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Preface 

The serial, Advances in Computers, provides a medium for the in depth 
presentation of subjects of both current and long-range interest to the 
computer and information community. Within this framework, contributions 
for appropriate articles have been solicited from widely recognized experts in 
their fields. The time scale of the invitation is such that it permits a relatively 
leisurely perspective. Furthermore, the permitted length of the contributions 
is greater than many other publications. Thus, topics are treated both in depth 
and breadth. 

The serial began in 1960 and now continues with Volume 29. These books 
have played an important role over the years in the development of the 
computer and information fields. As these fields have continued to expand- 
both in research and resulting applications as well as in their significance-so 
does the importance of the Advances series. As a consequence, it was decided 
that Academic Press would this year publish two volumes, 28 and 29; Volume 
28 was published earlier this year. 

Included in Volume 29 are chapters on computer security, human-computer 
interaction, protocol engineering, computer chess, and Soviet computing. 

In the first chapter, Dr. Millen considers the very important current issue of 
computer security. He points out that multilevel security implies the 
assignment of labels, such as classification levels, to data and users in order to 
control access. Classification labels bring to mind military applications, with 
labels such as “Confidential” and “Top Secret,” but other sets of labels are 
useful in a commercial environment. In considering some multilevel access- 
control models, Millen focuses on a few influential ideas rather than on secure 
systems in general. Certain models are examined in detail because of the ideas 
they express and the questions they raise. He explains that the developments in 
information-flow modelling are exciting because they are still evolving in a 
clear direction. The underlying notion of information flow as an inference 
about the possible values of sensitive data sources had led to the important 
noninterference concept in deterministic machines. 

John Carroll considers the area of human-computer interaction. He likens 
the recent evolution of computer technology to that of a “race” between 
function and usability. The frontier of usability has been pressed onward by 
the development of new applications and interface technologies. The race 
between function and usability, he states, has made the area of human- 
computer interaction a very high-profile research area within computer 
science and within the computer industry. It is difficult to develop science and 
technology relating to usability rapidly enough, but it is critical to do so. 
Human-computer interaction has often been described as an interdisciplinary 

ix 
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research area, but only now are the full interdisciplinary possibilities emerging, 
with psychologists participating fully and in a variety of roles in the evolution 
of computer technology. 

Professor Liu in the third chapter is concerned with computer- 
communication protocols. These are sets of rules permitting an orderly 
exchange among physically separated computers. The discipline in this area is 
now called protocol engineering and is currently receiving increased attention. 
Dr. Liu shows that a protocol engineering system allows the protocol designer 
to express the protocol formally, test its specifications for correctness (valida- 
tion and verification), obtain some early indication of how it performs, com- 
pile major parts of the implementation directly from the formal specifications, 
and, finally, test the resultant implementation to assure that it conforms to 
specifications (implementation verification or conformance testing). 

Professor Newborn contributed a chapter to Volume 18 of Adounces in 
Computers 10 years ago, ahich surveyed developments in  computer chess in 
the middle and late 1970s that raised the playing strength of chess programs to 
just over the 2000 level, the United States Chess Federation Expert rating. 
Now chess programs have improved at least another 500 rating points and are 
playing almost at  Grandmaster level. In this chapter, Newborn describes the 
technical developments that led to this remarkably strong level of play. He 
goes on to indicate that while the last decade has seen programs progress from 
playing at the Expert level to almost that of the Grandmasters, the coming 
decade should be even more exciting. It is quite likely that before the year 2000, 
a computer will defeat the human world champion. 

Dr. Richard Judy and Robert Clough state that Soviet computing in the 
1980s has been a very interesting scene. This was the decade when the nation’s 
top political leadership finally recognized the central role of computers and 
other information technologies in military, economic, and social development. 
This recognition however came very late in the game, not before the Soviet 
Union’s international competitors attained a huge, perhaps insurmountable, 
lead in the technologies and their applications. Compared with Western and 
Japanese progress in developing and using information technologies of all 
kinds, the Soviet Union has continued to lose ground rapidly in the 1980s. 
Judy and Clough point out that there is mixed news for the Soviet computer 
user of the late 1980s. Available hardware and software continue to fall further 
behind what their Weslern counterparts are using at every level, from 
supercomputers to microcomputers. This however is tempered by the fact that 
the scientific and political leadership now openly recognizes the problem and 
vows to resolve it. 

It is my great pleasure to thank the contributors to this volume. They have 
given extensively of their time and effort to make this book an important and 
timely contribution to their profession. Despite the many calls upon their time, 
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they recognized the necessity of writing substantial review and tutorial 
articles. It has required considerable effort on their part, and their cooperation 
and assistance is greatly appreciated. Because of their efforts, this volume 
achieves a high level of excellence, that should be of great value for many years 
to come. It has been a pleasant and rewarding experience for me to edit this 
volume and to work with these authors. 

MARSHALL C. Yovrn 
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1 . Introduction 

1.1 Nondiscretionary Security Policy 

Multilevel security implies the assignment of labels. such as classification 
levels. to data and users. for the purpose of controlling access . Classification 
labels bring to mind military applications. with labels such as “Confidential” 
and “Top Secret. ” but other sets of labels may be useful in a commercial 
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2 JONATHAN K. MILLEN 

environment (Lipner, 1982). In practice, label-based controls are supple- 
mented by additional access restrictions. Some of the special policies appro- 
priate for commercial applications are discussed by Clark and Wilson (1987). 

Access-control policies on label assignments are termed “nondiscretionary” 
or, synonymously, “mandatory.” Policies in which ordinary users can decide 
whether or not to grant or transfer access privileges to other users, for acess to 
certain data under their control, are referred to as “discretionary.” In systems 
with a discretionary policy, it can be difficult to determine the extent to which 
access rights propagate. This general problem is the safety problem, and it has 
been shown to be recursively undecidable in a sufficiently broad context 
(Harrison, 1985; Harrison, et al., 1976). 

Nondiscretionary access-control models are interesting primarily because 
of their role in a process of implementation that has been reasonably 
successful, rather than because of any deep mathematical results. One clear 
and simple reason for implementing a nondiscretionary policy is to foil 
“Trojan horse” programs. Such programs cannot reassign labels, and hence 
cannot affect label-based access restrictions. By contrast, in a purely discre- 
tionary system, they might reassign access permissions, or move information, 
without the knowledge of, and against the intent of, the human user on 
whose behalf the program is supposed to be executing. 

Some multilevel access-control models will be surveyed here. There have 
been other surveys, such as those by Landwehr (1981) and Millen and 
Cerniglia (1984). This survey includes more recent models, and also differs 
from previous ones by presenting a few models in greater depth. We wish to 
focus on a few influential ideas rather than models or secure systems, and there 
will be no attempt at broad coverage of either old or new models. Certain 
models will be examined in detail because of the ideas they express and the 
questions they raise. 

The first access-control models were for operating systems, and modelled 
the policy by which an operating system grants requests by processes for 
access to controllable segments of main memory. We shall look at  the design 
decisions behind these models, and their intended application to secure com- 
puter system development. Some new ideas arise in database system models, 
which impose additional structure on data objects, raising questions about 
how to assign labels. There will be a brief discussion of network models. 

It has been known, at least since an article by Lampson (1973), that 
unauthorized disclosure of data is possible even in a system where access 
controls are perfectly enforced, and even if they are nondiscretionary. 
Computer systems may have leakage channels or cooert channels by which a 
process accessing sensitive data may communicate it to a user who is not 
supposed to have access to that data. We shall conclude with a few models of 
information flow that are deep enough to explain this phenomenon, and which 
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have given rise to techniques for detecting information flow in violation of 
label-based policies. These models are not access-control models. 

1.2 Reference Monitors 

1.2.1 Subjects, Objects, and Access 

In its simplest form, an access-control model has subjects, or active entities, 
that can exercise various modes of access on objects, or repositories of infor- 
mation. Several modes of access may be recognized. Access is a directed 
relation: subjects have access to objects. If one desires to model some form of 
access by one subject to another, subjects can be assumed to be a special kind 
of objects. The model can be thought of as a state-transition machine whose 
current state is an access matrix showing, for each subject and object, what set 
of access modes the subject currently has for that object. An abstract machine 
of this kind is called a reference monitor. These basic ideas come from Lampson 
(197 1) and Graham and Denning (1972); the term “reference monitor” arose in 
a U.S. Air Force planning study (Anderson, 1972). 

Access modes, in a multilevel context, have implications for information 
flow. In particular, each access mode must be interpreted as representing a 
read, a write, both, or neither, in addition to whatever other significance it 
might have. If a subject has some form of read access to an object, information 
can flow from the object to the subject. If a subject has some form of write 
access to an object, information can flow from the subject to the object. 

1.2.2 Subject Memory 

Subjects are viewed as agents for transmitting information. If a subject has 
simultaneous read access to one object and write access to another, 
information flows from the first object through the subject to the second 
object. What if a subject has read access to an object temporarily, but releases 
that access before obtaining write access to another object? Does information 
flow from the first object to the second? This is equivalent to asking whether 
subjects have memory. It is usually assumed that they do. 

Some modellers prefer to say that subjects have no memory themselves, but 
each subject is associated with a private object to which it has read and write 
access. For example, if one thinks of a process in an operating system as a 
subject, its private object consists of its processor context-i.e., its registers. 
The problem with this approach is that it is rarely followed through 
conscientiously. No one ever bothers to specify axiomatically in their models 
that such private objects always exist with read/write access. And when they 
try to show that software specifications or high-order language code satisfies 
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the model, they have trouble because certain private objects are not visible in 
the implementation. 

Certain subjects and objects are part of the external interface of a system, in 
the sense that they may act as conduits for information entering or leaving it. It 
is assumed that any such information flow is consistent with the labels on 
the subjects or objects. Some models make the external interface activities ex- 
plicit, others do not. 

1.2.3 Access Modes and Transactions 

Models of higher-level services such as database management systems or 
message systems frequently emphasize the notion of a “transaction” as the way 
a user interacts with the system. In a transaction-oriented model, all in- 
formation flow occurs during transactions. The same transaction may cause 
read and write accesses to several objects by the requesting subject. In the time 
between transactions, a subject might perform some local processing on its 
private memory, but it cannot read or modify other objects. 

In this kind of model, the transactions themselves are the modes of access. 
The access matrix lists, for each subject and object, what transactions the user 
may employ upon that object. 

1.3 Label-Based Policy 

1.3.1 

The same set of labels is used for both subjects and objects. On an object, a 
label represents some measure of the sensitivity of, or special restrictions on, 
the data in the object. On a subject, the label represents the clearance or 
privileges of the subject, as well as the sensitivity of the data in its memory. 
Labels are ordered, in that one can tell, at least for some pairs of labels, when 
one represents greater data sensitivity than the other. In the tradition of Bell 
and LaPadula (1975), this ordering-actually a partial ordering, as we shall 
see in a moment-is often called dominance. Dominance will be symbolized 
in this discussion with the inequality symbol “2,” and the reverse relation 
“dominated by” with “1.” 

The Dominance Relation on Labels 

1.3.2 Information Flow Policy 

Labels are used in models of multilevel security to constrain access. The 
access restrictions are intended to enforce a higher-level, informal, infor- 
mation-flow policy: information flow from one entity to another is possible 
only when the destination carries a label dominating that of the source. Given 
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some natural, intuitive properties of information flow, we can show that 
dominance should be a partial ordering, if this information-flow policy is to be 
satisfied; these arguments were given by Denning (1976). 

First, information flow is trivially possible from an object to itself. Hence, if 
x is the label of the object, we must have x I x. So dominance is reflexive. 

Second, if information flows from an object a to a subject b, and then from b 
to an object c, information may have flowed as a result from a to c. Now, 
suppose the labels on a, b, and c are x, y, and z, respectively. If x I y and y I z, 
the policy requires x I z.  So dominance is transitive. 

Third, suppose there is a subject a and an object b with labels x and y, 
respectively, such that x I y and y I x. There is nothing that will force us to 
conclude that x = y. We can only say, at this point, that dominance is a pre- 
ordering, as is done by Walter et al. (1974a). However, since information may 
flow in both directions between a and b, the policy permits a and b to swap 
information until they contain exactly the same data. There is then no reason 
to distinguish the labels x and y. So we may as well assume that dominance 
is antisymmetric also, making it a partial ordering. 

A total ordering is not necessary, or always desirable; we do not need to 
assume that all pairs of labels are comparable. One common and useful system 
of labels arises from marking each subject and object with one or more 
categories, e.g., financial, administrative, NATO. A single label is a set of 
categories. A subject can read an object only if it is cleared for all the categories 
in the object’s label, so the dominance relation in this case is just set inclusion, 
which is not a total ordering. 

It can be convenient also to assume that a least upper bound operator exists 
for the dominance partial ordering. Suppose one wishes to create a subject to 
read information from two objects labelled x and y. It is desirable to label the 
new subject with the least upper bound of x and y. For, suppose there is 
another object whose label dominates both x and y. Then the new subject can 
be allowed to write into it. 

Denning (1976) points out that when a least upper bound operator exists, 
and when the set of labels is finite and possesses a universal lower bound 
(representing non-sensitive, unrestricted information), a greatest lower bound 
also exists. (The greatest lower bound of x and y is the least upper bound of 
all common lower bounds of x and y.) Under these circumstances the domi- 
nance relation forms a lattice. 

1.3.3 The. *-Property 

In an access-control model, the information-flow policy stays behind the 
scenes as a motivation for an explicit access-control policy. The access-control 
policy limits the modes of access permitted between subjects and objects, on 
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the basis of their labels. Two access-control restrictions are assumed: 

0 A subject is permitted read access to an object only if its label dominates 

0 A subject is permitted write access to an object only if its label is domi- 
the label on the object. 

nated by the label on the object. 

The conjunction of these two statements is often called the *-property, after 
a similar property stated in the Bell-LaPadula model (Bell and LaPadula, 
1975). All multilevel access-control models have some form of it. The reader 
is warned, however, that “*-property” is not a well-defined term. Even Bell 
and LaPadula have given different versions of it (LaPadula and Bell, 1973; 
Bell, 1973). 

It is obvious, given the kind of assumptions we have made about 
information flow, that the *-property implies the information-flow policy. 
Information flow was assumed to occur only as a result of accesses, and the *- 
property says it can only flow “uphill” with respect to the labels. 

2. Implementing Models 

2.1 The Successive Refinement Approach 

A model is just the first step in a secure system development. One paradigm 
for using models in implementing secure systems was suggested by the Air- 
Force planning study (Anderson, 1972), and was refined through a series of 
projects, initially sponsored by the Air Force and later supported more 
generally by the U.S. Department of Defense. This line of development led to 
the publication of the “Orange Book,” a standard for evaluating the security 
of computer systems, by the National Computer Security Center (1985). 

The idea proposed in the Preface of the Anderson report was to “. . . start 
with a statement of an ideal system, a model, and to refine and move the 
statement through various levels of design into the mechanisms that 
implement the model system.” At this time, David Parnas had already 
described a technique for precise specification of software modules (Parnas, 
1972). Some work at  MITRE (Burke, 1974) put the two together, and 
recommended the four-stage approach illustrated in Fig. 1. The specifications 
in stage 2 were called “formal” specifications to distinguish them from 
imprecise natural-language specifications, and to emphasize the possi- 
bility that one could construct mathematical proofs relating the specifications 
to the model in stage 1, and perhaps also to the high-order-language source 
code in stage 3. 
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Mathematical 
Model 

- Formal Source Machine 
Specification - Code - Implementation 

FIG. 1. The four-stage approach. 

Carrying out the four-stage approach rigorously was then, and is still now, 
beyond the state of the art. Showing that the source code satisfies the formal 
specifications is essentially a proof of program correctness. In 1977, Stanford 
Research Institute had made considerable progress with a methodology for 
proving that a hierarchically structured operating system satisfied formal 
specifications in the spirit of the ones Parnas had suggested (Neumann et al., 
1977). Various efforts have been made along these lines, and we shall not 
attempt to survey them here. None have been fully satisfactory, primarily 
because program correctness, in general, is a formidable goal that has not been 
reduced to practice. And even if one could prove that the source code is 
correct, there is still the question of showing that it has been compiled properly 
and runs correctly on the target computer. 

Despite the failure to apply mathematical rigor to all aspects of the 
implementation of a secure computer system, techniques traceable to the 
four-stage approach have led to the development of a few systems that are 
believed to be much safer than any that had previously been built. Much of the 
credit for their success goes to improvements in hardware, but without a 
simple, elegant policy to support, the hardware features might well have been 
ineffective. 

The key ideas in the development of secure multilevel systems have been 
these: 

0 A simple, uniformly applied hardware mechanism for protection of 
memory. 

0 A small operating system “kernel” that uses the hardware mechanism to 
protect itself and to control all memory accesses in accordance with a 
security policy. 

0 A simple, nondiscretionary policy for the kernel to support. 

There are, of course many details that must be thought out and imple- 
mented carefully, from interrupt handling and 1 / 0  management to user 
authentication. The reason this approach has a chance of succeeding is that 
the kernel is designed from the beginning with a full understanding of the 
hardware mechanism underneath and the policy to be supported. 

The Department of Defense Trusted Computer System Evaluation Criteria, 
known as the “Orange Book”(Nationa1 Computer Security Center, 1985), is a 
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requirements document used for rating computer systems with respect to their 
ability to protect classified or other sensitive information. The rating process 
and its application to Defense systems is too complex to be discussed here. The 
significance of the Orange Book, for us, is that it embodies much of the 
experience gained from DoD-sponsored secure computer system development 
along the lines summarized above. 

2.2 Formal Top-Level Specifications 

The highest Orange Book rating, “A1 ,” has requirements for implementing 
multilevel security with the greatest degree of assurance that is considered 
“reduced to practice.” It requires not only a model of a mandatory access- 
control policy, but also a “formal top-level specification” and evidence that the 
specification is consistent with the model. Although the Orange Book requires 
only a “mixture of formal and informal methods” to establish the corre- 
spondence, most efforts to meet A1 requirements have used formal methods or 
verification tools. The Orange book A1 requirements also call for a mapping 
between the formal specification and the security-critical source code; this 
requirement is typically satisfied with systematic but informal methods. The 
first computer system named as satisfying A1 requirements was the Honeywell 
SCOMP (Fraim, 1983), and it has defeated attempts at penetration. 

The intended role of a model, then, is to state a security policy to be 
supported by system software and hardware, and consequently to serve as a 
statement of requirements to be satisfied by the next stage of the im- 
plementation, the formal specification. In this way, logical errors in the design 
of the system might be caught earlier, and more easily, than otherwise. 

The use of nonprocedural formal specifications has been helpful in making 
this process practical. It was Parnas (1972) who suggested writing specifica- 
tions nonprocedurally. A nonprocedural specification says what the result 
of a function procedure call is, without saying how it is accomplished. It uses 
logical operators, even quantifiers, but does not employ programming con- 
structs for flow of control, such as sequencing or looping. Conditional state- 
ments are used, but they are viewed as logical connectives. 

Some languages for formal specification have been developed to the point 
where software tools exist for parsing specifications in the language and for 
proving properties about them. Four specification and verification environ- 
ments of this kind were described by Cheheyl et al. (1981), showing how the 
tools were applied to a small example of a secure system. 

2.3 A Flaw Discovered 

Here is an example of how a security flaw was discovered; it actually 
happened during the development of a certain secure system, according to 
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Guttman (1987). The operating system has a command to create a (logically) 
new memory segment; the command is called “create-segment.” The create- 
segment command may give the calling process access to the new segment. The 
process indicates the desired security level label and access mode via argu- 
ments to the create-segment call. 

The problem arose because a process was allowed to create a segment at a 
level equal to or higher than its own level. Naturally, when a process creates a 
segment at a strictly higher level, it should not be able to obtain read access to 
it. Otherwise, it would be able to read higher-level data written into the 
segment by any higher-level process. The create-segment command was 
supposed to check for that, and raise an error condition if the calling process 
requested read access to a new segment at a strictly higher level. But there was 
a mistake in the command as specified, and the source code implemented the 
mistake. 

This problem was found while attempting to show that the formal 
specification was consistent with the model. We can see how this was done 
by looking at an excerpt from the formal specification. The part of the 
specification shown below shows the error test within the create-segment 
command; it states a condition upon which an “invalid-request” error is 
reported. 
create-segment (map, wire, access, seg-access, pl): 

if map and 
((wire and not (access = {‘write’}) and not Lteq(seg-access, pl)) 
or ...) 
then return ‘invalid-request’ 
else . . . 

The condition is complicated because the command has various options 
passed as parameters. Two of these are map, a boolean indicating whether the 
calling process will be given access to the new segment; and wire, a boolean 
indicating whether the new segment is to be locked in main memory. Other 
arguments are: access, the mode of access requested; seg-access, the security 
level specified for the new segment; and pl, the security level of the calling 
process. The condition compares seg-access with pl using Lteq, the “less than 
or equal to” relation. 

The problem is that the security level comparison is made only if “wire” is 
requested. So if “wire” is not requested, the calling process can get read access 
to a new segment at a higher level. The condition is hard enough to read so that 
the specifier and implementor thought they were doing the right thing. The 
verifier, however, tried to prove a property required by the model: 

if (map and (access = {‘read‘} or access = {‘read’, ‘write’})) 
then Lteq(seg-access, pl). 
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This property is part of the *-property as stated in the previous section, 
mapped down into the terminology of the specification, and interpreted for the 
access state resulting from the create-segment command. It should be 
provable under the hypothesis that the invalid-request error did not occur (if 
the error did occur, then create-segment returns immediately with the error 
message without creating the new segment). But it was not provable, and thus 
the problem was discovered. 

3. Model-to-Specification Correspondence 

3.1 Introduction 

Mapping model properties down into specification terminology, and then 
proving them, is one way to show that a specification is consistent with a 
model. This activity is something like doing program correctness proofs, but 
there are some important differences: 

0 The properties to be proved are derived in a uniform way from an 

0 The target of the verification is not a procedure written in source code, 

0 It is well within the state of the art to construct rigorous proofs for 

abstract model. 

but rather a formal specification. 

specifications of real systems. 

Let us examine what it means, in general, to say that a specification is 
“consistent with” a model. We shall begin by characterizing models and 
specifications abstractly, and end with a description of what proving the 
correspondence implies in a practical sense. The reader is cautioned that this 
characterization does not apply to all possible models of computer security or 
forms of system specification; it is appropriate only for the implementation 
paradigm summarized above. In particular, it is meant for multilevel security 
models of the sort surveyed in this article, and specifications written in a 
certain style. 

3.2 Abstract Definition of a Secure System 

Both models and specifications describe state-transition automata. A state- 
transition automaton (or, simply, a machine) includes a set of states Q, a set of 
inputs X, and a transition function 6 from Q x X to Q. It also has a set of 
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outputs, Y, which may be associated either with transitions or states, and a 
specified initial state. 

Security models have additional structure. A reference monitor can be 
characterized as a machine that associates an access matrix with each state. 
Sets of subjects, S ,  objects, 0, and access modes, M, are the additional 
elementary sets that occur in the definition of a reference monitor. Formally, 
an access matrix is a function from (subject, object) pairs to sets of access 
modes; or, it could be a relation containing (subject, object, access-mode) 
triples. 

The access matrix changes from state to state. We could simply define the set 
of states as the set of access matrices, but usually a state has other components 
as well. Rather than think of the state as a complicated structure, it may be 
easier to think of the state set as a collection of state names, identifiers, or 
indices. Components of a state, such an access matrix, are found using 
functions defined on the state set. Thus, an access matrix function might be of 
the form a: Q -+ ! Y ( M ) s x o  (where the exponent notation A B  represents the set 
of functions on B into A, and B(A) is the set of subsets of A). 

A multilevel access-control (MAC) system is a reference monitor with a 
partially ordered set L of labels and a function I associating subjects and 
objects with their labels. In general, the label assignment is a component of the 
state, so that 1 is of the form I: Q -+ Lsuo. It defeats the purpose of a label 
assignment if labels can change arbitrarily, so most MAC system models 
restrict such changes. In some models, label assignment is fixed for all states; 
in others, labels may change only in response to inputs in a distinguished set 
associated with a trusted source. 

Most MAC system models obey some form of the *-property. There might 
be a distinguished subset of “trusted” subjects, however, whose accesses are 
permitted to be in violation of the *-property. 

At this point, the world of security models diverges. The next step in the 
progression of models of secure machines is to describe a security policy that is 
more or less specific to an intended application. We must split off in different 
directions to reach various application models: models of operating systems, 
database systems, networks, etc. And when we descend further to formal top- 
level specifications, the family of systems being described is narrowed even 
more tightly, to the point where they receive brand names such as “Multics” 
and “SCOMP.” 

The idea behind the successive refinement of the concept of a secure system 
remains the same as we descend through the levels of refinement. Just as each 
MAC system is a reference monitor, each instance of a given application 
model is a MAC system. And a formal top-level specification refines an ap- 
plication model similarly. 
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3.3 Models as Logical Systems 

3.3.1 Axioms and Valid Interpretations 

When looking at application models and formal specifications, it is helpful 
to become more conscious of a model as a logical system, with symbols for 
constants, variables, sets, and relations, and axioms constraining the various 
functions and relations that are mentioned. The fact that the “dominates” 
relation on labels is a partial ordering, for example, is expressed with three 
axioms. The *-property is an axiom constraining the component extractor 
function associating access matrices with states. 

Models may also have axioms restricting state transitions. When the 
function assigning labels to objects can change from state to state, one might 
have an axiom stating that objects cannot be downgraded-an object label 
in the next state dominates the object label in the current state. 

A oalid interpretation of a model is a relational structure (e.g., a machine) 
together with a mapping of the sets, functions, and relations to the symbols in 
the model, in such a way that the axioms are true. A mapping of a collection of 
sets and relations to the MAC system model is accomplished by identifying 
which set is the set of subjects, which relation is the partial order on labels, etc. 
Once this correspondence is defined, each model axiom is metamorphosed 
into a statement about the relations defining the machine. This view of what it 
means for a machine to be an instance of a model was applied in an early 
security modelling context by Walter et al. (1974b). 

It is worth noting that a mapping of sets and relations includes a mapping of 
individual constants, such as the access modes “read” and “write.” This is 
because constants are viewed as functions of no arguments (and functions are 
single-valued relations). 

3.3.2 Concrete Models and Transition Rules 

Some models have axioms of a specific kind called transition rules. These are 
associated with system commands, somewhat like the HRU model (Harrison 
et al., 1976). Typical operating system commands are “create object,” “get 
access,”etc. The Bell-LaPadula model has a set of rules motivated by a design 
for a secure Multics kernel (Bell and LaPadula, 1975). 

The idea behind a transition rule is that an input to the machine has a 
particular form, namely a command name followed by a list of parameters, 
e.g., “get-access(subject, access, object).” Actual values must be substituted 
for the formal parameters to obtain a particular input. A single rule covers all 
transitions possible with inputs having a given command name. 

Let us refer to a model without transition rules as an abstract model, and 
one that includes transition rules a concrete model,. 
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The usual convention, established by the Bell-LaPadula model, is that 
transition rules are not independent of the other axioms. To describe the role 
of axioms in a concrete model, we shall call attention to two particular sorts of 
axioms: 

0 State invariants, which must be satisfied by each individual state (i.e., an 
axiom of the form Vq E Q, P(q), where P does not mention any state other 
than q. 

0 Transition axioms, which mention the transition function. 

Transition rules are themselves transition axioms, but they are supposed to 
furnish a complete, self-contained specification of what transitions are pos- 
sible. This gives us the first consistency property for concrete models: 

(Cl) The transition rules, taken together, must imply all other transition 
axioms. 

There is a second consistency property: 

(C2) The transition rules preserve all state invariants. 

That is, if a (current state, next state) pair is consistent with a transition rule, 
then the truth of the state invariants for the next state must be provable from 
the transition rule and the truth of the state invariants for the current state. 

The fact that transition rules preserve state invariants is not enough by itself 
to ensure that all states satisfy the invariants. We need to assume that 

, 0  The initial state satisfies the state invariants. 
0 All states are reachable from the initial state. 

These are, in effect, new axioms added implicitly to any concrete model. 
The two requirements, (Cl) and (C2), in the presence of the new implicit 

axioms, ensure that the transition rules enforce the state invariants and 
transition axioms. For this sort of model, these requirements may be what the 
Orange Book is referring to in Section 3.2.3.2.2, in its requirement for a model 
that ". . . is proven consistent with its axioms" (National Computer Security 
Center, 1985). 

3.3.3 Transition Rule Example 

Here is a partial illustration showing the consistency of a transition rule 
with a state invariant. Consider this typical transition rule for a read-access 
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request, from an imaginary concrete model: 

get-read-access(cur-proc, segment-id) [cur-state, next-state] : 
((label(segment-id) I label(cur-proc)) 
A (access-matrix(next-state, cur-proc, segment-id) 

v access-matrix(next-state, cur-proc, segment-id) 

A ((p # cur-proc v i # segment-id) + 

= {‘read’} u access-matrix(cur-state, cur-proc, segment-id)) 

= access-matrix(cur-state, cur-proc, segment-id)) 

access-matrix(next-state, p, i )  = access-matrix(cur-state, p ,  i ) )  

This rule is suppose to show the relation between the access-matrix 
components of two states related by a transition caused by a get-read-access 
input. It permits the subject cur-proc to gain read access to the object 
segment-id, provided that an appropriate test on their labels is satisfied. The 
test is, of course, motivated by the *-property. 

The state invariant that happens to be an axiom of this concrete model is 
this one, intended to be an interpretation of the *-property: 

(‘read’ E access-matrix(q, p, i )  --t label(i) I label(p)) 
A (‘write’ E access-matrix(q,p, i )  + label(p) I label(i)). 

To show that this property is preserved by get-read-access, we must show 
that it is true with q = next-state whenever it is true with q‘ = cur-state (the 
induction hypothesis), assuming that the input was a get-access command 
with parameters segment-id = i and cur-proc = p. 

Looking at the rule, we see that there is only one case where the access- 
matrix changes from cur-state to next-state. In this case, we have 

label(i) < label(p), 

and then the+ule says that 

access-matrix(q, p ,  i )  = {‘read’} u access-matrix((, p ,  i ) .  

conjunct is true by the induction hypothesis. 
The first conjunct of the *-property is clearly satisfied, and the second 

3.4 Mapping Models to Formal Specifications 

3.4.1 Mappings 

Mathematically, there is no difference between models and formal specifica- 
tions. Both are axiomatic descriptions of machines, and both may be either 
concrete or abstract in the sense of having transition rules or not. The formal 
top-level specifications used in the implementation paradigm discussed above 
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are almost always concrete, however, to facilitate the informal correspondence 
to the next stage, the source code. 

Showing the consistency between a specification and a model means 
showing that any instance of the specification is also an instance of the model. 
This task is complicated by the fact that the specification and the model of- 
ten have a different vocabulary. While the model talks about “subjects” and 
“objects,” the specification may use terms such as “process,” “buffer,” 
“segment,” etc. 

It is necessary to map symbols representing sets and relations in the model 
to terms in the specification. Note that a single set in the model, like the set of 
objects, may correspond to the union of two or more sets in the specification, 
such as buffers and segments, or some other set definable in terms of the sets 
and relations in the specification. One then shows that the axioms of the 
model, when translated into the terms of the specification, are provable from 
the axioms of the specification. This is like constructing a valid interpretation 
of a model, except that the instance is another model instead of a particular 
relational structure (machine). 

A mapping from model terms to specification terms is wrong if it fails to 
preserve the meaning behind the terms “subject,” “object,” “read access,” 
“write access,” “label,” and others. Unfortunately, one cannot really tell from 
the specification itself whether the mapping preserves meaning. How do  we 
know that “read” and “write” have not been interchanged? What would we do 
if the access modes in the specification were named “frob” and “grok”? 

The fact that the axioms are preserved helps to some extent. For example, 
we must confirm that the labels in the specification form a partial ordering. 
However, if the partial ordering is a lattice, and its top and bottom are reversed 
(e.g., Unclassified switched with Top Secret) there would be no mathematical 
way to tell. 

Ultimately, the only way to validate the mapping is to track it down to the 
hardware and machine language implementation. Even this does not really 
settle the question of what “read” and “write” were supposed to mean in the 
first place, since their properties were stated informally. Information-flow 
models such as the ones reviewed later address this question. 

3.4.2 Mapping Example 

As an example, we can show how to set up a mapping between the M A C  
system model, with the *-property as a state invariant, and the imaginary 
concrete model used above. 

The first step is to set up a mapping between the sets and relations in the 
concrete model with those in the M A C  system model. This requires us to 
identify the sets in the concrete model that serve as domains for the variables 
used above, and correspond to the elementary sets in the M A C  system model. 
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Q is mapped to State, the set of states. 
S is mapped to Process, the set of processes. 
0 is mapped to Segment, the set of segments. 
M is mapped to {‘read’, ‘write’}. 
L is mapped to Class, the set of classification labels. 
X is mapped to {get-read-access} x Process x Segment u 

This is not a complete mapping of sets, but it is enough so that we can go on 
to show how some functions are mapped. Consider the labelling function 

1 : Q + Lsuo. 

It will have to be mapped to some concrete relation, which we shall also call 1, 
with the signature 

1 : State -, ClaSSProccss u Seamen1 

The closest we have in the concrete model is 

label : Process u Segment + Class. 

We can define the concrete version of 1 so that the label assignment is the same 
in every state; i.e., for each z of type Process or Segment, 

(L(q))(z) = label(z). 
This equation defines the concrete version of 1. Similarly, we can map a with 
the equation 

(a(q))(p, i) = access-matrix(q, p, i). 

In effect, the abstract model functions have been added as an extension to 
the concrete model, by defining them in terms of the available functions there. 
We can also identify the sets in the concrete model with their abstract names; 
thus, Q = States, etc. 

Once the mapping is complete, one shows consistency by proving that the 
axioms of the abstract model are satisfied. For example, we must prove the 
*-property. In formal notation, the *-property is 

(read E (a(q))(s, 4 + W(4 5 4q)(s)) 

A (write E (a(q))(s, 4 + W ( S )  5 W(4. 
When this property is expanded into concrete model terms using the 

equations above, it becomes 

(‘read’ E access-matrix(q, p, i) + label(i) 5 label( p)) 

A (‘write’ E access-matrix(q, p, i) + label(p) I label(i)). 
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But this is exactly the state invariant included as an axiom in the concrete 
model. 

4. The Bell-LaPadula Model 

4.1 Introduction 
The Bell-LaPadula model has been influential in the development of secure 

systems with multilevel access-control policies. Perhaps this was because it 
was the first concrete MAC system model, and thus the first one suitable for the 
first stage of the implementation paradigm discussed earlier. It is also the 
reference of choice as the source of the *-property. The story behind the name 
“*-property” is that the authors couldn’t think of a satisfactory name for what 
they recognized as an important axiom, so a “*” was left in place of a name to 
be supplied later. 

The model evolved and expanded over several versions. We shall highlight 
the features of the first three briefly, then describe the Multics Interpretation in 
detail. There has been some recent debate surrounding the definition, purpose, 
and adequacy of the Bell-LaPadula model, stimulated by McLean’s “Sys- 
tem Z;” those issues will be touched upon. 

In Volume I (Bell and LaPadula, 1973), the *-property and rules had not yet 
appeared. Any kind of access required that the subject dominate the object in 
security level. Security levels had classification and need-to-know compo- 
nents, but specific classifications were not named. The state had both a current 
access allocation (what we have called an access matrix) and an “access 
matrix” representing discretionary permissions; no axiom relating to the latter 
was specified. 

Volume I (LaPadula and Bell, 1973) limited the access modes to read, write, 
append, execute, and control. It introduced a form of the *-property, with 
execute access viewed as a kind of read, and “write” access actually implying 
both read and write; append access was write-only. It had 10 transition rules. 
Rules for giving and rescinding discretionary access permissions tested control 
access. 

Volume 111 (Bell, 1973) introduced an object hierarchy as a new component 
of the state. The hierarchy was used to do away with control access; a subject 
implicitly had control access to an object if it had write access to the parent 
object in the hierarchy. The hierarchy had to satisfy a compatibility property 
discussed below; this necessitated some changes in the rules. Subjects were 
given a current security level, distinct from, but dominated by, their maximum 
security level, leading to a change in the way the *-property was stated. 

The “Unified Exposition and Multics Interpretation” (Bell and LaPadula, 
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1975) had a set of rules intended to be suitable as kernel primitives for a secure 
version of the MULTICS operating system, and it added the discretionary 
security property, which forced current accesses to be consistent with the 
permission matrix. The elements, relations, and axioms of this version will be 
given in a somewhat abbreviated form, and the rules summarized. 

4.2 The Abstract Model 

The abstract part of the model defines a kind of machine that we shall call a 
“BLP machine.” A BLP machine has state set V, inputs R called requests, 
and outputs D = {yes, no, ?} called decisions. Decision outputs are associated 
with transitions rather than states. A state has four components, (6, M, f, H), 
which will be described below along with other elements of the model. 

As a reference monitor, a BLP machine has a set of subjects S, which is a 
subset of a set of objects 0, and it has a set of access attributes A = {r, e, w, a}. 
Each state has an access set component, denoted with the symbol 6, and 
representing current accesses as a set of triples (s, o, x) included in S x 0 x A. 

As a MAC system, a BLP machine has a lattice L of security levels. Each 
level has two components: a classification from a totally ordered set C, and a 
subset of the set K of categories. Subsets of K are partially ordered by set 
inclusion, and the lattice ordering a on L is induced as the direct product 
C x 9 ( K ) .  That is, (c, x) K (c’, x’) if c I c’ and x c x’ For example, (Confi- 
dential, {NATO}) a (Secret, {NATO, NUCLEAR}). 

Security levels are assigned to subjects and objects by another component of 
the state, symbolized f. An f-component is actually a triple (fs, fo, fc), where 

fs : S 4 L is the subject (maximum) security level function, 
fo : 0 + L is the object security level function, and 
fc : S + L is the subject current security level function. 

The current security level is the one that plays a part in the *-property. The 
two levels are motivated by the idea that when a user logs in to a computer 
system, a process is created to communicate with the user’s terminal and issue 
system commands. The process operates at a current security level requested 
by the user, and that level may be at or below the clearance of the user, which is 
recorded as the maximum level of the process. It is required that fc(s) a fs(s). 

There are two axioms relating current access to level assignments: the 
simple security property and the *-property. The simple security property 
appeared first in Volume I, and states that a subject can have read access only 
to objects at or below its maximum level. 

Simple Security Property: For each state v = (6, M, f, H), 
if (s, o, r) E 6 or (s, o, w) E 6, then fo(o) a fs(s). 
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The *-property has an exception built into it for subjects in a distinguished 
set S ,  of “trusted” subjects. 

*-Property: For each state v = (b, M ,  f, H ) .  
if (s, 0, r) E b and s 4 S T ,  then f&) cc fc(s); 
if (s, 0, w) E b and s 4 S,, then fo(o) = fc(s); and 
if (s, 0, a) E b and s 4 S,,  then fc(s) a fo(o). 

Two other components were added to the state to support discretionary 
access control. There is an access matrix M : S x 0 + B(A) whose elements 
represent access permissions rather than current access. (Actually, in the 
report (Bell and LaPadula, 1975), the subjects and objects were viewed as 
indexed by the positive integers, and M was a matrix with elements Mij.)  

An object hierarchy was introduced as a way of controlling the assignment 
and propagation of access permissions. It was motivated by the directory 
structure of Multics, though the model does not distinguish between non- 
directory objects and directories without subordinate objects. Formally, the 
hierarchy component H is a function on 0 into B(O) ,  giving the set of 
subordinates of each object. H is a hierarchy in the sense that the directed 
graph induced on 0, with edges from an object to each subordinate, is a forest, 
i.e., a set of rooted trees. A hierarchy is illustrated in Fig. 2. 

The discretionary security property states that current accesses are 
restricted to accesses permitted in M. 

Discretionary Security Property: For each state v = (b, M ,  f, H ) ,  
if (s, 0, x) E b, then x E M ( s ,  0). 

0 
0 

inactive 
objects 

0 
0 

“grass” 

4- activeobjects -b 

FIG. 2. A hierarchy. 
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The three state axioms given above, the simple security property, *- 
property, and discretionary security property, are considered the security 
policy for the abstract model. 

4.3 Transition Rules 

There are eleven rules, R1-R11. Each rule is a function on R x V into 
D x V, giving the decision output and next state for each possible request and 
current state. Each rule is intended to handle a particular kernel request. If a 
rule Ri is not applicable to an input x, Ri(x,  u)  = (?, u). Each rule refuses any 
request that would leave the system in a state violating the security policy. For 
such requests, the rule yields a value of (no, u). Acceptable requests yield a 
value of (yes, 0 ’ )  for some next state u’. 

The 1 1  rules handle the following types of requests: 

get-read, get-append, get-execute, get-write (four rules); 
release-read/execute/wri te/append; 
give-read/execute/write/append; 
rescind-read/execute/wri telappend; 
create-object ; 
delete-object-group; 
change-subject-current-security-level; 
change-object-securit y-level. 

The get requests add an element to b, consistent with the three security 
policy axioms. The release request deletes an element from b. 

The give request adds an access permission to M, and a rescind request 
takes it away. Inputs for these requests have two subject parameters-one 
representing the requestor, and one who will get or lose the access permission. 
These rules check that the requestor has write access to the parent object of the 
object involved in the affected access permission. 

The create and delete requests cause objects to become attached to, or 
detached from, the active part of the hierarchy. A create request selects a 
(presumably inactive) object and augments H by adding it as a new child of 
a specified object (to which the requestor has write access). The active objects 
are those that are parents or have children, plus a few special isolated objects 
(called “grass”). The create rule does not actually check that the newly added 
object is inactive, though it should. 

The newly activated object also receives a new security level. This suggests 
that there is more going on here, from a security point of view, than can be 
represented in an access-control model. An inactive object is supposed to be 
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erased, i.e., cleared of information. This consideration affects the appropriate- 
ness of implementations of the model, such as the need to preserve the 
meaning of “read” access from an information-flow point of view. 

When an object is deleted, i t  is removed from the hierarchy, and so are all 
objects below it in the hierarchy; this makes all those objects inactive. At the 
same time, all subjects who have access to these objects lose it. 

The rules preserve a property of the hierarchy called compatibility, credited 
to Walter et al. (1974a). A hierarchy is compatible if every subordinate object 
dominates its parent in security level. I t  is needed to prevent a covert channel 
for compromising information. If an object were below its parent in security 
level, a subject at the level of the parent could delete the object, and that action 
would be detectable by a lower-level subject who had access to the deleted 
object. 

The rules for changing security levels do not affect the current access set b, 
but they require that the resulting state satisfy the policy axioms. Changing 
security levels is obviously the kind of activity that should be undertaken only 
with care. Volume I1 (LaPadula and Bell, 1973) states the tranquility principle 
on page 19: “the classification of active objects will not be changed during 
normal operation.” This was stated as a consideration used in designing rules, 
but one that could be rejected as a matter of policy. The rule for changing 
object levels actually includes a special undefined test for “additional policy 
enforcement,” which could decide upon “abnormal” operation. 

When changing a subject level, if the change is a downgrade, one must 
assume either that subjects have no memory, or that any local memory of a 
downgraded subject is erased, in order to avoid a possible compromise. Even 
under these assumptions, there is still a covert channel, since a subject carries 
with it, in the current access set b, the record of which objects it has access to 
(Millen, 1984). 

4.4 System 2 and Tranquility 

The security policy was expressed in the Bell-LaPadula model by three state 
axioms: the simple security property, the *-property, and the discretionary 
security property. There are a number of other axioms that are part of the 
context in which the security policy is stated, and which are equally part of the 
model: those expressing the lattice ordering on security levels, the structure of 
the hierarchy as a forest (with a proper definition of active objects), and the 
subject maximum level as the upper limit of its current level. But the rules, 
and certain properties that they satisfy, may be modified or replaced to suit 
the needs of various application systems. In  particular, the tranquility prin- 
ciple and the compatibility property were not formally part of the abstract 
model. 
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Because the Bell-LaPadula model has played such an important role in 
the development of secure systems, especially those acquired by the U S .  
Department of Defense, it is worthwhile to examine how well the model serves 
as a statement of requirements for security. If a system obeys the Bell- 
LaPadula security policy, is i t  really secure? This is part of the more general 
question of how one evaluates models; under what circumstances is a model 
satisfactory? 

It is, of course, unreasonable to expect security to follow from a cor- 
respondence with an access-control model. The model only works within 
its level of abstraction; it is up to the implementor to make sure that the 
concepts such as “read” access are implemented as intended. Looking at the 
model as an abstraction of the implemented system, it should be a faithful 
representation. Still, one wonders whether the model has said as much as it 
could. 

The lack of some suitably general and formal statement of the tranquility 
property is particularly disturbing, since downgrading an object is a quick and 
easy way to compromise information. As a graphic example of a system that is 
intuitively insecure and yet satisfies the Bell-LaPadula security policy axioms, 
McLean (1987) proposed “System Z.” Based on the Bell-LaPadula abstract 
model, it has exactly one transition rule: 

When a subject s requests any type of access to an object o, every subject and 
object in the system is downgraded to the lowest possible level, permission is 
entered into the access matrix M, and the access is recorded in the current access 
set b. 

A response by Bell (1988) argued that 

A model such as the Bell-LaPadula model that was constructed as an 
abstraction to allow analysis free of irrelevant detail never claimed to be a 
justification of “axioms” in a foundational sense, nor did it claim to capture all 
the facets of intuitive-security. 

He goes on to point out that a universal downgrading rule as in System Z is 
not necessarily insecure from an intuitive point of view. It may be invoked in a 
situation where the computer system has been captured by an enemy and all 
objects are erased. The erasure is not expressible in an access-control model, 
but it is a requirement for the implementation, just as individual objects must 
be erased before they are activated by the create-object rule. 

Erasure is evidently an awkward subject for access-control models. There is 
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a way of handling it that is better suited to the level of abstraction of such 
models, though one still needs to think about how to implement it. Instead of 
permitting objects to alternate between active and inactive (erased) states, 

active * inactive, 

let us assume that there is an infinite pool of objects, so that each object need 
only be active once. An object just goes through three states: 

never used + active + dead. 

The fact that a newly active object contains no information derived (via 
accesses) from any other object is then obvious from the model, and no special 
instructions about erasure are needed. An implementation that carries 
forward the spirit of this model will still reclaim the space allocated to dead 
objects, but it will treat each newly activated object as conceptually new. The 
uniqueness of each new object is reflected by assigning it a previously unused 
“unique identifier,” as is done in SCOMP (Fraim, 1983) and PSOS (Neumann 
et al., 1977). 

In some applications, there are reasons for downgrading or otherwise 
changing the level of objects without erasing them. This should only be done 
on the request of a privileged subject. McLean (1988) has suggested a model in 
which the level of each object o can be changed only at the request of a defined 
set of subjects c&). A similar function can be defined for subjects. Inputs are 
of the form (s, r )  where s is the requesting subject and r is a request. Limited 
tranquility is then expressed as an axiom, saying that a transition, due to input 
(s, r), that changes the level of an object 0, is possible only when s E c&). If 
every subject is associated with a set of users (people), and there is some way (in 
the implementation) of ensuring that inputs from a subject are actually 
authorized by its users, then one can choose co in such a way that it represents 
more complex policies such as n-person control. 

It is obvious that downgrading objects is a questionable operation that 
should be performed only under special conditions, but it may be less obvious 
that upgrading objects can also cause problems. Of course, it is undesirable 
and usually against policy to overclassify information by marking it at a higher 
sensitivity level than it deserves, but upgrading can also compromise 
information through a covert channel. When an object is upgraded, lower- 
level subjects that had read access to it in the past will lose that access. If the 
upgrade was performed at the request of a higher-level subject, this a a way for 
higher-level subjects to affect lower-level subjects. To avoid any possibility 
that a high-level subject might covertly signal information to a lower-level 
subject, upgrades are either not permitted, or permitted only at the request 
of subjects at the original object level. 
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4.5 Trust and Integrity 

4.5.1 Trusted Subjects 

How is it that we can trust certain subjects with risky privileges, such as 
downgrading objects or having write access to a lower-level object? Is “trust” 
meaningful as a modelling concept, in an environment with faulty software 
and Trojan horses? Wasn’t the *-property invented precisely because user 
programs could not be trusted? 

The answer is that “user” programs are ordinarily not trusted. Processes 
(subjects) are trusted only when they execute trusted software that has been 
examined as carefully as the operating system kernel software. The kernel 
protects this software in the same way that it protects itself, by refusing any 
attempt by any unauthorized process to gain write access to the memory 
containing the trusted software. Processes become trusted only by the action 
of the kernel, which initiates their execution at an entry point of a trusted 
program. 

4.5.2 Biba’s Integrity Model 

Kernel protection of “trusted software applies only to software that the 
kernel knows about as part of the design of the system. There is also a need, in 
many applications, to protect some programs or data that may be entered into 
the system by ordinary users at any time. This general concern is referred to as 
protecting the integrity of objects, and it is addressed through methods for 
preventing unauthorized write access to the protected objects. 

Discretionary access controls can be used to limit write access, but they 
work only if all subjects who have write access are trusted, and all subjects who 
can give away write access will give it only to trusted subjects. This means that 
if a Trojan horse can get either write access to a protected object, or the ability 
to give it away, then the protection is a failure. In practice, this often means 
that all the programs available to a user must be trusted. 

Biba (1977) realized that nondiscretionary access controls could also be 
used for integrity, even though they were originally intended merely to prevent 
compromise of information. He also discussed discretionary integrity con- 
trols, but we shall focus on the label-based controls here. 

