science and Technology, 320-321

Soviet programs, chess, 232-233
Specification

sequence-oriented, 129
state-oriented, 129

Specification and Description Language, 109

State explosion problem, 92
State invariants, 13
State perturbation, 111
State space explosion, ID-114
State-transition machine, 129
State-transition model

automata, 10-11
finite-state automata, 89-92
formal grammars, 92-95
graph, I73
Petri nets, 95-96
use in protocol, conversion, 160

Bell-Lahdula model, 25-26
Strict integrity, 42

Strict integrity policy, 25
Subject memory, 3-4
Submodule Construction Method, 136
Successive refinement approach, multilevel

Supercomputers
security, 6-8

limitations, Soviet computing, 312
Soviet computing, 307, 310-312

Synchronization messages, 165
Synthesis algorithm, 135-136
Systems Network Architecture, 167
System Z,22

T

Task-artifact cycle, 66
Temporal logic techniques, 103-104
Test Driver, 170
Test Responder, 169
Test suite, 168
TG model, 92-94, 181

alternating bit protocol, 93-95
incorporation of PROVAT, 120-121
relation between, 149-150
terminal actions, 92-93
terminal symbols, 92

Time-control algorithms, 230
Timed models

forms of time specifications, 146
model in large, 147
time association with model components,

time extension, 149
Time specification, TTG model, 148-149
Tool box idea, 179-180

147-148

350 SUBJECT INDEX

Trace. 116
Tranquility principle, 21,22
Transactions, access modes and, 4
Transformational approach, l31-l33
Transformation procedures, 26-27
Transition axioms, 13
Transition choice rule, 115
Transition rules, 12-14

"hnsmission, frame-oriented technique, 90-91
Transmission Grammar model, see Tci model
Transposition tables, 212-222

alpha-beta algorithm, 214
clash, 219
CRAY BLITZ, 219
effects on five-ply tree, 217-218
entries, 217,220
flowchart of alpha-beta algorithm using,

hash code, 219-221
hash function, 217,221
hashing error, 219
machine language, 217
piece-square table, 220-221
tree motad at initial game position, 212-213

Bell-LaPadula model, 20-21

216-217

tree search, 214-215
Tree protocol validation, U6
Trusted subjects, 24,42
TTG model, 148-149, 178-179
TTG' model, 149
Vpe enforcement, Bell-Lahdula model, 26-27

Untimed model, 144-145
Unwinding, application to multilevel security,

Unwinding theorem, 34-35

Usability, psychology, 55

35-36

URAL, 253-254

V

Valid interpretation of model, 12
Variable depth quiescence searches, 212
Violin, acoustic analysis, 70-71

W

WAYCOOL, 226-227
Windows. 222-226

cutoff, 223,225
iteratively deepening search, 223-224
strategies, 223-224
two-pass alpha-beta search, 223-224.226

X

X.21, 91-92
interface, 121
testing, protocol validation, 121-125

U
2

LJKNTs, 277-278,3M
"Unified Series" of IBM-compatible main-

frames, see RIAD
Zafiropulo's reception production rules, 134
Zhang's protocol synthesis algorithm, I35

Contents of Previous Volumes

Volume 1

General-Purpose Programming for Business Applications
CALVIN C. GOTLIEB

Numerical Weather Prediction

The Present Status of Automatic Translation of Languages

Programming Computers to Play Games

Machine Recognition of Spoken Words

Binary Arithmetic

NORMAN A. PHILLIPS

YEHOSHUA BAR-HILLEL

ARTHUR L. SAMUEL

RICHARD FATEHCHAND

GEORGE W. REITWIESNER

Volume 2

A Survey of Numerical Methods for Parabolic Differential Equations

Advances in Orthonormalizing Computation

Microelectronics Using Electron-Beam-Activated Machining Techniques
KENNETH R. SHOULDERS

Recent Developments in Linear Programming
SAUL 1. GLASS

The Theory of Automalta: A Survey
ROBERT MCNAUGHTON

JIM DOUGLAS, JR.