Subjects and objects are labelled with integrity levels. Biba suggested 
“Crucial,” “Very Important,” and “Important” as integrity classes, but any 
partially ordered set can be used. If we think of a high-integrity level, e.g., 
Crucial, as dominating a low-integrity level, e.g., Important, the information 
flow policy for these levels is the opposite of that for sensitivity levels. 
Information flow from one entity to another should be allowed only when the 
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destination carries an integrity level dominated by  that of the source. 
Information can lose its integrity; it can never gain in integrity. 

In Biba’s model, subject can observe or modify objects, and invoke other 
subjects. Invocation is meant to be interpreted as interprocess communication 
or procedure calls (into a different protection domain). Invocation causes 
information, in the form of a message or parameter values, to flow from the 
invoking subject to the invoked one. 

Four different access control policies were proposed by Biba. The simplest 
and best remembered is the strict integrity policy, which permits a subject 

0 Observe access only to objects of a higher or equal integrity level. 
0 Modify access only to objects of a lower or equal integrity level. 
0 Invoke access only to subjects of a lower or equal integrity level. 

In the strict integrity policy, integrity levels do  not change. 
The other three policies allow various relaxations of the axioms of the strict 

integrity policy. They are: a low-water mark policy, in which a subject can 
observe objects of lower integrity level, but its own integrity level is reduced 
accordingly; a low-water murk for objects policy, a low-water mark policy in 
which a subject can also modify objects of a higher integrity level, but the 
integrity level of those objects is immediately reduced; and a ring policy, in 
which observation is unconstrained. 

The two low-water mark policies still enforce the strict-integrity state 
axioms, but only at the cost of changes in the integrity level assignment. The 
ring policy works only when it can be assumed that a subject of high integrity 
is executing a program of high integrity, which is not misled by observing 
objects of lower integrity. The problem here is that executing a program is a 
form of observe access; so a high-integrity subject might be a process executing 
a low-integrity program, which is inconsistent with the required assumption. 
The ring policy would be more effective if execute access could be distin- 
guished from observe access (and that distinction could be enforced in the 
implementation). 

4.5.3 Strict Integrity is Free 

If one leaves out invoke access, the remaining access restrictions for 
strict integrity an observe and modify access are the dual of the *-property. 
Interpreting “observe” as “read” and “modify” as “write,” the only difference is 
that the directions of the partial ordering are reversed. This suggests that a 
mechanism for enforcing the *-property can be extended to enforce strict 
integrity without much difficulty. In fact, in many cases the same mechanism 
will work, and it can enforce both the *-property for compromise protection 
and strict integrity simultaneously. 



26 JONATHAN K. MILLEN 

The idea is to redefine the label set. If one has a partially ordered set of 
sensitivity levels, say C, and a partially ordered set of integrity levels, say I, one 
can define a new set of labels L = C x I, with a partial ordering defined as 
follows: 

(c, i) I (c’, i’) if c I c‘ and i 2 i’. 

Thus, if the *-property is enforced with these labels, a subject can have write 
access to an object only if the label of the subject is dominated by that of the 
object, and this means that the sensitivity level of the subject is dominated by 
that of the object, while the integrity level of the subject dominates that of the 
object. This is just what we wanted for strict integrity, and it works similarly for 
read access. From an abstract model point of view, nothing new has been 
added. From an implementation point of view, the only concern is having 
enough bits in a label to represent both levels. Note that if label comparison 
is implemented by arithmetic comparison, there is no need to change the 
comparison test. Simply use zero to represent the highest integrity level and 
use the highest number to represent the bottom integrity level. 

In practice, the main problem has been figuring out what integrity levels to 
use, and what they mean. An arbitrary list, like the Critical to Important range 
in Biba’s report, is not likely to correspond to any useful or mandated policy. 
Using the classification range Top Secret to Unclassified is a real mistake, 
since it is confusing if the integrity class does not match the sensitivity class. 
On the other hand, the system is unusable if the same class is used for both, 
since the reinterpreted *-property will constrain a subject to access only 
objects of exactly the same class. 

One easy and constructive way of using an integrity level is simply to 
distinguish between “trusted” and “untrusted,” with the “trusted” label ap- 
plied only to objects containing software believed to be trustworthy. Or, in 
an environment with mutually suspicious users, have a label per user, like 
“trusted-Smith,’’ “trusted-Jones,’’ etc., which are mutually incomparable but 
all dominating “untrusted.” Strict integrity will then provide protection 
against such threats as Trojan horses and viruses. 

4.5.4 Type Enforcement 

Strict integrity may be easy to implement, but it does not address all 
integrity needs. According to Clark and Wilson (1987), in a data processing 
environment there is often a need to ensure that certain “constrained data 
items,” or CDI’s, are manipulated only by specified “transformation pro- 
cedures,” or TPs. A T P  is entrusted to read a CDI of one type and create an 
output CDI of a different type. This sort of processing is essentially the same as 
an “assured pipeline” as described by Boebert and Kain (1985). Pipelining is a 
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special case of a type enforcement scheme in which each program is restricted 
to have read objects only of specified data types, and write access only to 
objects of specified data types. 

Boebert and Kain make the point that type enforcement cannot be im- 
plemented with a nondiscretionary policy using partially ordered labels. For, 
suppose that the pipeline is two steps long, e.g., 

where A, B, and C are CDI types. Suppose that integrity labels are assigned to 
A, B, and C, and also to the objects containing the programs TP1 and TP2, in 
such a way that the reads and writes in the pipeline are permitted by strict 
integrity. This would imply that A and TP1 had a greater or equal integrity 
level than B, and that B and TP2 had a greater or equal integrity level than C. 
What, then, is to prevent TP1 from writing into C as well? Not the *-property. 

It is possible to turn the partial ordering around so that all of the reads and 
writes in the pipeline tend to increase, rather than decrease, the integrity level. 
In that case, the *-property would refuse the needed accesses. But, now we can 
say that subjects executing TP l  and TP2 are partially trusted (this term comes 
from Lee (1988)), and will be given a special dispensation sufficient to 
accomplish their necessary accesses. As a policy, this is certainly another way 
of accomplishing the effect of a pipeline, but there are as many flavors of 
partial trust as there are TPs; this is a complex policy. 

5. Database and Network Models 

5.1 Database Management System Models 

Most of the work in secure database management systems (DBMS) has 
been done in the context of relational systems, in the sense of Codd (1970). A 
relational database is a set of relations. In a mathematical context, each 
relation is a subset of a Cartesian product of domains; its elements are tuples. 
In a DBMS context, domains are often called j e ld s ,  and the tuples are referred 
to as records. The components of an individual record are called data elements. 
See Fig. 3 for an illustration. 

Relations in a DBMS must have a key field or fields. By definition, the data 
elements in a key field identify records, in the sense that there is at most one 
record with a particular data element in the key component. Sometimes two or 
more key fields taken together are needed to constitute a key. There may be 
more than one set of fields that satisfy the properties of a key; one of these is 
selected as the primary key. 

DBMS models differ from one another primarily in the way they slice up 
relations into objects, which has implications for the way labels are assigned. 
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FIELDS 
F G H 

RECORD 

FIG. 3. A DBMS relation. 

Labels may be assigned by field, by record, by data element, or by relation. 
These choices have consequences for the way the DBMS is implemented. The 
finer the granularity of objects, the less likely it is that a general-purpose secure 
operating system kernel will provide both full data protection and efficient 
service, and the more special-purpose trusted code is likely to be added. 

One of the earliest approaches, by Hinke and Schaefer (1975), assigned 
classifications by field. They found that they needed axioms saying that the 
(primary) key fields of a relation all had the same classification, and that all 
other fields had a classification dominating that of the key. The reason for 
this is that, in order to read a data element of a record, the DBMS implemen- 
tation must find the right record first, using a search procedure that reads the 
key field. Entering and updating records in this system is complex for a rela- 
tion having fields at different levels, since the subject that enters a high- 
classification data element in its proper field cannot also enter a data element 
into a low-classification field, and oice oersa. 

The I. P. Sharp model (Grohn, 1976) assigned protection levels by relation. 
Their protection levels, incidentally, included an integrity level, in accordance 
with the strict-integrity model mentioned in the previous section. With a 
protection level on an entire relation, it is still possible to simulate the 
assignment of levels by field. The trick is to create a separate relation for each 
non-key field, each one having its own copy of the key, and classified at the 
level desired for the non-key field. A subject at the level of one of the higher- 
level fields could then use relational DBMS operations to assemble the 
information from all fields (relations) at its level and below. 

A Naval DBMS model (Graubart and Woodward, 1982) assigns protection 
levels at a data element granularity. However, records, fields, and relations and 
the entire database are viewed as containers and may each have their own 
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default security level (DSL). The actual level of a data element is chosen from 
several levels: the DSL associated with its unique location as a data element, 
and the DSLs of all containers it belongs to. Some of these DSLs may be 
unspecified (but the database always has one). When there is a conflict, because 
there are two or more applicable DSLs that are specified and different, a 
priority scheme is used to determine the final level. 

Another approach to the assignment of labels is to attach them to views, as 
suggested by Denning et al. (1987a). A view, in a relational system, is a formula 
for constructing a new relation from one or more base relations. The base 
relations are the ones in which data is actually stored; views are stored only as 
formulas. Users cannot access base relations directly; they may only see and 
operate on views. 

Classifying views permits a more flexible approach to some policy issues 
regarding the classification of data in a database. For example, data might 
sometimes be classified by value. Suppose a database on private airline flights 
has a relation showing the principal passenger of each flight. Records showing 
passengers from a specific list, e.g., the President or foreign dignitaries, might 
be assigned a higher sensitivity level than others. One can also address the 
aggregation problem, referring to the fact that a large enough accumulation of 
records can become more sensitive than any of the individual records. 

Data entered into the system is assigned a level on a data-element basis, 
using rules called classification constraints; these can be expressed as views 
also. Access views- the ones users see-normally receive a level just sufficient 
to cover the levels of the data elements that must be assembled to construct a 
view instance. Special policy considerations may result in a different level, 
however. With this sort of policy, the operations for constructing views (using 
relational operators) and assigning them levels must be trusted. 

In most of the policies discussed above, objects were assigned labels on the 
basis of their location attributes. The location of a data element is determined 
by identifying the relation it belongs to, the key of the record it is in, and which 
field it fills. But, in some systems, this location information does not uniquely 
determine the label of the data. For example, the label might be affected by the 
value of the data element, or the label might have been set to different levels 
depending on the level of the subject that updated the data element. In such 
systems a problem arises. 

If the location information does not determine the label of the data, then 
certain data might exist for a location without being visible to lower-level 
subjects. This means that lower-level subjects might update the location 
without being aware of a conflict. It also means that higher-level subjects 
might signal information to lower-level subjects with an update that makes the 
contents of the location invisible. 

The solution chosen for the SeaView model (Denning et al., 1987b) is 
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CARGO 

FIG. 4. Polyinstantiation. 

plyinstantiation. Multiple versions of a data element, record, or relation are 
created as necessary to reflect updates at  all sensitivity levels. When a flight 
record originally shows oranges as a cargo, and someone updates it to show 
nuclear fuel, an uncleared subject will see only the version of the cargo that 
says oranges, while a higher-level subject will see the nuclear-fuel entry (see 
Fig. 4.) This prevents the two problems with updates, since an uncleared 
subject cannot cause the nuclear fuel to be left behind by changing oranges to 
apples, nor can a higher-level subject covertly signal information by affecting 
the lower-level view of the relation. 

5.2 Network Models 

Multilevel security in networks is a recent phenomenon. Very few examples 
exist, and it is difficult to say whether formal models had an important role in 
their development. Current approaches to multilevel modelling of networks 
are in flux, and it seems too early to draw conclusions on how best to do 
network modelling. Two published examples will be mentioned to give a flavor 
of what happens when multilevel access-control considerations are applied to 
networks. 

The abstract model for SNet (Glasgow and MacEwen, 1987) sees a network 
as a medium for transmitting labelled messages between subjects. The security 
properties of the network ensure both that sent messages are labelled with the 
label of the sending subject, and also that received messages are delivered only 
to subjects whose label dominates that of the message. SNet subjects are 
intended to represent hosts or terminal concentrators. Some are trusted; a 
trusted subject is permitted to change its current level to any level below a 
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specified maximum. The network has a global state, consisting of two histories 
for each subject: a transmit history and a receive history, each of which is a 
sequence of messages. The network state changes as the result of a send or 
receive event by some subject, which extends that subject's history. 

Besides the axioms relating to labels, the SNet model has other axioms 
stating that messages are not misdelievered, and that every received message 
was sent. Messages include sender, receiver, and data components, so these 
axioms ensure that message data has not been relabelled or substituted from 
another message while in transit. The SNet work also includes a formal 
specification showing more of the network structure, and a proof that it 
satisfies the model. 

McHugh and Moore (1986) have a model they describe as a simplified 
version of the Bell-LaPadula model. The subjects are network hosts, and the 
objects are datagrams. Instead of separate send and receive events, their 
system has communication events. A communication event is a triple (s, o, s') 
where s is the sending subject, s' the receiving subject, and o is a datagram. It is 
secure if the classification of o dominates the clearance of s, and the clearance 
of s' dominates the classification of o. The network state is a set of 
communication events-the ones that have taken place so far-and it is 
secure if its elements are all secure. There is also a discretionary aspect to 
the policy, in that only certain pairs of subjects are authorized to share 
communication events. This policy has been shown to hold for a formal 
specification written in Gypsy. 

These models both interpret subjects as hosts and treat the network as a 
single large machine. Taking a host as a subject is not unreasonable for 
nondiscretionary access control purposes, as long as trusted, multilevel hosts 
have been shown to deserve their privileges. Taking a network as a single large 
machine, however, is only the first step in a process that decomposes the 
network into its components and examines the role of each component. The 
most productive way of doing so, from a formal modelling point of view, has 
yet to be seen. 

6. Information Flow Models 

6.1 Introduction 

There are ways to compromise information in a computer system that 
cannot be understood solely from access control considerations. If examina- 
tion of access control mechanisms in a computer system design is like using 
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a magnifying glass, current research in computer security modelling has the 
objective of constructing an electron microscope. This survey of multilevel 
modelling will conclude with a summary of these new directions in research. 

A mechanism by which a process operating at  a high sensitivity level can 
send information to a lower-level process, in spite of an access control policy, 
is termed a cooert channel. Some covert channels arise from the way the system 
is implemented: Lampson (1973) provides an example of a timing channel, in 
which a process communicates to others by varying the time it requests for 
computation. Other channels can be recognized in an abstract design 
specification of a system, even in a concrete model. We noted a channel 
inherent in one of the Bell-LaPadula transition rules for Multics, and we saw 
that polyinstantiation in a secure relational database was motivated partly by 
covert channel concerns. 

There have already been a number of models aimed at defining information 
flow in abstract machines, with sufficient precision so that covert channels can 
be explained and detected. In these models, we can state axioms to the effect 
that no information flow occurs from a subject to another, except when the 
security labelling would permit. There has been some effort to develop tools 
and techniques based on these models, for detecting covert channels in system 
specifications. Some fairly recent applications of these methods are discussed 
by Haigh et al. (1986) and Benzel(l984). Covert-channel analysis is presently 
difficult, but the models and tools are still being developed. 

Information-flow models share the philosophy that information flow is 
related to inference: if one subject can, by observing outputs available to it, 
deduce something about inputs from another subject, there has been some 
information flow. Conversely, if there is no information flow, the first sub- 
ject’s outputs would be independent of the input from the other subject. This 
idea was originally suggested by Jones and Lipton (1975), for computations 
rather than machines. One direction of development from the computation 
idea was to look at the computations occurring in high-level-language 
programs, due to individual statements, subroutines, or the entire program. 
This led to the definition by Cohen (1978) of strong dependency between 
variables in a program, and to syntactically-based analysis techniques as given 
by Denning and Denning (1977). Millen (1978) expressed information 
compromise from one state variable to another due to inference in a 
nondeterministic machine, and there was a model due to Feiertag, et al. (1977) 
that formulated a policy for deterministic machines that prevented in- 
formation flow from inputs at a high level to outputs at a lower level. These 
early approaches were surveyed by Landwehr (198 1). 

There have been some significant advances since then. The next step was a 
paper by Goguen and Meseguer (1982), defining a notion called non- 
interference, which was a generalization of the Feiertag model. 
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6.2 Non-interference 

33 

6.2.1 Definitions 

Non-interference was defined in the context of a machine composed of 

0 A set S of states, with an initial state so E S. 
0 A set U of users (or subjects). 
0 A set C of commands (or operations). 
0 A set 0 of outputs. 

together with functions 

do:S  x U x C + S .  
out: s x u + 0. 0 

We may think of U x C as the set of inputs for this machine. Inputs are 
thought of as coming from particular users, and in each state there is an output 
available to each user. 

Terminology. Let (U  x C)* be the set of sequences of inputs in U x C. 
If w E (U x C)*, we can start the machine in its initial state and apply the in- 
puts in w successively, leaving the machine in some state which we shall denote 
by [w]. Let [w]. = out([w], u). 

Given an input sequence w and a user u, define w/u as the subsequence of w 
obtained by deleting all inputs of the form (u, c) for some c. (This notation 
comes from Rushby (1985)) 

A user u is non-interfering with user u if, for all w E (U  x C)*, 

We write u $* u as an abbreviation for the statement that u is non-interfering 
with u. 

This says that the final output to u would be unaffected if all inputs from u 
were deleted. Previous outputs to u would also be unaffected, since they are the 
final outputs of shorter input sequences. It is claimed that non-interference 
precisely captures the notion of information flow, in the sense that there is no 
information flow from u to u if and only if u is non-interfering with u. 

Goguen and Meseguer also define non-interference between groups of 
users. First, if w is an input sequence and A is a set of users, define w/A as the 
subsequence of w with inputs from all users in A deleted. Then, for A c U and 
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B c U, A is non-interfering with B (written A $* B) if, for all u E B, 

A multilevel security (MLS) policy can be stated as soon as we add a 
labelling function, 

level: U + L, 

where L is a partially ordered set of sensitivity levels. Goguen and Meseguer's 
policy states that the users at or above one level cannot interfere with users at 
or below a second level, if the second level does not dominate the first. 

MLS1: Let x E L and y E L such that x g y. 
Then { u  I level(u) 2 x}  + { u  I level(u) I y } ,  

Rushby (1985) states the multilevel security policy in a different form, for pairs 
of users: 

MLS2: Let u E U and u E U such that level@) $ level(u). Then u + u. 

It is not hard to show that MLSl and MLS2 are equivalent. First, suppose 
that MLS2 is true, and let x E L and y E L such that x $ y. Let A = 

{ u  I level(u) 2 x}. Choose u such that level(u) I y. Note that if u E A, then 
level(u) $ level(u). By MLS2, if u E A, then u + u. Let A = {ul,. . . , u,,}. Then, 
for any input sequence w, 

CWIU = [w/u,lu = C(W/U1)/U,lu =. . .  = C W / ( ~ l r . . . , ~ . } l ,  = C W / A l " .  

Thus, MLS2 implies MLSl. 
Now, suppose that MLSl is true, and let u E U and u E U such that 

level(u) $ level(u). Again, let A = {u' I level(u') 2 x}. Let x = level(u) and y = 

level(u). By MLS1, A + { u '  I level(u') I y}. This gives us 
Cwlu = Cw/Alu by MLSl 

= [(w/u)/A], 

= [w/ulu by MLSl again. 

since u E A 

Thus, u + u, showing that MLSl implies MLS2. 

6.2.2 Unwinding 

If we agree that the non-interference MLS policy is a satisfactory definition 
of nondiscretionary security, there is still a practical problem: showing that a 
formal specification is consistent with it. The definition of non-interference in 
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terms of arbitrary input sequences is not easy to deal with. The unwinding 
theorem of Goguen and Meseguer (1 984) expressed non-interference equiva- 
lently as a property that could be tested for each state transition. This brought 
it within reach of standard proof techniques for formal specifications. 

The unwinding theorem will be presented in the somewhat simplified form 
given by Rushby (1985). The key to unwinding is to notice that each user has a 
limited view of the machine, determined by the outputs available to that user. 
Two states are equivalent for a user if they cannot ever be distinguished by that 
user, on the basis of subsequent outputs. One user is non-interfering with a 
second user if state transitions caused by the first user go to another state that 
is equivalent for the second user. 

An equivalence relation = on the set of states S is a congruence with respect 
to a user u E U if 

0 s = t implies out(s, u )  = out(?, u), and 
0 s = t and u E U and c E C implies do(s, u, c) =- do(t, u, c). 

Unwinding Theorem: u ++ u if and only if there exists a congruence = with 
respect to u such that, for all c E C and s E S reachable from the initial state, 

do(s, u, c )  = s. 
The proof is given, in different forms, by Goguen and Meseguer (1984) and 

Rushby (1985). The proof that the existence of the congruence implies non- 
interference is accomplised by induction on the length of an input sequence. 
The proof that non-interference implies the existence of a suitable congruence 
is routine once the congruence is constructed. Since any reachable state can 
be expressed as [ w ]  for some w, define [w]  = [w’]  if for all input sequences z,  
[ W Z ] ”  = [ W ’ Z ] ” .  

6.2.3 Applying Unwinding to Multilevel Security 

Haigh et al. (1986) showed how the unwound formulation for non- 
interference could be used to check whether the SAT (Secure Ada Target) 
system, as specified by a concrete model in Gypsy, is free from covert channels. 
In attempting to prove that the MLS policy was satisfied, the proof failed, and 
by examining the reason for the failure they discovered a covert channel. 

The proof method is to identify a good candidate equivalence relation on 
the states, for each subject, and try to show that it is acongruence, and also that 
it satisfies the unwinding condition for each pair of subjects u, u with 
level(u) g level(u). If the proof succeeds, the MLS policy (MLS2) holds. If the 
proof fails, it does not necessarily mean that the MLS policy fails; it might only 
mean that they chose the wrong congruence relation. Nevertheless, if a failed 
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proof leads to the discovery of a covert channel, the effort has been 
worthwhile. 

The candidate congruence relation was constructed by identifying the 
“subject view” of the state for each subject. The subject view consists of those 
state components that could eventually affect values returned to the subject. 
Two states with the same values in the components belonging to a certain 
subject view are equivalent for that subject. One way of assigning subject views 
is to try to associate a sensitivity level with each component or sub-component 
of the state. Those components at or below the sensitivity level of a subject are 
in its view. 

As a practical method for covert channel analysis, there are two drawbacks 
to this approach: one is the skill required to find a good congruence relation, 
and the other is the skill required to trace the cause of a failure to a covert 
channel. It might be argued that something like clairvoyance is required, 
rather than skill; but an understanding of the system architecture is probably 
sufficient to do the job. In this respect, there are no clearly superior methods 
for performing covert channel analysis. 

Since the non-interference approach is so general, why limit it to convert- 
channel analysis? Are access-control models still needed? Access-control 
models are useful because they provide understandable design guidance, the 
system is expected to enforce its access-control policy, and the mechanisms 
for access control are clearly visible in the machine architecture. The non- 
interference MLS policy, on the other hand, gives no design guidance, and 
proofs of it generally fail because real systems have covert channels. Some 
may be eliminated when they are found, but others are not serious enough 
to remove. 

6.3 Restrictiveness 

6.3.1 Nondeterministic Systems 

Non-interference has one significant limitation: it applies only to determin- 
istic machines. Consequently, it is not applicable to many multiprocessor 
systems and networks, since they are often nondeterministic. Nondeterminacy 
arises from the unpredictability of delays that occur in distributed systems. 
There are two sources of delay: propagation of signals within a component, 
and propagation of messages between components. Because of these delays, 
networks are subject to race conditions; a component may behave differently, 
depending on which of two messages reaches it first, and either way is possible. 

Some work has been done by McCullough (1987, 1988a, 1988b) on 
generalizing interference in the context of an event-system model of com- 
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putation. Consider a set E of events, which correspond to the primitive actions 
done to or by a system. Of these, some are input events, others are output 
events, and the rest are internal. Let I be the set of input events and 0 the set of 
output events. A system will be characterized by the set of event sequences that 
are possible for it. 

Formally, a system is a quadruple (E ,  I, 0, T) where I and 0 are disjoint 
subsets of E, and T is a subset of E*, the set of finite sequences of elements of 
E. T is called the set of traces, and it satisfies two axioms: 

0 Event Separability: If t E T and s is an initial subsequence of t ,  then s E T. 
0 Input Total i ty:  If t E T and i E I, then ti E T. 

Event separability reflects the idea that a system might have been stopped at 
any time, so whatever events have happened up to any earlier moment 
constitute a possible trace. Input totality says that inputs cannot be prevented 
from coming at any time, and show up in the trace, though the machine may 
ignore them. 

It should be clear that event systems can represent either deterministic or 
nondeterministic machines. One way of representing a deterministic machine, 
for example, is to record the entry into a state as an internal event. Ignoring 
outputs for the moment, the traces of a deterministic machine would then have 
the form 

q o i l q l i 2 . . . ,  

where each triple qni,+ lqn+  must be consistent with the transition function. 
Input totality must be recognized by adding other traces in which extra inputs 
have been added, as qnin+ l i’ i”qn+ The first or last input between states would 
be the one responsible for the transition, as a matter of convention. 

It is not hard to come up with a version of non-interference that is plausible 
for event systems. First, introduce a set U of users, and associate inputs and 
outputs with users. Then we might say that a user u is non-interfering with 
another user u if the set of possible outputs to u is unaffected by deleting the 
prior inputs from u. If one alters a trace by deleting inputs from u, the resulting 
event sequence is not necessarily a trace, but one can find another trace with 
the same inputs, in which the final output to u is unchanged. 

6.3.2 Composability 

The problem with this, and other plausible generalizations of non- 
interference, is that it is not robust with respect to a very important 
construction: the act of connecting systems together into composite systems, 
or networks. The ability to compose systems and retain their security 
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properties is significant because such connections are used to 

0 Create nondeterministic systems from deterministic ones. 
0 Create networks. 
0 Create complex systems from simpler subsystems. 
0 Represent the interactions of trusted with untrusted processes. 

McCullough (1988b) gives an example that illustrates the technical difficulty 
of generalizing non-interference in a composable way. Suppose we have two 
event systems A and E with the following behavior: 

A has inputs and outputs associated with user u (which we think of as a 
high-level user), and two specific types of output associated with user u (the 
low-level user). One output to u is a “stop-count” signal, which occurs non- 
deterministically at any time. The next output to u is the parity (odd or even) 
of the total number of u’s events, both inputs and outputs, that occurred prior 
to the stop-count output. Inputs and outputs belonging to u occur nondeter- 
ministically without restriction. 

A typical trace for system A might be pictured on a vertical time line as in 
Fig. 5, where u’s events are represented by dashed arrows and u’s events with 
solid arrows. B is identical to A except that its stop-count signal is an input 
rather than an output. See Fig. 6. 

It is plausible to say that u is non-interfering with u in both system A and 
system B. The reason is that u’s parity output can be either odd or even, 
regardless of the number of inputs from u, since additional outputs to u might 
possibly be generated and change the count. 

stop-count I- 

FIG. 5. A trace of System A. 
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stop-count 4 

FIG. 6. A trace of System B. 

We can connect A and B together into a composite system by taking the 
stop-count output from system A and feeding it into system B as a stop-count 
input. There should be nothing insecure about this connection, since both 
events belong to the same user, u. In the network, the stop-count signal has 
become a single event, which is neither an output nor an input, but rather an 
internal event. Also, u’s outputs from A are fed into B as inputs, and u’s outputs 
from B are fed into A as inputs. A still gets other external inputs, but B does 
not. We assume that no two events are simultaneous, so that events will appear 
in a discernible order in the traces of the composite system. A typical trace of 
the composite system is pictured in Fig. 7. 

The reader is invited to check that the two parity outputs to u emitted from 
the two component systems permit u to determine whether u has entered an 
even or odd number of inputs. The number of inputs is odd if the parity 
outputs disagree, and even if they agree. Consequently, u is not non-interfering 
with u in the network. For, when u had an odd number of inputs, deleting them 
changes the overall parity, forcing a change in one of the two outputs to u. 

6.3.3 Restrictiveness and Multilevel Security 

McCullough then proceeded to define a new, stronger security property 
called restrictiveness that is much less obviously a generalization of non- 
interference, though it coincides with non-interference on deterministic 
systems. Restrictiveness was then shown to be preserved when systems were 
composed in such a way that labels on events are matched. 
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stop-count 
I 

9, .......*. . .-. . 

FIG. 7. A trace of the composition of System A and System B. 

Terminology. If s E E* is an event sequence, and F c E is a set of events, s I F 
is the subsequence of s consisting of just those events in F. Also, let E represent 
the empty sequence. The letters a, b, c, etc., represent event sequences. 

A set F c E of events is said to be restrictive if the hypotheses 

0 abc E T 
0 b, b’ E I *  
0 b I F = b’ I F 
0 c [(I - F) = E 

(abc is a trace). 
(b and b‘ are input sequences). 
(b and b‘ agree on F). 
(c has no non-F inputs). 

imply the existence of c’ E E* such that 

0 ab’c’ E T 
c ’ I F = c l F  

0 c’ I (I - F) = E 

(ab’c’ is a trace). 
(c and c’ agree on F). 
(c‘ has no non-F inputs). 

Roughly speaking, any change in non-F elements of a trace segment b of 
inputscan be repaired by changing non-F elements of the following part of the 
trace. This conveys the idea that non-F inputs, and the users responsible for 
them, are non-interfering with F events, and the users who can observe them. 

To get a definition of multilevel security, introduce a partially ordered set of 
levels L and a function level: E -+ L. Note that events rather than users are 
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given levels, and that all events, including internal events, receive levels. An 
event system together with the level structure is called a rated event system. If 
x E L, let view(x) = { e  E E I level(e) I x}, the events of level at or below x. 

A rated event system is multilevel secure if, for all x E L, view(x) is restrictive. 
It is shown in McCullough (1988a) that restrictiveness, and hence mul- 

tilevel security, is composable, in the sense that if it holds for two systems A 
and B, it holds for a composite system in which outputs from either system 
have been merged with equal-level inputs of the other system. Other work 
comparable to the development of non-interference has also been done. In 
McCullough (1988b) there is a state-machine characterization of restrictive- 
ness similar to the unwinding theorem for non-interference, and there has been 
some effort to apply it to a real system (Casey et al., 1988). More work still 
needs to be done to check whether some simpler or weaker definition of 
multilevel security in nondeterministic systems is possible, and to find 
practical ways of applying it to detect covert channels or guide system design. 

7. Conclusion 

The common feature of the models we have been discussing is the use of 
sensitivity labels to restrict information flow. We have seen that, because of the 
nature of information flow, labels ought to be partially ordered, and it is often 
convenient to assume that they form a lattice. 

When an information flow policy is implemented with an access-control 
mechanism, or reference monitor, the result is a mandatory access-control 
system that restricts access according to the *-property. A MAC system has 
the important advantage that it provides protection against Trojan horses, 
assuming that the privileged programs that set labels or perform other trusted 
functions are not themselves Trojan horses. Furthermore, there are computer 
architectures that support this kind of policy in a simple, understandable way. 

MAC system models have been used with some success to help design secure 
computer systems. There is room for disappointment that a rigorous 
procedure cannot be followed, in practice, from a policy model all the way to 
verification of microprograms. Yet, there is evidence that taking the first steps 
rigorously, from a model to a formal specification, has resulted in better 
designs and has found bugs that might otherwise have taken longer to 
discover. 

It is straightforward and practical to prove that a formal specification is 
consistent with a model, but the correspondence is relative to a particular 
mapping. Successful mappings are not unique; the right one must exhibit an 
appropriate interpretation of the model, by reflecting the information-flow 
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meaning behind the abstract list of access modes. When there is a close match 
between the model’s access modes and those enforced in the hardware for 
memory access, e.g., read and write, finding the proper interpretation is 
easy. Otherwise, one has less assurance that the model is implemented 
accurately. 

Real security policies are not pure. The *-property in the Bell-LaPadula 
model, for example, has an exception built into it for trusted subjects. How 
does one decide whether a particular subject deserves to be trusted? One 
cannot really answer this in the context of the model, though we have noted 
that it is possible to use additional structure in the model to limit the privilege 
of a trusted subject, through sharing control with other subjects or adding 
type-enforcement restrictions. 

It was a pleasant discovery of Biba’s that a limited form of nondiscretion- 
ary integrity control is possible simply by reinterpreting the meaning of 
labels. Modern systems should be designed to be flexible enough to take ad- 
vantage of the strict integrity trick, despite the fact that it does not address 
the prior question of how to qualify subjects for high integrity, nor does it 
implement the type-enforcement or pipeline policies called for in commercial 
applications. 

It is difficult to tell how best to use MAC system models for database 
systems or networks. There are two levels at which the MAC approach can be 
used. One level is at an external interface, where objects are complex 
abstractions such as relations, views, virtual connections, or datagrams. This is 
the most natural level at  which to describe the system security policy as it is 
visible to users, but so much software is used to support it that it is difficult to 
assure correct implementation. The other level is at the interface to the 
underlying secure operating system kernel, if there is one, where objects are 
segments of memory. This is the level at which access control is enforced, and 
where one has the most assurance that a simple information-flow policy is 
implemented. Both levels seems to be needed. 

All access-control models have the failing that they assume that information 
flow can occur only when an appropriate access mode has been granted. In 
fact, information is communicated by all kinds of events, including the refusal 
of access, leading to covert channels. It is a tribute to the perseverance of 
researchers that they not only understand how this is possible, but they have 
developed proof techniques for finding covert channels that can be used in 
practice, albeit with some difficulty at present. 

The developments in information-flow modelling are exciting because they 
are still evolving in a clear direction. Starting with the underlying notion of 
information flow as an inference about the possible values of a sensitive data 
source, leading to the non-interference concept in deterministic machines, the 
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following advances have been made: 

0 An equivalent state-transition formulation (unwinding). 
0 A technique for detecting covert channels based on the state-transition 

0 A stronger but composable definition for nondeterministic systems 
version. 

(restrictiveness). 

Restrictiveness is not the final answer, because it has not been shown to be 
the weakest definition that still guarantees composability and which reverts 
to non-interference on deterministic systems. Analysis techniques based on 
information-flow approaches also need to be developed further. Perhaps, one 
day, the present dichotomy between access-control policy and covert-channel 
analysis will disappear, and the two will be subsumed in theory and practice 
under a single methodology. 
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1. Introduction 

A vivid image of the recent evolution of computer technology is that of a 
“race” between function and usability. New technologies and new capabilities 
become available to users faster than user problems can be studied, 
understood and addressed. For example, the many user studies of word- 
processing applications carried out over the past decade focused their 
attention on keyboard-oriented, stand-alone systems with small and low- 
resolution monochrome displays. In 1981, our group at the Watson Research 
Center turned attention to secretaries learning to use such word-processing 
applications. At the time, this was a novel application; computer editing was 
still largely the province of programmers revising code. 

But now, and without a finished analysis of word processing, the frontier of 
usability has been pressed onward by the development and introduction of 
new applications and new interface technologies. Communication appli- 
cations such as electronic mail and computer conference support raise 
usability challenges far more diverse than those raised by the extension of 
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word processing to nonprogrammers. In the current technology, multiple 
users cooperatively access multiple applications via an extremely heterog- 
eneous collection of workstation types. And even as the usability issues in 
these new domains are being articulated and explored, leading-edge proto- 
types are introducing gestural (e.g., handwriting) and speech input and 
interactive video output. Such new developments are occurring more rapidly, 
more broadly across the industry, and affecting more users all the time. 

The race between function and usability has made the area of human- 
computer interaction (or HCI) a very high-profile research area within 
computer science and within the computer industry: it is difficult to develop 
usability science and technology fast enough, but it is also critical to do so. 
Indeed, the race has created the need for chapters such as this one. However, 
this attention has also helped to expose some fundamental perplexity about 
what the field is and how it is supposed to work. It is still the case that HCI 
research has its principal effect on discussions of usability and user-interface 
design and only a small, derived effect on actual practice in the design and 
development of computer systems and applications. 

What is the goal of HCI research? There need not be a single answer to this 
question. But the more answers there are, and the more irreconcilable the 
various answers are, the more fragmented the field will appear. In HCI there 
are many answers to this question. One traditional answer comes from the 
field of Human Factors: HCI needs to provide methods and metrics for 
evaluating the usability of computers. A second answer comes from Cognitive 
Science: HCI is a testbed for the application of cognitive psychology to a real 
problem domain. A third answer comes from the exigencies of the computing 
industry: HCI must help guide the definition, invention and introduction of 
new computing tools and environments. 

The practice of HCI is even more fragmented than its goals might imply. 
For example, some varieties of human factors evaluation explicitly suggest 
that developing cognitive science theories of HCI may impair progress in 
understanding usability (Whiteside and Wixon, 1987). On the other hand, 
Newell and Card (1985) warn that psychology might be driven out of HCI by 
computer science unless it can develop predictive cognitive models, coining 
the slogan “hard science drives out the soft.” Yet even the most developed 
cognitive models in HCI have had no significant impact on the design of user 
interfaces (Carroll and Campbell, 1986). Moreover, it is paradoxically true 
that product innovations in user-interface design have generally led HCI 
research rather than following from it in the conventionally assumed flow of 
“technology transfer” from Research to Development. The recent impact of 
the Apple Macintosh illustrates this. 

Perhaps these conflicting and fragmented views of HCI can be understood 
as consequences of the race between function and usability, of the rapid 
growth in needs, activities and expectations. Perhaps the current perplexity 
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about HCI reflects an intermediate state in a true evolution toward more 
effective approaches to understanding the usability of computer systems and 
applications. In this chapter I take such an historical view, identifying three 
distinct paradigms, or orientations, to HCI research and application. Initially, 
HCI work focussed on empirical laboratory evaluation of computer systems 
and techniques. Subsequently, empirical studies of usability were organized 
by and addressed to cognitive theoretical description of human behavior and 
experience. Currently, the focus of HCI work is shifting toward a more 
directive role in invention, design and development. The progression of these 
three paradigms comprises a case study of a field discovering what it is about, 
and, more generally, of the variety of roles available in the psychology of 
technology. 

2. Human Factors Evaluation 

The traditional role of psychologists working in the context of computer 
applications and services is empirical evaluation of usability. The original 
research arena of human-computer interaction is the psychology of pro- 
gramming and the professional programmer (Curtis, 1985; Shneiderman, 
1980). A prototypical example of this paradigm is a set of experiments 
conducted by Sheppard et a[. (1979). In one of these, participants were given 
20 minutes to reconstruct from memory a Fortran program of 26-57 lines 
that they had studied for the preceding 25 minutes. Two approaches to 
“structured” program organization (Dijkstra, 1972) were contrasted with a 
“convoluted” organization (including backward exits from DO loops, arith- 
metic IFs, and unrestricted GOTOs). Reconstructive memory for the con- 
voluted program organization was poorer (i.e., error rates were higher) than 
for either of the structured organizations (though only in one case was the 
difference statistically significant). 

Such early work in the human factors of programming was important in 
demonstrating the feasibility of empirical assessment. By addressing some of 
the timely issues of the day, it broadened the grounds of debate in software 
technology from formal analysis and system performance to include usability 
and productivity issues. The basic paradigm of directly comparing two 
alternate designs in a usability evaluation is still the standard of practice in 
much HCI research and in many product development laboratories. 

2.1 Direct Empirical Contrast 

The development of empirical methodologies for evaluation, and the 
exercise of these methodologies in the context of software and system design, 
is a continuing need in HCI. Direct empirical measurement is still the only 
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adequate means of assessing the usability of software techniques and 
computing artifacts (Carroll and Rosson, 1985; Curtis, 1980; Gould and 
Lewis, 1985). Establishing the importance of usability to the success of 
computing systems and techniques, and developing and promoting empirical 
methodologies to make usability evaluations have been major foci of HCI 
work. 

From the start, HCI evaluation studies were strongly influenced by research 
practice in experimental psychology: emphasis was placed on tightly con- 
trolled laboratory approaches. From an historical standpoint, this was a 
reasonable move: there was an acute lack of theory and methodology for 
investigating usability. These laboratory studies generally took the form of 
direct contrasts: computing artifacts or techniques were directly pitted against 
one another in a brief but behavior-intensive measurement session. This 
evaluation work produced a variety of findings, often framed as guidelines for 
software-development practice and user-interface design, generally of the 
form “A is better than B.” And perhaps even more importantly, the work set a 
more objective standard for usability evaluations, and provided a systematic 
basis for scrutinizing designers’ hopeful intentions and trade-press reviewers’ 
glib comments. 

However, there are many limitations inherent in the laboratory-based 
direct-contrast methodologies of experimental psychology. These limitations 
become clear when the methodologies were applied in the complex practical 
contexts of HCI design. Controlled laboratory studies of software are difficult 
to design and carry out. The investigator needs to master programming 
languages and computer applications in order to be in a position to assess 
others’ performance and to interpret their experiences. The experimental tasks 
that are studied necessarily require skilled human participants and involve 
learning and using very complex tools. This is expensive and time-consuming 
research. Such difficulties just don’t come up when one takes an experimental 
approach to memorizing nonsense syllables, the stock-in-trade of traditional 
experimental psychology, or to making timed responses to meaningful but 
simple objects such as isolated words, its more modern variant. 

In experimental psychology, the sheer differences in recall rate or response 
times may be all there is to know about a person’s performance in a task: the 
situations are relatively simple. Understandably perhaps, such work is 
directed at collecting straightforward quantitative indicators of performance 
such as task times and error rates, and formally testing these for statistical 
significance of direct contrasts (that is, computing the probability that 
obtained score differences might have occurred by chance). HCI situations, 
however, are not simple at all. In many cases it may be more important to 
know how people approach a task, or how they feel about their performance, 
than it is to know how quickly or successfully they perform. Nevertheless, the 
early commitment of HCI evaluation work to direct-contrast studies created a 
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strong bias for collecting quantitative indicators of performance, such as time 
and success measures, and against placing primary, or even equal emphasis on 
qualitative data (which in other human factors contexts have often played a 
more prominent role; Chapanis, 1959, pp. 23-95). 

These constraints of direct-contrast laboratory methods took a toll on the 
relevance of HCI evaluation work. The difficulties of designing and conduct- 
ing controlled experiments in complex circumstances inclined investigators 
to make use of scaled-down tasks such as, for example, memorization and 
reconstruction of small programs. The focus on quantitative differences 
inclined investigators to focus on the simplest of performance measures. This 
undermined the fundamental objectives of human factors evaluation, trans- 
forming questions about complex human behavior and experience in complex 
computing environments into simple scores of performance on toy-scale tasks. 
Such work could not answer the underlying “why” questions that motivated 
human factors evaluation in the first place; it could not provide the depth of 
understanding necessary to help guide the design of new software techniques 
and applications. 

Yet this style of work became quite pervasive. Ledgard et al. (1980) assessed 
the use of symbolic notations in text-editor commands by contrasting a 
command language having extremely complicated symbolic conventions with 
one almost free of these. Murrel (1983) contrasted message-based and 
window-based communication for a cooperative decision-making task. Holt 
et al. (1987) contrasted object-oriented design with more standard approaches. 
But exactly what is it about symbolic notations that is bad? What is it about 
window-based communication and object-oriented design that is good? None 
of these projects resolved the overall evaluation issue it posed. And none 
collected detailed enough information to contribute to a conceptual under- 
standing of the issues involved. 

Worst of all perhaps, these simplications frequently did not even produce 
the statistically significant differences they were adopted to facilitate. The use 
of indentation to highlight structure in program listings seems intuitively like 
a good idea. It’s a simple factor that can in principle be conveniently removed 
from the complications of the real programming process for direct-contrast 
laboratory study. However, Love (1977), Shneiderman and McKay (1976) and 
Weissman (1974) all failed to find significant benefits of indentation. Studies of 
variable names have produced a conflicting potpourri of results; sometimes 
mnemonic names are more effective than non-mnemonic names and some- 
times not (Schneiderman, 1980, pp. 70-71). The daunting possibility remains 
that it was because of the trivial tasks that were studied and the limited types of 
data that were collected and analyzed that no differential benefits were 
found. 

Such practical problems with direct contrasts encouraged experimental 
designs contrasting extreme positions, again to increase the possibility of 



52 JOHN M. CARROLL 

measuring statistically significant differences. The assessment of symbolic 
conventions by Ledgard et al (1980) contrasted extremely complicated 
examples of such conventions with an extreme absence of them. Liebelt et al. 
(1982) showed that a menu system was easier to learn when the menu hierarchy 
was organized than when it was disorganized(!). Indeed, in the Sheppard et a!. 
(1979) experiment, several alternate approaches to “structured” programming 
were consistently indistinguishable based on the data, but the extreme 
alternative of “convoluted” programming produced significantly poorer 
performance than either of the structured approaches. In a sense, this study 
did not so much verify the benefits of deliberately structuring code as i t  did 
the risks of deliberately mis-structuring it. (Obvious and extreme evaluation 
contrast are still sometimes professionally encouraged as long as they employ 
“an interesting methodology” (Green, 1987, pg. 6).)  

Finally, human factors evaluation work is highly constrained by the often 
prodigious amounts of time required to make direct experimental contrasts of 
alternatives. Indeed, it seems logically doomed to consume more time than the 
evolution of software it is intended to guide. By the time the Sheppard et al. 
(1 979) paper appeared, structured programming methods were already the 
established practice. The evaluation work confirmed what had already 
happened, rather than playing a causal role in the evolution of practice. This 
limitation of the evaluation paradigm for HCI could be called the “evaluation 
dilemma”: one cannot evaluate something that does not yet exist, hence direct 
evaluation always lags development by some fraction of a development cycle 
(Carroll, 1987a). 

In sum, the exigencies of direct-contrast laboratory work entailed compro- 
mises in the face validity of the work itself, and, in the end, often failed to 
produce definitive or timely evaluations. How should programs be structured? 
How should hypertextual information systems be navigated? One cannot 
answer these questions with a few simple performance measures, but they are 
surely empirical questions. Answering them would involve developing a 
detailed understanding of what people do and try to do with programs and 
applications and the rich interaction of these goals and actions with the 
constructs of programming languages, the facilities of computing environ- 
ments, aspects of the workplace, and many other factors. 

These complexities have had a predictable effect: even in quarters where 
human factors evaluation is the official operating paradigm, most of the 
impact of psychology on the development of technology has come about 
through task analysis or consulting. Indeed, to a considerable extent human 
factors evaluation has become an historical stage in the development of 
current HCI. We return to the curious schism between what is officially 
anointed as standard practice and what is in fact the standard practice in later 
discussion of the invention paradigm for HCI. 
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2.2 Lack of Theory 

The guiding hope in doing evaluation work is that the data collected and the 
methods developed can cumulate into coherent analyses about why some 
systems and techniques are more usable than others, and about how to 
enhance the usability of future systems and techniques. It is a bottom-up 
approach to developing theory. However, directly contrasting two complex 
situations (e.g., two versions of a system) to determine which one is better is a 
poor vehicle for sorting out and saving experience. Complex alternatives with 
no a priori theoretical analysis do not become interpretable merely by virtue of 
a simple horse race. It would take an infinity of such “one-off contrasts to 
build a theory from the bottom up. Even the simple and controlled situations 
studied in experimental psychology would be intractably indeterminate 
without top-down theoretical direction. 

Many of the difficulties with direct-contrast evaluations can be attributed to 
this lack of theory. The use of toy-scale problem domains and simple, 
quantitative measures is problematic in that without a theory of HCI domains 
there is no way to know whether a toy problem is representative of a real 
problem or not. There is no way to know whether one is studying a coherent 
part of the real problem, or an accidental and idiosyncratic case. Can an 
analysis of writing 50-line programs be scaled up to the problem of writing 
5000-line programs? Is the task of pointing a cursor at an arbitrary screen 
location a coherent part of the task of pointing acursor in the course of editing 
text? Are interpretations of isolated system events related to interpretations of 
the very same events embedded in a real stream of user interaction? Answering 
such questions is impossible without a theory with which to interpret the toy 
situations and to extrapolate from them to real situations. 

Sheil(1981), for example, noted that complexity is not linear with program 
length. It certainly seems that the task of editing a 5000-line program raises 
problems of navigation and naming conventions that are just not raised in the 
task of editing a 50-line program. Elements of HCI situations may interact 
and trade off in different ways as the problem scale or the task changes. Is 
avoiding G O T 0  statements more or less important than employing inden- 
tation in a program listing? And are there contexts in which the relation is 
inverted? Again, without a theory there is no way to extrapolate these 
interactions. Indeed one can do little more than organize separate studies on 
the basis of superficial features (e.g., as pertaining to variable names or menu 
systems). Without a theory of, for example, how people understand, name, and 
remember entities, there is no way to work back from a variety of performance 
differences obtained in a variety of experimental settings to an explanation of 
the underlying concepts that caused the differences (see Newell, 1973). 

In the absence of a theoretical framework for understanding usability, HCI 
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evaluation work has had to address issues at a very large grain of analysis. 
Hauptmann and Green (1983), for example, contrasted a natural-language 
interface with a menu interface for creating business graphics (failing to find 
any significant differences in time, errors or attitudes). Of course, contrasting 
natural language with menus is painting with a rather broad stroke: how could 
a single experimental contrast resolve such a multifaceted contrast? Were the 
two interfaces individually optimized to be the best interface possible in their 
respective interface styles? Were they controlled to have the same functional 
capabilities and the same task-relative functional capabilities? The same kinds 
of questions arise for the examples discussed earlier, evaluating structured 
programming, object oriented programming and symbolic notations. The lack 
of theory forces these crude contrasts; but the crude contrasts prohibit 
pertinent or univocal results. 

Methods and theories in software technology are often collections of loosely 
connected prescriptions. Ideas such as structured programming and direct 
manipulation (Shneiderman, 1983) are important theoretical concepts, and 
they surely carry empirical consequences. But they are not falsifiable in the 
Popperian sense (Popper, 1965): one cannot hope to reject such ideas tout 
court on the basis of isolated laboratory tests; to try to do so is to get the logic 
of the inquiry wrong. From our current perspective of a few years hence, it is 
clear that no outcome of the Sheppard et al. (1979) study could have rejected 
structured programming as an appropriate prescriptive theory. The real 
evaluation need is for detailed qualitative information that can guide the 
revision and integration of such ideas. The issue is not whether structured 
programming is good, or indeed whether it is better than some other ap- 
proach; the issue is what structured programming really consists of, how in 
detail it affects actual programming tasks, and how it can be integrated into 
routine programming practice. 

The assessment goal is just too limiting: a paradigm that merely evaluates 
distinctions articulated by others deprives itself of playing any directive role 
(Sheil, 1981). In this context, we can understand why studies such as Sheppard 
et al. (1979) failed to lead to the development of an articulated theory of 
programming: the evaluation enterprise bound itself to what already existed, 
commenting at a high level on the appropriateness of specific techniques from 
the mid 1970s. A poignant example is the work showing that input error rates 
are reduced when using teletype terminals instead of visual display units 
(Walther and O’Neil, 1974; Carlisle, 1970). It was never a possibility that 
teletype terminals would supplant visual display units through the course of 
technological evolution, quite the contrary. The bald evaluation result, 
without specific implications for the design of future visual display devices, can 
only be seen as an historical curiosity. 

Empirical evaluation of software and systems is a key to usability. But it is a 
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separate question whether a science of human-computer interaction can arise 
out of this activity. In fact, it did not. The evaluation paradigm introduced 
psychology and psychologists to the HCI problem domain. It was a platform 
for establishing the importance of usability and for developing empirical 
approaches to measuring the usability of systems and software. However, its 
methodological commitments and lack of theory cast it in a supporting role in 
emerging software and user-interface science: more of a commentator on new 
technology than a directive force. The challenge that this raised was how 
psychology could play a more directive role in the development of new 
software and user-interface technology. 

3. Cognitive Description 

In the early 1980s there was a shift toward bringing HCI research under the 
aegis of broader psychological theory. Shneiderman (1980, pg. 51), for 
example, used the classic paper of Miller (1956) on human information 
processing limitations to derive the prescription that programmers avoid the 
use of GOTO constructs. Shneiderman analyzed the process of understand- 
ing programs as involving the recoding of lines of code into meaningful 
“chunks.” GOTO jumps in a program text disrupt this structure by 
functionally chunking nonadjacent lines of code. Card et al. (1983) published a 
compelling monograph adapting information-processing psychology to the 
description of fluent user interaction with text editors. These efforts had an 
enormous effect, enlarging and intensifying interest in the psychology of 
usability both within computer science and within psychology. 

This shift confronted one of the key limitations of earlier work, the lack of 
theory. Tying specific empirical results to theories of human information 
processing provided means to integrate diverse results, to resolve nonsignifi- 
cant or conflicting findings, to dampen the distortions of poor research, but 
most importantly to develop abstractions that, in principle, could help lead the 
development of software technology and user-interface design. 

However, this work also raised new issues and problems. Aligning HCI 
phenomena with cognitive descriptions of those phenomena is useful to the 
extent that the cognitive descriptions themselves are rich, revealing and well- 
integrated. In fact, psychological theory is at least as fragmented as software 
theory and methodology. Building a psychology of usability by placing this 
body of fragmented theory into correspondence with software situations 
risks inheriting the fissures as well as the solid ground. Ironically, cognitive 
description work also threatened the major achievement of human factors 
evaluation, namely, establishing the centrality of direct usability testing to the 
ultimate success of computing systems and techniques. The cognitive 
description paradigm entrained a strongly analytic conception of software 
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design, raising the question of how much direct evaluation might be necessary 
if a good theory were in hand. 

3.1 Breadth versus Depth 

Scientific psychology seeks to understand behavior and experience by 
providing laws, concepts, and explanations. However, there are severe limits 
on what types of phenomena psychology can address with these goals and 
tools; there are ranges over which the goals and tools make sense and outside 
of which they do  not. In particular, academic psychology typically attempts to 
capture generalizations across domains. But fine details of specific task 
situations can be very important: what a person thinks and decides to do is 
often ascribable to knowledge of a single fact, e.g., the name of a particular 
command in a particular system. These fine-grained details serve as boundary 
markers for theorizing: scientific laws that must refer to individual facts as 
conditions seem unwieldy, and psychologists routinely make a strategic 
retreat to abstract or artificial domains to control such details. 

This is a reasonable heuristic, with extensive precedent in the sciences. 
Classical point-mass mechanics is developed under the idealization of friction- 
less contact, even though there are no frictionless systems. Other theoretical 
apparatus has been developed to add back the effects of friction in real 
systems. The difficult details of friction are treated as “perturbations” of the 
classical theory (Gleick, 1987). Similarly, the traditional research strategy in 
psychology has been to focus on sweepingly general issues and distinctions 
under the idealization that domain and situation context can be ignored. Basic 
psychological research addresses topics such as the “structure of memory,” 
but not, for example, “memory for Unix commands” (Norman, 1981). It tries 
to resolve “big” issues such as “is there a separate mental type for imagery?” 
(Pylyshyn, t973; Paivio, 1971). 

It turns out that describing frictionless contact provides a useful foundation 
for understanding the motion of real objects in real circumstances. Even 
though the effects of friction are not simple, treating these effects as per- 
turbations of an idealized theory has also proven tractable in engineering ap- 
plications (for example, computing trajectories). The question is whether the 
same basic strategy is useful in psychology. This is an open question. Newel1 
(1973), for example, criticized the pursuit of sweeping dichotomies such as 
existence of a separate mental type for imagery, saying “you can’t play twenty 
questions with nature and win.” Indeed, the emergence in the 1980s of 
Cognitive Science as a broader discipline, incorporating psychology with the 
serious consideration of the structure of task domains, can be seen as a 
response to traditional idealizations (Carroll, 1988). 

Chase and Simon’s (1973) classic study of expertise in chess showed that, for 
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a reconstructive memory task, chess masters tended to recall piece positions in 
attack and defense groupings. This study has had two very different legacies. 
On the one hand, it opened up a variety of questions about domains. How are 
chess piece groupings indexed in a player’s memory; how they are accessed in 
realistic tasks (such as playing chess, as opposed to reconstructive memory for 
arbitrary board positions); how does expertise in chess develop through 
significant spans of time? Many of these issues have been pursued and in 
a variety of domains (see Chi et al., 1988), though many would argue that 
the work still takes too narrow a view of the process of attaining expertise 
and of the nature of expert knowledge and performance (e.g., Dreyfus and 
Dreyfus, 1986). 

On the other hand, Chase and Simon’s result was sweepingly generalized 
as “experts have chunks,” and has been mechanically replicated in domain 
after domain. There is no rich and well-integrated theory of either experts or 
chunks outside of considerations of specific domains. Thus, these studies 
show only that when humans know something about a domain and are 
asked to do reconstructive memory tasks of an arbitrary sort, they use what 
they know to do the task. A series of these studies have been undertaken in 
HCI contrasting memory performance for scrambled and unscrambled pro- 
gram listings (Adelson, 1981; McKeithen ec d., 1981; Shneiderman, 1980). 
This work showed that people with programming experience can use knowl- 
edge of language structures in organizing their memories. 

This finding has not led to rich understandings of how people achieve 
expertise in programming or about how programming knowledge is indexed 
in memory and accessed in performance. It has not helped to guide the 
development of new software tools and environments. These cognitive 
descriptions do not address and provide no guidance in practical aspects of 
programming (the design of programming languages, environments, educa- 
tion, etc.); they do not even engage issues specific to the domain of pro- 
gramming (the types of modules one would want in a library to facilitate 
code reusability). 

An extensive tradition of psychological research describes learning, 
memory and error patterns for paired-associates, the classic nonsense syllable 
(e.g., Esper, 1925; Postman and Stark, 1962). This work has been applied to the 
analysis of user performance with various types of command languages 
(Barnard et al., 1981; Carroll, 1982; Landauer et al., 1983). For the most part, 
these applications have been no less mechanical than those of the “experts 
have chunks” work. Yet they have been relatively more successful in that the 
cognitive descriptions developed for command language interactions have 
had fairly specific prescriptive content for command language design. Indeed, 
HCI research on command names has led to specific revisions in philosophical 
and linguistic conceptions about what names are (Carroll, 1985). 
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But this work, and indeed all cognitive description work in HCI, is subject to 
a very fundamental problem in the underlying logic of the inquiry. Psychology 
concerns itself with existence: is there a separate mental type for imagery? 
HCI, like any applied science domain, concerns itself with impact: how much 
of a difference will certain types of consistency make in the learnability of a 
command language? This is why the “experts have chunks” work seems 
reasonable from the perspective of our curiosity about chess masters and other 
experts, but difficult to apply in the face of questions about how to support 
experts and facilitate the development of expertise. This is also why the use of 
extreme contrasts, such as scrambled programs versus structured programs, 
can make sense in the pursuit of basic theory, but much less so in the pursuit 
of meaningful application. 

Landauer (1987a) has recently called attention to this in observing that 
while basic psychology routinely focusses on the “significance” of effects, it 
typically disregards the size of effects. Cognitive descriptions framed in terms 
of existence dichotomies can be assessed by the statistical significance of direct 
contrasts: do expert programmers chunk more than novices? However, such 
differences do not guarantee that the effects will be large enough to matter. 
Would it matter if experts reliably chunked 2% more than novices? Would it 
matter if scrupulously consistent command languages were learned 3% faster 
than randomly consistent languages? To determine the practical size of effects 
one needs to consider cost-benefit tradeoffs in realistic tasks. Chunking may 
have a big effect on people trying to memorize scrambled little programs, but 
the size-of-effect question forces attention to real programmers writing and 
reading real programs. The two situations might be quite different. 

3.2 Design by Deduction 

HCI is fundamentally a design domain: it exists in the first place because of 
the need to design more usable computing artifacts for people to use. Design in 
a complex and poorly charted domain can seem like trial and error. How 
should user-interface design work proceed to ensure more usable user 
interfaces? The human factors evaluation paradigm sought to address this 
kind of question by providing methodology for directly evaluating design 
techniques (such as structured programming) and particular artifacts (for 
example, a particular programming language or programming environment). 
But direct evaluation operates on a case-by-case basis. The cognitive 
description paradigm sought to improve upon this by providing theoretical 
abstractions beyond the specific cases (see Moran, 1981). 

Card et al. (1983) made what is surely the most thorough and disciplined 
attempt to interpret and develop modern information-processing psychology 
into a foundation for the design of computer systems. In their GOMS model 
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(an acronym for Goals, Operators, Methods and Selection rules), users 
hierarchically decompose their goals into successively finer subgoals until 
these match a basic set of methods. The user has rules for selecting methods 
appropriate to the current situation, and each method itself consists of a 
sequence of operators, keypresses and hand motions. This analysis was fitted 
to a variety of text-editing performance data, in many cases yielding consistent 
values for the model’s parameters. 

However, the theory proved quite limited in application to user-interface 
design. GOMS was not able to describe problem-solving activity, only routine, 
over-practiced performance. In fact, it could not describe errors at all, even 
though nearly a third of the routine behavior it sought to describe consisted of 
error and error recovery. It was also severely hampered by the race between 
function and usability: by the time it had produced good performance 
descriptions for error-free, over-practiced behavior on line-oriented editors, 
the focus of concern in user interfaces and end-user applications had moved on 
to other problem areas. (See Carroll and Campbell (1986) for further 
discussion.) The work had its greatest impact on relatively low-level aspects of 
human-computer interaction, such as the analysis of pointing devices (Card 
et al., 1978). Indeed, it appears that this approach may only work for user- 
interaction events on the order of one second in duration in which errors are 
extremely rare and/or extremely regular(!), and for technological contexts 
that are unchanging on the order of decades (Newel1 and Card, 1985). Few 
design problems in HCI fall into this rather severe category. 

Most cognitive description work is far less theoretically ambitious than the 
GOMS work. For example, the use of menu selection as an alternative to 
typed commands is sometimes “deduced” from the fact that humans are better 
at recognition than at recall (e.g., Tennant, et al., 1983). This is terribly 
oversimplified. Users of menu systems must deal with formidable navigation 
problems (MacGregor and Lee, 1987; Robertson et al., 1981). They must deal 
with complex morphological, semantic and referential relations between 
various selection names (Carroll, 1985). Here again, the evolution of user- 
interface technology is complicating the simple dichotomies: rich aliasing 
(Gomez and Lochbaum, 1985) may substantially mitigate the relative 
difficulty of recall, and alternative approaches to menu design may carry 
differing performance implications (pop-up menus, multiple-selection menus, 
active forms). Finally, though the advantage of recognition over recall is an 
established sweeping principle in psychology (e.g., Crowder, 1976), Black and 
Sebrechts (1981) have observed that there are circumstances in which the 
reverse is true. 

We earlier considered Shneiderman’s (1980) reference to Miller’s (1956) 
analysis of human information-processing limitations in grounding the 
prescription to avoid GOTOs. Miller’s specific argument, however, does not 
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consider spatial or temporal proximity of items to be “chunked.” Accordingly, 
the G O T 0  prescription cannot be deduced from Miller’s analysis. Indeed, 
virtually nothing of much interest could be deduced from the specifics of 
Miller’s analysis. The connection is more informal: Miller’s work called 
attention to the (obvious) fact that humans are limited with respect to the 
information they can manage; Shneiderman was inspired by this to suggest a 
particular tactic for easing information management in programming. The 
informality of the theoretical linkages is not specially problematic: the non- 
psychological-theory components of HCI do no better (e.g., what is an 
interface toolkit?). Having theories cogent enough and pertinent enough to 
even informally direct and inspire design work is a big advantage. 

The problem uis-a-uis design by deduction is that in none of these examples 
of cognitive description applied to design do we have in hand the ancillary 
theoretical apparatus to deductively bridge between the “leading claims” and 
the implementation details. GOMS is probably a reasonable first approxi- 
mation framework for thinking about task analysis. Recognition probably is 
easier than recall in many circumstances. GOTOs probably do strain human 
information-processing capacity. But to use this theoretical material de- 
ductively in design we need to know precisely how the details of given 
situations interact with and modulate the psychological principles. None of 
the theories is complete enough to tell us this. Hence none can be used 
deductively. 

To an extent, this lack can be addressed through theory development. For 
example, Polson (1987) has developed the GOMS approach into a potentially 
more useful design tool. However, other considerations indicate that HCI 
design can never be rendered deductive. The particular complexity of software 
technology stems from the fact that everything inherently interacts with 
everything else (Brooks, 1987). The technological context plays an important 
role in determining whether an idea will survive at all. For example, object- 
oriented techniques have been seen as a major advance in software technology, 
but the successful use of these techniques is limited by the availability of 
appropriately supportive programming environments (Uebbing, 1987). Many 
times these interactions cannot be anticipated at all. Presenting rich in- 
formation displays and direct access to running code often entails cluttered 
displays and inefficient performance. Many of these critical details and 
interactions cannot be analyzed before a prototype system is built. Indeed, one 
of the most important determinants of the success of software technologies is 
their amenability to revision and reimplementation on hardware and software 
platforms not even available when they were first developed (Brooks, 1987). 

The cognitive description paradigm in HCI was a genuine advance. It 
provided independent conceptual foundations for the psychology of HCI that 
made it possible to develop useful theory. Reciprocally, it brought the HCI 
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domain within the purview of academic psychologists. This has opened a two- 
way dialog within which basic cognitive psychology may stand to gain as 
much from the cognitive engineering case study of HCI as HCI may stand to 
gain from the science of cognition (Carroll, 1987b; Norman, 1987). 

4. Usabiiity-Innervated Invention 

The human factors evaluation and cognitive description paradigms share 
basic assumptions about the position of psychological analysis in HCI. They 
assume that psychology operates outside the development process, outside 
even the research prototyping process. They assume that the role of psy- 
chologists in HCI is to offer commentary: evaluations, theoretical descrip- 
tions, but not direct participation in the invention, design and development 
of new HCI technologies and artifacts. This assumed positioning and role 
for psychology in HCI is all the more striking when one recognizes that HCI 
is fundamentally a design domain. HCI is about designing new software tools 
and user interfaces. Seen in this light, the traditional paradigms for psy- 
chology in HCI have pursued a tangential, supporting role in the field’s key 
endeavor and raison d’etre. 

It has, of course, been recognized that serious usability research needs to 
pay serious attention to the nature of HCI domains and tasks. This concern 
has always been in the focus of HCI work. But being relevant to designer 
needs is not the same as taking the initiative in the design work itself. The 
implicit division of labor in HCI has had chronic organizational conse- 
quences. For example, a recent panel discussion at the ACM CHI’88 Con- 
ference asked how human factors specialists, and cognitive scientists working 
on u‘sability, can organize to work effectively with designers and developers 
(Grudin, 1988). The answers offered are revealing: human factors professionals 
should be placed directly into development groups, human factors profes- 
sionals should manage the developers, and usability consultants from outside 
the organization should be used(!). The traditional paradigms created an 
organizationally adversarial basis for the exchange of commentary between 
software developers and psychologists. 

The traditionally assumed positioning and role of psychology within HCI 
is now being seriously questioned. In this new paradigm of “usability- 
innervated invention,” usability is seen as connecting the invention of HCI 
artifacts to user needs no less essentially than nerves connect organs and 
muscle tissues to sensory and motor brain centers. The activity of muscles 
and organs is meaningful only insofar as it is innervated by sensation and 
action; the activity of inventing HCI artifacts is meaningful only insofar as 
it is innervated by usability considerations. Conversely, sensory and motor 
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centers exist primarily to innervate the body’s muscle and organs; under- 
standing usability is important because it produces the critical direction for 
HCI invention. In this view, HCI artifacts are not merely evaluated or de- 
scribed in terms of their usability; they are conceived and created for usability. 

4.1 Psychology as a Mother of Invention 

Building and inventing things it not a traditional activity in psychological 
research. Psychology is part natural science and part social science; its tradi- 
tional focus is the analysis of natural and social phenomena. In the tech- 
nological arena of HCI, this traditional focus was straightforwardly extended 
to the analysis of technology through evaluation and theoretical description. 
But these traditional activities also provided the opportunity for psycholo- 
gists working in HCI domains to develop technological skills and domain 
experience. In many cases, these psychologists are now in a position not only 
to analyze usability problems, but to synthesize technological solutions. In 
his plenary address at the CHI +GI’87 Conference, Tom Landauer (1987b) 
succinctly captured this in casting “psychology as a mother of invention” 
in HCI. 

Many recent prototype systems and interface techniques were invented by 
psychologists to instantiate specific psychological claims and to allow these 
claims to be explored and developed empirically. For example, Landauer’s 
group analyzed human performance in a variety of naming and reference tasks 
to develop specific tools and techniques for keyword information systems 
(e.g., Furnas et al., 1983). The database system Rabbit (Williams, 1984) and 
its “retrieval by elaboration” paradigm embodied claims about the structure 
of human memory and memory search as consisting of the manipulation of 
concrete exemplars. The variety of “Minimalist” training materials and soft- 
ware environments described in Carroll (1989) embody a set of claims about 
how new users learn computer applications. The display management system 
Rooms (Card and Henderson, 1987) embodies an analysis of typical user 
working sets (services and data accessed simultaneously). 

User-interface metaphors are a systematic and detailed intrusion of psy- 
chology into modern computing system development (Carroll and Thomas, 
1982; Carroll et al., 1988). For example, systems that provide electronic work- 
spaces that can be written to and viewed by multiple users in a cooperative 
interaction session are presented as “chalkboard” systems in the way that 
they are described to users and even in the way that they appear and operate 
(Stefik et al., 1987). Thinking of the system as a physical chalkboard provides 
an initial familiarity for the user. It also suggests specific tasks and approaches 
to accomplishing them. It provides the user with an initial conceptual vocabul- 
ary within which to couch questions and draw conclusions. (Analogous points 
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could be made for other new computer interface designs ranging from task- 
oriented window layout (Carroll et al., 1987), to object-oriented programming 
(Rosson and Alpert, 1988).) 

Many recent structure-directed editors and intelligent tutoring systems for 
programming are clearly vehicles for instantiating psychological analyses of 
programming tasks and learning. For example, analyses of programming 
plans (e.g., Soloway and Ehrlich, 1984) are embodied in the Bridge tutor 
(Bonar and Liffick, 1987). Analyses of how students learn to program in Lisp 
(Anderson et al., 1984) have been embodied in a variety of intelligent tutoring 
systems for teaching Lisp (Anderson and Skwarecki, 1986; Reiser et al., 1988). 
Indeed, Anderson (1987) has argued that designing and evaluating computer 
tutors provides unique advantages to basic, academic psychological research 
into the mental procedures and knowledge that comprise human cognition. 

Of course, psychologists per se are not always the inventors, but psycholog- 
ical rationale routinely plays a determining role in the invention of new 
software technology. In this work, HCI transcends merely serving as an arena 
for applying empirical experience and theoretical analysis to invention. A 
better description is that a two-way relationship has developed in which HCI 
artifacts themselves are treated as media for codifying experience and analysis, 
in which HCI theories are “applied invention” no less than HCI artifacts are 
“applied theory” (Carroll and Campbell, 1988). For example, the theoretical 
development of the concept “direct manipulation” (Shneiderman, 1983) 
devolved from a collection of specific HCI inventions. But this constitutes a 
radical shift in the underlying ontology of HCI, namely, seeing computer 
artifacts such as interface metaphors, menu hierarchies, programming para- 
digms and languages, tutors, and the like as playing theory-like roles. 

One standard role of theories is to codify empirically falsifiable claims 
(Popper, 1965). Artifacts embody testable claims about how users can 
understand and make use of system function in a medium that makes 
appropriate empirical investigations possible. Each command name, each 
icon, each menu makes claims about the ways users think about the tasks they 
will undertake with these systems. 

These claims are mutually interrelated, creating a sort of web of theory 
more intricate and more comprehensive than any analysis deducible from 
conventional discursive psychological theory. A piece of software, such as the 
Unix operating system, makes a huge number of specific claims about what 
command names, operations, and so forth will be convenient for users. These 
claims can be wrong (see Norman, 1981). Desktop interfaces make myriad 
claims about familiar presentation and natural conceptual vocabularies, 
about clipboards, stationery pads, folders, waste baskets-about how these 
objects behave and interact. Moreover, the leading claims, for example as 
integrated within a metaphor such as the desktop, have myriad specific 
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dependencies on a diverse set of ancillary claims (for example, claims inherent 
in the presentation of highlighting, preferences, and scrolling elevators). 

Empirical theories provide explanations by placing logical and causal 
constraints on phenomena. Artifacts support explanations of the form “this 
specific feature has this specific usability consequence.” The “Tear Off 
command in the early Lisa desktop system provides an example. In this 
system, “Tear Off spawns a new instance from a prototype object: Tear Off 
stationery applied to a stationery pad creates a piece of stationery. The 
command was a menu selection, not a gesture (Move is an example of a 
gestural command: one selects with the pointer and then moves by moving the 
pointer). Thus, there was a sort of inconsistency between Move and Tear Off. 
Some users initially tried to Tear Off by selecting and then rapidly sweeping 
the pointer (making a tearing gesture). This error has little consequence, and 
proved relatively easy for users to sort out on their own. A more difficult 
problem stemmed from the fact that Tear Off also applied to non-pad objects 
such as folders: the user needed to Tear Off from a “folder pad” to get a new 
folder (Carroll and Mazur, 1986). 

Theories also contribute to the development of science by providing useful 
foundations for further theorizing. Artifacts facilitate theoretical development 
in the sense that given artifacts make task analyses possible that in turn 
facilitate the invention and development of new artifacts. The typewriter 
metaphor was a critical step in the development of the desktop metaphor, 
which in turn has been critical in the development of newer interface 
metaphors such as rooms and task maps. Understanding user problems at this 
level of qualitative detail can be of immediate use in the design of new software 
artifacts. Indeed, in subsequent desktop interface products the Tear Off 
command evolved into a Make New Folder command. 

Theories enable and compel greater explicitness in empirical claims. This is 
part of the traditional motivation to formalize. Artifacts serve this role in a 
manner quite analogous to classical views of simulation (Fodor, 1968; Newell 
and Simon, 1972). To paraphrase Newell and Simon, both must “perform” the 
claims they incorporate: the implementation details must be made explicit, 
which can lead to further learning about the nature of the claims being made. 
Simulations, however, are used by psychologists for specific research pur- 
poses; artifacts are used by a wide range of people to do real work. Simulations 
are interpreted and evaluated by criteria of descriptive adequacy (Chomsky, 
1965): a simulation of problem-solving behavior may be judged on the basis of 
how closely it fits the sequence of moves in a verbal protocol, whether it 
predicts all and only the kinds of errors that are observed, etc. Artifacts are 
interpreted and evaluated by criteria of usability. 

Simulations are usually seen as convenient vehicles for theories, but not as 
necessary. Are artifacts merely convenient expressions of HCI theories, or do 
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they play a more fundamental role? This question cannot be answered now, 
but it seems likely that artifacts are in principle irreducible to a more 
conventional theory medium. The reason for this, if it is so, would be the 
unbounded interrelation of the many claims inherent in a computer artifact, 
the fact that everything in software seems to affect everything else (Brooks, 
1987), the fact that details of context and situation critically impinge upon the 
usability of systems (Whiteside and Wixon, 1987; Winograd and Flores, 1986; 
Suchman, 1987). All these may be views of the same underlying state of affairs: 
the design of software may be of an order of complexity beyond that which 
conventional theories can explain or predict (Hayek, 1967). 

In the introduction, we considered the apparent paradox that product 
innovations in user-interface design often lead HCI research rather than 
following from it in the conventionally assumed flow of “technology transfer” 
from Research to Development. However, the view of HCI in which its 
artifacts play theory-like roles in organizing research defuses the perplexity of 
this state of affairs. Empirical research often follows the explicit codification of 
theories. In HCI the medium of choice for expressing theories of usability is in 
many cases an exemplary artifact. The appearance of such an artifact 
predictably stimulates empirical research. 

4.2 Ecological Analysis 

The paradigm of usability-innervated invention has many consequences for 
the traditional empirical roles of psychologists working in HCI domains. 
There are consequences both for what kinds of situations are studied and for 
what kinds of information are sought in empirical studies. In both areas, the 
driving considerations devolve from invention. The model of research practice 
in experimental psychology, originally adapted to HCI through human 
factors evaluation, has been augmented by the requirement that empirical 
work bear more directly on the invention and development of new artifacts. In 
this sense, current work is shifting toward greater responsiveness to the 
ecology of HCI as an ecology of invention, design and development. 

Ecologically responsive empirical analysis of HCI domains takes place in 
uiuo: in software shops, more often than in psychological laboratories. It 
addresses whole problems, whole situations, when they are still technologically 
current, when their resolution can still constructively affect the direction of 
technological evolution. Its principal goal is the discovery of design require- 
ments, not the verification of hypothesized direct empirical contrasts or 
cognitive descriptions. A recent example is the study by Curtis, et al. (1988) of 
the software design process. The detailed interviewing of real designers 
produced specific technical proposals for improving software tools and the 
coordination of project management, an assessment of major bottlenecks, and 
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a new framework for thinking about software design as a learning and 
communication process. (See Nielsen et al. (1986) and Rosson el al. (1988) for 
similar kinds of studies.) 

Carroll and Campbell (1988) characterized HCI invention in terms of the 
“task-artifact cycle”: a given understanding of the tasks programmers need to 
and want to accomplish helps to define objectives for new software artifacts 
(languages, environments and education, etc.) to support them in these tasks. 
Any artifact fundamentally alters the tasks for which it was designed, raising 
the need for further task analysis, and in time for the design of further artifacts, 
and so on. An example is the progression from user interfaces based on the 
typewriter metaphor to those based on the desktop. Early word-processing 
applications were designed to exploit specific knowledge their users already 
had about typewriting, function keys, data display, command names and so 
forth (Carroll and Thomas, 1982). 

The typewriter metaphor, however, altered office tasks and in doing so 
helped to open up technological possibilities by preparing users for further 
electronic office applications (calculators, calendars, mail, database). This 
evolution in office task expectations and understandings was better addressed 
by systems employing the desktop metaphor. However, desktop systems also 
presented a variety of specific problems and possibilities to users (Carroll and 
Mazur, 1986; Whiteside et al., 1985). This further task analysis has again 
helped to define further interface artifacts, new metaphors for display 
organization in user interfaces (“rooms,” Card and Henderson, 1987; “task 
paths,” Carroll et al., 1987). 

To operate constructively within the task-artifact cycle, HCI empirical work 
must provide rich analyses of real users working on real tasks. The main 
research setting for such ecological analysis is the case study. A case study can 
begin and end anywhere in the task-artifact cycle; the key requirement is access 
to real situations. Case-study task analysis usually consists of the collection of 
detailed, qualitative information (thinking-aloud protocols, interviews). Such 
data are arbitrarily rich: they can be returned to over and over again, and 
analyzed from many different perspectives. A typical approach is to make 
videotapes to create a vivid and permanent data library. The development of 
Minimalist training materials and software environments, cited earlier, was 
based on such case-study analysis (Carroll, 1989). Mack’s (1988) inventory of 
new-user expectations about cause-and-effect relationships in the operation of 
a word processor was a case-study analysis culminating in the development 
of a prototype that more intuitively presented word-processing function. 

It is important to collect information over a significant span of time to 
eliminate ephemeral effects. Monitoring patterns of actual use of a software 
environment often supplements the more direct interview and protocol 
techniques. Wixon et al. (1983) analyzed patterns of spontaneous interaction 
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with an electronic mail application to determine how to design a more usable 
command interface for the application. Kelley (1984) analyzed the desk 
calendars of office workers to determine requirements for an electronic 
calendar facility. Gould and Boies and their collaborators have designed a 
series of voice messaging systems using this approach (Gould and Boies, 1983; 
Gould et al., 1987). 

The key goal of ecological task analysis in the task-artifact cycle is to 
produce requirements for subsequent design work. This places emphasis on 
identifying big factors- big needs, big usability problems. Thus, one typical 
output of this phase is an error taxonomy, a qualitative description of what is 
giving the user trouble, how it is happening, what users are doing in 
consequence, etc. The complexity and rapid evolution of software technology 
requires richer and more open-ended methods than the direct-contrast testing 
of the human factors evaluation and cognitive description approaches. This 
richer style of task analysis is interpretive, inductive; it seeks to discover, not 
merely to confirm or disconfirm. 

It often requires studying user-interface technologies and applications 
before they are even developed: after all, that’s the point at which empirical 
guidance can be most effectively directive (Carroll and Campbell, 1986). For 
obvious reasons, it is difficult to do such work, but a variety of simulation 
techniques have been developed. For example, Gould et al. (1983) simulated a 
speech-recognition capability to explore technological tradeoffs in a tech- 
nology that was not then available. Carroll and Aaronson (1988) analyzed 
interactions with a simulated intelligent-help facility to help direct the 
development of more usable artificial-intelligence applications. 

To help direct the task-artifact cycle, new types of usability data and new 
roles for usability data are being developed. For example, since the ideas that 
lead HCI research typically become codified in products first, it is important to 
be able to interpret running systems, to extract key ideas and work with them. 
Norman (1981) made an influential psychological interpretation of key 
aspects of the Unix operating system. Carroll and Mazur (1986) analyzed new- 
user expectations and experiences using the on-line tutorial and direct- 
manipulation interface of the Lisa system. Rosson and Alpert (1988) have 
recently analyzed psychological implications of object-oriented design. 
Carroll et al. (1988) outlined tools for analyzing user-interface metaphors in 
design. 

Another focus for the development of tools for empirical analysis is the 
process of software and system development. A comprehensive methodology 
of goal definition and measurement has been developed for guiding the 
discovery of appropriate usability requirements and evaluating progress 
toward meeting these requirements within the design process (Bennett, 1984; 
Carroll and Rosson, 1985; Whiteside et al., 1988). 
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Usability-innervated invention offers a more directive role in framing new 
applications and user interfaces, and a more ecologically responsive role for 
empirical work. It incorporates and builds upon the prior orientations of 
human factors evaluation and cognitive description, but pushes onward in 
taking more seriously the fact that HCI is a design field, that it exists to invent 
more usable systems and software. Earlier approaches to psychology in HCI 
had in effect isolated the task analysis part of the task-artifact cycle from the 
definition, development and first use of new software and user-interface 
technology, because of preconceptions about the kinds of contributions 
psychologists might make to HCI. As a result, and in addition to a variety of 
specific limitations discussed above, they offered only commentary on the 
process and products of design, not participation. 

5. The Ecology of Computing 

The progression of three paradigms in the recent history of HCI comprises 
a case study of a field discovering what it is about. HCI has achieved much by 
exploiting the context of its own practice. It has assimilated the evaluation 
methodology of experimental psychology, the theory of cognitive science, and 
the invention and development of new technology. Each step in this evolution 
has solved some of the problems posed by the step preceding it. 

The emerging paradigm of usability-innervated invention redresses the 
ecological limitations of direct-contrast laboratory evaluations by promoting 
new methods and new roles for empirical evaluation. It redresses the theo- 
retical limitations of design by deduction by countenancing richer sources 
and embodiments of scientific theory. This in turn has resolved other puzzles 
about HCI. For example, the primacy of product-development ideas in HCI 
research is puzzling only until it is recognized that product development is a 
major context for HCI research: one of the important roles of psychology in 
HCI is to provide interpretation and conceptual clarification for product 
innovations. 

Even the mysterious race between function and usability dissolves: 
appropriately contextualized HCI research cannot lag the technological 
leading edge; it lives at the technological leading edge; indeed, it creates the 
technological leading edge. For example, there is no race between usability 
and function in the development of the Rooms display management system 
(Card and Henderson, 1987), even though the Rooms approach is at the edge 
of our current understanding of display management tasks and artifacts. The 
race between function and usability is simply an untoward side-effect of the 
organizational consequences of human factors evaluation and cognitive 
description. 
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Usability-innervated invention offers a new basis for these organizational 
dynamics. When the basis for collaboration is evaluative or descriptive 
commentary offered from outside the design team, the grounds are frequently 
political, and power-based, or interpreted as political and power-based. This is 
completely unconstructive: it pushes empirical evaluation and psychological 
theory further away from invention. Operating within the task-artifact cycle as 
task analysts, as inventors of artifacts, offers a deeper source of interdisci- 
plinary and inter-organizational coordination: shared understanding of what 
the problems are, why the current design situation is what it is, what the 
immediate and longer-term options are, and how they trade off. It offers the 
alternative of committed, cooperative work. 

5.1 Science and Invention 

There is a conventional view of the relationship between scientific research 
and the invention, design and development of practical artifacts. The idea is 
that basic science provides an understanding of nature which can then be 
applied deductively in practical contexts. The relationship between science 
and invention in HCI, as it  has emerged through the course of the last 15 years, 
is interesting from this standpoint in that it appears to be culminating (at least 
to this point in time) somewhat unconventionally. 

To be sure, the conventional view was what the field started out with: the 
vision of the human factors evaluation and cognitive description paradigms 
was to develop an empirical basis, to develop a theoretical framework and 
finally to apply the theory deductively in design. Through hard experience, 
HCI discovered that things were not this neat. Invention produces theory in 
HCI at least as much as it applies theory, and this has fundamentally altered 
the nature of the empirical work. The resolution of this may lie in a 
countercurrent in the history of science, questioning the conventional view 
itself. For example, Hindle (1981) analyzed a variety of 19th-century 
inventions and failed to find any deductive grounding in the basic science of 
the time. Hindle suggests that the conventional view may have developed as 
recently as the 1850s in the American scientific establishment as a tactic for 
increasing the prestige of and federal support for basic research. 

Many well known instances of invention clearly do not conform to the 
conventional view. The pulley, for example, had been used effectively for some 
2000 years before an adequate scientific analysis of its operation was 
developed within Newtonian mechanics. The violins of the 17th century were 
so finely crafted that their design was merely emulated for over 200 years. 
Indeed, only in the last couple of decades has there been any appreciable 
acoustic understanding of how violins really work (Hutchins, 1962). And it is 
not clear yet whether the science of acoustics itself was more a contributor to 
or a beneficiary of this work. 
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Of course, there is  a relation between basic science and invention, but not a 
simple deductive relation. Gomory (1983) puts the point well when he argues 
that the development of technology is both more complex and less predictable 
than the basic research from which it is seen to spring. Gomory discusses the 
first 150 years of technology development for the steam engine. He shows that 
the “revolutionary” engines of the mid nineteenth century actually evolved 
through many small steps, each relying on the chance availability of a 
technological niche, an application in which the technology could survive and 
develop. The case study of HCI suggests that the relation between basic 
science and invention can be highly interactive and reciprocal. The conven- 
tional view goes wrong in trying to frame this relation too narrowly. 

It is a commonplace of the philosophy of science since positivism to observe 
that there are no “discovery procedures,” no algorithms to carry us from the 
raw material of empirical science to a theoretical explanation of that raw 
material. A way to put this point is to say analogously that there are no 
“invention procedures”: the logical leap from basic data and theory to the 
invention and development of a usable artifact is neither more or less 
deterministic than the step we are more familiar with, namely the step from the 
raw material of experience to a theory of a conventional sort. The applied 
science of the conventional view is a myth. 

Psychology is a young science, so is Computer Science, so is Cognitive 
Science, and above all, so is HCI. But this raises the question of whether the 
complex and reciprocal interaction of science and invention in HCI is 
attributable just to the youth of the relevant fields, to scientific growing pains 
as it were. In view of this possibility it is relevant to consider the acoustic 
analysis of the violin as conducted over the past 40 years by members of the 
Catgut Society, an interdisciplinary group of musicians, instrument craftsmen, 
physicists and engineers. Carla Maley Hutchins, the senior member of this 
team, told me an interesting anecdote about an early stage in her collaboration 
with Bell Labs physicists. The physicists’ initial approach was to disassemble a 
violin, induce sine waves and measure resulting resonances. 

It’s a beautiful image; it recalls the direct contrasts of human factors 
evaluation and the shallow theories of cognitive description. It recalls models 
of error-free user behavior as bases for understanding how to design usable 
computer systems and applications. It is the conventional strategy of divide 
and conquer, which too often requires subtracting out the essence of the 
problem being solved. Inducing pure sine waves into the pieces of the violin to 
measure the resonances is not an adequate approach to understanding the 
violin. The sound to which a real violin responds is not a pure sine wave and 
it is not induced; it is a complex tone produced by bowing. Moreover, the 
resonances in a whole violin derive both from the parts and from the 
composition of the parts, indeed from the big chunk of air trapped within 
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the composition of the parts. Analyzing the parts, does not add up to an 
understanding of the behavior of the whole. 

The point is not that these idealized acoustic analyses were pointless. Such 
work is on-going, and has even produced techniques useful in violin-making 
(Hutchins, 1981). And the point is not that acoustic science has nothing to offer 
as a foundation for understanding violins (bowing does not produce pure sine 
waves, but it does produce sound after all). The point is that even in physics the 
initial approach to applying science to design is often simplified and 
inadequate, whereas the effective role is more interactive and reciprocal. 
Indeed, the comparison can be pushed much further: the research of the 
Catgut Society led to the design and development of a new set of stringed 
instruments, the Violin Octet. The analysis could go only so far when its 
purview was an account of the standard string quartet (which acoustically is a 
very accidental collection of instruments). To develop and assess laws of 
acoustic scaling, to test and develop claims about the violin, it was necessary to 
build novel instruments (Hutchins, 1967; Hutchins and Schelleng, 1967). 

The violin is intrinsically a very appealing example. But one needn’t go so 
far. Anyone in the New York area recalls the renovation of Carnegie Hall. 
There was much concern and much debate about the impact this would have 
on the famous acoustics of that hall. Acoustics, the old science of physics, 
could not deductively direct or predict the outcome. Indeed, to this day the 
only fact that everyone agrees on is that the acoustics of Carnegie Hall are now 
different. 

5.2 The Current Perplexity 

Failure to appreciate the subtleties of technology development, coupled 
with the inherent limitations of the human factors evaluation and cognitive 
description paradigms of HCI and the emergence of the usability-innervated 
invention paradigm, has caused substantial perplexity in the field. One body of 
work has responded to Newel1 and Card’s (1985) worry that psychology must 
be scientifically hard to survive in HCI by retreating into the study of low-level 
phenomena and of highly constrained situations creating a very insular 
research microcosm. One of the key areas of its focus is replicating classic 
phenomena from the psychology of nonsense-list learning (e.g., Polson et al., 
1987). This approach flaunts all the limitations of the cognitive description 
paradigm. It is not at all clear that it can be relevant to HCI design work. 

Another body of work has rejected psychology as a totally inappropriate 
foundation for design work in HCI (Whiteside and Wixon, 1987; Winograd 
and Flores, 1986). In this view, focussing on models of the mind and 
conceiving of people as computational devices that process inputs, generate 
goal lists, and then execute plans and responses all merely obscure and 
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obstruct the designer’s most important responsibility and objective: to 
understand the user’s needs and wishes and to serve the user. This work flaunts 
the theoretical limitations of human factors evaluation, looking to hermeneu- 
tics as a conceptual foundation for design and emphasizing interpretations 
that are unique to the situation and to the individual doing the interpreting, 
and explicitly discouraging model-building or any form of abstraction. 
However, since it is bound to particular cases, this work cannot provide any 
framework for understanding HCI phenomena as types. 

Both approaches are dismal in prospect: one offering no hope of practical 
impact and the other no hope of understanding. However, from the stand- 
point of the present discussion these extreme positions have despaired too 
quickly. An orderly evolution of HCI work has produced a paradigm that 
builds upon the genuine contributions of human factors evaluation and 
cognitive description and at the same time redresses their limitations with 
respect to design impact and the ecological validity of empirical work. 

HCI has often been described as an “interdisciplinary” research area, but 
only now are the full interdisciplinary possibilities emerging. Participating 
fully and in a variety of roles in the evolution of computer technology offers 
psychologists in HCI a uniquely creative opportunity. It’s a demanding 
opportunity. Inventing the future is more difficult than commenting on it. 
Pushing psychological theory to interpret and analyze new technological 
situations and embodying psychological claims and results in HCI artifacts is 
not easier than evaluating finished systems, computing t-tests and calculating 
performance times. But then one does not move to the frontier for the comforts 
of familiarity. The possibility and the challenge of HCI today is to move 
forward to new roles and new ideas in technology and science. 
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1. Introduction 

Recent advances in microelectronics and rapid developments in in- 
formation technology have made computer networking and distributed 
processing possible. As a result, many computer-communication networks 
have been designed, implemented, and put into service around the world 
during the past decade (Stalling, 1988; Tanenbaum, 1988). They range from a 
few connected personal computers to a complex interconnection of thousands 
of computers, using a wide variety of communication media such as twisted 
wire pairs, coaxial cables, optical cables, microwave links and satellite 
channels. Worldwide electronic mail is now a daily reality for millions of 
people, and networks have become an essential tool for many users in 
academia, business, industry and government. 

Depending on specific applications and circumstances, the communication 
between a pair of end users in a computer network may take several different 
forms. For example, a terminal user may invoke a remote applications 
program, and two application programs in different hosts may interact with 
each other. To enable an orderly exchange of information between physically 
separated computers, a set of rules is required to govern the interaction 
between the communicating entities. These rules are collectively called 
computer-communication protocols, or protocols for short. 

Protocols are simply a set of rules prescribing the manner in which 
communication takes place, the meaning of information exchanged and the 
appropriateness of communication under prescribed conditions. At the lowest 
level, protocols may prescribe how information is to be transmitted and 
received over a physical medium, and how that information is to be physically 
represented on the medium. At higher levels, protocols aim to overcome 
inherent unreliability in low levels, to prevent congestion and deadlocks, to 
control the flow of information, and to provide mechanisms for delivery, 
addressing and routing of messages. At still higher levels, protocols may 
provide services for transferring files between physically separated computers, 
for enabling communication between incompatible terminals, for ensuring 
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security in data transmission, etc. Therefore, protocols play an important role 
in computer networks, and form the cornerstone upon which computer 
networks are built. 

Because protocols are the rules defining the interaction between commu- 
nicating entities residing at different nodes of the network, running in parallel, 
and communicating through possibly unreliable channels, their design is 
always a challenging problem. In the last two decades, informal techniques 
used to design these protocols have been largely successful, but have also 
yielded a disturbing number of errors or unexpected and undesirable behavior 
in those protocols (Bochmann and Sunshine, 1980). Consequently, formal 
methods of protocol design have emerged in the last decade. Using the formal 
approach, a protocol is represented by a formal model (or interchangeably, a 
formal specification). Analytic techniques are then used to examine logical 
correctness and performance of the protocol before it is actually implemented. 
The methodology has been proved to be so effective in identifying many 
protocol design errors that the discipline in this area is now called protocol 
engineering and is currently receiving more and more attention from both 
industry and academia. 

Referring to Fig. 1, one can see the domain of protocol engineering as a 
system that allows a protocol designer to specify a protocol formally, to test 
this specification for correctness (validation of syntax and verification of 
semantics), to obtain some early indication of how it would perform 
(efficiency), to compile major parts of the implementation directly from the 
formal specification, and to test the resultant implementation for conformance 
to its specification (Rudin, 1985). 

With the proliferation of different network architectures, protocol conver- 
sion is needed to achieve interoperability between processes that implement 
different protocols. How should it be done? How can one prove that a 
conversion is correct? What is meant by a correct conversion? Again, formal 
methods have been recently proposed to tackle these problems (Green, 1986; 
Lam, 1986). Thus, protocol conversion can be included in the domain of 
protocol engineering. 

Another area of interest in protocol engineering is protocol synthesis. 
Protocol analysis and protocol synthesis are two inherently different but 
complementary approaches to ensuring the correctness of communication 
protocols (Zafiropulo et a/., 1980). In the analysis approach, an already 
designed protocol is first examined to reveal some properties, desirable or 
undesirable, and then modified to get rid of the undesirable ones; in the 
synthesis approach, rules ensuring some desirable properties are enforced 
during the protocol design process. The synthesis approach has the advantage 
over the analysis approach in that it can assist the protocol designer to reduce 
the possibility of makingerrors, if not to prevent it totally, during the protocol 
design process. 
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This article presents both an expository survey and our research results in 
protocol engineering. Because of the length of the presentation, no attempt 
has been made to describe all the published work in the literature or to give a 
detailed comparison of our results with those of other researchers. It is hoped 
that the presentation here and the associated discussion will enable the reader 
to understand the current state of the art in protocol engineering (Zim- 
mermann, 1983). 

In passing, it is worth noting that Piatkowski was probably the first person 
to coin the term protocol engineering at an IFIP-sponsored workshop on 
computer-network protocols in 1981 (Piatowski, 1981). Just like the field of 
software engineering that took about 20 years to mature, some progress has 
been made in protocol engineering since 1981, but it has been slow and tedious 
(Piatowski, 1983, 1986; Rudin, 1985, 1988). Nevertheless, with the advent of 
the Integrated Services Digital Network (ISDN), which is a projected 
worldwide public computer-communication network that will provide a wide 
variety of services (such as voice, data, video, fax, and image transmissions) to 
end users in the 1990s, it is clear that protocol engineering will play an active 
and important role in the development and implementation of the ISDN (Duc 
and Chew, 1986). 

2. Network Architecture 

Modern computer networks are designed in a highly structured way, first to 
reduce their design complexity, and second to increase their modifiability- 
the ability to change the implementation of a module without affecting the 
other modules as long as the interface between modules remains constant. 
Therefore, most networks are organized as a hierarchy of layers, each one 
being built on its immediate lower layer. The function of each layer is to offer 
certain services to the higher layer, shielding the higher layers from knowing 
the details of how these services are actually implemented. In this section we 
briefly present a set of common terminologies, concepts and conventions that 
will be used in this article. 

2.1 OSI Reference Model 

Facilitating communications between information processing systems in a 
heterogeneous environment requires a universal framework of computer 
networking architecture. It is for this purpose that the International Organi- 
zation for Standardization (ISO) initiated development of worldwide 
standards for the creation of an open system environment. When complying 
with these standards, an information system would be open to communicate 
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with any other system conforming to the same standards. After several years of 
efforts by IS0  (Day and Zimmermann, 1983), the result of this standardization 
is the well-known seven-layer Open Systems Interconnection (OSI) Reference 
Model (See Fig. 2). It provides a common basis to guide future development of 
mutually compatible information processing systems that will greatly benefit 
both computer vendors and users. 

The reference model has seven layers. In the following we will briefly discuss 
each layer of the architecture in turn, beginning with the bottom layer. (For a 
more thorough presentation of the OSI Reference Model, see Stallings (1988) 
and Tanenbaum (1988).) The lowest layer-the physical layer-provides the 
electrical, mechanical, functional, and procedural details necessary to transmit 
raw bits over a communication channel. The transmission form within the 
physical layer is transparent to the data-link layer and higher layers. The 
purpose of the data-link layer is to transform a raw transmission channel into 
a line that is free of transmission errors to the network layer. It provides 
mechanisms for error recovery due to transmission noise burst, damage, loss, 
and duplication. The network layer ensures that all data are correctly received 
at their destinations, and in the proper order. It also controls the routing of 
data in the network, and prevents congestion and deadlocks. The transport 
layer provides multiplexing services, and handles important issues such as 
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naming and addressing, connection establishment and termination, buffering 
and flow control, error recovery, and synchronization. The session layer 
establishes connections between users (sessions) and manages them. Unlike 
the first five lower layers, which are necessary for the correct operation of the 
network, the purpose of the presentation layer is to provide certain useful but 
not always essential services such as text compression, cryptographic trans- 
formations, data security, communication between incompatible terminals, 
and file transfer. Finally, the top of the hierarchy-the application layer- 
directly provides services to the users of the network. 