PHILIP J. DAVIS AND PHILIP RABINOWITZ

Volume 3

The Computation of Satellite Orbit Trajectories

Multiprogramming

Recent Developments of Nonlinear Programming

Alternating Direction Implicit Methods

Combined Analog-Digital Techniques in Simulation

Information Technology and the Law

SAMUEL D. CONTE

E. F. CODD

PHILIP WOLFE

GARRET BIRKHOFF, RICHARD s. VARGA, AND DAVID YOUNG

HAROLD F. SKRAMSTAD

REED C. LAWLOR

Volume 4

The Formulation of Data Processing Problems for Computers

All-Magnetic Circuit Techniques
WILLIAM c . MCGEE

DAVID R. BENNlON AND HEWITT D. CRANE

351

352 CONTENTS OF PREVIOUS VOLUMES

Computer Education
HOWARD E. TOMPKINS

Digital Fluid Logic Elements
H. H. GLAETTLI

Multiple Computer Systems
WILLIAM A. CURTIN

Volume 5

The Role of Computers in Electron Night Broadcasting
JACK MOSHMAN

Some Results of Research on Automatic Programming in Eastern Europe
WLADYSLAW TURKSI

A Discussion of Artificial Intelligence and Self-organization
GORDON PASK

Automatic Optical Design
OREXES N. STAVROUDIS

Computing Problems and Methods in X-Ray Crystallography
CHARLES L. COULTER

Digital Computers in Nuclear Reactor Design
ELIZABETH CUTHILL

An lntroduction to Procedure-Oriented Languages
HARRY D. HUSKEY

Volume 6

Information Retrieval
CLAUDE E. WALSTON

Speculations Concerning the First Ultraintelligent Machine
IRVING JOHN GOOD

Digital Training Devices
CHARLES R. WICKMAN

Number Systems and Arithmetic
HARVEY L. GARNER

Considerations on Man versus Machine for Space Probing
P. L. BARGELLINI

Data Collection and Reduction for Nuclear Particle Trace Detectors
HERBERT GELERNTER

Volume 7

Highly Parallel Information Processing Systems
JOHN C. MURTHA

Programming Language Processors
RUTH M. DAVIS

The Man-Machine Combination for Computer-Assisted Copy Editing
WAYNE A. DANIELSON

Computer-Aided Typesetting
WILLIAM R. BOZMAN

Programming Languages for Computational Linguistics
ARNOLD C. SATTERTHWAIT

CONTENTS OF PREVIOUS VOLUMES

Computer Driven Displays and Their Use in Man-Machine Interaction
ANDRIES V A N DAM

Volume 8

Time-shared Computer Systems
THOMAS N. PIKE, JR.

Formula Manipulation by Computer
JEAN E. SAMMET

Standards for Computers and Information Processing
T. B. STEEL, JR.

Syntactic Analysis of Natural Language
NAOMI SAGER

Programming Languages and Computers: A Unified Metatheory
R. NARASIMHAN

Incremental Computation
LIONELLO A. LOMBARDI

Volume 9

What Next in Computer Technology
W. J . POPPELBAUM

Advances in Simulation
JOHN MSLEOD

Symbol Manipulation Languages
PAUL W. AHRAHAMS

Legal Information Retrieval
AVIEZRI S. FRAENKEL

Large-Scale Integration -An Appraisal
L. M. SPANDORFER

Aerospace Computers
A. S. BUCHMAN

The Distributed Processor Organization
L. J. KOSZELA

Volume 10

Humanism, Technology, and Language

Three Computer Cultures: Computer Technology, Computer Mathematics, and
Computer Science

Mathematics in 1984-The Impact of Computers

Computing from the Communication Point of View

Computer- Man Communication: Using Graphics in the Instructional Process

Computers and Publishing: Writing, Editing, and Printing

A Unified Approach to Pattern Analysis

CHARLES DECARLO

PETER WEGNER

BRYAN THWAITFS

E. E. DAVID, JR.

FREDERICK P. BROOKS, JR.

ANDRIES V A N DAM AND DAVID E. RISE

ULF GRENANDER

353

354 CONTENTS OF PREVIOUS VOLUMES

Use of Computers in Biomedical Pattern Recognition

Numerical Methods of Stress Analysis

Spline Approximation and Computer- Aided Design

Logic per Track Devices

ROBERT S. LEDLEY

WILLIAM PRAGER

J. H. AHLBERG

D. L. SLOTNICK

Volume 11

Automatic Translation of Languages Since 1960: A Linguist's View

Classification, Relevance, and Information Retrieval

Approaches to the Machine Recognition of Conversational Speech

Man-Machine Interaction Using Speech

Balanced Magnetic Circuits for Logic and Memory Devices

Command and Control: Technology and Social Impact

HARRY H. JOSSELSON

D. M. JACKSON

KLAUS W. OVEN

DAVID R. Him

R. B. KIEBURTZ AND E. E. NEWHALL

ANTHONY DEBONS

Volume 12

Information Security in a Multi-User Computer Environment
JAMES P. ANDERSON

Managers, Deterministic Models, and Computers
G. M. FERRERO DIROCCAFERRERA

Uses of the Computer in Music Composition and Research
HARRY B. LINCOLN

File Organization Techniques
DAVID C. ROBERTS

Systems Programming Languages
R. D. BERGEKON. J. D. GANNON. D. P. SHECHTER, F. W. TOMPA. AND A. VAN DAM