In addition to ISO, a number of national standard organizations (such as 
NIST, formerly NBS, and ANSI) and international standard organizations 
(such as CCITT and ECMA) have been taking part in the development of the 
OSI Reference Model. Although many existing protocol architectures vary 
from the layered structure of the I S 0  Reference Model, the layered approach 
has become essentially universal and has been widely adopted in many 
computer networks such as the IBM Systems Network Architecture (SNA) 
and the DEC Digital Network Architecture (DNA) (see Stalling, 1988; 
Tanenbaum, 1988). 

2.2 Layering and Abstraction 

The major contributions of the OSI work are not only the creation of a 
common framework for intersystem communications but also the defining of 
a set of terminologies, conventions, and concepts so that research work in the 
literature can be stated in and interpreted through a common glossary. In the 
area of formal specification and verification, the concepts of service and 
protocol are crucial. 

While Fig. 2 illustrates a layered protocol structure, Fig. 3 shows in more 
detail a particular layer (layer N) and its interaction with the layers above and 
below (layers N + 1 and N - 1). In a computer network, each layer consists of 
a collection of protocol entities (or protocol processes) that are distributed 
over different locations. The protocol entities that are in the same layer are 
called peer entities (peer processes) or communicating entities (communi- 
cating processes). The peer entities of layer N provide the communication 
services (called N-services) to layer N + 1 users. The services provide by layer 
N are accessed by the user entities through a layer interface. Likewise, the 
entities of layer N access the communication services, called (N - 1) services, 
provided by the layer below through another layer interface. The entities of 
layer N use these services for exchanging messages. The rules that govern 
the exchange of these messages among the entities are collectively called an 
N-protocol. 

In the context of the OSI Reference Model, it is important to distinguish 
between two independent notions: layers of functions and levels of 
abstractions. 
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Layering is a structuring technique by which a system can be logically 
decomposed into smaller subsystems. In the OSI Reference Model, the 
layering approach subdivides the functionality of an open system into seven 
layers, each responsible for a specific set of functions. This approach has at 
least two significant advantages. 

1. The whole system is subdivided into individual pieces of manageable size 
that are more comprehensible and subject to independent implementa- 
tion and maintenance. 

2. A portion of the system is able to perform its function before the 
completion of the other parts. This is especially important in establishing 
standards. As we can see, at  the present time, while the lower layers of the 
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concerned about how the capability is realized. The (N)-entities, when making 
use of their underlying (N - 1)-Service, constitute a logical implementation of 
the (N)-Service. The use of abstraction has several advantages: 

1. Each layer, knowing the service provided from its lower layer, can be 
designed and developed with little knowledge of the internal operations 
in the lower layers. 

2. The effect of any future changes of a protocol is localized within a layer 
provided that the service offered to the higher layer remains the same. 

In reality, no data or messages are transmitted horizontally from one entity 
to another except in the lowest layer. Instead, each layer passes data down to 
the layer immediately below it, until the lowest layer is reached. Through the 
services provided by the layer immediately below it, however, each entity is 
able to conceptually think of its communication as being horizontal. 

2.3 Protocol and Service Specifications 

Specification refers to the information that is used to describe an object. It 
should describe only those requirements that the object must satisfy, and no 
more. With respect to the protocol architecture mentioned above, there are 
two kinds of specifications in each layer N of the protocol hierarchy: 

A. The N-service specifcation describes what services the layer N protocol 
entities provide for their users in the N + 1 protocol layer. The services 
provided by a protocol layer are usually based on a set of service 
primitives which describes the operations at the interface through which 
the services are provided. 

B. The N-protocol specification describes the interactions among the layer 
N protocol entities. The interactions are defined in terms of the services 
provided to layer N + 1, and the services available from layer N - I .  

Most work on formal techniques for specifying communication protocols 
has concentrated on protocol specifications and not on service specifications. 
However, service specification is receiving more and more attention in current 
protocol design (See Section 5.1). Several major formal models primarily used 
for protocol specification will be presented in the next section. 

3. Formal Models for Protocol Specification 

In order to specify a protocol, one must describe what the protocol should 
do and how the protocol should react to external stimuli such as service 
primitives. The implementation of a protocol is an implicit specification, i.e., 
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the protocol is specified to behave exactly as does the implementation. Since 
most protocols are very complex, one prefers to specify a protocol abstractly 
during the initial stage of design and to leave until a later stage those 
implementation details that do not affect the function of how the protocol 
should behave. The main objective of the abstraction is to facilitate the 
validation and verification of the protocol for its correctness before its actual 
implementation. As mentioned previously, conventional methods of informal 
narrative specification have demonstrated their shortcomings as protocol 
design errors crop up (Bochmann and Sunshine, 1980). In this section we 
present a brief survey of important formal models that have been proposed for 
protocol specification. For comparison we will use the alternating bit protocol 
(Lynch, 1968; Bartlett et al., 1969) as a common example for eight of the most 
widely used models. 

The formal methods discussed in this section fall into three main categories. 
The first category includes state-transition models such as finite-state 
automata (FSA), formal grammars, and Petri nets. The second category 
includes programming language models such as abstract programs, temporal 
logic, and abstract data types. In the third category are hybrid models that 
include both states and language constructs in the specification of protocols. 

3.1 State-Transition Models 

The state-transition model is motivated by the observation that protocols 
can be modeled by event-driven processes (entities) that communicate with 
each other through message passing. The various protocol models differ in the 
way processes are specified. Models falling into this category include finite- 
state automata, formal grammars, and Petri nets and their derivatives. The 
state-transition model of one sort or another with such events forming its 
inputs is very natural and easy to automate. However, for realistic protocols of 
any complexity, the number of events and states can become unworkably 
large, thereby creating the so-called state explosion problem. 

3.7.7 Finite-State Automata (FSA) 

FSA models are one of the earliest formal models to be applied to protocols. 
Ever since Lynch (1968) and subsequently Bartlett et al. (1969) used FSA for 
specifying the Alternating Bit Protocol (ABP), the number of formal models 
for protocol specification has increased at a rapid rate. The ABP has since then 
become a classical example and been used extensively by other models to 
illustrate their feasibility in protocol specification and verification. 

FSA models are based on the observation that protocols consist largely of 
relatively simple processing activities in response to a number of events such as 
commands from the user, message arrivals from another peer entity, and 
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internal timeouts. Therefore, finite-state automata with such events forming 
their transitions are a natural model for specifying communication protocols. 
The basic approach is to specify the communication system as a collection of 
finite-state automata, each describing the behavior of a communicating entity. 

In this model, a protocol is represented by a network of communicating 
finite-state automata, in which the behavior of a protocol entity is modeled by 
a finite-state automaton and the channels between protocol entities are 
modeled by FIFO queues. Each state of the finite-state automaton corre- 
sponds to a different control stage of the entity. Each transition of the 
automaton is labeled with either an input event that enables the transition or 
an output event that takes place as part of the transition. 

Figure 5 illustrates an FSA model for specifying the Alternating Bit 
Protocol (ABP). The protocol provides reliable transmission of data from one 
communicating entity (called the sender) to the other (called the receiver). I t  
uses a frame-oriented transmission technique: data are divided into frames, 
and frames are transmitted one at a time. Transmission errors and losses, 
which must be detected, are recovered by the protocol. The sender sends a data 
frame together with a control bit, which alternates in value between successive 
data frames, and waits for an acknowledgment frame from the receiver. The 

i e ! - D I  

-DO +E+AI IN 

4 
+A0 +m 

Stm-DER MEDIUM - - -  - -  
FIG. 5 .  CFSM model of the alternating bit protocol 
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data frame is retransmitted until an acknowledgment frame that contains the 
same alternating bit as the outstanding data frame is received. Retransmission 
is achieved through the use of an internal timer. The timer is started by the 
sender upon transmitting a data frame. If no acknowledgment frame is 
received within a certain predetermined time interval, the sender assumes the 
transmitted data frame is damaged or lost, and retransmits this data frame. 
The next data frame will be transmitted only when an acknowledgment of the 
previous frame has been received before the time expires. The protocol is so 
called because it uses a single control bit to distinguish between consecutive 
frames. 

The notation used in Fig. 5 is adopted from Bochmann (1978). Labels IN 
and OUT stand for two service primitives (send and receive, respectively) 
provided to the user at the higher layer. Event IN receives a data frame from 
one user on the sender site, while event OUT delivers the received frame to 
another user on the receiver site. There are two types of data frames (DO and 
Dl), and two types of acknowledgment frames (A0 and Al). 0 and 1 represent 
values of the control bit. The + and - signs denote sending and receiving 
transitions, respectively. For instance, -DO and + DO represent transmitting 
and receiving a data frame with control bit 0, respectively. Transmission 
errors are shown as E. 

Formally, a protocol P in this model is defined as a quadruple 

P = (<Qi)?= 1, <oi)r= 1, <Mij)tj= 1,  (succi)r= 1 1 7  

where 

N is the number of protocol entities, 
Qi is the set of state of entity i and Qi n Qj = 0 for i # j, 
oi represents the initial state of entity i that is an element in Q i ,  
Mij represents the messages that can be sent from entity i to entity j and Mii is 
empty for each i, 
succi is a partial function mapping for each i and j (i # j ) ,  Qi x (Mi juMji )+  
Qj  * 

Note that for entity i, - x  in the graph denotes that x E Mij and + x  in the 
graph denotes that x E Mji .  

Bochmann (1978) used an FSA model to analyze the ABP and the X.25 call 
setup and clearing procedures. West and Zafiropulo (1978) used an automated 
technique to analyze the X.21 and found a number of unspecified reception 
errors in the 1976 version, which were subsequently corrected in the 1980 
version. Gouda and his associates (Gouda and The, 1985; Gouda and Chang, 
1984; Gouda and Yu, 1984b) used a network of communicating FSA to model, 
analyze and synthesize protocols. 
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Recently, Lee and Lai (1988) have used a relational-algebra approach to 
represent an FSA as a transition table. On this basis, the well-known theory in 
relational databases can be used to derive the global-state transitions of the 
system. Furthermore, the logical errors of protocols can be formulated in 
terms of relational algebra. This approach has been implemented on the 
INGRES database system and applied to the validation of several protocols 
including the X.21. 

A limitation of the FSA model is that all necessary information must be 
represented by explicit states. For example, there must be different states and 
events to handle each possible sequence number. For complex protocols, the 
number of states required can be very large, thereby creating the so-called 
state explosion problem. 

3.1.2 Formal Grammars 

Formal languages and the grammars that define them are a type of the 
state-transition model. If one views the sequence of inputs and outputs of an 
FSA as sentences of a formal language, one can define the formal grammar 
that would produce all valid sequences. There is a well-known correspondence 
between such grammars and various types of automata that will recognize (or 
generate) all valid sequences of the language. 

Harangozo (1977) used regular grammars to specify the HDLC protocol 
and extended the model to handle sequence numbers by indexing the 
production rules of the grammar. Using context-free grammars, Teng and Liu 
(1978a, 1978b, 1980) developed a Transmission Grammar (TG) model for the 
design and implementation of communication protocols. 

In the TG model, a protocol is represented by a set of formal grammars. As 
formal grammars are capable of defining a language, the idea is to come up 
with a set of production rules that define all the legal protocol action 
sequences. Each entity or channel of the protocol in the TG model is described 
by a regular grammar. Production rules in the grammar have the following 
form: 

(left-non-terminal) ::= terminal-string (right-non-terminal). 

Terminal symbols in the TG production rules represent protocol actions, 
and non-terminal symbols are equivalent to the states in the FSA model. The 
meaning of a production rule is that the entity in the state specified by the left- 
hand non-terminal may take the actions specified by the terminal string and 
enter the state specified by the right-hand non-terminal. 

Terminal actions in the TG model are the following: D (Dequeue), Q 
(enQueue), F (Fetch), P (Push), 0 (pop), C (Clear), E (Equal), N (Non-empty), 
or U (full). The following explanation is obtained from (Teng, 1980). 
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1. Queue ( Q ) .  This action inserts the specified message into the specified 
queue in a First-In-First-Out (FIFO) manner (i.e., it puts the message at 
the tail of the specified queues). This action requires three fields to be 
specified. For example, Q.2.msg means inserting (sending) message msg 
to the tail of the queue connected with Entity 2. 

2. Fetch (F). This action deletes one instance of the specified message 
from any position in the queue. This action is possible only if at least one 
instance of the specified message is contained in the queue, and requires 
three fields to be specified. For example, F.2.msg means fetching message 
msg from any position in the queue connected from Entity 2 to this entity. 

This action deletes the specified message from the front 
of the specified queue. This action is possible only if the specified message 
is at the front of the specified queue, and requires three fields to be 
specified. For example, D.2.msg means deleting (receiving) message msg 
from the front of the queue connected with Entity 2 to this entity. 

4. Priority queue ( P ) .  This action inserts the specified message into the 
specified queue in a Last-In-First-Out (LIFO) manner (Lee, it puts the 
message at the front of the queue). It is the same as a PUSH operation in 
a stack structure, and requires three fields to be specified. 

5. Pop (0). This action deletes the specified message from the end of the 
specified queue. The action is possible only if the specified message is at 
the end of the specified queue. All the three fields have to be specified. 

6. CIear (C). This action deletes all of the messages from the specified 
input queue, and requires only the first two fields to be specified. For 
example, C.2 means clearing the queue connected from Entity 2 to this 
entity. 

7. Empry ( E ) .  This action tests whether the specified ouput queue is 
empty. This action is possible only if there is no message in the specified 
queue. Only the first two fields need be specified. 

8. Non-empty ( N ) .  This action tests whether there are messages in the 
specified output queue. Only the first two fields need be specified. 

9. Full (V).  This action tests whether the number of messages in the 
specified output queue is equal to its capacity. This action is possible only 
if the specified queue has reached its limit. Only the first two fields need 
be specified. 

3. Dequeue ( D ) .  

These actions not only enable modeling of a communication medium as 
FIFO, non-FIFO, and priority queues, but also make status checking of an 
output queue available. Consequently, they provide a model more powerful 
than the FSA model, while keeping the model still simple and feasible for 
automatic verification. As an example, Fig. 6 shows the TG specification of the 
ABP. The TG model has been automated (see Section 10.6) and used to 



94 MlNG T. LIU 

<l>::=JN <2>. 
<2> ::= Q.2.W <3>. 
<3> ::= D.4.AO <4>, 

D.4.A1<2>, 
D.4.Er <2>. 

<4>::=IN <5> .  
<5> ::= Q.2.Dl <6>. 
<6> ::= D.4.AI < I > ,  

D.4.AO <5>,  
D.4.Er <5> .  

<IDLE> 
D.1.DI < R E C V b .  

<RECVO> ::= Q.3.W <IDLE>, 
Q.3.Er <IDLE> . 

<RECVI> ::= Q.3.DI <IDLE>, 
Q.3.Er <IDLE> . 

::= D.l .DO <RECVO> , 

< I >  ::= D.2.DO <2> , 
D.2.D1<6>. 
D.2.Er <6>. 

<2> ::= OUT < 3 > .  
<3> ::= Q.4.AO <4>. 
<4> ::= D.2.DI < 5 > ,  

D.2.M) <3>, 
D.2.Er <3>. 

<5> ::= OUT <6>. 
<6> ::= Q.4.AI < I > .  

<IDLE> ::= D.3.AO <RECVO> , 
D.3.Al <RECVl>. 

<RECVO> ::= Q. 1 .A0 <IDLE> , 
Q. 1 .Er <IDLE> . 

<RECVI> ::= Q.1.Al <IDLE>, 
Q. 1 .Er <IDLE> . 

FIG. 6.  TG model of the alternating bit protocol 
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validate the X.21 (Umbaugh and Liu, 1982) and the call setup procedure of the 
TCP (Umbaugh et al., 1983). It has recently been extended to handle timing 
constraints (called the TTG model; see Section 7.2). 

An extended type of regular expressions (regular grammars), called protocol 
expressions, has been proposed by Holzmann (1982a, 1982b) for the specifica- 
tion and analysis of protocols. Besides the common operators such as union, 
concatenation and iteration in regular expressions, two new operators are 
introduced: the division and multiplication operators. The division operator 
is used to distinguish between input and output actions, whereas the multi- 
plication operator is used to capture the interaction between two protocol 
expressions. An automated system based on this model has been implemented 
and will be described in Section 10.4. 

Schindler (1980) also extended regular expressions to facilitate protocol 
specification. The overall expression may be broken into several blocks, each 
block functioning much as a non-terminal grammar. Each term in the 
expression may have a rejection predicate that causes an otherwise allowed 
operation to be deemed invalid if false. Each block may also have several exit 
blocks, which serve to define alternatives. This model has been used to specify 
the X.25 (Schindler and Steinacker, 1979; Schindler et al., 1978). 

A new methodology, based on attribute grammars, has been proposed by 
Anderson and Landweber (1984a, 1984b) for specifying and implementing 
communication protocols. Called Real-Time Asynchronous Grammars 
(RTAG), it provides mechanisms for specifying data-dependent activities, real- 
time constraints, and concurrent activities within the protocol entity. To 
demonstrate the viability of RTAG, a parser has been integrated into the 
kernel of the 4.2 BSD UNIX operating system, and has been used in con- 
junction with the RTAG TP-4 specification to obtain an RTAG-based TP-4 
implementation in the DoD internet domain. 

3.1.3 Petri Nets and Their Derivatives 

There is a great deal of research being conducted in the theory and 
application of Petri nets. During the past 10 years Petri nets have been used to 
specify and analyze protocols. Recently, Diaz made an extensive survey on this 
topic (Diaz, 1982). In the Petri nets model, a protocol is modeled by a number 
of component nets representing different protocol entities. Basically, a Petri 
net is a graph containing a set of places (represented by circles) and a set of 
transitions (represented by bars). Directed arcs are used to connect places to 
transitions, and transitions to places. A number of tokens distributed in the 
places represent a marking of the net and also decide which transitions are 
firable. The firing of a transition causes a redistribution of tokens, and thus 
moves the net to a new marking. Therefore, places and transitions of a Petri 
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net specify conditions and events, respectively. How places and transitions are 
connected can be used to describe the behavior of a protocol. 

Formally, a protocol P in this model is defined as a quadruple P = 
(P,  T, E ,  mo), where 

P is a finite nonempty set of places, 
T is a finite nonempty set of transitions, 
E is a set of directed arcs, E G P x T v T x P, such that for each t E T, 

(4, t) E E A ( t ,  5)  E E ,  (4, 4 E P )  

m, is an initial marking function that assigns a nonnegative integer number 
of tokens to each place of the net: 

m O : P + { O ,  1, ...}. 

A transition is defined to be firable by a marking m iff every input place of 
this transition contains at least one token. When a transition is fired, a token is 
removed from each of its input places and a token is added to each of its 
output places. This leads the net to a new marking. 

For the purpose of presentation, a protocol in this model is often illustrated 
graphically, as shown by the example of the ABP in Fig. 7. Petri nets have been 
used to specify and verify the ABP(Merlin, 1976; Postel and Farber, 1976) and 
the call-setup procedure of a packet-switched network (Symons, 1980) and the 
I S 0  Transport protocol (Jurgensen and Vuong, 1984). A variation of the Petri 
net model, called SARA, has been used at UCLA to model the X.21 (Razouk 
and Estrin, 1980) and the X.25 (Razouk, 1982). 

Pure Petri nets suffer most of the same limitations as FSA. Thus a variety of 
extensions have been proposed, such as inhibitor arcs, type tokens, and state 
variables. Another extension is the addition of timing constraints to the 
transitions (called timed Petri nets) (Berthomieu and Menasche, 1983; Walter, 
1983). We will discuss timed Petri nets in Section 7.1. 

3.2 Programming Language Models 

The programming language model is motivated by the observation that 
protocols are simply a set of procedures or algorithms to provide communi- 
cation services. Models falling into this category include abstract programs, 
temporal logic, and abstract data types. Depending on how high level and 
abstract a language is used, this approach to specification may be quite near to 
an implementation of the protocol. However, efforts to prove the correctness 
of the program (the safety and lioeness properties) far exceed those required for 
developing the program, and its correctness proof usually depends heavily on 
human ingenuity and is hard to automate. 
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FIG. 7. Petri net model df the alternating bit protocol 

3.2.1 Abstract Programs 

The use of programming languages for specifying communication protocols 
is motivated by the observation that protocols are simply one kind of 
algorithm, and that programming languages provide a clear and concise way 
of describing algorithms. In an abstract program model, protocols are 
described as parallel programs. Figure 8 shows an abstract program model for 
specifying a simple protocol called the Alternating Bit Protocol (ABP). 

Bochman (1975) made one of the earliest attempts at specifying and 
verifying a simple HDLC protocol using an abstract program. The protocol 
was specified in a free-style Pascal. The program structure is event driven and 
similar to a state-transition model in many ways. He partially verified the 
protocol by stating three safety invariants that described the number of 
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1: TIME :=TIME-l 
2: delay 
3: goto 1 

Medium 
1: wait SEND 
2: SEND := false /* turn off indicator */ 
3: LOSS:=? /* decide whether message should 

4: if LOSS then goto 1 
5: ERROR:=? /* decide whether error should 

6: ifERROR 
7: 
8: else betgin 

/* wait until Sender ready to send */ 

be lost */ 

happen */ 

/* quit sending message */ 

then SEQNB := error /* transmit indication of error */ 

DATA-RECEIVED := DATA-SENT 
SEQNB := SEQ 

end /* normal transmission */ 
9: wait RECEIVE /* wait for acknowledgment */ 
10: RECEIVE := false 
11: LOSS :=? 

12: if LOSS then goto 1 
13: ERROR:=? 

14: ifERROR 
15: 
16: else ACK := EXP /* normal acknowledgment */ 
17: goto 1 

/* turn off indicator */ 
/* decide whether ack should get 

/* quit sending acknowledgment */ 
/* decide whether ack should 

lost */ 

be erroneous */ 

then ACK := error /* transmit indication of error */ 

/* repeat for next message */ 
F a .  8.  Abstract program of the alternating bit protocol 

messages sent and received by each protocol entity. However, the proof was 
not formal. 

About the same time Stenning (1976) also used an abstract program to 
specify and verify a data-transfer protocol. His code was very close to standard 
Pascal, which enabled him to rely on the standard Pascal rules for deriving 
pre- and post-conditions of the invariant assertions. Using the Floyd-Hoare 
technique (Floyd, 1967; Hoare, 1969), he was able to verify the safety property 
of his protocol. 

Krogdahl(l978) developed the technique of protocol skeletons for specifying 
and verifying safety properties of classes of protocols. He attempted to 
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Sender 

1 : DATA-SENT := INDATAW] /* get next message to be sent */ 
2: PT:=PT+l /* prepare PT for next message */ 
3: SEQ := SEQ + 1 MODULO 2 /* switch sequencer for next msg */ 
4: ACK:=none /* erase previous ack */ 
5 :  =:=TO /* initialize timer to timeout 

6: SEND:=true /* send message */ 
7: wait (ACK # none or TIME = O)/* wait for ack or timeout */ 
8: if ACK = SEQ then goto 1 
9: else goto 4 

interval */ 

/* O.K., repeat */ 
/* error or timeout, try again */ 

Receiver 

1 : wait SEQNB # none 
2: if (SEQNB = error or SEQNB # EXP) 
3: then goto 5 
4: else begin 

/* wait for a message */ 

/* send old ack for message */ 

OUTDATA := DATA-RECEIVED 
EXP := EXP + 1 MODULO 2 

end /* append received message and 
prepare ack */ 

5 :  SEQNB := none /* cancel indicator */ 
6: RECEIVE:=true /* send a&*/ 
7: goto 1 /* repeat for next message */ 

FIG. 8. (continued) 

provide as general a program specification as possible, using an Algol-like 
language. The proof of the invariants follows the standard Floyd-Hoare 
technique. 

Ansart et al. (1982) developed a Protocol Description and Implementation 
Language (PDIL) for specifying protocols and allowing automatic implemen- 
tation. Based on standard Pascal, PDIL relieves the user of all the constraints 
of putting into a programming language form (e.g., the definition of data 
structures and procedures for manipulating typed objects). The latter work 
is done by a preprocessor for PDIL, which generates coherent Pascal text. 

Castanet et a / .  (1985) presented a methodology of using Ada for the 
specification and implementation of protocols. Compared with other pro- 
gramming languages, Ada has the advantage of homogeneity; its main 
drawback is in performance. Yelowitz et al. (1982) combined the use of Ada 
and AFFIRM (Gerhart et al., 1980) for modeling a fiber-optic token-ring 
network. 
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3.2.2 CSP and CCS 

Two of the abstract program models that have been receiving considerable 
attention in the literature are Hoare’s Communicating Sequential Processes 
(CSP) and Milner’s Calculus of Communicating Systems (CCS). CSP (Hoare, 
1978) is a high-level concurrent language designed for distributed systems. A 
CSP program consists of a number of processes that are mutually disjoint in 
address space, and communications between processes are accomplished only 
through message passing. In addition, guarded commands are used to describe 
nondeterministic behavior of each process. A protocol in this model is thus 
represented by a CSP program, in which each protocol entity is represented by 
a process. 

Major CSP constructs are described briefly as follows: 

1. Parallel commands [ P ,  [I P, [I.. .)I P,] specify the concurrent execution of 
n processes P,,  P2,. . . , P,. 

2. Input command pi?(x) and output command pi!(expression) specify the 
communication between processes pi and pi. (Process pi sends the value 
of expression to variable x of process pi.) 

3. Both alternative command 

c 
b,; 110, -,command list,[ 

b,; 110, +command list,( 

b,; I /O ,+  command list, 

1 

* c  
b,; 110, + command list, I 
b,; 110, +command list,[ 

and repetitive command 

b,; 110 -, command list, 
n 

1 
are in the form of guarded commands and can be used to specify 
nondeterministic behavior of a protocol. 

As an example, a CSP specification of the ABP is shown in Fig. 9. 



ABP :: [ Sender 1 1  Medium I( Receiver] 

Sender :: 
frame : record 

data : . . .; 
seq : (0,l ,error) 

end; 
DATA : . . .; SEQ : (0.1); 
Ack : (0, I ,error); done : boolean; 
SEQ := 1; 
*[Userl?(DATA) -D SEQ := (SEQ+l) mod 2; 

frame.data := DATA; 
frame.seq := SEQ; 
done := false; 
*[-done; Medium!(frame) + Medium?(Ack); 

[ Ack = SEQ -+ done := true 1 
Ack = (SEQ+I) mod 2 -+ skip I 
Ack = error -+ skip 

1 
1 

1 

Receiver :: 
frame : /* same as in Sender */ 
exp : (0.1); 
exp := I ;  
*[Medium?(frame) + [ frameseq = (exp+l) mod 2 + UseR!(frame.data); 

frame.seq = exp + skip I 
frame.seq = error + skip 

exp := (exp+l) mod2 I 

I; 
Medium!(exp) 

1 

Medium :: 
frame : /* same as in Sender */ 
Ack : (0, I ,error); 
correct, corrupted : boolean; 
correct :=true; corrupted := true; 
*[Sender?(frame) + [correct + Receiver!(frame) I 

corrupted + frame.seq:=error; 
Receiver!(frame) 

11 

1 

Receiver?(Ack) + [correct + Sender!(Ack) I 
corrupted -+ Sender!(error) 

FIG. 9. CSP model of the alternating bit protocol 
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On the other hand, CCS (Milner, 1980) is a language for specifying the 
communication behavior of concurrent systems in terms of a small set of 
operators. In this model, a protocol is represented by a set of communicating 
agents. An agent is capable of communicating with other agents (via internal 
ports) or with an external observer of the system (via external ports). The basic 
notion in CCS is a set of atomic events denoting either internal events or 
communication events. These atomic events are represented as follows: 

1. ax for input event, where x is a value variable. 
2. Ee for output event, where E is a label complementary to a, and e is a 

value expression. 
3. T for internal event. 

Based on the notion of the occurrence of an event, CCS has operators to 
express the following: 

1. Sequences of events, by operator “.”. 
2. Choice between sequences of events, by operator “+”. 
3. Recursion for specifying infinite sequences, by operator “e”. 
4. Parallel composition of agents to form systems of communicating 

5. Hiding of a subset of the internal ports, enabling one to abstract away 
agents, by operator ‘‘[I”. 

from the internal details of an agent, by operator “\”. 

Formally, a protocol in CCS is defined by the following BNF notation: 

t := xlop( t , ,  t z ,  ..., t ” ) l X C ; t  

where x is a variable name, op is an operator, and t ( t , ,  t ,  ,..., t“) is a CCS 
expression. 

As an example, a CCS specification of the ABP is shown in Fig. 10. Note 
that in this example, a and p are data flowing from Sender to Receiver, 6 and y 
are acknowledgments flowing from Receiver to Sender, and I and 0 are 
communication actions with outside observers. 

The global behavior of a protocol in the CCS model can be computed by 
applying the operation of parallel composition to all its communicating 
agents. For example, four communicating agents of the above ABP bit 
protocol can be composed as follows: 

(SIIC, IIRollCd. 
During the parallel composition, pairs of events such as ax and Cre can be 
coupled and become a rendezvous event x : =  e. The global behavior of the 
protocol can again be represented by a CCS expression using only operators 
6 6  91 66 + 93, and UeW. . ,  



Recently, Liu and Liu (1984, 1986) proposed a methodology for specifying 
and analyzing protocols and services for conformity analysis. They specified 
both a protocol and its service by a CSP based language. To perform the 
conformity analysis, they developed a transformational system to extract from 
a CSP process the communication sequences that may arise during its 
execution and to express these sequences in terms of behavior expressions in 
CCS. By performing algebraic manipulations and the equivalence proof on 
these expressions, they can show that the external behavior of a protocol con- 
forms to its intended services. A version of the ABP was used to demonstrate 
the feasibility of this methodology. We will return to this topic in Section 5.2. 

3.2.3 Temporal Logic Techniques 

Temporal logic was first introduced by Pnueli (1977) as an adaptation of a 
classical model logic suitable for defining the semantics of computer 
programs. Recently, it has been used by Hailpern and Owicki (1980) and 
Schwartz and Melliar-Smith (1981) to specify and verify the liveness (or 
progress) property of protocols. The liveness property requires that certain 
transitions eventually take place, and is difficult or impossible to state and 
prove in state-transition specifications, since conventional logic cannot refer 
to any state other than the present one. 

Hailpern and Owicki (1980) model a protocol system as a set of interacting 
modules that represent the logical units of the system. Both active (called 
process) and passive (called monitor) modules may be specified. They exploit 
this modularity in their specifications and proofs. They have verified the safety 
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and liveness properties of the ABP, and Stenning’s data-transfer protocol 
(Hailpern and Owicki, 1983). 

Schwartz and Melliar-Smith (1981) developed specifications employing 
temporal logic with amore explicit notion of system state. They divide the task 
of specifying and verifying protocols into two parts: service-level specification 
and network-level specification. The service level defines the operations 
available to the users of the protocol, while the network level represents an 
abstract specification of the essential details of the protocol implementation. 
The goal is to verify the service level from the network level and to verify the 
network level from the protocol code. They illustrated the feasibility of their 
technique by formally verifying both safety and liveness properties of the ABP. 

Recently, Sabnani and Schwartz (1984) verified a multidestination protocol, 
called the Selective Repeat procedure, for a satellite broadcast channel shared 
by using a time-division multiplexed technique. The Selective Repeat pro- 
cedure is modeled as a parallel program in a Pascal-like language. Sabnani 
and Schwartz show the correctness of the parallel program model using 
temporal logic so that both the safety and liveness properties are satisfied. 

3.2.4 Abstract Data Types 

Abstract data types (Guttag, 1975) are an attempt to encapsulate data and 
the operations that manipulate it. There are two approaches in this area: 
abstract model and axiomatic. However, the distinction between these two 
approaches may not be so great in practice, since it is possible to write abstract 
model specifications in the axiomatic notation. 

As reported by Sunshine (1982b, 1983), experience with these techniques is 
still limited. However, due to its ability to formalize a large class of protocols, 
coupled with the existence of some automated tools for checking specifica- 
tions, the abstract data type approach to protocol design looks very 
promising. Thus, much more research is required in this direction. 

The major advantage of programming language models over state- 
transition models is their capability to handle variables and parameters, such 
as sequence numbers and timers, which may take on values of wide range. 
Another advantage is their ability to specify all protocols and most of their 
properties rather than only general correctness properties. 

However, since protocol specifications in programming language models 
may be very similar to actual implementations, unessential features are often 
combined with the essential algorithms. In addition, efforts to prove the 
correctness of programs representing communication protocols far exceed 
those required to develop algorithms or programs. Program proof usually 
depends heavily on human ingenuity and intuition, and the automation of 
proof steps seems quite impossible and, therefore, is still far away from being 
of significant use. 
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3.3 Hybrid Models 

The hybrid model attempts to combine the advantages of both state- 
transition and programming language models. It typically uses a small 
number of states to capture only the main features of the protocol, with each 
state being augmented with context variables and processing routines. The 
state-transition part of the model captures the control aspects of the protocol 
while variables and data are easily handled by the program part of the model. 
Recently, hybride models seem to be receiving the most attention, and both the 
I S 0  and the CCITT are actively developing standard techniques based on a 
hybrid model. 

3.3.1 Abstract Machines 

The abstract or extended finite-state machine (EFSM) model is a gen- 
eralization of the FSA model. The abstract model allows multiple-state 
variables of various types; the state now becomes a vector of these variables 
and the transition functions become more complex. The values of these state 
variables are changed by the occurrence of events. An event can occur only if 
certain enabling conditions are satisfied. (An enabling condition is a predicate 
on the state variables.) When more than one event in an event-driven system is 
enabled, any one of the enabled events is allowed to occur, resulting in 
nondeterminism. 

In the abstract machine model, each protocol entity f l  is represented by a 
vector of state variables v. Each state variable vj E v can take on values from a 
domain Dj. One of these state variables can be regarded as an explicit state 
variable. A channel between two entities, C,, is represented by state variable zk, 
which is the message sequence contained in the channel. Thus, the global state 
of the protocol system is given by the tuple (Vl , .  .., V,; z l r . .  ., z,,,). The initial 
global state of the system is given by the initial value of each state variable, and 
all communication channels are initially empty. The values of these state 

‘ variables are changed by the occurrence of events. An event is described by a 
predicate that relates the values of the state variables immediately before the 
event occurrence to their values immediately after the event occurrence. Thus 
it is denoted by predicate pred( V ;  V”) or pred( V, z ,  . . . ; V”,  z”, . . .), where V and 
z are variables before event occurrence and V” and z” are variables after event 
occurrence. The predicate embodies specifications of both the event’s enabling 
conditions and actions. 

Each entity or channel has a set of events. The events of entity 4 can only 
involve the state vector v and the state vectors of channels accessible from 4. 
Entity events model message receptions, message sends, and internal activities. 
The events of channel ck can involve only the state vector zk. Channel events 
model channel errors such as loss of messages in transit. An event can occur 



Variables of Sender: 

state:( 1,2,3); explicit state variable of sender. 
seq:(0,1); sequence number of message sent. 
ack:(O, 1 ,error); acknowledgment from receiver. 
data:. . .; data to be transferred. 

Events of Senders: 

1. AcceptData(Vl;Vl”) == 
state = 1 and In(data) and seq := seq + I (mod 2) and state := 2; 

2. SendData(V1 ,z1;Vl ,z, == 
state = 2 and SendI((seq,data),zl;~) and state := 3; 

3. ReceiveAck(Vl ,zz;Vl”,z;) == 
state = 3 and Receiuez(zz;(ack),z;) and 
( (ack = seq) + state := I 
I (ack = seq + I (mod 2)) + state := 2 
I (ack = error) -+ state := 2 
) 

,, ,, 

Variables of Receiver: 

state:( 1,2,3); explicit state variable of receiver. 
exp:(0,1); opposite of expected sequence number of message received. 
seqnb:(0,1 ,error); sequence number of received message. 
data:. . .; data in received message. 

Events of Receiver: 

1. DeliverData(V2;Vl) == 

2. SendAck(Vz,z,;V;’,z;) == state = 2 and Sendz((exp).zz;z;) and state := 3; 

3. ReceiveData(V:,zl;Vz .zI) == 

state = 1 and Out(data) and exp := exp + 1 (mod 2) and state := 2; 

,I I ,  

state = 3 and ReceiueI(zl;(seqnb,data),z;) and 
( (seqnb = exp + I (mod 2)) -+ state := 1 
I (seqnb = exp) + state := 2 
I (seqnb = error) -+ state := 2 
1 

Event of Medium from Sender to Receiver: 

ChannelError(zl ;z; )  == (for some (seq,data) in 21) [ seq  := error I 

Event of Medium from Receiver to Sender: 

ChannelError(z2;zi) == (for some (seq) in 2 2 )  [ seq  := error ] 

Abstract machine model of the alternating bit protocol FIG. I I .  
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only if its enabling conditions are satisfied. When more than one event in such 
an event-driven system are enabled, any one of the enabled events is allowed 
to occur. An entity event can access channel state variables only via send 
and receive primitives. The send primitive for channel ck is defined by 
Send,(z,, m; z i )  = ( z i  = (z,, m)). The receive primitive for channel ck is 
defined by Receive&,; m, z i )  = ((m, z r )  = zk). 

As an example, the abstract machine specification of the ABP is shown in 
Fig. 11. Many researchers have proposed particular forms of such abstract 
machine models for specifying protocols. While differing in names and in the 
details of syntax, they may be considered equivalent in expressive power. 

Based on Kelley’s transition model for parallel programs (Keller, 1976), 
Bochmann (1980) has proposed a general transition model for the formal 
specification of protocols, the specification of the services provided, and the 
verification of the correct operation. He discussed these issues by considering, 
as an example, the HDLC classes of procedures. 

Recently, we have extended the TG model, called the Extended Trans- 
mission Grammar (ETG) model, to contain context variables such as 
sequence numbers in protocol specifications (Chu, 1989). We borrow the 
notion of Communicating Sequential Processes (Hoare, 1978) in using “?” and 
“!” as the “receive” and “send” events, respectively. In this context, “?” is a 
blocking “receive” as it is in CSP; whereas “!” is a non-blocking “send” that 
will not wait for the communicating partner to be ready for the “send” event to 
be executable, as is required for “!” in CSP. As an example, the specification of 
the ABP in the ETG model is shown in Fig. 12. An automated validation 
package for the ETG model has been developed (see Section 10.6). 

Shankar and Lam (1983) used an event-driven process model to specify a 
version of the HDLC protocol between two communicating protocol entities. 
The protocol is verified using the method of projections (Lam and Shankar, 
1984). The verification serves as a rigorous exercise to demonstrate the 
applicability of this method to the analysis of realistic protocols. The 
procedure has been automated and is described further in Section 10.2. 

3.3.2 Estelle and LOTOS 

Early in the development of the OSI Reference Model (see Fig. 2), it was 
recognized that formal description techniques (FDT) would be required to 
accomplish the goals of OSI. Work has been under way within the I S 0  to use 
FDT for writing precise specifications for the OSI protocols. One of the FDT 
developed by Subgroup B, called ESTL (Extended State Transition Language) 
or “Estelle,” is a hybrid model based on Pascal and an FSA model (Bochmann 
1981; Linn, 1985; Tenney, 1983; Visserset af., 1983). Experience with the use of 
this FDT for communication services and protocols is reported in (Bochmann 
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Channel a-1o.r 
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ETG model of the alternating bit protocol FIG. 12. 

er al., 1982a, 1982b). A tutorial on Estelle can be found in (Budkowski and 
Dembinski, 1987). Since September 1988, Estelle has become an international 
standard, IS 9074 (Diaz et al., 1989). 

The language being developed by the FTD Subgroup C is called LOTOS 
(Language for Temporal Ordering Specification). Based on Milner’s Calculus 
of Communicating Systems (Milner, 1980), it aims to assist in the formal 
definition of protocols and services for the OSI Reference Model. The great 
promise of LOTOS lies in the fact that it allows as many levels of refinement as 
are needed, through the use of two language operators: parallel composition 
and restriction. However, since the effort is made only to describe the message 
sequences, there is a minimum impact on the specification of an im- 
plementation, thereby giving the implementor the maximum amount of 
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freedom yet still providing sufficient guidance to ensure compatibility. 
Recently, Brinksma has used LOTOS to specify the OSI transport service 
(Brinksma and Karjoth, 1984). A tutorial on LOTOS can be found in 
(Bolognesi and Brinksma, 1987). By now it has become an international 
standard, IS 8807 (van Eijk et al., 1989). 

3.3.3 SDL 

Since 1968, the International Telegraph and Telephone Consultative 
Committee (CCITT) has made an effort to create a new language to precisely 
specify and describe the functional features of a system. The resulting language 
is called Specification and Description Language (SDL), which is also an 
extended FSM language (Dickson and deChazal, 1983; Rockstrom and 
Saracco, 1982). SDL has both procedural and declarative constructs which 
together provide expressive and powerful means for modeling specifications. 
It is widely used in telecommunication applications and is supported by 
numerous tools. A refinement of SDL in a Pascal-oriented language is under 
consideration by the CCITT. A tutorial on SDL can be found in (Saracco and 
Tilanus, 1987). 

3.3.4 FAPL 

The language IBM uses for describing SNA is called Format and Protocol 
Language (FAPL). It is derived from PL/l  and contains additional constructs 
for handling FSMs and processes. A protocol specified in this form is precise, 
readily accessible to the implementing product designer and programmers, 
and structurally close to the implementations (Nash, 1983; Pozefsky and 
Smith, 1982). A tutorial on FAPL can be found in (Nash, 1987). 

3.3.5 SelectionIResolution Model 

Aggarwal et al. (1983) has proposed the Selection/Resolution model for 
specifying, analyzing and validating the behavior of protocols. The model 
centers around abstract entities called processes. Parallelism is addresed 
directly with concurrent transitions in each process dependent on the status 
(formally defined selections) of neighboring process. Protocol specification is 
accomplished by defining many small interacting processes, each easy to 
specify, which collectively describe the behavior of the protocol. The model is 
based on an abstract calculus, which is amenable to hierachical specification. 
Validation of a specification is precisely defined in terms of proving properties 
on the trajectories of processes. The feasibility of the model was demonstrated 
by applying it to the ABP and a file-transfer protocol (Aggarwal and Sabnani, 
1986). 



110 MlNG T. LIU 

3.3.6 CIL 

Krumm and Drobnik (1983, 1984) proposed the CIL (Communication 
Service Implementation Language) approach for the development of commu- 
nication services. It is based on an event-oriented model of program execution 
and a first-order predicate calculus. The verification of a program written in 
CIL is supported by the automated generation of program axioms and by the 
predicate calculus. The design of a program realizing a transport service 
exemplifies the CIL approach. 

4. Protocol Validation 

As discussed in the previous section, to ensure that a communication system 
functions properly, its communication protocols must be specified unam- 
biguously so that the protocols can be implemented faithfully. More 
important, the protocols must be shown to be correct. Verification or 
validation is the process of showing the correctness of a protocol. Verification 
and validation are often used interchangeably. We will follow the terminology 
used by Sunshine (1979). That is, protocol verification is a demonstration that 
the interactions of the communicating entities, based on their protocol 
specification and the specification of the services provided by the layer below, 
satisfy the service specification, whereas protocol validation refers to the more 
limited analysis that the protocol specification satisfies a number of general 
correctness properties that are essential to all, or nearly all, protocols. The list 
of general correctness properties that must be satisfied by all protocols is as 
follows: 

1. Completeness. The protocol must be able to handle all conditions that 
may arise. 

2. Freedom from Deadlock. Each protocol system or global state allows 
for progress to some other state. 

3. Absence of Tempo-Blocking Loops. All looping paths provide some 
meaningful communication operations. 

4. Freedom from Livelock. Tempo-blocking loops, if any, provide some 
exit to paths along which meaningful communication operations may 
take place. 

5 .  Freedom from Overflow. The protocol is not allowed to place more 
messages than the communication channels can accommodate. 

6. Termination. The protocol will arrive at the desired final situation. 

As can be seen from the discussions in the previous section, approaches to 
protocol validation depend heavily on the models used for specification, and 
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they have followed two main paths: reachability analysis and deductive 
inference (or program proofs). Reachability analysis is based on exhaustively 
exploring all the possible interactions of the communicating protocol entities 
within a layer, whereas deductive inference is based on a list of statements 
of properties (safety and liveness) and a list of axioms and rules for inferring 
the statements from the axioms. Restricting our discussion in this section to 
reachability analysis only, we will survey relief strategies proposed by a 
number of researchers to deal with the so-called state explosion problem, and 
also propose a novel approach of our own, which is based on the search 
strategies developed in the field of Artificial Intelligence (AI). 

4.1 Reachability Analysis 

Reachability analysis has been proved to be one of the most effective ways 
for analyzing state-oriented models of communication protocols. It was first 
proposed by West (1978a, 1978b) and later improved by a number of 
researchers (see Section 4.2). The method is based on the idea of state 
perturbation in which all the possible global states of a protocol are 
enumerated from an initial state. Properties of the protocol can then be 
verified based on the global states and the global state reachability graph. 

Validation techniques used by FSA models are all based on some sort of 
reachability analysis. This analysis involves the exploration of all possible 
interactions among communicating entities. A global, system, or composite 
state is a combination of both the states of communicating entities and the 
states of communication media. From the initial global state, new global states 
are generated by applying all possible transitions (user commands, message 
arrivals, internal timeouts). This process continues for each newly generated 
global state until no new states can be generated. The resulting graph is called 
the reachability graph. 

Reachability analysis is well suited to checking the general correctness 
properties described above since these properties are a direct consequence of 
the structure of the reachability graph. For example, global states with no 
exits are either deadlock states or proper termination states. More impor- 
tantly the generation of the global state space can be easily automated and 
several automated systems for protocol validation have been developed (see 
Section 10). 

A global state graph of the above ABP is shown in Fig. 13. This graph is 
generated under the assumption of so-called empty medium abstraction 
(Bochmann, 1978). Under this assumption, communication media are con- 
sidered empty, i.e., no message is in transit. Therefore, a global state is 
composed of the states of the communicating entities. In this graph, (x ,  y )  rep- 
resents a global state where the sender is in state x and the receiver in state y .  
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Receiver 

FIG. 1 3 ~ .  FSA model of the alternating bit protocol (with Timeout Mechanism) 

A possible transition consists of the sending of a message by one entity, and 
the reception of this message (or erroneous message) by the other entity. In the 
case of message loss, a transition corresponds to only the sending of a message. 
The transition labeled D, stands for reliable transmission (followed by 
reception) of a data frame with control bit i, where i is Oor 1. DiE shows that the 
data frame is damaged on transmission, and the erroneous frame is received by 
the receiver. Di' represents that the data frame is lost on transmission, and no 
data frame is received by the receiver. The same notation is used for the 
acknowledgment frame except that D has been changed to A. 

The resulting global state graph may be examined for detecting general 
correctness properties. For example, in Fig. 1 3 ~ ,  each global state can go back 
to the initial global state, thus indicating the absence of deadlocks. There exist 
loops without progress (or livelocked loops) such as the loop consisting of 
nodes 2 and 10,4 and 12,6 and 15, and 8 and 13. These loops are executed in 
the case of transmission errors or losses, and may be prevented by setting a 
limit to the number of retransmission times. 

The main advantage of FSA models is that reachability exploration can be 
automated. The process of validation is far too time consuming and error 
prone if done by hand. It may be possible to carry out validation on simple 
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FIG. 13e. Global state graph of the alternating bit protocol under the empty 
abstraction 

medium 

protocols by hand. As protocols become more and more complex, the effort of 
manual validation grows beyond human capability. With the help of an 
automated validation program, tremendous design time consumed by the 
protocol designer can be saved. 

The major difficulty of such models is state space explosion (the size of the 
global state graph grows exponentially with protocol complexity). For 
complex protocols, this technique becomes too complicated for a complete 
generation and examination of all reachable global states. Thus, state- 
transition approaches are not all suitable for modeling variables that may take 
on a large number of values. 
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4.2 Relief Strategies 

Due to its effectiveness and ease of mechanization as discussed above, many 
protocol validation tools have been built based on the method of reachability 
analysis. However, the applicability of this method is severely restricted by the 
so-called stare space explosion problem. Many researchers have developed 
relief strategies to attack the state space explosion problem. In this section 
a brief survey of these strategies is presented. 

The relief strategies presented in this section can be classified into three 
categories according to when they should be applied. The strategies in the first 
category are those applied during protocol modeling, i.e., in the stage of 
formally specifying protocols. The second category of relief strategies are 
applied after the protocol modeling is done but before the actual validation 
is performed. The third category of strategies are those incorporated into the 
validation (and thus reachability analysis) algorithms. 

1. The relief strategy proposed by West (1982) falls into the first category. 
The major techniques proposed by him are as follow: 

(a) Restricting the use of many-valued parameters such as sequence num- 

(b) Limiting the number of messages underway in the message queues. 
(c) Limiting the classes of transmission errors under consideration. 

bers in the specification. 

2. Though different terms such as decomposition (Vuong and Cowan, 
1982a; Choi and Miller, 1983), and multi-phase (Chow, 1985) are used by 
these groups of researchers, the relief strategies they proposed basically fol- 
low the same direction. They observe that certain classes of protocols can 
be decomposed into components (or multiple phases), which then can be 
separately verified to ensure the correctness of the original protocol. This 
reduces the complexity of the verification problem since protocol components 
are always smaller in the numbers of states and transitions than the original 
protocol. They are relief strategies of the second category as classified at the 
beginning of this section. 

3. The strategy proposed by Lam and Shankar (1984) also belongs to the 
second category. Unlike the strategies of decomposition, Lam and Shankar 
proposed the projection approach, which, instead of partitioning a protocol 
into multiple phases, constructs from the given protocol an image protocol for 
each of the functions that is intended to be verified. The states, messages, and 
events of entities in an image protocol are obtained by aggregating groups of 
states, messages, and events of corresponding entities in the original protocol. 
The resulting protocol is smaller than the original protocol, and therefore the 
complexity of the problem is reduced. 
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The following relief strategies all belong to the third category. 

4. The Finite State Machine (FSM) analyzer, built as one of the tools in the 
protocol development system by Blumer and Sidhu (1986), is based on the 
model of the extended finite state machine (see Section 10.5). A mechanism 
called transition choice rule is provided, which is associated with each of the 
transitions. The choice rule is a Boolean condition whose value decides 
whether or not the associated transition of the FSM is to be executed during 
the reachability analysis. For example, a rule may specify that no transition 
may be executed twice in the same path, or that no transition may be executed 
to bring a state to itself. As a result, the scope of the state exploration is 
controlled by the choice rules. For instance, infinite loops that may occur in 
the analysis can be eliminated with appropriate choice rules. 

5. LISE (Ansart, 1985) is also a tool based on the model of the extended 
finite state machine. It can be operated in two modes: validation mode and 
simulation mode. When the system is operated in validation mode, it fires all 
the possible transitions in every global state. On the other hand, if the system is 
in simulation mode, only one transition out of a global state is selected to fire. 
The simulation mode is adopted whenever it turns out that a complete 
validation is infeasible due to state explosion. Selection in simulation mode is 
accomplished in two ways. In the first way, the selection is simply done on a 
random basis; in the second way, a priority is assigned to each of the 
transitions and the transition with the highest priority is always the one 
chosen. 

6. This group of strategies (Rudin and West, 1982; Gouda and Han, 1985; 
Zhao and Bochmann, 1986) are based on the fair progress state exploration. 
This was first proposed by Rudin and West (1982), then extended by other 
researchers. The idea is to explore only those global states that are reachable, 
provided that two protocol entities proceed at the same speed. Protocol design 
errors such as deadlocks and unspecified receptions can still be completely 
detected though the exploration is not exhaustive. The limitation of this 
strategy is that it only applies to two-entity protocols. 

7. This strategy is called the maximal progress state exploration (Gouda and 
Yu, 1984b). The idea is similar to that of the fair progress state exploration and 
its applicability is also limited to two-entity protocols. Basically, the strategy 
is that the global states of a two-entity protocol can be generated in two sepa- 
rate explorations, during each of which a different entity is forced to proceed 
at its maximal speed whenever possible. The state space thus explored is not 
exhaustive. Nevertheless, protocol design errors such as deadlocks, unspeci- 
fied receptions, and channel overflows can still be detected. In addition, this 
method has another advantage over others in that it can be structured to run 
as two processes on two processors to further speed up the validation process. 
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8. The relief strategy proposed by Itoh and Ichikawa (1983) is applicable to 
protocols whose entity FSMs do not contain any cycle not passing the initial 
states. In each global state, the admissible events of different entities are 
executed simultaneously to derive the next global state. Moreover, if there is 
some potentially admissibleevent in the current state of an entity E, additional 
global state derivations by inhibiting the execution of all the admissible events 
of E should also be performed. The purpose is to force entity E to wait in order 
that any of its potentially admissible events may become executable later. 
Following this algorithm, only part of the global state graph is explored. The 
interaction sequences thus explored are called the reduced implementation 
sequences and are used to verify the protocol against the given requirement 
specification. 

9. This group of strategies (Brand and Zafiropulo, 1983; Kakuda et al., 
1986) are called the tree (or acyclic form) protocol validation. Instead of 
exploring the global states of a protocol, this strategy grows each entity of the 
protocol into a tree or an acyclic form. During the growing process, protocol 
design errors such as unspecified receptions, deadlocks, and channel overflows 
can be detected. The algorithm of this strategy is much more complicated than 
the traditional “global states” reachability analysis. Nevertheless, the val- 
idation speed is improved. 

10. Holzmann (1985, 1987) designed a tool called Trace, which also works 
under two modes, either as a fast debugging tool or as a slower correctness 
prover. The main emphasis is that the user can control the scope of each 
search. When used as a debugging tool, Trace uses a search strategy called 
scatter search to explore the global states graph, which basically is a depth-first 
search guided by some simple heuristics and restricted by a depth limit. 
Examples of the heuristics proposed by Holzmann are as follows: 

(a) Restrict the amount of nondeterminism. 
(b) Assign priorities among concurrent events. 
(c) Limit queue sizes. 
(d) Discard all the states after the depth-first exploration except those that 

are loop states. 
(e) Keep a limited size of cache for storing global states. 
( f )  Minimize the FSM models of protocol entities before verification. 

11. This strategy (West, 1986) is called the random-walk state exploration. 
From his experience in validating the OSI session layer protocol, West 
observed that the majority of errors detected are found many times in different 
global states for a complex protocol. This sugests that an analysis of a subset 
of the reachable global states may be sufficient to identify a significant fraction 
of errors. The random-walk strategy is thus proposed as a way to partially 
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explore the global states graph. The strategy is as follows: 

(a) If there is any event that may cause message collision when executed, 
such an event is fired first; otherwise, arbitrarily choose any event to fire. 

(b) The state exploration is stretched out continuously along a single path 
without backtracking. As a result, none of the previous states needs to 
be remembered and the states that have already been explored may be 
explored again. 

12. Vuong et al. (1986) proposed a new global state representation based on 
which the reachability algorithm developed can generate “finite graphs” for all 
non-FIFO and for a certain class of FIFO protocols even though these 
protocols may produce an unbounded number of messages in the trans- 
mission media. This approach thus solves a class of problems that the 
conventional reachability analysis fails to deal with due to the infinity of the 
reachable global states induced by unbounded accumulation of messages in 
the media. 

4.3 PROVAT Strategy 

Most of the relief strategies described in Section 4.2 are ad hoc, utilizing 
heuristic information. We believe that the problem should be attacked more 
systematically by borrowing some ideas from the search strategies developed 
in the field of Artificial Intelligence (AI). Instead of adopting any of the 
aforementioned strategies in our validation tool, we have developed our own 
from a new approach. We call the strategy PROVAT (PROtocol VAlidation 
Testing) for the following two reasons (Lin er al., 1987): 

1 .  It is a strategy incorporated into a validation tool. 
2. When the tool resorts to the PROVAT strategy, it is performing a task 

of design testing instead of design validation since only some of the 
reachable global states will be explored. The purpose is to show the 
existence, not the absence of protocol design errors. 

Compared to general search problems, the search done on the state space of 
a protocol has the following distinguished features: 

1 .  Rather than searching for an optimum or satisfactory solution, Valida- 
tion Testing searches for protocol design errors of unspecified receptions, 
deadlock states, and channel overflows. 

2. The quality of search strategy is judged by the discovered percentage of 
the total number of errors in a limited amount of time and space. Better 
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strategies will discover higher percentages of errors in the same amount 
of time and space. 

3. When searching into the protocol state space, pruning can be done based 
on how likely a subtree of states can be exercised by the protocol 
operation. In case an exhaustive analysis is infeasible, those states that 
are more frequently exercised by the protocol should be validated first. 

4. An effective search will primarily focus on one type of error at a time 
because the heuristics required in locating different types of errors may 
contradict each other. 

Like the best j r s t  search developed in the A1 field, an ideal search in the 
domain of protocol validation is called the error Jirst search. PROVAT is a 
first attempt to characterize such an error first search. 

As pointed out in the previous section, heuristics can be applied at three 
points in a search process, namely, the points to decide which global states to 
expand next, to decide which transitions to fire next, and to decide which 
global states to discard. PROVAT is designed to employ heuristics at all three 
points. 

Following the definitions given by Peral(1984), a global state is said to be 
generated when its data representation is computed from that of its parent. 
When this occurs, the parent state is said to be expanded. A state is fully 
expanded if all of its children are generated; otherwise, it is partially expanded. 
At some point, each generated state has to be inspected to see whether it 
reveals any of the protocol design errors. A state is called explored if it has been 
inspected. In addition, during the validation process, the states generated are 
dynamically partitioned into two sets: CLOSED and OPEN. In the search 
algorithm of PROVAT, the generated states that are never or partially 
expanded are placed in OPEN, and those that have been fully expanded are 
moved to CLOSED. Since a state may remain in OPEN for a long time before 
it is expanded, it is reasonable to explore the state immediately after it is 
generated. 

In the following, the heuristics used by PROVAT are explained. We assume 
that the only available protocol operations are “send” and “receive.” 

1. Heuristics in Deciding Which Global States to Expand Next. The 
purpose is to expand those global states in OPEN that are closer to errors. The 
heuristics are mainly concerned with the status of queues and entities. For 
each type of protocol errors, a different heuristic is derived. 

(a) Unspecified Reception. We count the number of queues that satisfy the 
following two conditions: (1) the queue is nonempty, and (2) its 
destination entity is willing to receive the message at the head of the 
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queue. Global states having the largest number of this type of queue will 
be expanded first. 

Examine all the empty queues in a global state, and call N ,  
the number of empty queues whose destination entities are in receiving 
states (states without any outgoing “send” transitions), and N ,  the 
number of empty queues whose destination entities are not. Global 
states then are scored according to the weighted sum of N ,  and N,. The 
states that receive the highest score will get the first attention. 

(c) Channel Overflow. Global states are compared based on the length of 
their longest queue. If a tie occurs, the comparison continues based on 
the length of the second longest queue. States that win in this contest 
will be explored first. 

(b) Deadlock. 

2. Heuristics in Deciding Which Transitions to Fire Next. The purpose is 
to perform those actions that are more likely to lead to the error from a 
selected state. The heuristics are concerned with either action types or queue 
lengths. Different heuristics are developed for each type of error. 

(a) Unspecified Reception. We choose a “receive” operation if that 
operation is able to receive a message from the shortest queue that 
contains at least two messages; otherwise, we choose a “send  operation 
that sends a message to an empty queue. For other operations, consider 
“receive” before “send.” These heuristics tend to sustain the decision 
made by the heuristics of choosing the next expanded global state. 

(b) Deadlock. “Receive” operations are always considered first. Among 
“receive” operations, we choose those which extract from the shortest 
queue. 

(c) Channel Ooerflow. “Send” operations are always considered first. 
Among “sends,” those which add to the longest queue have the highest 
priorities. If there is no send operation, “receives” that extract messages 
from the shortest queue are chosen. The heuristics for the above two 
types of error are also derived to be compatible with those in deciding 
which global states to expand next. 

3. Heuristics in Deciding Which Global States to Discard. The purpose is to 
decide which global states should not be generated during the global state 
expansion, which in fact prunes the subtree rooted by any state thus inhibited. 
To bring in meaningful heuristics in making this decision, we first enhance the 
original TG model (Lu, 1986), on which the validation tool is based, to include 
probability specifications. Then a simple method is developed to estimate how 
likely each of the global states will be reached in terms of probabilities (similar 
work is done on CCS by Purushothaman and Subrahmanyam (1987) for a 
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different purpose). Global states being assigned smaller probabilities are less 
likely to be reached by the protocol operation. Consequently, if speed is the 
major concern to the protocol verifier, he or she can ask PROVAT to explore 
only those states with probabilities of reachability higher than a specified 
threshold. 

All the heuristics informally defined above are quantified by the eoaluution 

Another problem left out in the above discussion is when to terminate the 
functions, which play major roles in guiding the reachability analysis. 

partial state exploration. In PROVAT, this is decided by two criteria: 

1. Specijying a probability threshold to explore only the states that ure more 
likely to be exercised by  the protocol. Those global states with 
probabilities of reachability dropped below the threshold value will 
never be generated. 

2. Specifying an upper bound on the number of expansion steps. When a 
state is expanded, some new or existing states will be generated. Each 
step of generating a state, whether the resulting state is new or already 
existing, is called an expansion step. When the number of expansion 
steps exceeds the specified value, the analysis terminates. 

The first criterion essentially is supported by the third kind of heuristics 
discussed above. On the other hand, the second criterion gives an approximate 
estimate on how much time will be taken by the analysis. In PROVAT, the first 
criterion is used to tailor the state space to contain only those paths that are 
more likely to be exercised by the protocol, then the second criterion is applied 
to obtain a desirable response time. 

4.4 Preliminary Results 

The PROVAT strategy has been built into an exhaustive validation tool 
based on the formal model of transmission grammar (TG) (Teng, 1980; 
Umbaugh, 1983; Lu, 1986). In order to incorporate PROVAT into the TG 
validation tool, the model is first enhanced to include probability specifica- 
tions and is called PTG (Probabilistic Transmission Grammar) (Lin, 1988). 
Then a part of the tool is recoded to encompass the PROVAT strategy based 
on the new model. 

The original TG validation tool runs under 4.3BSD UNIX and contains 
about 3800 lines of C language code. The resulting PTG tool contains about 
4500 lines of C code. Several real-life protocols have been extensively validated 
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and tested to evaluate the effectiveness of PROVAT. Here only the tests 
performed on the call establishment procedure of the CCITT X.21 as specified 
in (West and Zafiropulo, 1978) are presented. Though the X.21 interface is 
designed to operate in a physical environment where no more than one 
message can be outstanding in the channel of either direction, as an exercise to 
compare PROVAT with the other search strategies in a large state space, the 
behaviors of the X.21 with other channel sizes are also tried. Also, when testing 
the power of the heuristics for deadlock detection, we delete some of the 
transitions from the X.21 specification in (West and Zafiropulo, 1978) to create 
deadlock states uniformly scattered in the global state space. 

Five search strategies are tested to compare their performance in locating 
different types of design errors: 

1 .  D-search (DS for short). 
2. Depth-first search (DFS for short). 
3. Heuristic search based on state heuristics only (abbreviated SBHS: State- 

Based Heuristic Search). 
4. Heuristic search based on transition heuristics only (abbreviated TBHS: 

Transition-Based Heuristic Search). 
5. Heuristic search based on both state and transition heuristics. 

Notice that PROVAT adopts the fifth search strategy, whereas the TG 
validation tool used the first strategy. Also, the second, third, and fourth 
strategies are special cases of the fifth. 

The results of the X.21 testing are shown in Figs. 14 to 16 and Tables I to IV. 
In these results, state pruning is not considered though it is also part of 
PROVAT. Figure 14 compares the results of detecting unspecified receptions 
for the aforementioned five search strategies when the channel size of the 
X.21 is set to be I ,  which clearly shows the power of heuristics in guiding the 
“error first” search. Then, in Fig. 15, the results of the PROVAT search and the 
D-search in detecting unspecified receptions for the X.21 with channel size of 3 
are compared, which exhibits the improvement of PROVAT over D-search. 
Finally, Fig. 16 shows the superiority of the PROVAT search over all the other 
strategies in quickly locating the first 20% of reception errors when the 
channel size is also 3. 

Tables I to IV compare the results of detecting deadlocks for the five search 
strategies under the assumption of different channel sizes. Each table entry 
gives the expansion steps needed to discover one more deadlock error. I t  is 
interesting to note that when the channel size is 4, PROVAT exercised only 
3.4% of total expansion steps needed for an exhaustive search in order to 
locate all the deadlock states. These results give a strong evidence that with 
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Detection of the first 20:: of unspecified reception errors FIG. 16. 

PROVAT incorporated, the validation tool is much more effective than 
blindly performing the D-search used by Lu (1986). 

The experimental results from these tests are optimistic in that when we 
resort to PROVAT, it does help locate the errors in fewer steps than the other 
strategies. Though these results are still insufficient to conclude that PROVAT 
will also perform better in validating other protocols, it indicates that with 
good heuristics the verification tool may do a better job when state explosion 
prohibits a thorough analysis of protocol behavior. 

The heuristics employed by PROVAT are based on the local information of 
a global state. Thus only a little overhead is incurred in the reachability 
algorithm. Though it seems difficult, if not impossible, to capture the 
characteristics of the interactions leading to a protocol design error by some 
heuristics, PROVAT has shown its effectiveness through our experimentation. 

I t  is also worth noting that among the heuristics of locating unspecified 
receptions, deadlock states, and channel overflows, those for unspecified 
receptions are the most difficult to capture. This seems to match with the 
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research efforts in protocol synthesis (see Section 6) where incompleteness of 
receptions is always the major issue (Zafiropulo et al., 1980). 

Though it is difficult to compare the effectiveness of PROVAT strategy with 
that of the other approaches due to the lack of a common ground, the 
advantage of PROVAT lies in its simplicity and systematic approach. Its 
drawback is common to any heuristics-based approach in its lack of theoretic 
support and predictability. Our experience shows that to perform protocol 
validation via reachability analysis, care must be taken from the beginning. As 
the classification we made for the relief strategies indicates, serious attention 
should be paid to the early stages of validation such as modeling and function 
abstraction/decomposition. Only through these combined efforts, the difficult 
state explosion problem can be resolved more effectively. 

5. Verification and Conformity Analysis 

As mentioned in the previous section, protocol validation and verification 
is a demonstration of the correctness of a protocol design. A protocol is 
considered to be correct if it satisfies two kinds of properties, viz., syntactic 
properties (or general properties) and functional properties (or specific prop- 
erties). The syntactic properties are those desired properties common to all 
protocols such as freedom from deadlock, completeness and progress. They 
form the set of implicit requirements that any protocol should fulfill to ensure 
that its logical structure has no syntactical errors. The absence of syntactical 
errors, however, does not necessarily imply that the protocol will do what it is 
supposed to do. In this regard, the functional properties of a protocol define 
the specific objectives of the protocol. They are usually presented in terms of a 
set of behaviors, called the communication service, as perceived by the protocol 
users. As mentioned earlier, a protocol can engage in extremely complicated 
interactions that are beyond human anticipation. A formal analysis is required 
to ensure that the functional behavior of a protocol conforms to the designer’s 
intention. 

To date, while the syntactic properties of protocols have been extensively 
studied and relatively well understood (see Section 4), much work remains to 
be done on the functional analysis, also called conformity analysis. In this 
section, we will briefly survey the work done in this area and present our 
approach to it. 

5.1 Service Concept 

The service concept is receiving more and more attention in current 
protocol design (Vissers and Logrippo, 1985). With the abstraction facility in 
service specification, the complexity problem of protocol design can be 
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FIG. 17. Architectural model for layered protocol design 

alleviated to such an extent that protocol designers are capable of dealing 
with it competently. Employing the service concept, the architectural model 
for layered protocol design in the OSI Reference Model (see Fig. 2) is elegant 
and succinct. The architecture model shown in Fig. 17 may be considered as 
an abstraction of the network architecture shown in Fig. 2. 

As explained in Section 2.3, services represent the logical interfaces between 
adjacent layers, while protocols represent the operations performed inside 
layers. Accordingly, the service specification and the protocol specification 
describe the behavior of a system at two different levels of abstraction. A 
service specification is responsible for defining the valid sequences of 
interactions visible at  the boundary between two adjacent layers, whereas a 
protocol specification defines the behavior of protocol entities inside a 
particular layer in terms of the interactions between peer entities. 

Referring to Fig. 17 for a specific protocol layer, say the Nth layer, the 
communicating entities together provide a set of capabilities to the service 
users through the (N)-Service Access Points (or (1)-SAPS for short) by 
obeying the (N)-protocol and by making use of the service provided by the 
layers below this one. In other words, the (N)-protocol combined with the 
service provided by lower layers forms a service provider to the service users, 
which may be end users or the communicating entities in the next higher layer, 
ie., the ( N  + 1)th layer. Consequently, the (N)-protocol can be regarded as the 
logical implementation of the (N)-service given the ( N  - 1)-service available 
for use. Since the (1)-SAPS are the only places through which the (N)-service 
can be accessed by the service users, the internal mechanism embedded in the 
protocol and the interaction between communicatingentities are not visible to 
the service users. For example, the Alternating Bit Protocol (ABP) provides a 
service that guarantees the correct transfer of data in sequence from one 
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user to the other. However, the use of an alternating bit variable in each 
communicating entity and the retransmission mechanism in the communicat- 
ing entity serving the user that has data for transmission are not visible to both 
service users. 

The set of capabilities provided by the communicating entities in a protocol 
layer is presented by the execution of a group of well-defined service primi- 
tives. A service primitive is considered as an elementary interaction between 
a service user and the service provider during which certain values for the 
various parameters of the primitive are established to which both the user 
and the provider are refer. Thus each (N)-service primitive is associated with 
an (N)-SAP and executed at that (N)-SAP. The specification of an (N)-service 
can be expressed in terms of the possible orderings of service primitives 
associated with the (N)-SAPS and their parameter value dependencies (Vissers 
and Logrippo, 1985). On the other hand, the specification of the (N)-protocol 
can be expressed in terms of the possible orderings of service primitives 
associated with the (N)-SAPS and the (N - 1)-SAPS and their parameter value 
dependencies. 

Several advantages of the service concept are as follows: 

1. The main advantage of utilizing the service concept in communication 
protocol design is to provide a framework on which the complexity of 
protocol design can be better managed. 

2. A protocol designed using the service concept can be changed without 
affecting any layer other than the one the protocol resides in. This is due 
to the principle of separation of concerns in the service concept. 

3. Yet another advantage of using the service concept in protocol design is 
to facilitate the correctness proofs. Without the service concept, the 
verification of a communication system becomes an unsurmountably 
difficult task. 

5.2 Conformity Analysis 

By conformity analysis it is meant to demonstrate that a protocol does 
indeed provide the service for which it is intended. The purpose of the con- 
formity analysis is to show that the composite behavior of the (N)-protocol 
specification and the (N - 1)-service specification with respect to the upper 
users conforms to the (N)-service specification. Consequently, any method for 
conformity analysis should be able to establish properties of the communi- 
cation behavior of a given specification, to integrate several specifications 
into an overall behavior, to hide the internal communications, and to demon- 
strate the equivalence of two communication behaviors. 
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As mentioned earlier, the service specifications and protocol specifications 
represent two levels of abstraction in the OSI Reference Model. At the higher 
level, a service specification of a layer describes the externally visible service in 
terms of the valid sequences of the interactions taking place at the upper 
boundary. At the lower level, a protocol specification describes the logical 
implementation of a service in terms of the behavior of the protocol entities 
inside a layer. Due to their inherently distinct characteristics, past experience 
has shown that sequence-oriented specification techniques are more suitable 
for service specifications, whereas stute-oriented specification techniques are 
better for protocol specifications. A good survey on a spectrum of various 
specification methods is in (Schwartz and Melliar-Smith, 1982). 

Although different description methods have been commonly used for 
service specifications and protocol specifications, a single specification tech- 
nique to describe both of them is needed to perform conformity analysis. First, 
by using one technique, both the service and protocol specifications can be 
interpreted and analyzed on a common semantic basis. Second, a major task 
in the conformity analysis involves the composition of the protocol specifica- 
tion at one layer and the service specification at the lower layer. A uniform 
specification technique will facilitate this composition step. 

We have developed a CSP-based language for both the service and protocol 
specifications (Liu and Liu, 1984). The basic idea is summarized as follows: 

1. To speci/ j  I( service, one or more CSP processes are used to describe the 
behavior of a service provider. Furthermore, these processes can only 
communicate with the processes that represent the service users. In  this 
way, a CSP specifications can be viewed as a communication sequences 
generator in the sense that a service is defined in terms of all the possible 
communication sequences that may arise during its execution. 

2. To specify LI protocol, the entities are described by CSP processes that 
may communicate with the processes that represent the underlying 
service provider and the upper users. Typically, a control point in a 
process just before an input command reflects the major (or control) state 
of a protocol entity, whereas the variables are used to represent the 
“context variables” associated with a protocol entity, such as the 
messages. Therefore, a CSP specification can be viewed as a stute- 
trunsition machine. 

In short, our experience has shown that, by using CSP in a disciplined 
manner, one can make use of language constructs as mechanisms in 
generating a set of communication sequences corresponding to the allowable 
sequences of interactions of a service. On the other hand, one can also specify a 
protocol entity as a CSP process that resembles a state-transition machine 
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with the state space determined by the variables and a set of control points in 
the process. Therefore, even though CSP is a high-level language, we can 
employ i t  as a unified method of sequence-oriented techniques and state- 
oriented techniques that can be used for both service and protocol 
specifications. 

In the context of CSP, if the (N)-entities and ( N  - 1)-service provider are 
specified as a set of processes, the task of conformity analysis is to show that, 
after hiding all the internal communications, the set of observable communi- 
cation sequences of these processes with respect to the users should conjlorrn to 
the set of communication sequences exhibited by the processes of the (1)- 
service provider. There are two approaches to conformity analysis based on 
CSP specifications. We will discuss each of the approaches in the following 
subsections. 

5.3 Axiomatic Approach 

For CSP, a number of proof systems have been proposed (Apt er ul., 1980; 
Levin and Gries, 1981; Soundararajan 1984). While each of these provides a 
different way to prove correctness of the distributed programs written in CSP, 
all are based on Hoare’s axiomatic approach (Hoare, 1969). In this approach, 
one can make use of a set of axioms and inference rules to prove that the 
behavior of a program has some desired properties. 

The axiomatic approach has been considered a successful tool in the design 
of sequential programs. Given an initial condition that is satisfied at the 
beginning of a program, the prover can systematically derive the logic 
assertions at different control points, ultimately establishing a desired 
postcondition at the end of the program. The application of the axiomatic 
approach to distributed programs is, however, far from well understood. 
Unlike the simple input/output behavior presented by a sequential program, a 
distributed program usually has a number of interacting processes that are 
mutually dependent in the course of their executions. Despite the many 
techniques that have been proposed to tackle the new problems associated 
with distributed programs, more experience is needed before they can be of 
practical use. 

Besides the fact that the axiomatic approach is still in the experimental 
stage, thcre are certain fundamental difficulties that prevent us from using 
this approach for the conformity analysis of communication protocols, as 
described below: 

1. Most of the axiomatic-based systems can deal only with partial 
correctness of CSP programs. I n  other words, they are used to prove that 
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certain properties will hold after the execution of a program, provided 
that it terminates. In contrast, we are interested in the communication 
sequence patterns presented by systems that usually involve injnire 
computations. 

2. In axiomatic-based systems, a program behavior is described by a set of 
logic formulas. In general, it is difficult to guarantee that these formulas 
can completely characterize the properties of the program; they can at 
best serve as a substantial but incomplete description of the program 
behavior. However, to establish the equivalence of two program behav- 
iors, the strongest descriptions of the programs are required. 

3. The axiomatic-based systems aim at proving some desired properties of 
a CSP program, i.e., a closed set of processes communicating with each 
other. However, we are concerned with the external behavior of a set of 
processes that may interact with the environment, i.e., an open system. 

Rather than taking the axiomatic approach, we have developed a trans- 
formational approach for the conformity analysis of communication systems, 
which is given in the following subsection. 

5.4 Transformational Approach 

The basic idea of our approach is as follows (Liu and Liu, 1986). Instead of 
performing the logic reasoning on the CSP processes, we transform a CSP 
process into a set of algebraic expressions. These algebraic expressions should 
represent the complete description of the communication behavior of the 
original process. Furthermore, the algebraic system itself should be equipped 
with the appropriate operators to support the activities of conformity 
analysis. Once we achieve this, we are able to perform the analysis of a set of 
CSP processes by simple algebraic manipulations of their derived expressions. 

The immediate advantage of this approach is that, in general, algebraic 
manipulations can be carried out more systematically and mechanically than 
the mathematical logic inferences performed in the axiomatic approach. 
However, in order to obtain this advantage, a major premise is that the 
transformation from CSP processes to algebraic expressions should be 
performed in a simple and orderly manner. For this purpose, we developed a 
transformation system consisting of a set of rules by which the transformation 
is conducted. Milner’s Calculus of Communicating Systems (Milner, 1980) 
was chosen as the target language of our transformation system for the 
following reasons: 

1. CCS bears many similarities with CSP, thus making the transforma- 
tion system simple and straightforward. In particular, the concept of 
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“interaction” in both languages is based on synchronous 
communication. 

2. Besides being an elegant notation for describing communication behav- 
iors, CCS provides a set of operators to manipulate communication 
behaviors. Especially, the composition operator can be used to derive the 
integrated behavior of a set of cooperating system components, while the 
restriction operator can be used to hide internal communications. 

3. CCS is associated with a sound underlying theory to show the equiv- 
alence of two communication behaviors-an essential activity in con- 
formity analysis. 

To perform the conformity analysis, we have developed a transformation 
system to extract from a CSP process the communication sequences that may 
arise during its execution, and to express these sequences in terms of behavior 
expressions in CCS. Based on this system, we are able to transform a set of 
cooperating CSP processes into a set of CCS expressions, and then derive the 
integrated behavior with respect to the environment by using the CCS 
composition and restriction operators. 

Also, the conformity of the (N)-protocol to its service can be shown by 
proving that the CCS expression, representing the integrated behavior of the 
(N)-entities and (N - 1)-service provider with respect to the users at the next 
layer, is observation-equivalent to the CCS expression that represents the 
behavior of (N)-service provider. 

The overall steps in conformity analysis are outlined in Fig. 18. We have 
used the transformation system to verify the functional properties of the ABP. 
In addition, it was used to detect syntactic errors of the X.25 packet-level 
DCE/DTE interface. The details can be found in (Liu, 1986). 

The transformation system from CSP to CCS is quite straightforward and 
syntax-directed. For a given CSP process, the system allows us to suppress 
the local computations and deal with its communication behavior only. 
In particular, for a process that performs cyclic operations, the derived 
CCS expression can serve as an “invariant” property on its communication 
behavior. This gives some advantage over axiomatic proof systems, since by 
using these systems, it is the prover who has the responsibility to elaborate the 
invariant properties for cyclic computations-a heavy burden. 

In passing we like to point out that the transformational approach (Partsch 
and Steinbruggen, 1983) has been used for software development. That is, 
starting with a formal specification, a transformation process is performed for 
transforming the specification into an implementation. In contrast, we use the 
transformational approach to derive from the specifications the properties of 
communication behaviors in terms of algebraic expressions, which are 
subsequently used for functional analysis. 
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6. Protocol Synthesis 

As mentioned in Section 1, two complementary approaches to ensuring 
correctness of computer-communication protocols are analysis and synthesis. 
By the analysis approach, a protocol is first examined to reveal some prop- 
erties, desirable or undesirable, and then modified to get rid of the undesir- 
able ones (see Sections 4 and 5) .  By the synthesis approach, rules ensuring 
some desirable properties are enforced during the protocol design process. 
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The synthesis approach has the advantage over the analysis approach in that 
it can assist the protocol designer to reduce the possibility of making errors, 
if not to prevent it totally, during the protocol design process. In this section, 
we will briefly survey the work done previously by researchers in the area of 
protocol synthesis, discuss the limitations of current protocol synthesis tech- 
niques, present our protocol synthesis technique, and discuss future work on 
this topic. 

6.1 Previous Work 

Previous work on protocol synthesis can be classified into two categories, 
depending on whether a service specification (see Sections 2, 3 and 5.1) is 
required or not. 

6.1.1 No Service Specification Required 

Protocol synthesis techniques in this category do not require the initial 
existence of a service specification to which the synthesized protocol 
specification has to conform. Therefore, the protocol designer is responsible 
for the semantics of the synthesized protocol specification. The goal of these 
techniques is to construct protocol specifications free from the following 
logical errors: nonspecified reception, nonexecutable interaction, deadlock, 
unboundedness, and improper termination. Each technique has achieved 
either a portion or the whole of the goal. Generally speaking, the techniques 
achieving just a portion of the goal have higher flexibility than those achiev- 
ing the whole of the goal. Seven techniques are included in this category, each 
of which is discussed in the following: 

1. ZaJropulo’s Reception Production Rules. Zafiropulo et al. (1980) pro- 
posed three reception production rules, which were used in an interactive 
protocol synthesis system (see Section 10.1). As long as these rules are obeyed, 
two protocol logical errors- unspecified reception and nonexecutable inter- 
action-can be prevented for any synthesized protocol specification. These 
rules, however, are only applicable to two-entity protocols. To handle multi- 
entity protocols, Brand and Zafiropulo (1980) proposed a different set of 
production rules which are much more complicated than those for two-entity 
protocols. Protocol logical errors such as deadlock, though not preventable, 
may be monitored by the system in the process of designing a protocol. The 
internal representation of protocol behavior in the system is N trees for an 
N-entity protocol. 

2.  Sidhu’s Protocol Design Rules. Sidhu (1982a) proposed four protocol 
design rules that can be used to monitor all kinds of protocol logical errors. 
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However, the protocol designer has to specify all the interactions (message 
transmissions and receptions) between communicating entities. Thus the tech- 
nique is just an algorithm to validate a protocol in the process of designing 
it and is not a real synthesis technique. The internal representation of protocol 
behavior in the technique is a global state-transition graph. 

3. Zhang ’s Protocol Synthesis Algorithm. The protocol synthesis algo- 
rithm proposed by Zhang et al. (1988a, 1988b) consists of three production 
rules and two deadlock avoidance rules. Like Sidhu’s protocol design rules, 
the internal representation of protocol behavior in his algorithm is a global 
state-transition graph. Their technique can be considered as an improvement 
over Sidhu’s technique in that they enhanced Sidhu’s technique by automat- 
ically generating the specifications of all receptions that can occur and by 
adding deadlock avoidance rules to prevent possible occurrence of deadlock. 
Their technique is restricted to two-entity protocols and it is suspected that 
the deadlock avoidance rules are not general enough to cover all deadlock- 
free two-entity protocols. 

4. Choi’s Sequence Method. Choi (1986) presented a method for con- 
structing protocol specifications in the Finite State Machine (FSM) model 
by first synthesizing a pair of regular expressions of star height zero or one 
and then converting the regular expressions to equivalent FSMs. His method 
can prevent all kinds of protocol logical errors mentioned above. However, 
his technique is limited to two-entity protocols whose entity FSMs corre- 
spond to regular expressions of star height at most one. 

5 .  Gouda’s Synthesis Algorithm. Given a partial specification of a com- 
municating entity, the algorithm proposed by Gouda and Yu (1984b) enforces 
a fixed communication pattern between two communicating entities in order 
to construct the complete protocol specification in which all kinds of design 
errors are not existent. One disadvantage of their algorithm, is that the 
generated specification for the peer entity is just one of the possible correct 
specifications and may not be the one intended by the protocol designer. Fur- 
thermore, the algorithm is applicable only to two-entity protocols. 

6. Ramamoorthy ’s Automated Protocol Synthesizer. The automated pro- 
tocol synthesizer developed by Ramamoorthy and his associates (Rama- 
moorthy and Dong, 1982; Ramamoorthy ef al., 1985) makes use of six trans- 
formation rules to build up the specification for the peer entity from a given 
specification for the local entity. All kinds of design errors can be prevented 
by this synthesizer if the specification for the local entity possesses some 
desirable properties. The synthesizer suffers the same drawbacks as Gouda’s 
algorithm. We will discuss this system in more detail in Section 10.3. 
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7. Kakuda’s Component-Based Synthesis. Kakuda and Wakahara (1987) 
generalized Ramamoorthy’s six rules to come up with 22 patterns of compo- 
nents, which may be used to construct multi-entity protocols. Moreover, this 
technique allows the protocol designer to interactively increase flexibility for 
protocol construction. All kinds of protocol logical errors can be prevented. 

6.1.2 Service Specification Required 

Protocol synthesis techniques in this category require the initial provision 
of a service specification to which the synthesized protocol specification has to 
conform. The goal of these techniques is not only to construct protocols free 
from protocol logical errors, but also to mandate the synthesized protocol 
specification to conform to the given service specification (see Section 5.2). In  
the following, we briefly describe three such techniques. 

1. Merlin’s Submodule Construction Method. Merlin and Bochmann 
(1983) proposed a method of determining the specification for the missing 
entity from a given service specification and the specifications for the re- 
maining entities. Unfortunately, the technique does not guarantee the dead- 
lock-freedom for the synthesized protocol specification and thus must be 
supplemented by an analysis procedure to detect the deadlock. 

2. Prinoth’s Protocol Construction Algorithm. The input to Prinoth’s pro- 
tocol construction algorithm (Prinoth, 1982) is actually a specification refined 
from a service specification by adding some auxiliary action transitions, and 
the output from the algorithm is a protocol specification. Therefore, the pro- 
tocol designer has to refine the service specification to produce the input to 
the algorithm. The algorithm itself does not include a method to perform the 
refinement of the service specification. 

3. Bochmann ‘s Protocol Derivation Algorithm. Bochmann and Gotzhein 
(1986) proposed an algorithm to derive a protocol specification from a given 
service specification. A service in his model is described by an expression of 
service primitives connected by sequence, parallelism, and alternative oper- 
ators. A syntax tree is employed to collect the necessary information for 
the send and receive actions required for synchronizing service primitives. 
Consequently, their specification language is not able to describe a service 
containing an infinite number of possible execution paths. Inclusion of a re- 
cursion operator, as suggested in their paper, may fill the deficiency but may 
also complicate their algorithm to some extent. 
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6.1.3 Comparison and Discussion 

The protocol synthesis techniques in the first category (Section 6.1.1) 
provide some rules or methods for obtaining the complete protocol specifica- 
tion, starting from a partial protocol specification, either interactively or fully 
automatically. However, they don’t have a service specification initially given 
as a reference. The protocol designer is responsible for the semantics of the 
synthesized protocol specification; thus he or she must resort to his or her 
intuitive understanding of the intended service, a very informal task in current 
protocol design. As a result, more burden is placed on the protocol designer in 
the stage of protocol verification. 

The protocol synthesis techniques in the second category (Section 6.1.2) do 
consider service specifications in a formal manner. Merlin’s work, however, 
additionally requires the existence of specifications for (n - 1) communicating 
entities, where n is the total number of communicating entities in the protocol 
layer of interest. Prinoth’s work and Bochmann’s work are more ambitious 
since only the service specification of the interest layer is needed at the outset. 
Nevertheless, in Prinoth‘s work, some auxiliary actions (similar to the syn- 
chronization messages discussed in Section 6.2) are, in some cases, needed to 
be added into the service specification prior to the application of his protocol 
construction algorithm; yet the algorithm does not provide a method to per- 
form the refinement of the service specification by including such auxiliary 
actions. In Bochmann’s work, the required synchronization messages are 
derived automatically; however, their service specification language is not 
able to express a service containing an infinite number of possible execution 
paths. In our protocol derivation algorithm given below, we follow the same 
approach of Bochmann’s work, and thus inherit the advantages of his 
approach. But we use a state-transition model, which can easily describe a 
service containing an infinite number of possible execution paths by using 
transition loops in FSMs and which seems to be a more natural and better 
understood model. In the next subsection, we will briefly explain our protocol 
synthesis technique. 

6.2 Our Synthesis Technique 

We believe the right approach to protocol design should be one that treats 
the service concept formally. In particular, we feel that one should start from a 
formal specifications of the (N)-service and the (N - 1)-service to construct 
the desired formal specification of the (N)-protocol, as depicted in Fig. 19. 
Within this architectural view, we are interested in automating the procedure 
of deriving a protocol specification from given service specifications. That is, 
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we want to find an algorithm for the protocol derivation problem. However, 
this protocol derivation procedure for an arbitrary communication service 
appears to be formidably difficult. As a result, we concentrate on a class of 
communication services whose behavior can be described by a set of directly 
coupled Finite State Machines (FSMs). This state-transition model allows the 
specifications of both terminating and nonterminating communication 
services. For a service specified in the state-transition model, we provide a 
protocol derivation algorithm that produces the protocol specification 
automatically once some further information about decision options and 
initiation options is given by the protocol designer. The provision of the above 
information is to make sure that the derived protocol specification is desired 
by the protocol designer. 

6.2.1 The Model 

A service specification in our model (Chu and Liu, 1988a, 1988b) is 
composed of local constraint FSMs and global constraint FSMs, directly 
coupled with one another. One example is the connection establishment and 
release phases of the simplified I S 0  transport service, as specified using the 
modified Communicating Sequential Processes (CSP) of Liu and Liu (l984), 
without the provider-initiated disconnections. In this service specification (see 
Fig. 20) there are five service FSMs: two local constraint FSMs, M, and M,; 
and three global constraint FSMs, N , ,  N 2 ,  and N , .  

Using a set of directly coupled service FSMs to specify a service may re- 
sult in an inconsistent description; therefore, we provide an “inconsistency 
checking” algorithm to detect any inconsistency. An inconsistent nonter- 
minating service specification is one that may deadlock, whereas an inconsis- 
tent terminating service specification is one that may reach a global state from 
which no final global state can be reached (called improper termination). The 
inconsistency checking algorithm actually constructs the reachability graph in 
which the deadlock (or improper termination) is checked. 

A protocol specification consists of two entity specifications, each of which, 
similar to a service specification, contains local protocol FSMs and syn- 
chronizing protocol FSMs, directly coupled with one another. 

6.2.2 Protocol Derivation Algorithm 

In deriving a protocol specification from a given service specification, the 
local constraint FSMs of the service specifications can be embedded directly 
into entity specifications as the local protocol FSMs since local constraint 
FSMs perform decision locally without requiring any communication be- 
tween entities. On the other hand, global constraint FSMs enforce the relative 
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c i  -- (lmectiion iodication (to user 2) 
Crer - C!m~~tiionmponse(fromUsa2) 
ccont -- conaection confvmation (to User 1) 
~ l - D h X U X C l  nquestfromuser1 
Dind2 -- Disconnect indication to user 2 
Dreq2 - qaanmct request from User 2 
Dindl -- Dlmnmeu indicationtouser 1 
a : initial state pointer 

SAP-1 
SAP-2 
SAP-2 
SAP-1 
SAP-1 
SAP-2 
SAP-2 
SAP-1 

0 :finalstate 

FIG. 20. The specification of the simplified I S 0  transport service 

execution order of service primitives associated with different Service Access 
Points (SAPs), requiring protocol entities serving different SAPs to commu- 
nicate with each other to synchronize the execution order of service primitives. 
The algorithm to derive the synchronizing protocol FSM pair (two syn- 
chronizing protocol FSMs, one for Entity 1 and the other for Entity 2) from a 
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global constraint FSM has three major steps: 

1. Insert some intermediate transitions between service primitive transi- 
tions according to the specified decision option of a service state in a 
global constraint FSM. 

2. Adjust the initial state pointer according to the given initiation option. 
3. Project the resultant refined FSM onto Entity 1 and Entity 2 indepen- 

dently to produce the desired synchronizing protocol FSM pair. 

6.2.3 Error-Recovery Transformation 

To enable our algorithm to deal with erroneous underlying communication 
services, we further devise an error-recovery transformation procedure. The 
error-recovery transformation procedure consists of three transformation 
rules applicable to three different patterns of transitions in the synchronizing 
protocol FSM produced by the protocol derivation algorithm from a service 
specification. 

A problem, called the sink-state problem, has been created by sink states of 
synchronizing protocol FSMs in the error-recoverable protocol produced by 
applying the error-recovery transformation to a protocol derived from the 
protocol derivation algorithm. The problem can be fixed by forcing an entity 
to send a “sink command” to the other entity once it reaches a sink state. 
This repair corresponds to another transformation working on the portions 
of an error-recoverable protocol specification that cause the sink-state 
problem. 

The duplicate acceptance problem would result from applying the error- 
recovery transformation to the protocol produced by the protocol derivation 
algorithm. This problem can be resolved by performing another transfor- 
mation on any error-recoverable protocol produced by the protocol deriva- 
tion algorithm and the error-recovery transformation procedure. 

In short, we have developed a protocol derivation algorithm, an error- 
recovery transformation procedure, and transformations to fix the sink-state 
problem and the duplicate acceptance problem, all of which are based on the 
state-transition model (Chu, 1989). Due to the space limitation these are 
omitted here. 

As an example, let us apply the protocol derivation algorithm and the error- 
recovery transformation procedure to the simplified I S 0  Transport Service as 
shown in Fig. 20. We obtain the protocol specification shown in Fig. 21, where 
M, and M, are local protocol FSMs for Entity 1 and Entity 2, respectively, and 
the rest are synchronizing protocol FSMs for Entity 1 or Entity 2. 
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6.3 Future Work 

We would like to reemphasize that the right approach to protocol synthesis 
should be one that treats the service concept formally. For protocol synthesis 
using the service concept, the proposed protocol synthesis technique is our 
first attempt in this direction. However, there is more to be done in order to 
arrive at a truly satisfactory protocol synthesis technique. Several limitations 
in our approach have been identified and itemized as follow, and future work 
on removing the limitations are also discussed. 

1. A high degree of concurrency in the execution of service primitives can 
be achieved in our model through service FSMs running in parallel, but 
synchronized by direct coupling of service primitives. Even so, any 
synchronizing protocol FSM pair produced by the protocol derivation 
algorithm is always closely synchronized in the sense that the communi- 
cation pattern of the synchronization messages is “handshaking,” there 
are no message collisions, and at most two messages are in transit at 
any instant for the synchronizing protocol FSM pair. Therefore, the 
expressive power of our state-transition model is still limited as far as the 
control aspect of protocols is concerned. The study of an appropriate 
way to enhance the expressive power of our model is in order. 

2. For modeling real-life protocols, the addition of parameter, variable and 
time specifications to our service model is mandatory. However, the 
addition may have an extensive impact on the protocol derivation algo- 
rithm, requiring more careful investigation. 

3. The optimization issue for communication protocols raised in papers by 
Bochmann and Gotzhein (1986), Merlin and Bochmann (1983), and 
Ramamoorthy and Dong (1982) is still an open question. The issue in our 
context for either error-free protocols or error-recoverable protocols is 
also a challenging work. Two points about the optimization of the gen- 
erated error-recoverable protocol specifications are identified, ie., the 
elimination of redundant timers and the use of negative acknowledg- 
ments. The discussion on them follows. 

(a) Let us consider the optimization issue on a transformed error- 
recoverable protocol specification. If we make stronger the fairness assump- 
tion about the communication media, some timers may become redundant 
and thus be eliminated. For example, many versions of the Alternating Bit 
Protocol (ABP) only use a timer in the sender for retransmission of lost mes- 
sages. But our error-recovery transformation would impose a timer in both 
the sender and the receiver. However, the fairness assumptions about the 
communication media in their specifications of the ABP and our speci- 
fication are not the same. They assume that the communication media 



144 MlNG T. LIU 

will correctly deliver a message injnitely often if the message is retrans- 
mitted an infinite number of times. On the other hand, our assumption is 
that the communication media will correctly deliver a message at least once 
if the message is retransmitted an infinite number of times. Obviously, their 
assumption is stronger than ours, thus making the use of a timer only in the 
sender justifiable. In case we also make our assumption as strong as theirs, 
we should be able to remove the timer in the receiver without sacrificing the 
functionality of the protocol. At present, we still do not have a general solu- 
tion for eliminating redundant timers from any produced error-recoverable 
protocol specification if the fairness assumption about the communication 
media is made stronger. 

(b) The use of negative acknowledgments in an error-recoverable protocol 
may reduce the time period between two consecutive transmissions of the 
same message, thereby increasing the average throughput of message delivery 
between two service users. However, it also complicates protocols and intro- 
duces some processing overhead. We believe that the use of negative 
acknowledgments should depend on the actual environments in which the 
protocol will be implemented. In case we do wish to use negative acknowl- 
edgments in our error-recoverable protocol specifications, it is interesting to 
study the right way to include them in the specifications. 

7. Timed Models and Performance Analysis 

As discussed in Sections 3 and 4, various untimed formal models have been 
developed for protocol specification, validation and verification. However, 
these untimed models cannot be used to verify a protocol in which time 
constraints are essential for the correct functioning of the protocol. For 
example, Shankar and Lam (1982) found that in order to prove a desired 
timeout condition for a simple protocol, untimed modeling of that protocol is 
not adequate; Merlin and Farber (1976) discovered that in order to study 
recoverable protocols, a timed model (time Petri net) must be used to remove 
inherent limitations of the untimed model; Walter (1983) also found the 
inadequacy of untimed models when he tried to model and analyze a complex 
surveillance protocol for distributed systems; and more recently, Jain and Lam 
(1987) reported the necessity of timed protocol modeling when verifying a 
real-time protocol. It is worth noting that even the alternating bit protocol 
(ABP) used for illustration in Sections 3 and 4 is time-dependent should one 
remove the assumption that the medium cannot lose any message in 
transmission. In this case, the sender then has to employ a timer to do error 
recovery, and correct functioning of the protocol depends highly on the 
correlated time factors such as the timeout period, transmission delay, and 
processing speed of the entities. Furthermore, as a question raised by the title 
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of a paper by Yemini and Kurose (1982) (“Can current protocol verification 
techniques guarantee correctness?”), functional correctness is not the only 
concern in protocol design. Another indispensable aspect of the protocol is its 
performance; and as a matter of fact, the foundation should be, once again, 
timed models because without time specification performance analysis cannot 
be done in a formal model. 

Therefore, there seems to be two main goals for timed protocol modeling. 
One goal is for verification of time-dependent protocols. The other goal is for 
performance analysis of protocols. But very few models are targeted for both. 
As pointed out by Yemini and Kurose (1982), there is indeed a need to provide 
a unified approach to the functional and performance analysis of protocols. It 
is also interesting to note that most effort in extending untimed models to 
timed models is for performance analysis of protocols. 

In this section we first briefly survey various timed models that have been 
proposed in the literature. We then present several timed models we have 
developed for both protocol verification and performance analysis. 

7.1 Previous Timed Models 

In this section we present a brief survey of the time extensions done on 
various formal models described in Section 3: the CFSM model, the Petri nets 
model, the CCS model, the CSP model, and the Abstract Machine model. 

1. Timed CSFM Models. Most work in this domain is done by researchers 
in the IBM Zurich Research Laboratory. Basically, there are three approaches 
to adding time specifications to the CFSM model. Two are done to predict 
performance of a protocol from its formal specification (Rudin, 1983, 1984; 
Kritzinger, 1984). The remaining one is done to verify a protocol modeled 
more realistically, namely by including time information of network compo- 
nents as part of the model (Bolognesi and Rudin, 1984). 