Parametric and Nonparametric Recognition by Computer: An Application to Leukocyte Image
Processing

JUDITH M. S. PREWIIT

Volume 13

Programmed Control of Asynchronous Program Interrupts
RICHARD L. WEXELBLAT

Poetry Generation and Analysis
JAMES JOYCE

Mapping and Computers
PATRICIA FULTON

Practical Natural Language Processing: The REL System as Prototype
FREDERICK B. THOMPSON AND BOZENA HENISZ THOMPSON

Artificial Intelligence-The Past Decade
B. CHANDRASEKARAN

CONTENTS OF PREVIOUS VOLUMES 355

Volume 14

On the Structure of Feasible Computations
J. HARTMANIS AND J. SIMON

A Look at Programming and Programming Systems
T. E. CHEATHAM. JR. ANV JUDY A. TOWNELY

Parsing of General Context-Free Languages
SUSAN L. GRAHAM AND MICHAEL A. HARRISON

Statistical Processors
W. J. POPPELBAUM

Information Secure Systems
DAVID K. HSIAO AND RICHARD 1. BAUM

Volume 15

Approaches to Automatic Programming
ALAN W. BIERMANN

The Algorithm Selection Problem
JOHN R. RICE

Parallel Processing of Ordinary Programs
DAVID J. KUCK

The Computational Study of Language Acquisition
LARRY H. REEKER

The Wide World of Computer-Based Education
DONALD BITZER

Volume 16

3-D Computer Animation

Automatic Generation of Computer Programs

Perspectives in Clinical Computing

The Design and Development of Resource-Sharing Services in Computer
Communication Networks: A Survey

Privacy Protection in Information Systems

Volume 17

Semantics and Quantification in Natural Language Question Answering

Natural Language Information Formatting: The Automatic Conversion of Texts to a Structured
Data Base

Distributed Loop Computer Networks

Magnetic Bubble Memory and Logic

Computers and the Public’s Right of Access to Government Information

CHARLES A. CsURl

NOAH s. PRYWES

KEVIN C. OKANE AND EDWARD A. HALUSKA

SANDRA A. MAMRAK

REIN TURN

W. A. WOODS

NAOMI SAGER

MING T. Liu

TIEN CHI CHEN AND Hsu CHANG

ALAN F. WESTIN

CONTENTS OF PREVIOUS VOLUMES

Volume 18

Image Processing and Recognition
AZRIEL ROSENFELD

Recent Progress in Computer Chess
MONROE M. NEWBORN

Advances in Software Science
M. H. HALSTEAD

Current Trends in Computer-Assisted Instruction
PATRICK SUPPES

Software in the Soviet Union: Progress and Problems
S. E. GOODMAN

Volume 19

Data Base Computers
DAVID K. HSIAO

The Structure of Parallel Algorithms
H. T. KUNG

Clustering Methodologies in Exploratory Data Analysis
RICHARD DUBES AND A. K. JAIN

Numerical Software: Science or Alchemy?
C. W. GEAK

Computing as Social Action: The Social Dynamics of Computing in Complex
Organizations

ROH KLING A N D WALT SCACCHI

Volume 20

Management Information Systems: Evolution and Status

Real-Time Distributed Computer Systems

Architecture and Strategies for Local Networks: Examples and Important Systems

Vector Computer Architecture and Processing Techniques

An Overview of High-Level Languages

GARY W. DICKSON

W. R. FKANTA, E. DOUGLAS JENSEN. R. Y. KAIN, AND GEORGE D. MARSHALL

K. J. THURBER

KAI HWANG, SHUN-PIAO Su, AND LIONEL M. NI

JEAN E. SAMMET

Volume 21

The Web of Computing: Computer Technology as Social Organization
ROB KLING A N V WALT SCACCHI

Computer Design and Description Languages
SUBRATA DASGUPTA

Microcomputers: Applications. Problems. and Promise
ROBERT C. GAMMILL

Query Optimization in Distributed Data Base Systems
GIOVANNI MARIA SACCO AND S. BING YAO

Computers in the World of Chemistry
PETER LYKOS

CONTENTS OF PREVIOUS VOLUMES 357

Library Automation Systems and Networks
JAMES E. RUSH

Volume 22

Legal Protection of Software: A Survey
MICHAEL C. GEMIGNANI

Algorithms for Public Key Cryptosystems: Theory and Applications
S. LAKSHMIVARAHAN

Software Engineering Environments
ANTHONY I. WASSERMAN

Principles of Rule-Based Expert Systems
BRUCE G. BUCHANAN AND RICHARD 0. DUDA

Conceptual Representation of Medical Knowledge for Diagnosis by Computer: MDX and
Related Systems