2. Timed Petri Nets  Models. Enormous work has been done on extending 
untimed Petri net models to timed models in order to model and analyze not 
only communication protocols but also other systems such as real-time and 
multiprocessor systems. Nevertheless, our major concern here is those models 
related to protocols. Those models differ according to how time is associated 
with the net and in what form. Three different terms have been used by various 
researchers: Timed Petri Nets  (Zuberek, 1986; Garg, 1985; Walter, 1983; 
Razouk and Phelps, 1984; Holliday and Vernon, 1987), Time Petri Nets  
(Merlin 1976; Berthomieu and Menasche, 1983; Menasche, 1985), and Sto- 
chastic Petri Nets  (Molloy, 1982; Marsan et al., 1984; Zuberek, 1985). 
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3. Timed C C S  Models. The timed model proposed by Nounou and 
Yemini (1984) is a timed CCS model even though they used a different set of 
notations. Basically, time information is not specified on the level of individual 
communicating entities, but on the level of the global behavior tree after all 
the communicating entities are combined by parallel composition. The global 
behavior tree captures all the possible interaction sequences and nondeter- 
ministic behavior of a protocol. 

4. Timed C S P  Models. A timed CSP model was proposed by Reed and 
Roscoe (1986) to verify real-time properties of communicating processes while 
retaining compatibility with the semantics of the original untimed model. It 
is an extension of Hoare's CSP trace model. Recently, Zic (1987) extended 
the time CSP model by incorporating probability specification in the model. 
This is done by associating probabilities with CSP's nondeterministic choice 
operators. The purpose is to allow both protocol performance specification 
and verification in timed CSP. 

5 .  Timed Abstract Machine Models. Shankar and Lam (1982,1984) have 
proposed a timed abstract machine model that uses discrete-valued timer 
variables to measure the elapse of the time and time events to age the timer. 
Those time variables and time events are local to each process in the model. 
Timer variables from different processes are uncoupled and can tick at  dif- 
ferent rates. Nevertheless, an ideal timer is assumed, based on which local 
timers are constrained within a specified error bound by the accuracy axiom. 

As all the timed protocol models -discussed above are extensions of the 
corresponding untimed models, the major issues on timed protocol modeling 
can be seen from two points of view, namely, in what form the time 
specification is represented and with which component of the model it is 
associated. 

1. In What  Form The Time Specification Is Represented. There are three 
possible forms of time specifications: 

(a) Constant (deterministic) time. 
(b) Time interval. 
(c) Stochastic time (random variable, mostly with exponential 

distribution). 

2. With Which Component Of The Model It Is Associated. There are two 
aspects of model components the time can be associated with: model in large 
or model in small. 
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(a) Model in large. When we look at a model in large, there are two 
ways to associate time specifications with the model. One way is to 
associate time with the components of individual communicating 
entities before they are composed together. The other way is to 
associate time with the components of the global protocol behavior 
after individual entities are composed together. Examples of the 
former are time specifications in timed Petri nets and timed abstract 
machines. Examples of the latter are time specifications in timed 
ccs. 

(b) Model in small. When we look at a model in small, the ways to 
associate time specifications are quite model-dependent and, in fact, 
any natural association is possible. For example, there are four major 
components in a Petri net: place, transition, arc from a place to a 
transition, and arc from a transition to a place. Likewise, time can be 
associated with either states or transitions in the CFSM model, with 
events in CCS and CSP, and with state variables in an abstract 
machine. 

Analytic power of the timed models can be discussed from two points of 
views: (1) what purpose it is used for, verification or performance, and (2) how 
it is related to its original untimed model. From this survey study, we have the 
following observations: 

1. Form of time specijcation. 

(a) Stochastic time specification is only suited for performance analysis. 
(b) Time interval specification is best suited for verification, but its 

analytic method is hard to derive. 
(c) Constant time specification can be used for verification and perfor- 

mance analysis. But when used for verification, it is not as good as 
time interval specification; when used for performance analysis, it is 
not as good as stochastic time specification. 

(d) Moreover, probability specifications need always be brought into the 
model if performance analysis is going to be supported by non- 
stochastic time specifications such as constants or intervals. 

2. Time association with the model components. 

(a) We believe that the association of time specification with individual 
communicating entities is more realistic and more convenient than 
with the global behavior of the protocol. 
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(b) How time is associated with the components of communicating 
entities strongly decides how difficult it will be to derive an analytical 
method. Thus it should be done with the analytic method in mind. 

3. Which untimed model is better for time extension. It seems that time 
extension in one model can often be also applied to another model. Thus, on 
which untimed model the time extension is done is not as important as other 
issues in the current research. One of these issues is the lack of a timed model 
that can support both verification and performance analysis of protocols. 

In summary, there is no doubt that time modeling choices made in a timed 
protocol model greatly affect the analytic power it can provide. Normally, 
there is a tradeoff between modeling and analytic power and it is not easy to 
reach a balance point when making these choices. In the following two 
subsections we briefly describe several timed models we have developed in the 
past. 

7.2 TTG and TTG' Models 

The TTG model (Lu, 1986) is an extension of the untimed TG model (Teng, 
1980) for the verification of time-dependent and time-independent, synchron- 
ous and asynchronous protocols. The extension was done in several aspects. 

1. The specification is divided into two classes, namely entities and channels. 
They are component grammars modeling the communicating entity and 
the medium connecting them, respectively. 

2. Time specifications are added to the model. There are three kinds of time 
information that can be specified in the model, namely timeout interual, 
rule firing time, and transmission delay. The rule firing time is associated 
with each production rule of the entities to denote the delay and execution 
time of the rule. The transmission delay is associated with each 
production rule of the channels to denote how long a message will take to 
reach its destination. The timeout interval is specified when a timer is 
activated. 

3. Two more actions for setting and clearing timers are introduced to make 
the notion of timers explicit. They are for activating and deactivating a 
timer. Within an entity, there is a timeout handler for each timer used, 
which specifies the service actions taken when the timer expires. 

Each time specification in the TTG model is in the form of an interual [tminr 
fmaX], where tmin is a nonnegative integer, t,,, is a nonnegative integer or co 
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(infinity), and t,,, 2 tmin.  When specified as a rule firing time, fmin is the 
minimum delay time before the actions in a production rule can be executed 
after the rule is enabled, and t,,, is the maximum elapsed time before which all 
the actions in an enabled rule must be completed. When specified as a timeout 
interval or as a transmission delay, tmin  and t,,, are the minimum and 
maximum times required for a timer to expire and for a message to reach its 
destination, respectively. 

Based on such an extended timed model, Lu (1986) derived a reachability 
analysis algorithm to verify various properties of a protocol modeled by TTG. 
The algorithm has been mechanized and used successfully to validate the ABP, 
the X.21 and the IBM token-ring protocol (see Section 10.6). 

Though the TTG model developed by Lu (1986) is capable of handling 
time-dependent protocols, it can be applied to only a restricted class of 
protocols. To overcome this drawback, we have modified the TTG model and 
developed a novel algorithm of timed reachability analysis based on the new 
model (Lin, 1988). In order to distinguish the new model from the old TTG 
model, it is called the TTG+ model. 

7.3 ITTG Model 

In  this section, we present an integrated approach to verifying general 
properties of protocols and to analyzing their performance based on a formal 
model called Integrated Time Transmission Grammar (ITTG). I t  is an 
extended and refined protocol model resulting from an evolutionary series of 
the Transmission Grammar-based models: the TG (Teng, 1980), the TTG (Lu, 
1986), and the TTG' (Lin, 1988), and ETG (Chu, 1989) models. Basically, the 
extension on the TG-based models follows the same line of evolution as other 
models, i.e., from untimed to timed modeling of protocols. But here we move 
one step further to integrate two major purposes of timed protocol models, 
viz., verification and performance analysis, in a single framework. The major 
extension done to previous timed models (TTG and TTG+) is the in- 
corporation of time specifications into the models. Now in order to facil- 
itate performance analysis also, both time and probability specifications 
are incorporated into the ITTG model. Figure 22 shows the relation between 
these TG-based models. 

Basically, the ITTG (Lin and Liu, 1988b) model is a set of regular grammars 
consisting of three distinct parts: entities, channels, and timeout handlers. Each 
of the entities, channels, or timeout handlers is a regular grammar or a set of 
regular grammars. Together they specify a communication protocol elegantly. 
Non-terminals and terminals in ITTG are referred to as states and actions 
respectively in the following. 
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FIG. 22. Family of the transmission grammar-based models 

1. Entities in the ITTG Model. An entity in ITTG is a regular grammar 
preceded by ‘‘$entity entity-id.” The actions performed by an entity are the 
following: 

Q.entity-id [.entity-id.. . .].message-name 
D.entity-id.message-name 

S.timer-id time-interval 
C.timer-id 
internal-action-name 
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where Q and D specify communicating actions corresponding to sending 
(enQueueing) and receiving (Dequeueing) of a message; S and C are timer 
actions to Set and Clear a timer; and internal-action specifies those operations 
invisible to other entities. 

Each production rule of an entity is of the form: 

(current-state).[time-interval] ::= [ probability-valuelaction-1 

where action-1 is either a Q, a D, or an internal action, but any action that 
follows must be a timer action. The (current-state) that appears in the first 
production rule of the grammar is implicitly defined as the initial state of the 
entity. Usually, a state may have more than one production rule. In ITTG, 
these rules are grouped together and each of them is separated from others by 
a comma (“,”). 

A state is said to be passive if none of its production rules contains a Q or an 
internal action; otherwise, it is actiue. For an active state, a time interval must 
be specified and associated with it. Semantically, this time specification gives 
the minimum and maximum delays that an active state must be held before it 
can move to the next state. Conversely, for a passive state no time interval need 
be specified because how long a passive state is held will be decided by other 
external events. An active state with more than one production rule containing 
a Q or an internal action is called a decision state. For a decision state a 
probability value must be specified for each of its production rules containing 
either a Q or an internal action, such that the sum of all the probability values 
assigned to these rules is 1. 

[acrion-2.. . (next-state). 

2. Channels In The ITTG Model. A channel in ITTG is a regular gram- 
mar preceded by “$channel [entity-id-1-) entity-id-21 of size number.”, which 
specifies not only the source and destination of the medium but also the 
capacity of the medium. Unlike an entity, a channel has only one state, called 
the idle state, and its possible actions are the following: 

T.in-message-name 
L.in-message-name 
U.in-message-name 
G.in-message-name.out-message-name 

where T denotes correct message Transmission through the medium; L 
denotes message Loss in the medium; U denotes message duplication (from 
one to two) by the medium; and G denotes that message in-message-name has 
been Garbled during the transmission and the garbled message delivered by 
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the medium is out-message-name. In short, these actions specify possible 
behaviors of a channel. For convenience of specification, if a medium has no 
discrimination against the message type, message name “*” is used to indicate 
any message sent through the medium. 

The production rule of a channel is of the form: 

(idle-state) ::= [probability-value] [time-interval] action (idle-state). 

where action is either a T, L, U, or G and time-interval specifies how long it will 
take for a message to get through the medium. Note that in order to accurately 
estimate channel busy time, a time interval is specified even for the message 
lost in the medium. A channel with multiple production rules for an in- 
message-name is called an unreliable channel. For an unreliable channel a 
probability value must be specified for each alternative production rule of the 
in-message-name such that the sum of the probability values assigned to these 
rules is 1. 

3. Timeout Handler in the I TTG Model. A timeout handler in ITTG is a 
set of regular grammars preceded by “$timeout-handler timer-id of entity 
entity-id for (message-name, acknowledge-name) in channel entity-id = entity- 
id, [(message-name, acknowledge-name) in channel entity-id = entity-id . . .].”, 
where both the entity and the messages/acknowledgments served by a 
particular timer are specified. Each grammar in the set consists of only one 
production rule. 

Unlike an entity or a channel, each production rule of a timeout handler 
refers to the state of the entity that the handler serves rather than the state of 
the handler itself; as such it carries different semantics. The form it takes is as 
follows: 

(current-state) ::= time-interval action-1 [action-2 . . . ]  (next-state). 

where (current-state) must be unique for each timeout handler and a time- 
interoal must be specified to indicate the time taken to execute this timeout 
service. 

The actions that can be performed by a timeout handler are Q.entity- 
id [.entity-id. . . .].message-name and S.timer-id.time-interval, which model the 
timeout-retransmission mechanism normally employed in communication 
protocols. Seemantically, the rule specifies what kind of service should be done 
when a timeout occursdue to a certain timer and in a certain state of the entity. 

Based on the JTTG model, the techniques for both protocol verification and 
performance analysis have been developed (Lin, 1988). Basically, verification 
of a protocol is done based on the properties of both reachable states and their 
reachability graph. On the other hand, performance analysis of a protocol is 
done based on the extraction of timed probabilistic (TP) graphs from the 
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$entity 1. 
<1>.[0,10] ::= IN <2>. 
<2>.[1,1] ::= Q.2.W, S,Timer.[25,30] <3> . 
<3> ::= D.2.Er. C.Timer <2>, 

D.2.A1, C.Timer <2>, 
D.2.AO, C.Timer <4>. 

<4>.[0,10] ::= IN d> . 
<5>.[1,1] ::= Q.2.D1, S.Timer.[25,30] <6>. 
<6> ::= D.2.Er. C.Timer <5>,  

D.2.AO, C.Timer <5> ,  
D.2.A1, C.Timer e l > .  

$timeout-handler Timer of entity 1 for (WBCKO) 
in 1=2. (D1,ACKl) in 1=2. 

<3> ::= [1,1] Q.2.DO, S."Imer.[25,30] <2> . 
<6> ::= [1,1] Q.2.D1, S.Timer.[25,30] c5>. 

$entity 2. 
<1> ::= D.1.DO <2>, 

D.L.Er <6>, 
D.1.Dl <6>. 

<3>.[1,1] :;=Q.I.AO <4>. 
<4> ::= D.1.Er <3>, 

D.1.W <3>,  
D.1.Dl <5>. 

<5>.[1,1] ::=OUT <6>. 
<6>.[1,1] ::= Q.1.Al <1>. 

<2>.[1,1] ::=OUT < 3 > .  

$channel 1->2. 
<idle> ::= 0.8 [5,10] T.* , 

::= 0.1 [5,10] L.* , 
::= 0.1 [5,10] G.*.Er . 

$channel 2-> 1. 
<idle> ::= 0.8 [5,10] T.* , 

::= 0.1 [5,10] L.* , 
::= 0.1 [5,10] G.*.Er . 

FIG. 24. ITTG model of the alternating bit protocol 
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global reachability graph. The final measures of protocol performance can be 
represented in the form of an interval, indicating the performance parameters 
of the protocol under the best and the worst cases. Due to space limitation, 
those techniques are omitted here. 

As an example, let us consider the alternating bit protocol (ABP) discussed 
in Section 2. Unlike the ABP described in Section 3, the ABP illustrated here 
takes into consideration the fact that the medium may lose a message in 
transit. Figure 23 shows the state diagram of this more realistic ABP. Fig- 
ure 24 lists the formal specification of the protocol in ITTG. After performing 
the reachability analysis, the ABP is found to be free from all erroneous pro- 
tocol properties such as unspecified reception, unspecified timeout service 
state, deadlock, channel overflow, improper timer action, and premature 
timeout. Nevertheless, four tempo-blocking cycles are identified: 29 + 27 + 

28 + 39,9 + 23 + 13 + 14 + 8 + 9, and 14 -+ 16 + 17 + 14. 
Once logical correctness of the protocol is verified, the next step is to 

compute performance measures of the protocol based on the global state 
graph already available after the verification. First, the T P  graphs in the best 
and the worst throughput cases are extracted. Then, based on the extracted T P  
graphs we get the following performance measures after computation. 

Channel Utilization 
1 +2 :  [0.291971,0.299774] 
2 +  1: C0.294 102, 0.301 9631 
Throughput: C0.02 1607,0.044370] 
Efficiency: C0.57 1880, 0.6344221 

The details of performance computation for the ABP can be found in (Lin, 
1988). Basically, the ABP specified here can transfer from 21.7 up to 44.4 
messages per second if one time unit is equal to 1 msec. Both channel 
utilizations are approximately 30% without much difference under the best 
and the worst cases, and about 60% of the time the protocol is doing 
something effective. 

8. Protocol Conversion 

As discussed earlier, users on different computer networks cannot easily 
communicate with each other due to the proliferation of different network 
architectures and communication protocols. Protocol conoersion is to resolve 
the incompatibility between protocols so that users on different networks can 
communicate with each other. So far, most protocol converters have been 
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constructed manually with ad hoc approaches due to the lack of a formal 
theory for protocol conversion (Green, 1986). Thus, protocol conversion is the 
most recently established area in protocol engineering (Rudin, 1988). 

In this section, previous work on the development of a formalism for 
protocol conversion by other researchers is first presented. Then our effort in 
developing a formalism, which is more powerful in modeling protocol 
conversion and requires less human ingenuity, is discussed. Finally, we point 
out possible directions for future research. 

8.1 Previous Work 

To the best of our knowledge, there are only two major formalisms that 
have been proposed for protocol conversion by other researchers. We will 
examine each of these two approaches in more detail. 

Okumura’s Model. In the model proposed by Okumura (l986), a protocol 
is modeled as a tuple ( A o , . .  . , A,)  of Communicating Finite State Machines 
(CFSMs) with message set M, where M is the union of the set Mij of mes- 
sages from A, to Aj (i, j = 0,. . . , n), and each set Mij is mutually exclusive. A 
four tuple A, = (q, Mif, a,, qi )  is a CFSM which contains the following 
components: 

1. A non-empty finite set 6,. 
2. A finite set M’. 
3. A partial function di from a, x M f  to a,. 
4. A designated element q, in a,. 

Suppose we have two protocols A and B, both of which contain two 
CFSMs: 

A = ( A 0 9  A , )  B = (Boy B1). 

Figure 25 is an example of protocols A and B, where A ,  and B,  transmit 
messages to A. and Bo,  respectively. Protocol A is typical of the polling model, 
whereas protocol B is typical of the ack-nack model. Each state is denoted by 
a circle and each transition is denoted by an edge. The symbol - m on the edge 
means “send message m” and + m means “receive message m.” 

The goal of the conversion is to allow the communication components of 
one architecture to communicate with those of another architecture. In Fig. 25 
CFSMs A. and B ,  are assumed to be the components to communicate with 
each other. A CFSM C is put between A. and B ,  to interpret messages 
exchanged between these two components. 
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A0 A1 

+end -end 

BO B1 

+msg -nack 

-Wk +msg +ack -msg 

FIG. 25. Examples of two types of protocols 
Protocol A is polling type protocols 
Protocol B is ack-nack type protocols 

In protocol ( A o ,  C ,  B,), A. communicates with (C and B,) as if it 
communicates with its original partner A,, and E ,  communicates with ( A o  and 
C) as if it communicates with its original partner B,. 

Furthermore, Okumura defined external equioalency, which guarantees a 
similar environment for CFSM A .  (B,) to the original protocol ( A o ,  A,)  
( ( B o ,  Bl)). Assume a protocol P = ( A o ,  C, B,) is given, and protocol P 
satisfies external equivalency iff for any executable sequence a, the subse- 
quence of a, aIA(ctlE), which contains only the messages in message set MA 
( M E )  of CFSM A (B), is also executable in A (E). 

In solving the problem of how to decide the appropriateness of exchanging 
messages from a semantic viewpoint, Okumura proposed using the conversion 
seed. She assumes that the rule for the occurrence of a significant message is 
written in the form of a regular language and can be defined by an automaton. 
Since how precisely the functions in one protocol will be interpreted in terms 
of the functions in the other protocol may depend upon the design objectives, 
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the conversion seed should be given by the protocol converter designer after 
carefully studying the two protocols to be converted. 

In Okumura’s approach, conversion seed K is used to describe how the 
protocols are converted. The conversion seed K = (nK, MK, d,, q K ,  F) is an 
automaton over a significant message set MK c (M:, u Mi,) with final state 
F = d,, and gives the guidelines and properties for protocol converter 
generation. 

Given the conversion seed, the message sequences in the newly constructed 
protocol P = (A , ,  C, B,) can further be constrained to the ones that are 
really meaningful to the protocol converter designer. Since not all the message 
sequences accepted by A,(B,) is accepted by conversion seed K, Okumura 
restricts that given any message sequence a E L(P),  atK should be also accepted 
by conversion seed K. This property is called semantics equivalency. 

According to the previous arguments, Okumura further defines that 
a CFSM C can be called a protocol converter for the given protocols 
A = (A , ,  A , )  and B = ( B , ,  B,) with conversion seed K iff protocol 
(A , ,  C, El)  satisfies the following conditions: 

1. External equivalency. 
2. Semantic equivalency. 
3. Freedom from unexpected input. 
4. Freedom from deadlock. 

The existence of the protocol converter is also proved to be decidable for the 
given protocols A, B and conversion seed K. 

Some theorems proved by Okumura state that given CFSMs A = ( A o ,  A , )  
and B = ( B o ,  Bl),  which are deadlock free and unexpected input free, and 
conversion seed K; if there exists a converter C for P = (A, ,  C, B,) with K, 
then there exists a converter D which is a sub-CFSM of ( A ,  . B,) x R ,  where 
the - operator denotes the arbitrary shuffle operation (Teng, 1980) and the x 
operator denotes the intersection operation. CFSM K is the extension of 
CFSM K, and extends K’s message set from MK to MA u ME. The transition 
function of R is given as: 

6 : (OK, M. u ME) + d K ,  

With this upper limit ( A ,  . B,) x K, Okumura proposed two protocol 
construction rules to construct the protocol converter: one is the subtractive 
approach from (A ,  B,) x K, and the other is the additive approach from a 
null CFSM. 
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Though Okumura did propose the construction algorithm for the protocol 
converter, it is not satisfactory. For example, in Fig. 25, if we select A,  and B ,  
instead of A, and B1 as components of protocols to talk to each other, then we 
would not be able to construct a protocol converter using this approach. 

Lam and Culvert’s Model. Formal techniques are also proposed by Lam 
(1986, 1988) and by Calvert and Lam (1987) to address the protocol 
conversion problem. Their approach makes use of protocol projection, an 
abstraction technique for verifying properties of complex protocols. The basic 
idea of projection is that a property of the complex system can be proved by 
finding a property preserving transformation to a simpler system, and by 
proving the property of the simpler system. The image protocol preserves the 
semantics of the original protocol. 

Given a protocol A, a protocol projection is defined by partitioning the state 
spaces of each of A’s processes. The idea is that process states that are to be 
functionally equivalent in the image protocol are aggregated into the same 
partition, and are mapped into the same image process state. Every message 
(event) of the original protocol either maps into a message (event) in the image 
protocol or has a null image. If the projection further meets some additional 
requirement, then the image is said to be well-formed and the image of any fair 
computation of the original protocol is also a fair computation of the image 
protocol. 

If two protocols can be projected onto the same image protocol, then 
they share the inverse image of the safety properties of that image. Further- 
more, if the image protocols are well-formed, then they have their safety and 
liveness properties in common. Based upon this idea, Lam and Calvert 
further proposed the following approach to solve the problem of protocol 
conversion. 

First the properties required of the conversion are specified; then a 
projection of these two protocols onto a common image with the desired 
properties is looked for. If such an image protocol is found, then the job is 
done since we know that the protocols with the same image are semantically 
equivalent. 

If the protocols do not have a common image with the desired properties, 
then a protocol converter has to be constructed. The candidate protocol 
converter can be obtained by considering the properties required and the 
structure of the processes involved in the conversion. If the candidate can be 
projected onto each of the original protocols, the inverse images of their 
properties are properties of the protocol converter. With this characteristic, 
Lam and Calvert claim that the safety and liveness properties (correctness) of 
the protocol converter constructed can be proved. 
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However, their formalism requires a careful study of the nature of the 
protocols to be converted. Also, the properties of the protocols should be well 
understood. Thus, a lot of human ingenuity is involved. 

8.2 Our Conversion Approach 

Our research effort is mainly concerned with automatic generation of 
protocol converters using a state-transition model. More specifically, we are 
interested in generating protocol converters for protocols specified in the 
Communicating Finite State Machine (CFSM) model. Due to the formidable 
difficulty and complexity of the problem, we are only concerned with a specific 
category of protocols, namely, two-entity nonterminating protocols. Given 
two protocols in this category along with the specification of the message 
sequence translation between these two protocols, a reception-error-free pro- 
tocol converter can be generated with our proposed algorithm. Further- 
more, if more related information is specified on these two target protocols, 
a deadlock-free protocol converter can be obtained. 

The specification of how the translation between message sequences of the 
target protocols should be performed is accomplished by a set of CFSMs 
called the mapping CFSM set. Each CFSM in this set specifies the map- 
ping between some message sequences of the two target protocols. Multiple 
CFSMs give the designer the capability to specify the mapping sequences 
that are independent. Moreover, each CFSM can be used to specify not only 
the mapping sequences but also the order of the mapping when ordering is 
critical. Semantically, all CFSMs in the mapping CFSM set are ORed to- 
gether to establish the relation between the message sequences of two target 
protocols. 

The process of deriving a protocol converter from two target protocols can 
be divided into four phases. In the first phase of the algorithm, a Universal 
Converter (UC) is constructed. A UC allows a sequence of one protocol to 
be mapped into any sequence of the other protocol and vice versa. Notice 
that no ordering restriction is imposed on these mappings. This UC can 
be constructed through an operation called Arbitrary Shuffle (Teng, 1980; 
Okumura, 1986). Arbitrary Shuffle allows a sequence of two CFSMs to be 
interleaved in any order (operator performs the same operation). By taking 
one entity from each protocol and performing Arbitrary Shuffle between them, 
the resulting CFSM is a UC for these two protocols (see Fig. 26). 

In the second phase of the algorithm, the mapping CFSM set is combined 
with the UC. The mapping CFSM set restricts the sequences allowed by the 
UC. During this process a reception error and/or a deadlock error may occur 
due to the logical conflict between the target protocols and the mapping 
CFSM set. Therefore, reception-error states are identified in this phase. In 
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the third phase of the algorithm, deadlock states can be recognized with more 
information concerning the two target protocols. Finally during the last 
phase, all reception-error states and deadlock states are removed to create 
a correct protocol converter. 

In order to combine the UC with the mapping CFSM set, a CFSM Protocol 
Converter (PC) is created. Each state of the PC is labeled with a state of the 
UC and a state matrix of the mapping CFSM set. Each state in the matrix 
denotes the state of a CFSM in the mapping CFSM set. We call them the 
current state of the UC and the current state matrix of the mapping CFSM set. 
Accordingly, three rules are used for PC state transition: 

1. Transition firing. Given a state of the PC, if a transition at the current 
state of the UC matches a transition at a state in the current state matrix, 
a new state of the PC is generated. The new state is labeled with the next 
state of the UC and the next state matrix of the mapping CFSM set. 

2. Regeneration of mapping C F S M .  Given a state of the PC, if a transition 
( T )  at the current state of the UC does not match any transition at  any 
state of the current state matrix, but T is a transition from the initial 
state of some mapping CFSMs, then this mapping CFSM is regenerated. 
Also, a new state of the PC is created and labeled with the next state 
of the UC and the next state matrix of the mapping CFSM set with the 
newly generated CFSM added to that set. For each new mapping CFSM 
regenerated, one new state of the PC is created. 
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3. Removal of mapping CFSMs. Given a state of the PC, if the current 
state matrix contains more than one copy of the same mapping CFSM 
(this is a result due to rule 2), and if any of those mapping CFSMs are 
in their initial states, then they can be removed from the current state 
matrix. This rule allows states to be removed once a regenerated map- 
ping CFSM moves back to its initial state. 

At a state of the PC, if a receive transition (7’) at current state of the UC 
cannot find any identical transition at any state of the current state matrix, 
and T is not a transition from the initial state of any mapping CFSM, this 
state of the PC is labeled as a reception error state and no new states and 
transitions are generated from it. 

To prevent rule 2 from repeatedly regenerating mapping CFSMs and 
causing the algorithm to run infinitely, a containment relationship between 
states is defined. A state X of the PC contains another state Y of the PC if 
they are labeled with the same current state of the UC, and Y’s current state 
matrix is a submatrix of X’s current state matrix. If a state X of the PC to 
which rule 2 is applied (called a regeneration state) contains an ancestor re- 
generation state, X is defined as a loop state and no new states and transi- 
tions are to be generated from state X. This criterion allows the algorithm 
to detect a loop of regenerating mapping CFSMs and to discontinue the 
process when it happens. 

The third phase of the algorithm is for deadlock detection. Since deadlock 
states may be created in the second phase of the algorithm, we need a method 
to detect whether deadlock states exist and if they do, in what states the 
deadlock states are. To achieve this purpose, a critical send transition state list 
is needed for the target protocols. A critical send transition state is a state that 
if all the send transitions are removed from it, that state becomes a deadlock 
state. During the process of constructing the UC with arbitrary shuffle be- 
tween the two target protocols, critical send transition states can be identified 
on the UC. States in the PC that are labeled with a critical send transition 
state of the UC are critical send transition states of the PC. By examining 
all the critical send transition states of the PC, we can decide what states are 
the deadlock states of the PC. 

(Tf=D 
FIG. 27. Mapping CFSM set of the example in figure 25 
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Finally, the last phase of the algorithm removes all reception-error states, 
loop states, and deadlock states created by the previous two phases. All 
transitions in and out of these states are also removed. However, this process 
may create more deadlock and reception-error states. Repeatedly removing 
the error states eventually yields a correct protocol converter. 

Applying the above algorithm to the example shown in Fig. 25 results in 
the protocol converter shown in Figs. 28 and 29. Figure 27 shows the map- 
ping CFSM set for the example in Fig. 25. In this example, there is only one 
CFSM in the set. Figure 28 shows the protocol converter after the second 
phase of the algorithm, whereas Fig. 29 shows the correct protocol converter. 

FIG. 28. Protocol convertor after second phase of the algorithm 
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FIG. 29. The completely correct protocol convertor 

The CFSM model has been used to model the ordered behavior of 
communicating protocols successfully in the past. Our work suggested a 
parallel CFSM model to describe relations between two protocols. This 
parallel model is powerful enough to model behaviors between protocols 
and yet it gives the designer the flexibility to specify either order or non-order 
relations between sequences of the protocols. We have developed an algo- 
rithm that can automatically generate a protocol converter according to the 
model and it is guaranteed to follow all the restrictions specified by the map- 
ping CFSM set. However, the algorithm we have developed will not guaran- 
tee the existence of a protocol converter. An empty converter may be created 
if the logical conflict between the target protocols and the mapping CFSM 
set is very severe. More theoretical work is needed to determine when a con- 
verter cannot be found. 
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We are currently studying the possibility of incorporating priority into each 
mapping CFSM. This extension allows the protocol converter to put priority 
among different message sequences and enables the protocol converter to be 
constructed between the two target protocols with message priority and the 
protocols without message priority. 

8.3 Future Work 

Network interconnection has been studied by researchers for many years. 
From their work we know that a protocol converter can be implemented in 
two different architectures for network interconnection. One is the single 
gateway approach. The algorithm proposed in the previous section suits this 
model well. The other architecture model is the half gateway approach. To 
connect two networks, a node called a half gateway is inserted into each 
network. All messages from one network destined for the other network have 
to go through the half gateway. The half gateway performs the translation of 
messages and delivers the messages to its corresponding half gateway on the 
other network. This architecture is more efficient than the single gateway 
architecture since translation can be performed simultaneously. However, 
how to design a protocol converter to fit this architecture is a challenging task. 

One possibility is to use the algorithm proposed above to construct a 
protocol converter for single gateway architecture. The protocol converter 
can then be partitioned into two half protocol converters, one for each half 
gateway. Partition of the protocol converter can be achieved by projection 
according to the message types (messages for protocol A or messages for 
protocol B). Synchronization messages then need to be added to each half 
protocol converter to synchronize them so their combined behavior is the 
same as the whole protocol converter. Synchronization messages in this 
model serve two purposes. Firstly, they synchronize the two half gateways 
to make sure they act properly, and secondly, actual information is also 
delivered between the half gateways through them. Other approaches for 
creating half protocol converters are also possible. It will be interesting to 
see if half protocol converters can be generated without going through the 
Universal Converter construction process. 

The area of protocol conversion actually is only part of a more general area 
called protocol interworking. There are three types of protocol interworking 
behavior: 

1. Protocol conversion. Gateways are inserted between networks. 
Protocol converters are implemented on those gateways to translate 
messages between different protocols. Users on different networks still 
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use the same access protocols to establish connection and transmit in- 
formation to and from the network they are connected to. Insertion of 
gateways and protocol converters is transparent to them. 

Protocols of one network 
(protocol A )  is modified to absorb protocols of the other network 
(protocol B). Protocol B executed under one phase of protocol A. Users 
on network A first use protocol A to establish a connection to network B, 
then they use protocol B to communicate with users on network B. Users 
on network E still use the same access protocol (B). This approach is 
transparent to users on one network but not to users on the other 
network. 

3. Protocol complementation. This type of interworking is related to the 
layering of communicating protocols. Given protocol A of a layer in one 
network that has to interwork with protocol B of a layer in another 
network, a virtual layer can be added on top of A and E to provide a 
uniform view to users. Users on both networks need not be aware of the 
fact that there are different networks in the system. Gateways still need to 
be inserted between the networks. However, unlike gateways for 
protocol conversion, gateways for protocol complementation implement 
the uniform protocol of the virtual layer. Access protocols are changed 
for users in both networks. As a result, no transparency exists for users in 
this approach. 

2. Protocol overlap (Lin and Liu, 1988a). 

There has been very little work on the formal modeling of the last two 
approaches to protocol interworking. For the second approach, the sub- 
stitution operation suggested in (Teng, 1980) seems to be promising. For the 
third approach, service specification will be a key issue. Much work has been 
done on protocol synthesis from service specification to protocol specification 
(see Section 6). The third approach seems to require just the reverse process, 
namely, how to generate a protocol for the new mutual layer from a given 
protocol and a service specification. How can the synthesis process be applied 
to this problem is a very challenging task. 

9. Implementation and Conformance Testing 

The final goal of a protocol design is successful incorporation of the 
protocol into an actual implementation. In particular, we are interested in 
computer-automated implementation of the protocol: the machine-readable 
formal specification could be translated or compiled directly into software or 
hardware for the final product. However, it is doubtful that the complete 
protocol specification can ever be translated or compiled directly into a 
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software or hardware implementation. Therefore, there is a need to test an 
implementation to determine if the implementation is indeed in conformance 
with the protocol specification; such a test is commonly called conformance 
testing. 

Because of the complexity and difficulty of the problems associated with 
automatic implementation and conformance testing, there has been little 
progress made in this area of protocol engineering. In this section, we briefly 
describe some progress made in this area and suggest future research efforts 
needed. 

9.1 Automated Implementation 

In the past few years, there have been several experimental efforts in direct 
compilation of a protocol into parts of the code required for an implementa- 
tion. Due to many hardware idiosyncracies, a substantial portion of an im- 
plementation must be hand-coded; but there is the hope that up to 60% of 
the necessary code can be automatically implemented. 

For many years, IBM Systems Network Architecture (SNA) has been 
formally defined in terms of a meta-implementation language, called Format 
and Protocol Language (FAPL). The meta-implementation serves as a 
reference for actual implementations of the communication protocol it 
defines. Actual implementations must match the meta-implementation exter- 
nally, but need not do so internally. Compilation of the protocol was carried 
out in two major steps (Nash, 1983). First the FAPL compiler was used to 
expand the FAPL specification into an intermediate language, PL/S, and the 
required manual code was also written in PL/S. Then the entire code was 
compiled and assembled into the appropriate machine code (in this case, the 
IBM 8100 Information System). The use of a semi-automated technique 
substantially reduced implementation time. Recently, Fleishmann et al. (1987) 
have proposed a technique using a new language, called PASS, to compile a 
protocol specification in the OSI session layer into Pascal. 

Based on an EFSM model (see Section 3.3), the National Institute of 
Standards and Technology (NIST; formerly, National Bureau of Standards, 
NBS) has developed a language (actually a predecessor and subset of Estelle) 
to describe a subset of the OSI File Transfer Protocol. The formal specifica- 
tion was then compiled into the language C and about 40% of the code in 
C could be produced automatically (Linn, 1984; Mills, 1984). Other semi- 
automatic implementations based on Estelle include works by Serre et al. 
(1986) and by Blumer and Tenney (1982). Both works were concerned with 
a transport-level protocol and were able to automatically produce about half 
of the code required for the implementations. 

A majority of protocol implementations, including those mentioned above, 



168 MlNG T. LIU 

are software programs for conventional uniprocessor architectures. Such 
programs have ranged from monolithic code to fairly complex software 
systems. Due to recent advances in VLSI technology, Krishnakumar et al. 
(1987) have proposed a systematic approach to the problem of protocol 
implementation in hardware from formal specifications. They proposed a 
method for generating VLSI layouts from formal protocol specifications, 
which are based on the CFSM model (see Section 3.1). Their method is based 
on a systematic partitioning of protocol functions in a hierarchical manner. 
This decomposition results in a flexible architecture that can implement many 
different protocols. They used the Link Access Protocol on the D-channel 
ISDN protocol, LAPD, as an example to illustrate their methodology. The 
major advantage of their approach lies in the area of design effort-reducing 
the implementation time from a few years to a few months. 

9.2 Conformance Testing 

The testing of a protocol implementation is the final phase in the 
development of a protocol design. In the context of the OSI Reference Model 
(see Fig. 2), particular attention is given to the methods by which protocol 
implementations can be tested for conformance with the protocol specifica- 
tions. It is now widely accepted that OSI conformance testing is crucial to the 
achievement of the objective of OSI (Rayner, 1987). 

A considerable amount of work has already been done in the area of testing 
OSI products for conformance to the standards. The major areas of research 
in protocol testing are in (1) test methods, (2) test suite design, and (3) test 
system implementation. Extensive efforts have been done in the United 
Kingdom by the National Physical Laboratory (Rayner, 1985), in West 
Germany at GMD (Burkhardt et al., 1985), in France (Ansart, 1982), in 
Canada (Sarikaya and Bochmann, 1982, 1984) and in the United States at 
NIST (Linn and McCoy, 1983; Linn and Nightingale, 1983; Linn, 1984). All 
the work that has been done focuses on one of the three areas mentioned 
above. An approach to conformance testing has already reached the draft 
proposal stage in IS0 (Rayner, 1987). 

A test suite is defined to be a number of tests designed to verify the 
conformance of a protocol implementation to the protocol standard. A 
conformance test suite for a particular protocol tests all mandatory and 
optimal features of the protocol over the range of parameters and variations. 
In order to verify dynamic conformance requirements, live testing using a 
standard conformance test suite is performed. 

Test methods are classified based on what outputs from the protocol entity 
under test are observed and what inputs to it can be controlled. A given 
method is described by identifying the points closest to the entity under test at 
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Test Driver - Responder 
Rotocol Test Driver 

which control and observation are to be exercised. Three test methods have 
been proposed: ( 1 )  local test, (2) distributed test, and (3) remote test. These 
methods can be further classified according to the number of layers being 
tested: single-layer vs. multi-layer. 

Figure 30 shows the general logical design of a test system currently in use 
by the National Physical Laboratory in the United Kingdom (Cowin et al., 
1983). The NIST system is similar and is discussed by Nightingale (1982). The 
local and distributed test methods require the use of an upper tester (UT). In 
Fig. 30, the UT is called the Test Responder (TR) and its purpose is to control 
and observe the primitives within the system in which the Implementation 
Under Test (IUT) being tested resides. The TR should be as simple as possible, 
and at the same time it should be flexible enough to be able to perform any test 
that is desired. The design of the TR depends on the environment it is going to 

Test Responder 

(N+n)-Control Service (N+n)-Service 

FIG. 30. General logical architecture 
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run in. A number of different designs for the TR have been proposed in the 
literature as follows: 

1. The manual test responder (Palazzo et al., 1983). 
2. The scenario interpreter (Nightingale, 1982). 
3. Finite state machines (Pave1 and Dwyer, 1984). 
4. Code interpreters (Burkhardt et al., 1985). 
5. Ferry concepts (Zheng and Rayner, 1985). 

All of the test methods require a lower tester (LT), whose purpose is to 
control and observe the primitives within the system. In Fig. 30, the LT 
is called the Active Tester (AT) and consists of two components: the Test 
Driver (TD) and the Encoder/Decoder (E/D). The TD is the peer of the 
TR in the system under test; its major purpose is to control the operation 
of each test. The E/D is the peer of the IUT in the system under test; its 
major purpose is to encode and decode the message of the protocol in the 
IUT. Several different designs for the AT have been proposed in the literature 
as follows: 

1. Reference implementation AT (Nightingale, 1982). 
2. Reference implementation with error generator AT (Cowin et al., 1983). 
3. Protocol E/D AT (Cowin et al., 1983). 

There is a need to synchronize the activity of the UT and the LT. This can be 
accomplished by a Test Driver-Responder Protocol, as shown in Fig. 30. 
There are two main design choices, depending on where to operate the con- 
nection and how test events are related. 

Even though many test systems have been implemented, more experience is 
needed to find out how well they can detect all kinds of errors. In the area of 
test design, work is needed to improve the way that the tests are generated. 
Some automatic test generation from the protocol specification is currently 
being done (Sabnani and Dahbura, 1983; Aho et al., 1988), but a large 
percentage of the tests are still generated by hand. I S 0  is currently working to 
standardize OSI conformance testing (Rayner, 1987). 

10. Automated Protocol Design 

In recent years some progress has been made in creating an integrated set of 
tools for automated protocol design. The objective is to provide automated 
tools to lighten the task of the protocol designer while at the same time 
achieving a thorough analysis in the face of great complexity. These tools 
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provide assistance in the specification, validation, verifications, (partial) imple- 
mentation, and conformance testing of protocols. Several realistic protocols 
have been analyzed and developed using such tools. In this section we pre- 
sent some of the automated systems that have been reported in the literature. 

10.1 IBM System 

Zafiropulo et a/. (1980) at the IBM Zurich Research Laboratory have 
developed an interactive tool to facilitate protocol design. In their approach 
finite-state automata (FSA) are used as formal models. Two methods of 
analyzing protocol behavior are incorporated into the system, both of which 
can be used for either validation or synthesis. 

The first method, the perturbation technique (West, 1978b; Zafiropulo, 
1978a), has been used extensively to examine existing protocols, such as the 
X.21 (West and Zafiropulo, 1978) and the IBM token ring (Rudin, 1982). The 
second method, based on a set of production rules, has been incorporated into 
an automated synthesis system. Their initial attempt at protocol synthesis is 
one of the earliest in the field (Zafiropulo, 1978b; Zafiropulo et al., 1979). 

However, their tool does not provide any guidelines for helping the designer 
assign the entering state of each transition. If these states are not properly 
assigned, the resulting protocol may create deadlocks or livelocks; thus, the 
correctness is not guaranteed and further validation is required. 

10.2 PROSPEC System 

The PROSPEC system, developed at the University of Texas at Austin by 
Lam et al. (1986), also uses the model of communicating finite-state automata. 
It is constructed in a modular fashion, with each important function of the 
system being realized by a tool. The hierarchy of tools in the system is 
shown in Fig. 3 1. The protocol designer can invoke each tool independently to 
specify protocols graphically and also to verify protocols by looking at 
displays of reachability graphs. However, the graphical interface is not the 
most important element of PROSPEC. Its attractiveness lies in the designer’s 
ability to access tools that implement techniques for managing the complexity 
of protocol specification and verification and for the modular construction of 
protocols. 

The resolution of a protocol system has been proposed by Lam and Shankar 
(1984) as a basis for developing abstraction techniques to simplify the analysis 
and construction of multifunction protocols. They have developed the method 
of projections for constructing image protocols, each of which is specified just 
like any real protocol but is smaller than the original protocol. Obviously, 
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FIG. 31. Structure of the PROSPEC system (University of Texas at Austin) 

fewer logical properties are observable and verifiable in an image protocol 
than in the original protocol. This approach was found to be very effective for 
the analysis of multifunction protocols that are not easily decomposable into 
different modules for implementing different functions, due to the use of 
shared variables and messages. A version of the HDLC protocol was verified 
using this method (Shankar and Lam, 1983). 

The construction of a multifunction protocol from a composition of simple- 
function protocols is a much harder problem than the reverse problem 
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described above (i.e., the resolution problem). There is no easy method that 
corresponds to an inverse projection operation. However, Chow et al. (1984a) 
have observed that many realistic protocols go through different phases 
performing a distinct function in each phase. They presented a multiphase 
model for protocols and a methodology for constructing multiphase protocols 
(Chow et al., 1985). They illustrated their methodology with the construction 
of several nontrivial multiphase protocols, including a version of the IBM 
BSC protocol for data link control (Chow et al., 1985) and a high-level session 
control protocol (Chow et al., 1984b). 

PROSPEC has been developed on a SUN 2/120 workstation running 
4.2 BSD UNIX. In addition to the graphical interface, the protocol designer 
can interactively access various tools that implement the method of projec- 
tions, multiphase protocol constructions, and other features. The menu- 
selection facility relieves the designer of having to remember all the com- 
mands for interaction with PROSPEC. 

10.3 Berkeley System 

Ramamoorthy et al. (1985) at the University of California, Berkeley, have 
developed an automated protocol synthesizer (APS) that automatically 
generates the peer protocol entity from a single given local entity. The given 
entity is modeled by Petri nets, and if it satisfies certain prespecified 
constraints, the resulting protocols are guaranteed to possess desirable 
properties such as deadlock-freedom, boundedness, liveness, completeness, 
and proper termination. Their procedure consists of the following five steps 
(see Fig. 32): 

1. Design a local entity model using Petri nets. 
2. Translate the local entity model into its state-transition graph (STG1) by 

a state exploration procedure. 
3. Check local properties of the given local entity model to make sure that it 

is well behaved. (This can be done by examining the structure of STG1). 
4. Construct the peer state-transition graph (STG2) from STGl according 

to certain well-designed transformation rules. 
5. Construct the peer model in Petri nets from STG2. 

Thus, the input of the APS is the Petri net specification of the giving entity, 
and the output will be the Petri net specification of its peer entity. 
Implemented on a VAX 11/780 machine using programming language C, the 
code size is about 3500 lines long and occupies 20K bytes of memory. It can 
accept a given entity model of up to 80 places and 150 transitions. It is a fairly 
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efficient computer-aided design tool and has been applied to a modified X.21 
protocol to generate the peer entity model successfully. The X.21 protocol 
has 72 places and 122 transitions in the given entity, and the APS takes 
3.70 seconds of CPU time to generate its peer entity model. 
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10.4 PANDORA System 

The PANDORA system, an acronym for Protocol ANalysis, Design and 
OpeRation Assessment, aims to provide the protocol designer with a set of 
tools that can be used to design correct and efficient protocols (Holzmann, 
1984). It consists of three major parts: analysis, synthesis, and real-time 
assessment (see Fig. 33). 

In protocol analysis, the PANDORA system uses an algebraic model for 
protocol validation. The behavior of each communicating protocol entity is 
first modeled as a finite-state machine. The symbol sequences that can be 
accepted by these machines are then expressed in protocol expressions 
(Holzmann, 1982b), which are defined as regular expressions extended with 
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two new operators: division and multiplication. The interaction of the 
machines can be analyzed by combining protocol expressions via multiplica- 
tion and algebraically manipulating the terms. Thus the problem of analyzing 
a protocol is transformed into one of analyzing an expression. Further, it is 
relatively easy to write a program that can accomplish this task efficiently for a 
fairly large class of protocols. 

Compared to global state-space exploration techniques (West, 1978a), the 
validation method used in the PANDORA system allows for a number of 
important reductions in size and complexity of an analysis. These reductions 
are based on the notion of equivalent classes of execution sequences, and 
the validation process can now be restricted to examining just one character- 
istic sequence from each equivalent class. The gain over earlier reduction 
techniques (Rudin and West, 1982) is indeed significant. 

The PANDORA system runs on two PDP 11/23 computers and its 
software is written in C and lives in a UNIX environment. 

10.5 BBN/NIST System 

Blumer and his associates have developed an automated technique for 
protocol development and its application to the specification, verification, 
and semi-automatic implementations of several realistic protocols (Blumer 
and Sidhu, 1983; Sidhu and Blumer, 1984). The major features of this tech- 
nique are an augmented FSA model for protocol entities, specification of 
protocol entities in a Pascal-like language (Blumer and Tenney, 1982), a model 
used in building implementations from these specifications, and a collection of 
software tools. The software tools developed to support this technique pro- 
vide the following services (see Fig. 34): 

1. Syntax checking and type checking on specification. 
2. Generation of FSM tables for a protocol entity, in various formats. 
3. Compilation of a specification into a partial implementation. 
4. Analyzing selected paths through protocol entity FSM. 
5. Analyzing selected composite paths through several communicating 

6. Verification of certain protocol properties. 
protocol entity FSMs. 

In this system a protocol is first specified in a formalized protocol 
specification language. A specification compiler is then used to check the 
specification syntax and to generate code for a partial implementation. The 
compiler also generates FSM tables for the protocol, which are then used as 
input to the FSM analyzer for protocol analysis and verification. The analyzer 
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analyzes possible protocol paths, and checks for certain protocol p operties 
along each path. Information about each protocol path may be printed in 
several formats. 

This technique has been used successfully in the development of several 
realistic protocols from NBST (TP4, TP2, Session and Message Protocols), 
DoD (TCP and IP), and IEEE 802.2 (LLC). 
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10.6 TTGIETG Systems 

Liu and his students at the Ohio State University have developed two 
automated validation systems for communication protocols. Called the 
TTG/ETG systems, both are based on a formal grammar model (the 
Transmission Grammar (Teng and Liu, 1978a, 1978b, 1980)). The TTG 
System (Lu, 1986) can handle timing constraints such as execution time of a 
protocol action, timeout intervals, timeout mechanisms, and transmission 
delay. In addition, it represents the communication medium in a different way 

Protocol Specification 
in TTG/ETG Model 

and GSG 

FIG. 35. Software structure of the TTG/ETG systems (The Ohio State University) 
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than other models, thereby allowing the protocol designer to model trans- 
mission errors, loss of messages, and out-of-sequence messages in a natural 
way. On the other hand the ETG System (Chu, 1989) can handle context 
variables such as sequence numbers. 

The incorporation of timing information into the TTG model has an 
advantage of reducing validation efforts, since those global states that may not 
be generated under given timing constraints are excluded from the analysis. 
Moreover, the validation technique is based on a special kind of reachability 
analysis (a combination of Micro and Macro expansions, see Fig. 35) and can 
further reduce the global state space. Because of this expansion technique, the 
TTG system can validate not only more complex protocols, but asynchronous 
protocols as well as synchronous ones. 

The TTG system has been developed on a VAX 11/780 machine, and its 
software is written in C and lives in a UNIX environment. It is portable to 
SUN workstations and has been used successfully to validate the ABP, the 
X.21, and the IBM token-ring protocol. The ETG system has been developed 
and runs under OSx on a Pyramid machine. It incorporates two global space 
reduction techniques and has been used to validate the ABP with a con- 
siderable amount of reduction in the total number of global states (Chu 
and Liu, 1989). 

10.7 KBPV System 

It is well known that conventional protocol validation based on reachability 
analysis suffers a great deal from the state explosion problem (see Section 4). 
Consequently, many variants of reachability analysis have been proposed in 
the literature to alleviate this problem. In Section 4.2, we have surveyed and 
evaluated these variant algorithms. One of the conclusions we reached is that 
none of the improved algorithms can totally supersede the others or even the 
conventional, exhaustive reachability analysis itself. In other words, each 
algorithm including the conventional one has advantages over the others 
under certain requirements and conditions. Thus we believe that a better 
protocol validation system should make these algorithms accessible to the 
protocol designer. This simply means to provide the protocol designer with a 
box of validation tools that implement various validation algorithms. We call 
this way of implementing the validation system the tool box idea. 

Nevertheless, only providing the protocol designer with a tool box is not 
adequate unless the designer has the expertise of applying the right tool to the 
protocol of his or her concern. Unfortunately, such a requirement to the 
protocol designer is often too stringent to be realistic. First, the knowledge 
required to select a right algorithm or tool is dispersed in the literature and 
cannot be easily acquired by the designer. Secondly, the designer may be just a 
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Intelligent User-Interface 
(Knowledge-Based Interface) 

novice user of the validation tools and may not be interested in understanding 
all the available validation algorithms. 

Therefore, in addition to the tool box idea, we have proposed another idea 
called the intelligent user-interface to construct a user-friendly protocol valida- 
tion system. The idea is to develop a knowledge-based interface that not only 
manages all the validation algorithms, but also acts as an intelligent assistant 
to help the protocol designer select and use these algorithms. It is natural to 
bring in the knowledge-based techniques here because the process of guiding a 
designer to select and use the most appropriate validation algorithm is 
basically symbolic. 

The structure of such a knowledge-based protocol oalidation system (KBPV 
system) is illustrated in Fig. 36. Note that the symbolic (non-procedural) 
process of the system, namely the knowledge-based interface, is on the top of 
the algorithmic (procedural) processes implemented as a tool box of collection 
of validation algorithms. This kind of system is now getting attention from the 
A1 community and is called the coupled system because both symbolic and 
algorithmic computing are coupled in the same system. 

Symbolic 
Process 

I I 

FIG. 36. Structure of the knowledge-based protocol validation system 
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In the first stage of our development, we have included the following six 
validation algorithms in the tool box: 

1. Fair Progress Validation (Rudin and West, 1982; Gouda and Han, 1985). 
2. Maximal Progress Validation (Gouda and Yu, 1984a). 
3. Reduced Reachability Analysis (Itoh and Ichikawa, 1983). 
4. Vuong’s Reachability Analysis (Vuong and Cowan, 1982b). 
5. Exhaustive Reachability Analysis (West, 1978a). 
6. Protocol Validation Testing (Lin et al., 1987). 

Among the algorithms listed above, the fifth and sixth are supported by the 
PTG validation tool described in Section 4.4; the first four algorithms are 
supported by four separate tools recently developed. In fact, all these tools are 
developed by modifying an existing, conventional tool called TG (Lu, 1986). 
Every tool can accept protocol specifications in either Transmission Grammar 
(TG) or Probabilistic Transmission Grammar (PTG). Note that different tools 
may have different uses, and some of them may be quite complicated. 
Nevertheless, through the guidance and control of the intelligent user- 
interface, the protocol designer should have no difficulty in utilizing the full 
power of these tools. Our design of the intelligent user-interface is largely 
influenced by the idea behind the CSRL (Conceptual Structures Representa- 
tion Language), a high-level language tuned specifically for implementing 
diagnostic expert systems (Bylander and Mittal, 1986). In CSRL, a specific 
organizational technique called hierarchical classijcation and a specific 
problem-solving strategy called establish-re$ne are employed to design a 
knowledge-based system. We believe that the structure and problem-solving 
strategy demonstrated by CSRL is quite suited in our domain of building an 
intelligent user-interface for the protocol validation system. The reasons are 
argued as follows: 

1. The decision procedure of which algorithm to use in validating a 
protocol can be organized as a classification hierarchy of three levels as 
shown in Fig. 37. 

2. The establish-refine control can be used as a search strategy in identifying 
the protocol under validation with an appropriate algorithm at the tip of 
the hierarchy. 

To give more details, we briefly describe how this whole process works. 
From the root of the tree, the specialist (or concept) “protocol validation” first 
tries to establish itself. If successful, the succeeding refinement of it will pass 
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the control to the second level of specialists. The specialists in the second level 
then repeat the same process; they first try to establish themselves, and, if 
successful, may refine further down the tree after being granted by its super- 
specialist; otherwise, all its subspecialists will be excluded from further con- 
sideration. If a specialist at the tip of the hierarchy (the third level of the 
tree) establishes itself, it essentially means the feasibility of a specific validation 
algorithm to the protocol. By this process the validation algorithms suited for 
validating the protocol and their comparative scores can be determined. In 
our domain, the establishment or rejection of a concept is primarily based 
on (1) the formal protocol specification and (2) the interaction between the 
designer and the system during the establish-refine process. Note that knowl- 
edge rules are distributed to each specialist. We acquire those rules directly 
from the literature. The rules used by each specialist are given by Liu (1988). 

A prototype of the KBPV system has been developed. It consists of ap- 
proximately 10,OOO lines of C code. A user manual for the KBPV System has 
been prepared (Liu, 1988). 

11. Conclusion 

The preceding sections have described various aspects of protocol engineer- 
ing, a rapidly growing area of research in computer communications. A 
protocol engineering system allows the protocol designer to express the 
protocol formally, test its specification for correctness (validation and 
verification), obtain some early indication of how it would perform, compile 
major parts of the implementation directly from the formal specification, and 
finally, test the resultant implementation to assure that it conforms to the 
specification (implementation verification or conformance testing). These 
tasks are performed iteratively until a correct and efficient protocol is 
developed. The protocol engineering system can also be used by the protocol 
designer for protocol synthesis and protocol conversion. 

As protocol design becomes more and more important due to the 
proliferation of computer communications, the need to use computer-aided 
design in the whole life cycle of protocol development becomes obvious. As 
described in Section 10, current protocol design systems do not provide 
enough support to help the designer make use of a variety of tools available 
to him or her. We believe that the incorporation of a knowledge-based sys- 
tem can help in those aspects, as they have already done so in other engineer- 
ing disciplines (Sriram, 1986). A case in point is from the field of software 
engineering as reported in (Mostow, 1985; Simon, 1986), where knowledge- 
based systems are used to help automate the whole life cycle of software 
development. Since protocols are a special class of concurrent programs that 
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are communication-intensive, it is expected that those ideas and techniques 
developed for software engineering can be applied to protocol engineering 
as well. 

A knowledge-based system is a new way of encoding human expertise into 
mechanically manipulable forms (Denning, 1986). It consists of two com- 
ponents: knowledge base and inference engine. The knowledge base, which 
corresponds to a program in conventional automatic problem-solving 
systems is a collection of encoded knowledge expressed in some formal 
representation. The inference engine, which corresponds to an interpreter in 
conventional systems, is a control mechanism to manipulate the represen- 
tation in the knowledge base. These two components together provide a new 
regime of problem solving that deals with the encoding of the human’s 
expertise much better than any standard procedure language. 

The incorporation of knowledge-based systems into the protocol design 
process can be done in many ways. For example, program transformation 
techniques (Balzer, 1985; Fickas, 1985) can be used in deriving protocol 
specifications from given service specifications. Other A1 techniques, such as 
search algorithms and theorem-proving can be used to reduce the global space 
search and to help correctness proving, respectively, in protocol validation 
and verification. Therefore, it is expected that both A1 techniques and 
computer-aided software engineering (CASE) methodologies will play an 
important role in the future development of prootocol engineering. 
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1. Introduction 

Ten years ago, this writer contributed an article entitled “Recent Progress in 
Computer Chess” to this series’ eighteenth volume (Newborn, 1979). It 
surveyed developments in computer chess in the middle and late 1970s, 
developments that raised the playing strength of chess programs to just over 
the 2000 United States Chess Federation level, the level of a chess Expert. 
Now, 10 years later, chess programs have improved at least another 500 rating 
points and are playing almost at  Grandmaster level. Grandmasters, of which 
there are under 50 in North America, hold ratings that begin at approximately 
2600 USCF. 

The purpose of this article is to describe the technical developments that 
have led to this remarkably strong level of play. Since 1979, there have been a 
number of new developments including special-purpose hardware, parallel 
search on multiprocessing systems, windowing techniques, and increased use 
of transposition tables. This article describes these advances. 

The first working chess programs came into existence in the middle 1950s 
based on the ideas presented several years earlier by Shannon (1950) and 
Turing (1953). These programs, developed at the Los Alamos Scientific 
Laboratory (Kister et al., 1957), IBM in New York (Bernstein et al. 1958), and 
Carnegie-Mellon University (Newell et al., 1958), played very poorly. Some 
argued, based on the performance of these early programs, that computers 
would never play strong chess. Gradually, as programmers learned how the 
search process worked and as computer power increased, programs improved. 
With programs now on the verge of becoming Grandmasters, and with all 
signs indicating progress will continue, the day when they will be World 
Champion cannot be too far off. In Newborn (1979), it was predicted that 
“with advances in both hardware and software continuing at the same rates as 
they have during the last 10 years, it is highly probable that programs will be 
playing Master level chess by 1984, Grandmaster level chess by 1988, and 
better than any human by 1992. (These are conservative estimates!)” BELLE, 
in fact, was awarded the title of US Master in 1983, and this year, 1988, as said 
previously, programs are playing at almost the Grandmaster level. A World 
Champion by 1992 remains a good bet. 

2. Search Techniques in Chess Programs 

Chess programs have improved over the years due to the development and 
refinement of a number of search techniques particularly suited to the 
capabilities of computers. These techniques are reviewed in the following 
sections. The minimax algorithm, the foundation of all chess programs, is 
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examined in Section 2.1. Depth-first search and the basic data structures for 
chess trees are the subject of Section 2.2. The alpha-beta algorithm, which 
supplements the minimax algorithm, is presented in Section 2.3 followed in 
Section 2.4 by material on how moves are generated, how the principal 
continuation is found and how the killer heuristic is used by chess programs. 
Section 2.5 describes pruning techniques and variable depth quiescence 
search. Transposition tables and hashing techniques are presented in Section 
2.6. Iterative deepening is introduced in Section 2.7, and the use of search 
windows is described in Section 2.8. Parallel search techniques are described in 
Section 2.9. Special-purpose hardware, used by four of the leading programs 
(BELLE, BEBE, HITECH, and DEEP THOUGHT 0.02) is surveyed in 
Section 2.10. The problem of using time wisely is considered in Section 2.1 1 .  

2.1 The Search Tree and the Minimax Algorithm 

For any given chess position, there is a corresponding graph-theoretic game 
tree in which nodes correspond to positions and branches correspond to 
moves. The root of the tree corresponds to the position in which a move is to 
be found. There are typically about 30 to 40 moves in a position. In the initial 
position, there are exactly 20 moves for White. The rules of chess declare a 
game drawn if 50 moves pass and no piece has been captured or no pawn has 
advanced. These two rules imply that the game tree has a finite number of 
nodes, but the number is astronomical, estimated to be Thus, except in 
simple positions, it is impossible to search any more than a small part of the 
entire game tree. 

In the early 1970s, programs searched chess trees at rates of approximately 
200 nodes per second. Today, that rate is nearing 1,OOO,OOO nodes per second, 
an increase by a factor of 5000. The better programs now examine all 
sequences of moves for approximately eight to ten levels (or plies) in the tree. 
Certain continuations, those that the program thinks are crucial lines of play, 
are searched more deeply. To the position at the end of each continuation, 
called a terminal position, the program assigns a score which is a measure of 
how good the position is. Functions that assign scores to positions, that is, 
scoring functions, are much simpler than one might imagine. Shannon (1950) 
originally proposed a scoring function that took into account material, 
mobility, and pawn structure. A positive score meant that the computer is 
winning, a negative one meant that the opponent is ahead. The larger the 
score, the better the position, and conversely, the more negative the score the 
worse the position. 

Given the scores of these terminal positions, the minimax algorithm 
provides the rule for determining which move the first player, usually the 
computer itself, should make at the root of the tree. The minimax algorithm 
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Root Node 

4 2 

8 3 

8 9 

18 18 

FIG. 1. Five-level game tree showing how minimax algorithm backs up scores to the root. 
Terminal nodes = 0,  non-terminal nodes at which score is maximized = 0,  non-terminal node 
at which score is minimized = 0, and principal continuation = ... -. 

says that at even levels in the tree (the root is at level 0), a non-terminal posi- 
tion should be assigned a score equal to the maximum score of any of its 
successor positions. At odd levels in the tree, the score assigned to a position 
should be the minimum score of any of its successors. Scores are assigned 
to nodes by working backward from the terminal nodes toward the root. The 
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tree in Fig. 1 illustrates this algorithm. Here, a depth-5 search is carried out. 
There are 20 terminal nodes at level 5, and they are assigned scores by the 
scoring function as indicated. Backed-up scores are assigned to the nonter- 
minal nodes as shown, with a score of 4 being backed up to the root. The 
computer should thus play the move that leads to the terminal node score 
of 4. The alternative move leads to a score of 2, not as good for the first 
player. The sequence of moves leading to the node with the score of 4 is called 
the principal continuation, the continuation that the minimax algorithm cal- 
culates is best for both sides to follow. 

2.2 Depth-first Minimax Search 

All chess programs of any note carry out the minimax algorithm by 
searching the game tree in a depth-first fashion as opposed to either breadth- 
first or some sort of best-first search (see Nilsson, 1980). This is mainly because 
of three reasons. First, depth-first search requires very little memory space. 
Memory space requirements grow linearly with the depth of search, as 
opposed to exponentially when breadth-first search or best-first search is used. 
This was particularly important in the 1960s and the 1970s when memory 
space was at a premium. Today, with memories measured in megabytes, the 
advantage of depth-first search over other kinds of search is losing its edge, 
but as yet, no strong program has been developed that uses anything else. 
Second, the control strategy used by depth-first search is particularly simple. 
Deciding where to search next in the tree is well defined; there is no jumping 
around in the tree as in other types of search. Third, depth-first search can be 
parallelized more easily than other kinds of search. As a small fourth 
advantage, printouts of trees produced by depth-first search are easier to 
interpret in real time than those produced by other types of search. 

The flow chart of a depth-first minimax search is shown in Fig. 2. It is based 
on the data structures shown in Fig. 3. The search calls five subroutines not 
shown: GENERATE, EVAL, UPDATE, UPDATEPRINC, and RESTORE. 
The data structures include the following: 

1. A representation of the chess board, usually a 64 square array, 
BOARD(8, 8). 

2. An array in which to store the moves at  each level in the search tree as 
they are generated, MOVE (100,20)-allowing for at most 100 moves in 
any position and a search to a depth of at most 20 levels. 

3. An array of move pointers, MP(20). MP(i) points to the move at  level i 
that is currently under search. 

4. An array to keep track of the backed-up scores to nodes in the tree. This 
array, SCORE(20), has elements SCORE(O), . . . , SCORE(19). 
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UPDATE 
I 

5. An array to keep track of the principal continuation as it is being formed. 
This triangular array, PC(20,20), will have the principal continuation 
stored in its top row when the search finishes. 

6. A stack called CLIST which saves the changes to the board and other 
data structures when UPDATE is called. RESTORE examines CLIST to 
see what changes have to be undone when backing up. 

7. In addition, the program needs two variables: DMAX denotes the 
maximum depth of search, while PLY indicates the current level of the 
search. 

SCORE( PLY ) + +-(-) if ply is odd(even) 

INITIALIZE 

Decide DMAX; PLY + 0 

No Yes .L &Yes No 
SCOR ( PLY - 1) + SCOR( PLY ) 

Call UPDATEPRINC 

.*.\*... , - Y I 
Successor of Cumnt  Position 1 

GcncraQ moms, list in Column PLY of MOVE 
beginning in MOVE(0,PLY). Put 0 at end of list. 

P o s i a n  + whan MOVE(MP(PLY),PLY) 

I 

EvnluaQ Poriobn: 
SCORE( PLY) + EYAL (BOARD) 

MINIMAX 

I Odd I Is PLY e\n+norodd?] Even 1 

I I I I I 

I MP(PLY) + MP(PLY) + 1 ] 

I -1 No Is MOYE(MP 1 
- 

FIG. 2. Flowchart of the depth-first minimax search algorithm. 
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MOVE(O.0) 

MOVE (100.20) (Moves array) 

MOVE(O.19) 

SCOR(0) ScOR(1) . . . 

BOARD(8.81 

SCOR(19) SCOR(20) 

a b c d e f g h  

pq 

... 

I PLY I I I I 

MOVE(99.0) I I I MOVE(99.19) 

MP(20) (Move pointer array) 
I MP(0) I ... I MP(19) I 

PC(20,20) (Rincipal continuation array) 

CLIST[lOOO) [A stack to keep track of changes] 

FIG. 3. Basic data structures required by minimax search algorithm. 

GENERATE accepts the current board position and the value for P L Y  as 
inputs. It returns a list of q moves for the position to the MOVES array and 
places them in MOVES(0, P L Y ) ,  MOVES(1, PLY) ,  . . . , MOVES(q-I, P L Y ) .  

EVAL determines a score for a terminal position. No two programs have the 
same scoring functions, but most take into account material balance, pawn 
structure considerations, mobility, king safety, center control (related to 
mobility), as well as bonuses for trading pieces when ahead, avoiding draws 



204 MONROE NEWBORN 

when playing a weaker player, and mating in as few moves as possible when 
two or more mating sequences are available. Programs generally assign 
P = 1, N = 3, B = 3.2, R = 5,  Q = 9, and K = 1O00, although these values 
may vary during the course of the game, being conditional on various features 
of the game. Two Bishops versus two Knights, for example, generally result 
in a small bonus. Programs quantize features of a position to approximately 
.01 pawns. 

Many factors taken into account by the scoring function can be dif- 
ferentially updated when going from one node to another in the search tree. 
Material, for example, can be updated when a move is a capture or a pro- 
motion. Otherwise material does not change when going from one node in 
the tree to its successor. Other factors, once computed for one node, can be 
saved in a hash table and retrieved for use at other nodes. This point is 
discussed later in Section 2.6. 

UPDATE has for its input the current position and the current move under 
consideration. It updates the board based on the move and saves the changes 
on the CLIST. 

RESTORE has for input the current board and the changes on CLIST that 
were made to its predecessor to yield the current board. It restores the board to 
its predecessor. 

UPDATEPRINC updates the principal continuation array, PC, when a 
good move is found. The best move found at level PLY along with the 
sequence of moves that the minimax algorithm calculates the game will follow 
upon making that move are stored in the PC array in row PLY beginning in 
location PC(PL Y, PL Y) as describe in the flow chart in Fig. 4. Essentially, in 
order to obtain the principal continuation, it is necessary to save the best 
continuation found thus far in the search at every node on the current 

UPD ATEPRINC 
1 I PC(PLY ,PLY) + MOVE(PM(PLY),PLY)] Pice move being backed up 

1 

1 

on main diagonal. 

j is a column pointer. Set it to 
next element after element 

J + PLY + 1  

I on diaaonal. 

Is PC(PLY,j) = O ?  Stop once a zero has been 
mwed up. 

Return Return to main program. 

FIG. 4. Algorithm for updating the principal continuation. 
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FIG. 5. Minimax algorithm showing where GENERATE, UPDATE, RESTORE, and EVAL 
take place. Search carried out by computer follows path around tree. GENERATE = G, 
EVAL = E, UPDATE = U, and RESTORE = R .  Bold moves correspond to moves which are 
the best yet found at a node as the search progresses. 
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continuation under search. This implies that for a depth D search, D 
continuations must be kept of lengths D, D-1, 0-2,. . . ,1, and this is done in 
rows 1,2,3,. . . , D respectively of the PC array. 

In a depth-first minimax search of the tree shown in Fig. 1 and reproduced 
in Fig. 5, terminal nodes are scored from top (of the page) to bottom, or as is 
said, top-down. The figure shows the search path around the tree, beginning 
and ending at the root. Calls to subroutines are denoted in the figure by the 
letters G, U, R, and E. Scores are initially assigned to the terminal nodes and 
backed up to the non-terminal nodes as shown. The search path shows when 
these events take place. For example, by following the path to the first terminal 
node which has a score of 7, it can be seen that subroutines G, U, G, U, G, U, 
G, U, G, U, E were executed. Moves placed in the PC array are indicated by 
bold lines. The flowchart in Fig. 2 shows that a move is placed in the principal 
continuation array(UPDATEPR1NC is called) whenever a score is backed up 
from one node to its parent. Note that GENERATE was called 21 times, 
EVAL was called 20 times, and UPDATE and RESTORE were each called 
40 times. 

2.3 The Alpha-beta Algorithm 

A careful study of the minimax algorithm leads quickly to the realization 
that there are many paths within the search tree that need not be examined 
because they have no effect on the outcome of the search. This observation is 
formalized in the alpha-beta algorithm. Specifically, the alpha-beta algorithm 
says that once one move at a node refutes its predecessor, there is no need to 
investigate other moves at that node. In the following two paragraphs, a 
refutation is defined. 

Consider the search tree shown in Fig. 6a. Moves are denoted by letters near 
the end of the alphabet, nodes by letters near the beginning of the alphabet, 
and scores of nodes by integers. The top-down, depth-first search examines 
terminal nodes d, then e, and then f. After finding scores for d and e of 4 and 7 
respectively, the minimax algorithm assigns a score of 4 to b. The root score 
can now be bounded from below by 4. Next, node f is scored. Its score of 2 
essentially says that no matter what the score of g is, the score of c is at most 2, 
and given this knowledge, it would be an error to make move u when move u 
has already been found to lead to a score of 4. And since the score of g is 
irrelevant, there is no reason to search it. We say that move y is a refutation of 
move u. 

In the general case shown in Fig. 6b, a move x is a refutation of its 
predecessor move y if the score of node A at even (odd) ply is greater (less) than 
the score of node C also at any even (odd) ply higher in the tree. A cutoff of 
search can take place at node B once move x has been searched. The 
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Note: 

Move v is rehted by move y 
and thus there is no reason to - search move z. 

6 

M w e  f refutes move e because the score of node w (6) is less 
than the beckedup score of node z (8). 

(b) 

FIG. 6. (a) Example of alpha-beta search, and (b) an example of how deep cutoffs occur in 
alpha-beta search. In (a), move u is refuted by move y and thus there is no reason to search move 2. 

In (b), move f refutes move e because the score of node w (6) is less than the backed-up score of 
node z (8). 

programming modifications that must be made to the minimax algorithm 
shown in Fig. 2 to incorporate the alpha-beta algorithm are very minor. For a 
few lines of code, very large time savings can be achieved. The flowchart of the 
alpha-beta algorithm presented in Fig. 7 shows that code is added to the 
flowchart of the minimax algorithm of Fig. 2 in three places. First, two 
additional elements are necessary for the array SCORE, SCORE( -2), and 
SCORE( - l) ,  which are initially set to -a and +a, respectively. Second, 
before generating moves at each node, the score of that node’s grandparent is 
assigned to the node itself. This has the effect of assigning to each nonterminal 
node at even (odd) ply an initial score equal to the maximum score backed up 
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FIG. 7. Flowchart of alpha-beta algorithm. Shaded code has been added to the flowchart of 
the minimax algorithm in Fig. 2. 
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FIG. 8. Alpha-beta search of five-ply game tree showing cutoffs and moves placed in the 
principal continuation array. GENERATE = G, EVAL = E, UPDATE = U, RESTORE = R, 
and 8 = cutoff. Scores start at -co and + co. Moves in bold are placed in the PC array. 
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to any node at  even (odd) ply higher in the tree. Third, an ALPHA-BETA 
block is added in which the test for a refutation takes place. 

The reader might consider the larger tree shown in Fig. 8. Here an alpha- 
beta search is carried out on the same tree searched in Fig. 5 by the minimax 
search. Cutoffs of search are denoted by little circled crosses. Note that there 
are six cutoffs, although only the first, third, and fourth actually result in 
reducing the size of the tree searched. Note that EVAL was called 16 times, 
GENERATE was called 20 times, and UPDATE and RESTORE were each 
called 35 times. 

Slagle and Dixon (1969) showed that for a uniform tree of fanout F and 
depth D, the number of nodes scored by the alpha-beta algorithm must be at 
least 

2F”” - 1 
F(”+’)12 + F‘D-1)/2 - 1 

(for D even), 
(for D odd). 

Several studies have been carried out on the behavior of the alpha-beta 
algorithm on models of search trees in which the terminal nodes are assigned 
random scores. Knuth and Moore (1975) showed that if terminal nodes are 
assigned random numbers for scores, on average O(F2/log, F) of the F2 
terminal nodes in a uniform tree of depth 2 are scored. Newborn (1977b) later 
showed that for games in which terminal node scores were related to the scores 
of the branches, far fewer terminal node are scored on average. This seemed to 
better model chess trees where terminal node scores are dominated by material 
and the material at terminal nodes is dependent on the captures that take place 
in the search tree. It was shown that in a uniform tree of depth 2, on average 
O(F log, F) nodes must be scored. For deeper trees the question is still 
somewhat open for the branch-dependent case, but it could quite well be 
O(F@12) log, F) for trees of arbitrary depth D and fanout F. 

In real games, however, terminal nodes are not assigned random scores. 
Further, a certain amount of information can be gathered during the search 
that can be used to help order moves at  each node from best to worse. The 
efficiency of the alpha-beta algorithm improves as this ordering improves. In 
the limit, if moves are ordered from best to worst at each node, the alpha-beta 
search examines the minimum number of nodes. Several techniques are thus 
used to locally order moves. They are discussed in the following section. 

2.4 Move Generation, the Principal Continuation, 
and the Killer Heuristic 

GENERATE is a sophisticated algorithm in most chess programs. Pro- 
grams spend more time in this routine than in any other. It is primarily the 
generation of moves that special-purpose chess hardware is designed to 
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perform at high speeds. The exact order in which moves are generated and 
listed is crucial to the speed of the alpha-beta algorithm. It is very important 
that good moves are listed at the top of the list. With good move ordering, the 
number of refutations is maximized, and correspondingly the number of 
cutoffs. 

Move generation can be viewed as a two-step process: (1) generate a list of 
moves, and (2) order the list so that good moves are placed at the top. 
Programs integrate these two steps to some degree. For example, a move- 
generation algorithm can generate King moves last in the opening and 
middlegame, while generating them first in the endgame. What is needed are 
simple, quick, and reliable algorithms for identifying good moves. 

The simplest statistically good moves are captures, and most programs can 
determine very quickly whether moves are captures and place them at the top 
of the move list. Bettadapur (1986) showed that captures should be ordered 
from the capture of the biggest piece to the capture of the smallest piece for 
best results. Further, the capture of the last-moved piece of the opponent is 
often a particularly good capture and deserves special placement. Other good 
moves can be found in the principal continuation array (Akl and Newborn, 
1977) and in the killer array. 

The killer heuristic (Gillogly, 1972) is used by most chess programs to 
increase the efficiency of the alpha-beta algorithm. Essentially, moves found to 
be refutations are kept on a special list called the killer list. Each side has a list 
of its own. At each node in the search tree when moves are generated, this list is 
scanned and if one of these moves can be made, it is ordered to the top or near 
the top of the list of legal moves. Various strategies exist for saving killer moves 
and using them. By using killer moves, the number of cutoffs is higher than 
otherwise, and the overall efficiency of the alpha-beta algorithm improves. 

Schaeffer (1983) uses the history heuristic to help improve move ordering in 
his program SUN PHOENIX. This heuristic is a generalization of the killer 
heuristic. An array of 64 by 64 keeps track of all moves and their effectiveness. 
This array is used to provide information on the quality of moves as they are 
generated, using the same philosophy as the killer heuristic. That is, if a move 
is good in one position, there is a good chance that it is good in another. 

2.5 Pruning Techniques and Variable Depth 
Quiescence Search 

When chess programs were first developed they used forward pruning to 
reduce the effective branching factor at each node (Newell, Shaw, and Simon, 
1958). Programs used heuristics to eliminate a high percentage of the moves 
at each node, hoping that this would allow deeper search along more crucial 
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and relevant lines. However, forward pruning heuristics were not sufficiently 
dependable and the programs made horrible blunders. Gradually throughout 
the 1970s, forward pruning was eliminated from the most successful chess 
programs. 

While forward pruning has been unsuccessful, all the best programs carry 
out variable depth quiescence searches beyond the arbitrary value D M A X  set 
at the beginning of the search. In particular, moves that put the king in check 
usually require deeper search as do certain capturing moves. Slate and Atkin 
(1977) report that CHESS 4.9’s search tree contains about 50% of its nodes at 
search depths greater than D M A X ,  and they contend that this is a healthy 
balance. 

For the last year or so, DEEP THOUGHT 0.02 has been using the singular 
extension heuristic. This heuristic re-searches a move at a node after all other 
moves at that node are searched if every other move is found to lead to a 
loss of material. The re-search is done to a greater depth. Singular extensions 
cause highly forced lines to be searched more deeply than others, and ac- 
cording to Anantharaman et al. (1988), this accounts for a significant part of 
DEEP THOUGHT 0.02’s success. 

2.6 Transposition Tables 

When searching a chess tree containing millions of nodes, many positions 
are arrived at more than once as a result of a transposition of moves. For 
example, Fig. 9 depicts a partially-drawn tree rooted at the initial game 
position. Note that the sequence of moves E2E4, C7C5, D2D4 leads to the 
same position, say Q, as does the sequence of moves D2D4, C7C5, E2E4. In 
this case, identical positions result when the moves at the first and third levels 
of the tree are transposed. The five-move sequence E2E3, C7C6, E3E4, C6C5, 
D2D4 also leads to Q. Of course, so does the four-move sequence E2E4, C7C6, 
D2D4, C6C5, but in this latter case it is White’s turn to move and thus the 
positions cannot be considered the same. Positions can be considered identical 
only when, in addition to having pieces on identical squares, castling possi- 
bilities, en passant possibilities, and whose turn it is are identical. 

As the game progresses, a higher and higher percentage of moves transpose, 
especially King moves. In deep endgames, programs with transposition tables 
can often find principal continuations 20 plies long and sometimes longer. In 
Fig. 10, a very deep search is necessary to determine that White should play 
Kbl. Programs without transposition tables are unable to see how to proceed, 
while programs with transposition tables are able to do so in less than a 
minute. 

Suppose now that position Q in Fig. 9 had been reached via the first 
sequence E2E4, C7C5, D2D4 and had been assigned a score as a result of 
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FIG. 9. Partially drawn tree starting at initial position of the game. 

FIG. 10. te to move. 
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either scoring it (it would have been scored if the iteratively deepening search 
was on the third iteration) or searching beyond it and backing up a score to it. 
Then, when the second sequence D2D4, C7C5, E2E4 arrives at position Q, it is 
not necessary to search beyond Q or even score Q if the results of the first 
examination of Q were saved and provided sufficient information. This is what 
most of the leading chess programs do. Large transposition tables are used to 
save positions and information about them. When search arrives at each 
position, the transposition table is examined to see whether that position has 
been reached previously. If it has, and if the information saved about the 
position is sufficient (what constitutes sufficient information will be discussed 
shortly), then that position is considered to be a terminal position and assigned 
a score from the transposition table. Whenever search backs up to a position, 
the transposition table is search for a match and then the stored information is 
updated appropriately. 

More precisely, when search backs up from some position P, the alpha-beta 
algorithm has available 

1. The score of P which may be an exact value or which may be only an 

2. The length of the principal continuation rooted at P, denoted by LPC(P). 
3. The best move to make in P, denoted BM(P). 
4. P, itself, whose turn it is to move, whether en passant is possible, and 

upper or lower bound. 

castling possibilities. 

The transposition table is searched for a match with P. When found, if the 
new information gathered about P is better than that currently stored, the 
entry in the transposition table is updated appropriately. The improved in- 
formation may be a more precise score or a larger value for LPC(P). 

When search arrives at a position, say Y, the transposition table is searched 
for a match. If there is a match, then Y can be considered a terminal position 
and assigned the score which was saved in the table if 

1. The value of LPC(Y) saved in the table is greater than or equal to 

2. The score saved in the table entry is exact, or if not exact, the bound on 
the score is sufficient to cause the move leading to Y to refute its 
predecessor. 

DMAX - ply. 

If Y cannot be consided terminal, the move found best the last time Y was 
searched is available and can be searched first on this try, thus increasing the 
efficiency of the alpha-beta algorithm. 

Figure 11 illustrates how transposition tables can be used to reduce the size 
of an alpha-beta search. Assume a four-ply search is being carried out. 
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FIG. 11. A tree searched using a transposition table. 

Position A arises four times. When search of the first occurence of A has been 
completed, an upper bound of 35 is assigned to the score of A. When A is 
reached for the second time, this upper bound of 35 is enough to terminate 
search. The third time A is reached, the bound of 35 is insufficient to allow A to 
be considered a terminal position. Its successors must be searched. When they 
have been searched, a backed-up value of 32 is assigned to A, and move n is 
remembered as the best move to make. The fourth time A is reached, it is only 
at the first ply, in contrast with the third ply for each of the other three times. 
The value of LPC saved with A is too small to permit the score obtained 
previously for A at the third ply to be used to terminate search this time. If it 
were used to terminate search, that would mean that not all positions in the 
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FIG. 12. Flowchart of alpha-beta algorithm using transposition table. Shaded code has been 
added to the flowchart of Fig. 7. 

tree would have been searched to a depth of four plies, contrary to the original 
objective. Move n, however, is stored in the table entry as the best reply in 
position A, and as the search tree shows, this move is searched first this time. 
After the tree rooted at the fourth occurence of A has been searched, an exact 
value of 33 is determined for A. 

The flowchart of the alpha-beta algorithm shown in Fig. 7, modified to 
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handle a transposition table, is shown in Fig. 12. Additional code over and 
beyond that of Fig. 7 appears in four places. First, when each node is entered, it 
is checked to see whether it is in the transposition table and, if so, whether it 
can be considered a terminal node. Second, if this check gives an affirmative 
answer, then the node is assigned the terminal score found in the table. Third, 
when search backs up from a node, that node and the relevant information 
about that node is placed in the transposition table. This happens in two places 
in the flow table. 

In Fig. 13, the effects of using a transposition table on our ongoing five-ply 
tree are illustrated. Moves are assigned labels and it is arbitrarily assumed that 
moves that transpose lead to the same positions. That is, move sequence a-b-c 
leads to the same position as does the sequence c-b-a. In Fig. 13, three position 
were found in the transposition table with useful scores. In the case of the 
position resulting from move sequence w-c-a, the transposition table provided 
a score which permitted search to be terminated without searching the subtree 
rooted there as was necessary in Fig. 8. This also happened at the node at the 
end of the move sequence a-l-.f-c. Note that EVAL was called 10 times, 
GENERATE was called 16 times, UPDATE and RESTORE were each called 
28 times, and the transposition table gave usable scores for three nodes in 
the tree. 

Transposition tables were used in an experiment in machine learning by 
Slate (1987), perhaps the most significant work done in this interesting area. 
Only one year earlier, Skienna (1986) reviewed machine learning in computer 
chess, concluding that “with the exception of rote learning in the opening 
book, few results have trickled into competitive programs.” Slate used a trans- 
position table to store special positions found during the course of a game 
and to retrieve these positions, when appropriate, in future games. More 
specifically, positions for which the score changed on the deeper iterations 
were saved. These positions were considered troublesome for the program. 
Relative to the total number of positions, these troublesome positions repre- 
sented a very small percentage. The program might, for example, save in the 
transposition table a troublesome position which was searched eight plies 
deep on the twelfth move of the game. Later, in another game on, say, the 
eighth move, this position might be found at the fourth level in the search 
tree, and the information learned in previous games and saved in the trans- 
position table would effectively give that move a 12-ply continuation. 

Transposition tables usually have 2k entries, where k ranges from 12 to 24. 
Each entry can be several words, depending on the word size of the computer 
and the information that the programmer wishes to save with each position. 
The number of entries in a transposition table is far less than the number of 
chess positions. Positions are assigned locations in the transposition table 
by a hash function. A hash function should have two properties: (1) it should 
randomly spread positions throughout the transposition table, and (2) it 
should be easy to compute. 
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FIG. 13. Ongoing example: five-ply search showing alpha-beta and use of the transposition 
table. EVAL = E, GENERATE = G ,  UPDATE = U, RESTORE = R, and TRANS. TABLE 
HIT = T. 
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Each position P is assigned a b-bit hash code H(P) by a hash function, and 
then the information about P is stored in or retrieved from the transposition 
table in the location given by the least significant k bits of H(P). The number of 
bits b in H(P), of course, must be at least equal to k. During the course of 
searching a tree, two different positions may have identical values for these k 
bits assigned by the hash function, a situation that results in a clash, whereby 
two different positions are assigned to the same memory location. To minimize 
the effect of this type of error, extra information describing a position can 
be kept with each table entry. If this extra information were a complete 
description of the position, a clash could always be resolved correctly. 
However, this is a lot of information. More often, additional bits from the hash 
code are stored with the table entry as a key. A hashing error can still occur: two 
different positions can be assigned the same table entry and the same key. Let m 
denote the number of bits in the key in the following discussion. It should 
be obvious that the greater the number of bits in the key, the smaller the 
probability of a hashing error. 

Programs have various strategies for resolving what to do when an attempt 
is made to store a position at a location already occupied by another position 
with a different key. The program can attempt to store the position at the next 
location. If that location is found to be occupied also, the program can give up 
or it can eliminate the older entry of the two that it just examined. Most 
programs try more than once to find an unoccupied location; CRAY BLITZ 
tries eight times. Some programs have frequency-of-hits counts saved with 
each table entry, and entries with low frequency counts are thrown out of the 
table first when a choice must be made. 

Let us assume that a computer with a 32-bit word size is being used by a 
chess program, that there are 2’’ words of memory (4 megawords) available 
for a transposition table, and that each table entry requires two 32-bit words. 
The table can thus hold information about 22’ positions. In the first word of 
each table entry, 12 bits are used to denote the best move to make in the 
position, 12 bits to denote the score assigned to the position, two bits to denote 
whether the score is an upper bound, a lower bound or an exact value, and six 
bits to denote the level of the position. The 32 bits of the second word are used 
to store the hash key assigned to the position. This is shown in Fig. 14. 

CRAY BLITZ, the current World Champion among computer programs, is 
described in Nelson (1985), Hyatt et al. (1985), and Hyatt (1985). The program 
uses a six million word transposition table with 64 bits per word. Each table 
entry requires two words of memory, with the key consuming 40 bits. BEBE 
uses a home-brewed transposition table with 96-bit words. It can hash up to 
256K positions with each position requiring one word: 32 bits for a key, 16 bits 
for the LPC, 16 bits for the move, 16 bits for a lower bound on the score, and 16 
bits for an upper bound. 
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FIG. 14. Data structure for entry in the transposition table. 

01 10 10 10 11 101 001 
0 

0 

0 

1101000101010001 

01 1 1 1 10 101 10101 1 
0 

0 

0 

10000 10 10 100 100 1 
0 

0 

0 

00100011 11010101 
0 

0 

0 

WKlAl I 0110101011101001 I 

I 

wPIA2 1101011100010101 

wPm2 1000101001001011 *I 
BIC; 1 0100101~100111 1 
BWGS 110010010101OOO1 

BNIC7 I 0010010111100110 
0 0 

BPIH6 I 1110100101000010 I 
I 

Huh code for this position = 

1101000101010001 

Q 0010001111010101 

Q 1101011100010101 

Q 1000101001001011 

@ 0100101000100111 

e 11101001010o0O10 
= 0000110010111111 

@) Encoded chus position 

(a) PWSqnars Tabb 

FIG. 15. The assignment of a hash code to a chess position. 
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Most programs use a hash function similar to the one described by Zobrist 
(1970). The hash function makes use of a piece-square table of 12 (pieces) by 64 
(squares) random numbers each of k + rn bits. A position is then assigned a 
hash code by exclusive-or’ing the random numbers assigned to appropriate 
piece/squares. For example, suppose random numbers are assigned to the 
piece/squares as shown in Fig. 15a. Then the position shown in Fig. 15b is 
assigned a hash code as shown. To take into account that positions are 
different if castling opportunities are different, if en passant opportunities are 
different, or even if whose turn it is is different, extra entries can be included in 
the piece-square table. 

The beauty of this hash function is the ease in computing the hash code of 
a position that results by making a move in a given position. One removes 
a piece from one square by exclusive-or’ing the random number of the 
corresponding piece-square with the hash code for the original position. The 
piece is then placed on its destination square by exclusive-or’ing the modified 
hash code with the new piece-square. Small variations on this idea are 
necessary for capturing moves, queening moves, en passant capturing moves, 
and castling moves. Figure 16 shows how to obtain the new hash code for 
position that results when C3D3 is played in the position in Fig. 15b. 

Hash code for successor position 
= 0000110010111111 

Hash code for new position when 
move C3D3 is made 

=0000110010111111 

Q 1101000101010001 

e 0111110101101011 
= 1010000010000111 

FIG. 16. Illustration of how to obtain a hash code for successor position of Q for the move 
C3D3. 
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Hash tables are also used in chess programs for hashing scores for pawn 
structure and King safety. These hash tables can be much smaller than those 
for transposition tables. Hit rates observed by Nelson (1985) were quite high 
resulting in significant savings in time when compared with the alternative of 
recalculating the value of these factors at each position. 

2.7 Iterative Deepening 

One of the problems with the early chess programs was deciding exactly 
how deep to search on each move. It turned out to be a very difficult problem. 
If the search depth was too shallow, the program made moves too quickly, 
wasting valuable time. If the search depth was too great, the program might 
take far more time than reasonable. In the early programs, if the depth setting 
was too great, some moves at the root of the tree might not get searched at all; 
the program would stop after some arbitrary time even if it had not searched 
all first-level moves. 

To get around this problem, iteratively deepening searches became popular 
in the middle 1970s (see Slate and Atkin, 1977). It might be noted that more 
recently the technique is finding applicability in other problems in artificial 
intelligence, as discussed by Korf (1985) and Stickel and Tyson (1985). 
Essentially, rather than carry out one depth-first search to some arbitrarily 
predetermined depth, a sequence of deeper and deeper depth-first searches are 
carried out, beginning with a depth of one, then two, and continuing until 
times runs out. Each iteration finds a principal continuation which is searched 
first on the next iteration. Each iteration also enters many positions in the 
transposition table which are used on subsequent iterations. The net result is 
an improvement in the efficiency of the alpha-beta algorithm, more than com- 
pensating for the time required to carry out the extra shallower searches. More 
importantly, iterative deepening allows search to stop at any time with no 
serious negative consequences. At worst, when stopping in the middle of the 
nth iteration, the computer has available the best continuation from the (n-1)th 
iteration. When using iterative deepening, the search is balanced, i.e., every 
move receives almost equal treatment. Stopping in the middle of an iteration 
will miss the best move on that iteration only if the best move is ordered below 
the stopping move on that final iteration. This happens when this best move 
was also not found best or good enough on the penultimate iteration to 
warrant being ordered above the stopping move on the final iteration. 

2.8 Windows 

In the late 1970s, windows began to be used in chess programs in conjunction 
with iterative deepening. Pearl (1980) describes one windowing scheme used 
by his Scout search algorithm. Programs use windows in different ways, but 
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what follows is typical. At the beginning of each iteration, an expected root 
score ( R S )  is guessed, usually the root score found by the previous iteration. 
Then on the current iteration, a narrow search window is placed about RS and 
during the course of the search, continuations that return scores not inside the 
window are cut off. The width of the window is typically two pawns, although 
some programs use narrower windows. In practice, variables SCORE( - 2) 
and SCORE( - 1) are used to keep track of these limits. At the beginning of 
each iteration, SCORE( -2) and SCORE( - 1) are initialized to RS - P and 
RS + P, respectively, where P is the value assigned to a pawn. The window is 
said to be initialized to ( R S  - P, RS + P). If the guess turns out to be 
correct, that is, if a move is found with a score within the window when the 
iteration terminates, search goes on to the next iteration with a revised window 
again one pawn wide centered about the most recently obtained root score. If 
no move is found with a score within the window, search is said to fail. Search 
fails high if the score returned is above the window, or low if the score returned 
is below the window. If search fails, the iteration must be repeated to find the 
true root score and principal continuation. On this second pass, the window is 
determined as follows: If search failed high, the window is set to (RS + P, 
+ 0 0 )  to ensure that no second failure will occur. If it failed low, the window 
is set to ( - 00, RS - P ) .  In general, the narrower the window, the faster the 
search progresses, but the greater the chance of failure. When windows are 
used, each iteration should be viewed as consisting of two passes, the second 
pass being unnecessary if the first is successful. The flowchart for this process is 
shown in Fig. 17. 

When using a window of (0,8) to search our ongoing example, one 
additional node is cut off as shown in Fig. 18. The search terminates with 
success, finding a score of 4 for the root, within the limits of the window. Note 
that EVAL is called 10 times, GENERATE is called 16 times, and UPDATE 
and RESTORE are each called 27 times. 

There are some improvements that can be made to the windowing strategy 
described above. First, if some move at the root causes search to fail high on 
the first pass, search can be stopped immediately and a second pass started 
with a window ( R S  + P, +a). More effectively, the window can be reset to 
( R S  + P,RS + P + 1) and the first pass allowed to continue. If a second 
move at the root causes search to fail high again, a second pass becomes 
necessary to determine which move is best. If another high failure does not 
occur, the best move is known at the end of the first pass although only a lower 
bound on its score is available. When a second pass is necessary due to two 
high failures, a re-search is required only of those two moves that caused 
search to fail high and of those moves ordered lower than the second of these 
two moves. Generally, it is not necessary to determine the precise score, and 
thus gambling that the search will not fail high twice is more effective than 
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FIG. 17. Flowchart of iteratively deepening search which uses a one-pawn window. 

initiating a second pass after one failure. Thompson has used this idea in 
BELLE for a number of years and is given credit for it by Marsland and 
Popowich (1985). The process is illustrated in Fig. 19. Suppose moves M1, 
M2,. . ., M6 have minimax scores of +3, + 18, + 15, +29, - 14, and -2, 
respectively. The first pass arbitrarily uses a window of ( -  1, + 16). Shaded 
regions denote subtrees searched. On the first pass, search fails high for the first 
time when searching M2. The window is raised to (16, 17) for the remaining 
moves. M3’s subtree, with a score below + 16, fails low. When searching M4, 
search fails high for the second time, causing the first pass to terminate. On the 
second pass, it is not necessary to re-search moves M1 and M3. Futhermore, 
M4 is searched first and then M2, since M4 failed with a higher score and, 
knowing only this, is more likely to be the better move. Lastly, M5 and M6 
must be searched. 

The windowing schemes described above carry out researches only at the 
root of the tree. More sophisticated windowing strategies that allow setting 
narrow windows and carrying out re-searches of subtrees at all nodes in the 
tree are used by a number of programs. These recursive procedures are 
described in papers by Fish burn ( 198 11, Pearl ( 1980), and Reinfeld et al. (1 985). 
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CUTOFF CAUSED 

FIG. 18. Five-ply search tree showing alpha-beta cutoffs, effect of transposition table, and 
window cutoffs. Search window of (0.8) was used. 
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These moves are refuted 
and an exact score for 
them is not calculated 

FIG. 19. Two-pass alpha-beta search using windows. 

2.9 Parallel Search Techniques 

A number of chess programs currently run on multiprocessors. Their 
objective is to gain an N-fold speedup using N processors. While at first glance 
this may seem easy to accomplish, in fact, it has been impossible thus far. 
Nevertheless, impressive results have been recently obtained by WAYCOOL 
when running on a large NCUBE multiprocessing machine. Felton and Otto 
(1988) report that they have attained a speedup of 101 on a 256-processor 
NCUBE and a speedup of 170 on a 5 12-processor NCUBE. 

In 1981, OSTRICH (Newborn, 1982) became the first chess program to 
compete in a major tournament using a multiprocessing system-five Data 
General 16-bit computers connected together by a DG communications 
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package. The system used to principal variation splitting algorithm which is 
described shortly. In subsequent years, eight DG computers were used. 