Specification and Implementation of Abstract Data Types
B. CHANDRASEKARAN AND SANJAY MITTAL

ALFS T. BERZTISS AND SATISH THATTE

Volume 23

Supercomputers and VLSI: The Effect of Large-Scale Integration on Computer Architecture
LAWRENCE SNYVER

Information and Computation
J. F. TRAUB A N D H. WOZNIAKOWSKI

The Mass Impact of Videogame Technology
THOMAS A. DEFANTI

Developments in Decision Support Systems
ROBERT H. BONCZEK, CLYDE W. HOLSAPPLE, AND ANDREW B. WHINSTON

Digital Control Systems
PETER DORATO AND DANIEL PETERSEN

International Developments in Information Privacy
G . K. GUPTA

Parallel Sorting Algorithms
S. LAKSHMIVARAHAN. SUDARSHAN K. DHALL, AND LFSLIE L. MILLER

Volume 24

Software Effort Estimation and Productivity

Theoretical Issues Concerning Protection in Operating Systems

Developments in Firmware Engineering

The Logic of Learning: A Basis for Pattern Recognition and for Improvement of Performance

The Current State of Language Data Processing

Advances in Information Retrieval: Where Is That /#*&We Record?

The Development of Computer Science Education

S. D. CONTE, H. E. DUNSMORE, AND V. Y. SHEN

MICHAEL A. HARRISON

SUEIRATA DASCUPTA AND BRUCE D. SHRIVER

RANAN B. BANEKJI

PAUL L. GARVIN

DONALD H. KRAFT

WILLIAM F. ATCHISON

CONTENTS OF PREVIOUS VOLUMES

Volume 25

Accessing Knowledge through Natural Language

Design Analysis and Performance Evaluation Methodologies for Database Computers

Partitioning of Massive/Real-Time Programs for Parallel Processing

Computers in High-Energy Physics

Social Dimensions of Office Automation

NICK CERCONE AND mRWN MCCALLA

STEVEN A. DEMURJIAN, DAVID K. HSIAO, AND PAULA R. STRAWSER

1. LEE, N. PRYWES, AND B. SZYMANSKI

MICHAEL METCALF

ABBE MOWSHOWITZ

Volume 26

The Explicit Support of Human Reasoning in Decision Support Systems
AMITAVA DUTTA

Unary Processing
W. J. POPPELBAUM. A. DOLLAS, J. B. GLICKMAN, AND C. OTOOLE

Parallel Algorithms for Some Computational Problems
AEHA MOITRA AND S . SITHARAMA IYENGAR

Multistage Interconnection Networks for Multiprocessor Systems
S. C. KOTHARI

Fault-Tolerant Computing
WING N. TOY

Techniques and Issues in Testing and Validation of VLSI Systems
H. K. REGHBATI

Software Testing and Verification

Issues in the Development of Large, Distributed, and Reliable Software
LEE J. WHITE

c. v. RAMAMOORTHY, ANL PRAKASH. VlJAY GARG, TSUNEO YAMAURA, AND
ANUPAM BHIDE

Volume 27

Military Information Processing
JAMB STARK DRAPER

Multidimensional Data Structures: Review and Outlook
S . SITHARAMA IYENGAR. R. L. KASHYAP, V. K. VAISHNAVI, AND N. S. V. R\o

Distributed Data Allocation Strategies

A Reference Model for Mass Storage Systems

Computers in the Health Sciences

Computer Vision

Supercomputer Performance: The Theory, Practice., and Results

Computer Science and Information Technology in the People's Republic of China: The
Emergence of Connectivity

JOHN H. MAIER

ALAN R. HEVNER AND ARUNA RAO

STEPHEN w . MILLER

KEVIN C. OKANE

AZRIEL ROSENFELD

OLAF M. LUBECK

359 CONTENTS OF PREVIOUS VOLUMES

Volume 28

The Structure of Design Processes
SUBRATA DASGUPTA

Fuzzy Sets and Their Applications to Artificial Intelligence
ABRAHAM KANDEL AND MORDECHAY SCHNEIDER

Parallel Architectures for Database Systems
A. R. HURSON, L. L. MILLER, S. H. PAKZAD, M. H. EICH, AND B. SHIRAZI

Optical and Optoelectronic Computing
MIR MOJTABA MIRSALEHI, MUSTAFA A. G . ABUSHAGUR, AND H. JOHN CAULFIELD

Management Intelligence Systems
MANFRED KOCHEN

This Page Intentionally Left Blank

	Advances in COMPUTERS VOLUME 29
	Contents
	Soviet Computers in the 1980s