In 1985, CRAY BLITZ (Hyatt, 1985) was moved onto the four-processor 
Cray XMP computer, and its programmers also implemented the principal 
variation splitting algorithm. Later SUN PHOENIX (Schaeffer, 1986) was 
programmed to run on a network of SUN 3 computers. Again the PVSA was 
implemented with some variations. Ron Nelson of Fidelity International 
participated with CHESS CHALLENGER X in the ACM’s 17th NACCC in 
1986 using 30 microcomputers. WAYCOOL, however, has the distinction of 
using the most processors to play a game of chess in a major tournament, 
using 256 processors when participating in the ACM’s 19th North American 
Computer Chess Championship. 

The principal variation splitting algorithm is a recursive procedure which 
is based on iterative deepening (Marsland and Campbell, 1982; Newborn, 
1985; Marsland and Popowich, 1985; Marsland et al., 1985). It is illustrated 
in Fig. 20. On the nth iteration, all processors follow the principal variation 
found on the (n - 1)th iteration to the (n - 1)th level. The tree is dynamically 
divided up there among all processors. The processors independently search 
all the moves at that node, and when they finish a final score is determined 
for the node. Search then backs up one level, where again moves are dynam- 
ically divided up and this time two-level subtrees are searched. Eventually, 
moves at the root are dynamically divided up and the subtrees rooted 
there are searched. Although interprocessor communication is not particu- 
larly a problem, there is considerable waiting time by processors that have 
no work to do. The scheduling of moves is not sufficiently fine-grained, 
especially at the root. The granularity problem becomes more pronounced 
as the ratio of the number of processors to the number of root moves in- 
creases. Attempts by Schaeffer (1986) and Felton and Otto (1988) to remedy 
the inefficiency of the PVSA involve modifying the algorithm to allow more 
flexible decomposition rules. 

Newborn (1988) recently proposed an alternative to the PVSA. The PVSA 
works well when moves are well-ordered, but in complicated positions where 
several moves look equally good, the PVSA performs its poorest. A simple 
alternative called unsynchronized iteratively deepening parallel alpha-beta 
search was used by OSTRICH beginning in 1985. While on average it does not 
provide the speedup of the PVSA, it performs quite well in complicated 
positions. The algorithm works as follows. Carry out two iterations to develop 
an ordering of root moves, a root score, and a search window for subsequent 
iterations. Next, distribute the root moves to the processors so that they all get 
an equal number (maybe differing by one). Then, beginning on the third 
iteration, have each processor set the narrow window about the expected root 
score (based on information from the first two iterations) and have them 
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2. Moves are dynamically divided up and searched at node p 

3. A score is backed up to pn-1 when search of all moves is done. 

1. All processors first search the principal continuation 
determined by the lest iteration to node pn-l  ~ 

dynamically distributed 
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5 .  A score is backed up to 
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Eventually a score is backed up to the root of the tree 
h r  move m 1. The remaining moves at the root are 
then dvnamicallv divided UD and searched. 

FIG. 20. Partially drawn tree showing how the PVSA divides up search of the tree on the nth 
iteration. 

proceed to carry out a sequence of unsynchronized iteratively deepening 
searches. The use of narrow windows partially compensates for the major 
relative shortcoming of the algorithm, i.e., not having a provisional root score 
available as quickly as does the PVSA. 

2.10 Special-purpose Hardware 

Created in the late 1970s, BELLE (Condon and Thompson, 1982, 1983) 
serves as the pioneering effort in chess hardware. Three prototypes were built. 
The first participated in the 1977 World Championship in Toronto. The third 
won the 1980 World Championship in Linz, Austria. It used several hundred 
integrated circuits allowing BELLE to search trees at rates in excess of 100,OOO 
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nodes per second. BEBE also used special-purpose hardware when participat- 
ing in the 1980 World Championship. BEBE uses a pipeline approach to 
generating moves and is able to search about 20,000 nodes/second. 

More recently, a group of graduate students at  Carnegie-Mellon University 
under the supervision of Hans Berliner has developed a hardware move 
generator and special-purpose circuitry to score positions quickly (Berliner 
and Ebeling, 1986). Carl Ebeling and Andy Palay (1984) did most of the circuit 
design. Their program, HITECH, searches approximately 200,000 nodes/ 
second. It won the 1987 and 1988 Pennsylvania State Championships, playing 
against a strong group of human opponents and earning a performance rating 
of approximately 2400. 

A second group at Carnegie-Mellon, incorporating the ideas in BELLE and 
to a lesser extent in HITECH, has developed the strongest program to date. 
Initially named CHIPTEST-M, and then renamed DEEP THOUGHT 0.02 in 
1988, it runs on a SUN 3 workstation that has a VLSI move generator 
attached, the first move generator using VLSI technology. The system, 
developed by Feng-hsiung Hsu (see Hsu, 1986) along with fellow graduate 
students Thomas Anantharaman, Murray Campbell, Mike Browne, and 
Andreas Nowatzyk won the ACM’s 18th and 19th North American Computer 
Chess Championships. 

FIG. 21. DEEP THOUGHT 0.02’s programmer Feng-hsiung Hsu watches Fidelity 
International’s experimental Chess Challenger during their recent game at the ACM’s 19th North 
American Computer Chess Championship. 
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2.11 Time Control and Thinking on the Opponent’s Time 

Time-control algorithms are crucial to the success of chess programs. The 
approach of CRAY BLITZ is described in Hyatt (1984). In tournament play, 
programs are usually allotted two hours to make the first 40 moves and then 
an additional hour for the each 20 moves thereafter. This averages three 
minutes per move. Computers are programmed to take all of this allotted time. 
For the first few moves, when moves are found in their opening books, moves 
are made in several seconds. This saved time gets stored up and used later in 
the game. Most programs have algorithms that force them to take extra time 
on the first move out of book. They also take extra time when they find their 
scoring function begins to go negative, or returns a score below expectations. 
Some are programmed to take less time on certain obvious moves, such as 
Queen recaptures. Most programs rarely calculate for more than five or six 
minutes on a move and rarely for less than one minute (unless they guessed 
their opponent’s last move). 

Chess programs think about their next move while their opponents are 
working on their current move. Essentially, they use the principal contin- 
uation found on their previous move, assume the opponent will make the sec- 
ond move on that continuation, and then proceed to calculate a reply to 

FIG. 22. Robert Hyatt, author of CRAY BLITZ, the current world champion. 
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the opponent’s anticipated move. If they guess incorrectly, they forget what 
they have done so far and start over. If they guess correctly, they are then 
in a position to respond immediately to the opponent’s move or to continue 
calculating a while longer. The good programs guess their opponent’s move 
correctly approximately 50% of the time, giving the program the same 
advantageas running on a.computer 50% faster than the one they are run- 
ning on. 

3. Opening Books 

Opening books in the better programs contain as many as several hundred 
thousand positions. BELLE has the largest book, including most of Modern 
Chess Openings along with countless other lines as well. Most programs that 
compete in the major tournaments have at least several thousand positions. 
Opening books help prevent programs from playing openings poorly. 
Opening theory is very complex, and the scoring functions of most chess 
programs are not sophisticated enough to avoid greedy play, which can often 
lead to trouble in the opening. When leaving their opening books, programs 
often play awkwardly because the book lines leave the programs in positions 
for which the scoring function is not suited. Great care must be taken to avoid 
this effect. In particular, many lines used by humans involve a sacrifice of a 
pawn to gain faster piece development. Programs often are not able to  take 
advantage of the faster development and fail ever to recover from the sacrifice. 
This may be seen in the game in Section 12. 

4. Endgame Play and Endgame Databases 

There have been a number of studies specifically on endgame play. There 
are two general approaches. One is to study endgames in an attempt to 
understand how expert knowledge can be synthesized and then used. The 
second approach is at the other extreme: the development of large databases 
on endgame positions. These databases permit perfect play, although there is 
no understanding of the principles required to force the win (or draw). 

Michie has led much of the effort to study endgame play in the context of 
expert systems. He is interested in the process of developing rules that allow 
perfect play if possible, although he settles for strong play if perfect play can- 
not be achieved. Michie and Bratko (1987) describe rules that can be used to 
guide play in a KBBKN endgame. 

Newborn (1977a) developed a King and pawn endgame program called 
PEASANT, and studied its effectiveness 0; a set of positions found in Fine 
(1941). PEASANT showed that a brute-force search using a simple scoring 
function could solve a good percentage of the test problems. The effectiveness 
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of the program would have been much greater if it had had transposition 
tables. 

Thompson (1986) has been the leader in developing databases that allow 
perfect play in certain endgames. His foremost work has been on the “five- 
piece endgames,” the KBBKN, the KQPKQ, and the KRPKR endgames. In 
1977, Thompson came to the world championship in Toronto with a program 
that played perfect KQKR endgames and took on some of the best players in 
North America. The players were surprised at how badly they played, being 
unable to win when they were sure they could. Others have worked on 
developing endgame databases, most notably KRPKR by Arlazarov and 
Futer (1978), and KQPKQ by Komissarchik and Futer (1986). 

The approach of those building databases is to do so by retrograde analysis 
as described by Knuth (1973) in the context of the “military game.” Starting 
with positions in which a win exists (either a mate or a move that transforms 
the position to a won subgame), one works backward, generating predecessor 
positions. Assuming each side will try to move optimally, each position is 
assigned a value of win, loss, or draw, and the number of moves to that final 
outcome. 

5. A Brief History of Computer Chess Tournament Play 

In 1966, the first recorded match between chess programs took place when a 
chess program developed at MIT by Alan Kotok (1962) and one developed at 
the Institute of Theoretical and Experimental Physics in Moscow (see 
Adelson-Velsky et al., 1970, and Adelson-Velsky et al., 1988) played a four- 
game match. The Soviet program won two games and drew two others. The 
games were played by telegraphing moves back and forth across the Atlantic. 
The match lasted for the better part of a year. In the two games that it won, the 
Soviet program was searching all moves to a depth of five plies, while in the 
two games it drew, it was searching all moves to a depth of only three plies. 
Kotok’s program was searching to a depth of four plies in both games, but 
using unreliable forward pruning. 

In 1968, MAC HACK (Greenblatt et al., 1967) became the first chess 
program that competed in a human tournament. It turned in a respectable 
performance and earned a rating in the 1400s-the rating of a good high- 
school player with one year of serious play. 

Two years later in New York, the first of the ACM’s tournaments was held 
with six programs participating. Every year since then, the ACM has hosted 
what was first called the United States Computer Chess Championship, and 
then renamed the ACM’s North American Computer Chess Championship. 
In 1974, the first World Championship was held in Stockholm, Sweden, as part 
of the IFIP Congress. That tournament was won by KAISSA, the Soviet 
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successor of the ITEP program. Since 1974, Soviet programs have been unable 
to compete successfully with those in Western Europe and North America. 
This is mainly due to the difficulty of getting computing time and facilities. In 
the last year, however, the Soviets held a national microcomputer champion- 
ship, indicating renewed interest on their part. 

The results of the World Championships, the ACM Championships, and 
the World Microcomputer Championships are described in a number of 
books, including Newborn (1975), Frey (1977), Levy (1976), and Levy and 
Newborn (1982). The first- and second-place finishers in these events are given 
in Table I. In addition to the tournaments shown, there have been a number of 
major tournaments in Europe, in particular, The Netherlands, where 
computer chess is especially popular. 

Programs for microcomputers appeared in the late 1970s. The husband and 
wife team of Dan and Kathe Spracklen were the leading pioneers. Offsprings 
of their first program SARGON are the most widely used, commercially 
available software packages for playing chess. In recent years, they have been 
developing programs for Fidelity International, Inc., a Miami, Florida-based 
company. Their programs are used in Fidelity’s Chess Challenger series 
products, the leading chess machine in North America. MEPHISTO, 
currently the best of the microcomputers by a very narrow margin over 
Fidelity’s best products, was developed by Richard Lang for West Germany’s 
Hegener & Glaser, and it is the most popular chess machine in Europe. David 
Kittenger’s programs used by NOVAG are also quite strong, as are David 
Levy’s programs developed by Intelligent Chess Software in London. The top- 
line commercial products are playing at the Master level, and soon will be 
playing at the Grandmaster level. 

6. The Rating of Chess Players 

The best chess players in the world are given ratings and titles by FIDE, the 
Federation Internationale des Echecs. Awarded are the titles of International 
Master and International Grandmaster. A rating of approximately 2500 and 
over corresponds to an International Grandmaster, while a rating of 
approximately 2300 and over corresponds to an International Master. There 
are currently approximately about 200 International Grandmasters and loo0 
International Masters in active competition. 

In the United States, the United States Chess Federation gives ratings to its 
players that correspond closely, but not exactly, to those given by FIDE. 
USCF ratings are approximately 100 points higher. In the USCF, a Senior 
Master is rated over 2400 and a Master is rated over 2200. Other nations also 
rate chess players with the objective of giving ratings that correspond closely 
to those given by FIDE, as well as giving ratings to players of lesser abilities. In 
the United States, in addition to Senior Masters and Masters, players are also 



TABLE I 

RFSULTS OF MAJOR COMPUTER CHESS TOURNAMENTS: WORLD CHAMPIONSHIPS, NACCC, AND WORLD 
MICROCOMPUTER CHAMPIONSHIPS. 

World Championships 

Year City Winner Runner-up 

1974 Stockholm KAISSA; Donskoy, Arlazarov, ICL 4/70 
1977 Toronto CHESS 4.6; Slate, Atkin, CDC Cyber 176 

1980 Liru BELLE; Thompson, Condon, PDP 11/23 

1983 New York CRAY BLITZ; Hyatt, Gower, Nelson, 

1986 Cologne CRAY BLITZ; Hyatt, Gower, Nelson, 

with chess circuitry 

Cray XMP 48 

Cray XMP 

~~ ~ ~ 

CHESS 4.0; Slate, Atkin, CDC 6600 
DUCHESS; Truscott, Wright, Jensen, IBM 

3701165 
CHAOS; Alexander, Swartz, Berman 

OKede, Amdahl47O/V8 
BEBE; Scherzer, Chess engine 

HITECH; Berliner, et ol., SUN workstation 
with chess circuitry 

ACM’s North American Computer Chess Championships 

Year City Winner 

I970 New York CHESS 3.0; Slate, Atkin, Gorlen, CDC 6400 

1971 Chicago CHESS 3.5; Slate, Atkin, Gorlen, CDC 6400 
1972 Boston CHESS 3.6; Slate, Atkin, Gorlen, CDC 6400 
1973 Atlanta CHESS 4.0 Slate, Atkin, Gorlen, CDC 6400 
1974 San Diego RIBBIT; Hansen, Crook, Parry, 

Honeywell 6050 

Runner-up 

DALY CHESS PROGRAM; Daly, King 

TECH; Gillogly, PDP 10 
OSTRICH; Arnold, Newborn, DG Supernova 
TECH 11; Baisley, PDP 10 
CHESS 4.0; Slate, Atkin, CMJ 6400 

Varian 620/i 



1975 

1976 

1977 

1978 

1979 

1980 

1981 

1982 

1983 

1984 

1985 

Minneapolis 

Houston 

Seattle 

Washington 

Detroit 

Nashville BELLE; Thompson, Condon, PDP 11/70 CHAOS; Alexander, OKeefe, Swartz, 

Los Angeles BELLE; Thompson, Condon, PDP 11/23 NUCHESS; Blanchard, Slate, 

Dallas 

Not held as the ACMs North American Computer Chess Championship that year but as the 
Fourth World Championship. See information above on this championship. 
San Fran. CRAY BLITZ; Hyatt, Gower, Nelson, 

CHESS 4.4; Slate, Atkin, CDC Cyber 175 

CHESS 4.5; Slate, Atkin, CDC Cyber 176 

CHESS 4.6; Slate, Atkin, CDC Cyber 176 

BELLE; Thompson, Condon, PDP 11/70 

CHESS 4.9; Slate, Atkin, CDC Cyber 176 

TREEFROG; Hansen, Calnek, Crook, 

CHAOS; Swartz, Ruben, Winograd, Berman, 

DUCHESS; Truscott, Wright, Jensen. IBM 

CHESS 4.7; Slate, Atkin, CDC Cyber 176 

BELLE; Thompson, Condon, PDP 11/70 

Honeywell 6080 

Toikka, Alexander, Amdahl470 

3701168 

with chess hardware 

with chess hardware 

with chess hardware Berman, Amdahl470 

with chess hardware 

with chess hardware 

CDC Cyber 176 
BELLE; Thompson, Condon, PDP 11/23 CRAY BLITZ; Hyatt, Gower, Nelson, Cray 1 

BEBE; Scherzer, Chess Engine, and 
Cray XMP/4 FIDELITY EXPERIMENTAL; Spracklen, 

Spracklen, Fidelity machine 
Denver HITECH; Ebeling, Berliner, Goetsch, BEBE; Scherzer, Chess engine 

Palay, Campbell, Slomer, SUN with 
chess hardware 

- 
(continues) 
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TABLE 1 (Continued) 

ACM’s North American Computer Chess Championships 

Year City Winner Runner-up 

1986 Dallas BELLE; Thompson, Condon, PDP 11/23 LACHEX, Wendroff, Cray X-MP 

1987 Dallas CHIPTEST-M; Anantharaman, Hsu, SUN PHOENIX, Schaeffer, Olaffson, 
with chess hardware 

Campbell, SUN 3 with VLSI chess 
hardware 

Browne, Campbell, Hsu, Nowatzyk, 
SUN 3 with VLSI chess hardware 

20 SUN 3s 

1988 Orlando DEEP THOUGHT 0.02, Anantharaman, CHESS CHALLENGER X, Spracklen, 
Spracklen, Nelson, Fidelity machine 

World Microcomputer Championships 

Year City Winner Runner-up 

1980 London CHESS CHALLENGER BORIS EXPERIMENTAL 
198 1 Travemunde FIDELITY X CHESS CHAMPION MARK V 
1983 Budapest ELITE A/S MEPHISTO X 
1984 Glasgow 
1985 Amsterdam MEPHISTO AMSTERDAM I MEPHISTO AMSTERDAM I1 
1986 Dallas MEPHISTO DALLAS 3 FIDELITY “2533” 
1987 Rome MEPHISTO CYRUS 68K 
1988 Almeria MEPHISTO CHESS CHALLENGER 

Four-way tie: ELITE X, MEPHISTO SjX, PRINCHESS, PSION CHESS 
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TABLE JI 

RATING OF HUMAN CHESS PLAYERS. 

Estimated number of active players 
Class USCF Rating Range in the world in this class 

Kasparov, Karpov - 2800 
Senior Master 2400+ 
Master 2200-2499 
Expert 2000- 2 1 99 
Class A 1800- I999 
Class B 1600 - 1 799 
Class C 1400-1599 

2 
400 

4Ooo 
40,000 

300,000 
3,000,000 

20,000,000 

classed as being Experts, Class A, Class B, and Class C. Other countries have 
similar categories. Rating ranges are shown in Table I1 along with the number 
of players worldwide estimated to be in each class. 

7. The Relation Between Computer Speed and 
Program Strength 

For anyone who has ever developed a chess program, computer speed is of 
paramount concern. Faster computers play better chess. How much faster has 
been a question for debate since chess programs were first observed in action. 
This writer (Newborn, 1978, 1979) suggested, based on observations of 
programs that participated in major tournaments, that over a wide range of 
ratings, performance seems to improve by about 100 points for every doubling 
of speed. Since the effective average branching factor of the chess tree is about 
five or six, this means that each additional level of search improves play by just 
somewhat over 200 points. Thompson carried out experiments with BELLE 
shortly thereafter and confirmed these results (Condon and Thompson, 1983; 
Thompson, 1982). He had seven different versions of BELLE-BELLE(3), 
BELLE(4), . . . , BELLE(9)-play 20 game matches against one another and he 
tabulated the results. The only difference between the seven versions was the 
depth to which they were set to search: BELLE(i) searched to a depth of i 
levels. The data obtained by Thompson supported Newborn's 100-point 
hypothesis for ratings between approximately 1300 and 2000, but the rate of 
improvement dropped off for higher levels of play. Because of the constraint 
of time, Thompson carried out his experiment only to search depths of nine 
plies. Greater search depths, while of particular interest, would have taken 
large amounts of time to play the 20 game matches. 
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Subsequently, Newborn (1 985) modified his earlier observations in an 
attempt to reconcile them with Thompson’s experimental data. He studied sets 
of random positions, observing the rate at which programs found improved 
principal continuations for these positions as search depths ranged from three 
to 12 plies. He presented a hypothesis that correlated well with Thompson’s 
results over search depths ranging from three to nine and, in addition, allowed 
one to extrapolate Thompson’s results to greater search depths. As search 
depths increase, Newborn found that a program is gradually less likely to find 
a better root move than it currently has found, and he observed that this rate 
correlated closely with rating improvements observed in the range considered 
by Thompson. He hypothesized that over all search depths, the rate at which 
the principal continuation is found to change when searching deeper 
correlates directly with the rating improvement. Thus it is not necessary to 
play 20 game matches with BELLE( lo), BELLE(1 l), . . . to determine the 
ratings of these versions of BELLE. These matches would take great amounts 
of time with present technology. One can simply test BELLE on a reasonable 
variety of positions and observe the rate at which the principal continuation 
changes with increasing search depth. This change will correlate with the 
rating improvement. 

8. On the Chess Skill of Chess Programmers 

Early in the development of chess programs, some felt that strong chess 
players were required to write successful chess programs. However, history has 
shown this not to be the case. Most of the best chess programs have been 
written by individuals who are not strong chess players. Furthermore, the 
programs that they developed turned out to play stronger, sometimes much 
stronger, than they themselves. Hans Berliner, former World Correspondence 
Chess Champion is a major exception. Berliner, a strong Master, has devel- 
oped a program that at  this time is also a strong Master. Berliner, however, 
feels that he is capable of developing a still stronger program. Generally, 
several individuals have been involved in developing each program, and often 
one or more of them is a strong player, but not usually the principal one. 
Shown in Table 111 is a listing of several prominent programs and approxi- 
mate ratings of their main programmer as estimated by this writer. The 
ratings are correct to within approximately 100 points. 

Good players, being perfectionist, often hamper the early development of 
chess programs unless they also have a programmer’s mentality. There are a 
million decisions that have to be made to launch a chess program, and exactly 
which approach is best is not clear. For example, the board can be represented 
as an 8 x 8 array, a 9 x 9 array or even a 10 x 10 array. Each representation 
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TABLE I11 

RATINGS OF CHIS PROGRAMS AND THEIR PRINCIPAL PROGRAMMERS. 

Program Estimated Rating Year Principal author Estimated rating 

DEEP THOUGHT 0.02 2580 1988 Hsu 1200 
HITECH 2350 1987 Berliner 2400 
CRAY BLITZ 2250 1987 Hyatt 1400 
BELLE 2200 1986 Thompson 1700 
CHESS 4.9 2100 1980 Slate 2050 
KAISSA 1800 1974 Donskoy 1600 

has certain advantages and certain disadvantages. In the 8 x 8 representation, 
it is hard for move generators to determine whether a piece is moving off the 
edge of the board. In the 9 x 9 representation, the Knight can still jump over 
the edge. In the 10 x 10 representation, it is easy to determine whether a piece 
isjumping off the board. However, the added expense of 36 memory locations 
costs money. It also prevents the board from being stored in the convenient 
form of an 8 x 8 array, or in some cases, as a linear array of 64 elements. A 
decision, however, must be made for a board representation, and once it is 
made, the programmer must live with its consequences for a long time. 

A chess programmer must arbitrarily decide on values to assign to pieces. 
Most assign a value of one to a pawn and so on for the other pieces as 
discussed earlier. Strong chess players would spend days attempting to refine 
these values, perhaps making them position-dependent, and the actual writing 
of the code might never get done. 

9. Languages Used by Chess Programs 

Most of the best current programs are written in either assembler or C. This 
includes 21 of the 23 programs that competed in the ACM’s North American 
Computer Chess Championships during the last three years (see Table IV). 
The other two were written in PASCAL, but neither of these exceptions has 
participated in the last two years. In fact, for the last two years, the only 
languages used by programs that have competed in the ACM events have been 
assembler and C. This widespead use of assembler is something that few would 
have guessed 20 years ago. At that time it was felt that to develop an expert 
chess program, a special-purpose chess language was necessary. To date, no 
such language has appeared. Instead, even FORTRAN seems to be yielding to 
lower-level languages. The coincidence of having the board being 64 squares, 
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exactly the size of two computer words, is taken advantage of by all chess 
programs. Coupled with its great speed, the 64-bit word of the CRAY makes 
that computer very attractive to chess programmers. 

When converting a program from C to assembler, it is possible to obtain a 
speedup of approximately 20- 30%. When converting from other languages to 
assembler, even more dramatic increases can be obtained. A1 Languages such 
as LISP and PROLOG have not been used by any chess program that 
participates in major tournaments. 

10. Testing Chess Programs 

A number of sets of chess positions have become almost standard for test- 
ing chess programs. The three most popular are the 300 problems from 
Reinfeld (1958), the endgame problems from Fine (1941) and the test positions 
from Bratko and Kopec (1982). The Reinfeld positions are very good for 
testing the tactical play of programs. Fine’s positions test the capabilities of 
endgame play by programs, while the Bratko/Kopec test set was originally 
designed to see whether one could distinguish between human style play and 
that of computers. The Bratko/Kopec set has been used by those interested in 
testing the efficiency of their search algorithms, in particular those involved in 
studying the efficiency of various parallel search algorithms. 

11. Debugging Chess Programs 

Most chess programs, even the best, have bugs. Its only a question of how 
many and how serious. Thus a large percentage of the time in developing chess 
programs is spent debugging them. The debugging cycle generally involves 
observing play until a move is made that does not seem correct, and then 
rerunning the program on the same position in order to determine why it made 
the apparently erroneous move. Sometimes, the bug is even more serious. The 
program might crash in the middle of a long search, and it becomes necessary 
to find what caused the crash. Most programs have the ability to print the 
search tree on a terminal or to a file on disk. But the programs are searching 
several million nodes per move and thus to save the entire tree for latter 
examination is very awkward and best avoided. 

OSTRICH uses a specially designed debugging package for finding errors in 
the tree. I t  allows the human debugger to selectively print moves in that part 
of the tree that is of interest. Moves are printed out when an UPDATE is 
performed. OSTRICH has two variables, LEVEL and K which are set before 
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search begins. LEVEL denotes how many levels of the tree to print out. 
K denotes which iteration to begin printing moves. Further, whenever a move 
is printed out, OSTRICH halts and waits for the human debugger to tell 
it to proceed. At that point, the user can modify the value of LEVEL and 
K: the debugger can increment or decrement LEVEL and K by 1. Lastly 
the debugger can print out the current state of the board and other data 
structures. 

For example, suppose the program crashes looking at some node at level 
four on the fifth iteration. To find out at which node the program crashes, the 
program can be run on the same position four times. On the first run, set 
LEVEL = 1 and K = 5 .  The program will only print out first-level moves on 
the fifth iteration, stopping after printing each one, and eventually crashing 
on one of them, say move M,.  On the second run, again set LEVEL= 1 and 
K = 5.  When search stops after updating on move M ,  on the fifth iteration, 
increment the value of LEVEL, and then proceed searching. The program will 
print each reply at level 2 to M ,, stopping after printing each, and eventually 
crash while looking at  one of them, say M,. The debugger will now know 
that the program crashed while looking at move M, a t  level 1 and move M, 
at level 2. The third run will yield the three-ply sequence leading to the failure, 
and finally, the fourth run will lead the debugger to the failing position. 

It  is often very hard to get a computer to search exactly the same tree when 
asked to repeat the search of a position. The search of a position depends on 
many factors in addition to the configuration of pieces on the board. Timing 
routines can affect how long a position is searched. Draw detection algorithms 
must be considered. Transposition tables, if they save positions from one move 
to the next make it virtually impossible to rerun a search and have it be 
identical to a previous one. When parallel search is used, the debugging 
problem becomes even more complex. 

12. A Sample of Play: DEEP THOUGHT 0.02 (White) 
Versus HITECH (Black) 

The following game was played between DEEP THOUGHT 0.02 and 
HITECH in the third round of the ACM’s 19th North American Computer 
Chess Championship in Orlando, Florida in November 1988. HITECH had 
won its first two games and DEEP THOUGHT had a draw and a win and was 
tied for second place with three other programs. The two programs had played 
a number of times during the months leading up to this tournament, and this 
time Berliner got to play an opening line of the Alekhine Defence that he had 
prepared especially for DEEP THOUGHT 0.02. The opening sacrificed a 
pawn in return for territory, but HITECH got saddled with weak Kingside 
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pawns, and pieces that were not sufficiently active. DEEP THOUGHT 0.02 
took a clear lead on the 18th move, and except for having to repel a halfhearted 
counterattack by HITECH, had the game wrapped up after move 21. 

DEEP THOUGHT 0.02 was searching between eight and ten plies on most 
moves, searching trees a t  a rate of approximately 720,000 nodes per second. A 
printout of the log of the game created by DEEP THOUGHT 0.02 provided 
information included below in the analysis of the game. On each non-book 
move, DEEP THOUGHT 0.02 prints out the first eight moves of the principal 
continuation and the score of that continuation. DEEP THOUGHT 0.02 
anticipated 31 of 56 moves made by HITECH, including all but seven of the 
moves after the 25th. 

1. e4 Nf6 2. e5 Nd5 3. d4 d6 4. Nf3 Nc6 5. c4 Nb6 6. e6 
fe 7. Ng5 g6 

This move takes DEEP THOUGHT 0.02 out of its opening book. 

8. Bd3 

Note that 8. Qf3 looks interesting but it just fails: 8. Qf3 e5 (necessary) 
9. Qf7 + Kd7 and while Black’s King is in an awkward position, Black should 
be able to recover and maintain its pawn advantage. DEEP THOUGHT 0.02 
saw the game continuing 8. . . . Nd4 9. Nh7 Nf5 10. Nf7 Rf8 11. Nd2 e5 with a 
score of - .77 pawns. 

8. ... Nd4 9. Nh7 Nf5 10. Nf8 Kf8 11. 0-0 ~5 

Black might better have played e5 here, gaining some control of important 
center squares and giving its pieces, in particular its Queen’s Bishop, a bit 
more freedom. 
12. b3 d5 13. Nd2 Qd6 14. Nf3 Nd7 15. Re1 d4 16. Ne5 

DEEP THOUGHT 0.02, of course, realizes that this is not a sacrifice. If 
16. . . . Ne5, then White plays 17. Bf4 pinning the Black Knight to its Queen. 
White also threatens 17. Ng6. Thus Black is forced to continue: 
16. ... Ne5 17. Bf4 Rh7 18. Re5 

For the first time, DEEP THOUGHT 0.02’s scoring function goes positive. 
The program expects the game to continue as follows: 18. . . . Qb6 19. g4 Nh4 
20. Bg3 Bd7 21. Rh5 Rh5. 

18. ... Qb6 19. g4 Nh4 20. Bg3 

DEEP THOUGHT 0.02 now sees 20. . . . Kg8 21. f4 Bd7 22. Qe2 Kg7 
23. Rg5 Rg8. But HITECH does not follow DEEP THOUGHT 0.02’s line. 
20. ... Bd7 
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FIG. 23. Position after 20. .. . Bd7. 

21. h5 

An elegant move that caught the audience by surprise. DEEP THOUGHT 
0.02’s scoring function now believes White is ahead by approximately one 
pawn. 
21. ... gh 22. Bh7 

DEEP THOUGHT 0.02 now sees: 22. . . . Kg7 23. Qd3 e5 24. Bh4 Rh8 
25. Bf5 e6, and assigns the continuation a score of + 2.69 pawns. 

22. ... e5 

A good move giving Black’s Queen some room to maneuver. 

23. Bh4 

This time, DEEP THOUGHT sees: 23. . . . hg 24. Bg3 Qf6 25. Qd3 b6 
26. Re1 Kfl, leading to a score of + 2.79 pawns. 

23. ... Bg4 24. Qd3 Rc8 25. Re1 Qe6 26. f3 Bh3 27. Qg6 

DEEP THOUGHT 0.02 see: 27. . . . Qg6 28. Bg6 Rc6 29. Bh5 Re6 30. Bg3 d3, 
leading to a score of + 3.32. 
27. ... Qg6 28. Bg6 Rc6 29. Bh5 Re6 30. Bg3 Ra6 

HITECH finds a way to hassle DEEP THOUGHT 0.02. 
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31. a4 d3 32. Re5 Rd6 33. Re1 Rb6 34. Bf4 a5 

HITECH has nothing better to do. Black's only chance now is somehow to 
trade off all material, winning the lone White pawn in the process. This would 
leave White with a single Bishop, insufficient to mate Black. White, however, is 
a bit too strong to be led into this scenario. It knows that a lone Bishop is a 
drawn game. 

35. Be3 Rb3 36. Bc5 d2 37. Be7+ Kg7 38. Rdl Re3 
39. Bh4 Ra3 40. Be8 Rf3 41. Bg5 Rf8 42. Bb5 Kg6 
43. Be3 Rf3 44. Bd2 Rd3 45. c5 Rd5 46. c6 bc 47. Bc6 Rd6 
48. Bf3 Rd4 49. Ba5 Ra4 50. Rd6+ Kf5 51. Bc3 Ra2 
52. Rh6 Bg4 53. Bd5 Rc2 54. Rc6 Re2 55. h4 Kf4 
56. Rc4+ Kg3 57. Ba5 and Black resigns. 

DEEP THOUGHT 0.02 sees the game continuing as follows: 57.. . . Re7 
58. Bc7+ Rc7 (not 58. ... Kh4 because of 59. Bd8 pinning the Rook) 
59. Rc7 Kh4 60. Rg7. 

13. Data on Programs: Computers, Languages, 
Authors, Affiliations, etc. 

Listed below in Table IV are all the programs that participated in the 
ACM's North American Computer Chess Championships during the last 
three years. 

TABLE IV 

PARTICIPANTS IN THE ACM's 1986, 1987, AND 1988 NORTH AMERICAN 
COMPUTER CHFS CHAMPIONSHIPS. 

Program, Computing System, Language, (Authors and affiliation); Book; Nodes/Sec. 

A. 1. CHESS! X, IBM-compatible 80286 AT, assembler, 4 mips, (Martin Hirsch, 

BEBE, SYS-I0 Chess Engine, assembler, 65Kb, 16 bits, 10 mips, (Tony Scherzer, Linda Scherzer, 

BELLE, PDP 11/23 with special chess circuitry, C+microcode, (Ken Thompson, Joe Condon, 

BP, Compaq 386, C+assernbler, IMb, 32 bits, 3-4 mips, (Robert Cullum, Chicago); 8K; OSK. 
CHESS CHALLENGER X, 28 6502-based microprocessors controlled by a 2-80, assembler. 

(Ron Nelson, Dan Spracklen, Kathe Spracklen, Danny Kopec, Boris Baczynskyj, Fidelity 
International, Miami, Florida); 16K +; NA (Participated in 1986). 

San Francisco); 8K; 2K. 

SYS-I0 Inc., Hoffman Estates, Illinois); 4K; 40K. 

Bell Laboratories, Murray Hill, New Jersey); 400K; 15OK. 

(continues) 
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TABLE IV (Continued) 

Program, Computing System. Language, (Authors and affiliation); Book; NodesiSec. 

CHESS CHALLENGER X, 68030-based microprocessor, (Ron Nelson, Dan Spracklen, 
Kathe Spracklen, Fidelity International, Miami, Florida): 16K +; NA (Participated in 1988). 

DEEP THOUGHT 0.02 (a revised version of CHIPTEST-M, SUN-3 plus high-speed move 
generator, C, (Thomas Anantharaman, Mike Browne, Feng-hsiung Hsu, Murrary Campbell, 
and Andreas Nowatzyk, Carnegie-Mellon University, Pittsburgh); 5K; 720K. 

CRAY BLITZ, Cray XMP 4/8, FORTRAN + assembler., 128Mb, 64 bits, 105 mips/proc, 
(Robert Hyatt, Albert Cower, Harry Nelson, University of Alabama, Birmingham); 50K; 100K. 

CYRUS 68K, 68020-based microprocessor, assembler, (Mark Taylor, David Levy, Intelligent 
Chess Software, London, England); 16K; 4K. 

FIDELITY X. 68020-based microprocessor, assembler, (Dan Spracklen, Kathe Spracklen, 
Danny Kopec, Fidelity International Inc., Miami, Florida); 30K; NA. 

GNU CHESS, VAX 8650, C, 8 Mb, 32 bits, 6 mips, (Stuart Cracraft, John Stanback, Jay Scott, 
Jim Aspnes, San Fransisco); 5K; 0.5-].OK. 

GRECO, AT Clone, 16 bits, Imips, 640Kb, (David Stafford, Dallas, Texas); 1K; 0.45K. 
HITECH, SUN 4 with special chess hardware for search and pattern recognition, assembler, 

(Carl Ebeling, Hans Berliner, Gordon Goetsch, Murray Campbell, Gruss, and Andy Palay, 
Carnegie-Mellon University); NA, 1 IOK. 

LACHEX, Cray XMP 4/16, FORTRAN and assembler, 16mw, 64bits. 105 mips,(Tony Warnock, 
Burt WendrolT, Los Alamos National Laboratory, New Mexico); 4K; 50K. 

MEPHISTO X, 68020-based microprocessor, assembler, 64 Kb RAM, 32 bits, 4 mips. 
(Richard Lang, Hegener & Glaser A. G., Munich, West Germany); NA; NA. 

MERLIN, IBM 3081, PASCAL, 12 mips, (Hermann Kaindl, Marcus Wagner, and Helmut 
Horacek, Vienna, Austria); 6K; 0.6K. 

NOVAG X, 6502 bit sliced microcomputer, 6502 assembler, 4 Kb RAM, 56 Kb ROM, (David 
Kittinger, Novag Inc., Mobile, Alabama); 22K; 4K. 

OSTRICH, 1 DG Eclipse 2/120,7 DG Nova's 4's, assembler, 64 Kbiproc., 16 bits,lmips/proc., 
(Monroe Newborn, McGill University, Montreal); 4K; 2K. 

RECOM, 6502 gate array processor, assembler, 8Kb RAM, 8 bits, 4 mips, (Ed Schroder, Deventer, 
The Netherlands); 7K; 1.5K. 

REX 111, Intel 80286-based microprocessor, PASCAL, (Don Dailey, Roanoke, Virginia); 
O.IK; 0.3K. 

S U N  PHOENIX, 20 SUN 3 Workstations, C. (Jonathan Schaeffer, Marius Olaffson, University 
of Alberta, Edmonton); 8K; 20K. 

VAXCHESS, Microvas 2, C + assembler, (Tony Guifoyle, Richard Hooker, Hitchen Herts, 
England); 14K; IK. 

WAYCOOL, 256 proc. NCUBE/IO, 1/2 Mb ram/proc., 1 mips/proc., C,(Ed Felton, Steve Otto, 
Rod Morison, Rob Fatland, Cal Tech, Pasadena, California); NA; NA. 



246 MONROE NEWBORN 

14. The International Computer Chess Association 
and the ACM’s Computer Chess Committee 

The International Computer Chess Association was founded in 1977 at 
the Second World Computer Chess Championship in Toronto. There are 
currently approximately 700 members from all around the world. David Levy, 
an International Master from London serves as its president. The first presi- 
dent was Ben Mittman of Northwestern University. Mittman served until 
1983 when this writer took over. Levy assumed the position in 1986. The 
ICCA publishes the foremost journal in the world on the subject of com- 
puter chess. Subscriptions are %25(US) and can be obtained by writing to 
Prof. Jonathan Schaeffer, Department of Computing Science, University of 
Alberta, Edmonton, Alberta, Canada T6G 2H1. The ICCA organizes a world 
championship every three years. There has been an attempt to alternate these 
championships between the two sides of the Atlantic. The next championship 
is scheduled for Edmonton, Alberta in May 1989. 

The ACM’s Computer Chess Committee was established in the early 1980s 
with a mandate to coordinate computer chess activities within the ACM. 
This writer has been the chairman of that committee since its formation. 
Other members are Ken Thompson, Tony Marsland, Hans Berliner, and 
Kathe Spracklen. 

15. Conclusions 

While the last decade has seen programs progress from playing chess at  the 
Expert level to almost that of Grandmasters, the coming decade should be 
even more exciting for advances in computer chess. It is quite likely that 
during this period, a computer will defeat the human world champion. There 
seems to be no limit to the level of play that can be attained by computers, 
and it seems that the game is sufficiently rich that there will always be room 
for improvement. The chances are that neither man nor machine will ever dis- 
cover the optimal way to play the game. Although the level of endgame play 
by computers is significantly below the level of their middlegame play, it is 
likely that this will not impede them from becoming better than the best of 
humans. Their combinational play will give them material advantages in the 
middlegame that assure victory before the endgame is ever reached. 

Where will future improvements occur? Most fundamentally, hardware 
technology will continue to improve to the advantage of chess programs. 
There will be an increasing use of multiprocessing systems. Commercial 
products will soon use multiprocessors. Thousands and eventually-maybe 
even within the next decade-millions of processors will be used by chess 
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programs. Special-purpose circuitry will become easier to develop. Opening 
books will continue to grow in size, and transposition tables will get much 
larger, as search speeds increase. Improvements in search heuristics will 
continue to add to the improvement, and increasingly better programming 
environments will make testing and debugging easier. 

How should Grandmasters view these developments? Currently, Grand- 
masters are studying the games of DEEP THOUGHT 0.02 and HITECH 
and other leading programs seeking weaknesses in the computers’ play. 
There is nothing unusual about this; all their worthy potential opponents 
receive this treatment. This puts these programs at a short-term disadvantage 
since they cannot reciprocate. Grandmasters will find some weaknesses in 
the programs’ inflexible style of play, and they may be able to exploit this 
shortcoming for the next year or so. But it won’t be long before computers 
become just too good. When that happens, Grandmasters will find they still 
enjoy the game as they always have, and they will continue competing with one 
another as well as with their new-found rivals. Those interested in the theory of 
chess and chess openings, in particular, will use computers as tools. 

While Grandmasters will be observing the programs, i t  will become 
increasingly important for the programs’ authors to become familiar with 
their opponents’ openings and make sure their programs are able to handle 
them. Learning by chess programs is still a long way off, leaving to the 
programmers for some time to come the responsibility of updating their 
programs’ books. This will have to be done by carefully following the tour- 
nament play of top humans and computers. Eventually, only computer play 
will be trusted for creating new book lines. Programs may generate their 
own books during idle time, a development that is inevitable in the coming 
decade. We may eventually have 14-ply books, 15-ply books, etc., where all 
moves in the 14-ply book are optimal based on a 14-ply search using the 
program’s scoring function. 

For the average chess player who complained in the past about how slowly 
and poorly programs play, I think you will find this no longer applies. It is now 
possible for every chess buff to purchase a Master-level program for under 
two hundred dollars, and that figure is dropping fast. The programs are 
getting easier to use and are great for teaching young children. My daughter 
has learned she never has to lose a game. Whenever she observes the program’s 
scoring function go positive, indicating she is losing, she simply changes sides! 
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1. Introduction 

Soviet computing in the 1980s has become a very interesting scene. This has 
been the decade when the nation’s top political leadership finally recognized 
the central role of computers and other information technologies in military, 
economic, and social development. But that recognition came very late in the 
day and not before the Soviet Union’s international competitors had attained 
a huge, perhaps insurmountable, lead in both the technologies and their 
applications. 

It would be wrong to suppose that the Soviets have made no progress in 
computer technology. As this paper demonstrates, there has indeed been 
progress. But it has been progress of an absolute variety, or one relative to the 
previously underdeveloped state of this technology in the USSR. Compared 

* The views expressed herein are the authors’ own. The research reported for this paper was 
supported in part by the National Council for Soviet and East European Research. The authors 
gratefully thank Virginia Clough of the Hudson Institute and Steven Flinn of Indiana University 
for their vital assistance. 
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with Western and Japanese progress in developing and using information 
technologies of all kinds, the Soviet Union has continued to lose ground 
rapidly in the 1980s. 

The lengthening qualitative lag will be obvious to the discerning reader. But 
the quantitative lag is also huge. Total Soviet production of all computers 
except personal computers (PCs) was stable from 1985 to 1987 at about 16,000 
units per year. Production of PCs, where the Soviet lag is most pronounced, 
amounted to merely 8800 units in 1985. In 1986, PC output had risen to 27,600 
and in 1987, to 51,200.' Total PC production in the 12th Five Year Plan 
(1986-1990) was originally planned to reach 1.1 million units. That target was 
recently slashed to 500 thousand.2 

The purpose of this paper is to provide a reasonably comprehensive survey 
of the important Soviet civilian computer hardware produced in the 1980s. 
This is done against a backdrop of previous developments that is sketched in 
Section 2. Section 3 quickly summarizes the official plans for computer 
technology in the 1980s. 

Section 4 is the heart of the paper. Here we discuss the main computer 
systems that have been designed or manufactured in this decade. The 
exposition differs somewhat from that usually encountered in Western 
discussions of Soviet computers in that we have organized it not by type of 
computer but, rather, by manufacturing or designing organization. If this were 
a treatise on American computer hardware, the reader would hardly be 
surprised if the exposition were organized by manufacturer, e.g., IBM, DEC, 
or Apple. Contrary to the impression often conveyed in the Western litera- 
ture, the Soviet computer industry is far from monolithic. A peculiar kind 
of competition prevails among its principal players. But is it a healthy 
competition? We believe that an appreciation of the differing roles played by 
the large manufacturing ministries and the Academy of Sciences is necessary 
for a proper appreciation of the state of Soviet computer technology today. It 
is even more necessary for an understanding of why matters have come to be as 
they are. 

Finally, Section 5 takes a look at the impact of Mikhail Gorbachev's 
reforms (perestroika) on the Soviet computer hardware industry. The purpose 
in doing this is t,o see what promise recent policy changes may hold for 
bringing needed improvements. 

Whatever its problems, the Soviet computer scene has become too ex- 
pansive to encompass in a single article. In a sequel to be published in this 
series, we intend to survey and evaluate Soviet computer software and appli- 
cations developments in the 1980s. 

' Veslnik Statisriki (1988) (7).  62. 
' Velikhov (1988). 26. 



SOVIET COMPUTERS IN THE 1980s 253 

2. Soviet Computing Before 1980: A Brief Summary 

The history of Soviet computing begins in the Institute of Electronics at the 
Ukrainian Academy of Sciences in Kiev. There, in 1947, Academician Sergei 
Alekseevich Lebedev founded a special laboratory to design an electronic 
digital computer. In 1950, this design was completed and, in 1951, took form 
as the MESM (Malaia Elektronaia Schetnaia mash in^)^, the first Soviet 
electronic computer. It was there in the period 1946- 1951 that a core group of 
future Soviet computer scientists was f ~ r m e d . ~  

In 1950, Lebedev organized a new laboratory for computer design in the 
Institute of Precise Mechanics and Computer Engineering of the USSR 
Academy of Sciences (“IPMCE”) in Moscow. IPMCE was then headed by 
Academician Mikhail Alekseevich Lavrent’ev who later became President of 
the Siberian Division of the USSR Academy of Sciences where he strongly 
encouraged the development of computer sciences. Lebedev moved his 
residence to Moscow in 1951. Two years later, he became head of IPMCE 
where he continued to guide computer research and design, and to train young 
computer scientists, until his death in 1974. Lebedev’s place in Kiev was taken 
by Viktor Mikhailovich Glushkov who guided what eventually became the 
Institute of Cybernetics until his untimely death in 1982. 

At IPMCE, the Lebedev group set about designing a large-scale computer, 
the BESM-1 (Bol’shaia Elektronaia Schetnaia Mashinu)’ which was approved 
by a state acceptance commission headed by Lavrent’ev in 1953. Serial 
production of a somewhat modified version of this machine using ferrite core 
memory, the BESM-2, began in 1958. As in the United States, the earliest 
Soviet computers (e.g., MESM and BESM) were involved in scientific and 
military computing, especially in computing centers organized at various 
locations of the Academy of Sciences. 

Automatic data processing for “commercial” purposes (ADP) made its 
Soviet debut in the mid 1950s with the appearance of the MINSK and URAL 
designs. The MINSK was designed by V. V. Przhiialkovskii and others in 
Minsk at the design bureau of the Ordzhonikidze factory belonging to the 
Ministry of the Radio Industry (Minradioprom). The URAL was designed by 
B. I. Rameev in Penza. Both the MINSK and URAL were manufactured by 
Minradioprom and they became the workhorses of Soviet ADP. 

In the early 1960s, versions of BESM, MINSK and URAL machines using 
solid-state circuitry and ferrite core memory made their appearance. A variety 

“Small Electronic Calculating Machine.” 
For more on the history of Soviet computing, see Burtsev (1985); Campbell (1976); Davis and 

Goodman (1978); Ershov (1975); Glushkov (1979); Judy (1967); Judy (1970); Korolev and 
Mel’nikov (1976); Mel’nikov (1986); Rudins (1970); and U S i M  (1976, 1977, 1982). 
’ “Large Electronic Calculating Machine” 
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of other machines also appeared in the 1960s, but the Lebedev machines 
dominated the field of scientific computing, while Minradioprom’s own 
designs similarly dominated ADP. 

The most significant second-generation Soviet computer was the BESM-6. 
This strictly indigenous machine was designed in the first half of the 1960s by 
Lebedev, V. A. Mel’nikov, and their associates at IPMCE. A prototype 
appeared in 1965 and three more copies were built in 1967. The BESM-6 
operated at 10 megahertz and was rated at more than 1 MIPS. It incorporated 
a number of advanced architectural features for that time, e.g., instruction and 
data pipelining, segmented memory, multi-programming, memory protection, 
fast buffer registers, and paged virtual memory. 

In the early 1960s, computer priorities began a major shift from scientific 
toward industrial and data processing applications. Lebedev’s group designed 
a new series of computers for information processing and control applications 
that incorporated dual processors with common memory, multi-machine 
complexes with shared memory, and real-time operations. But Minradioprom 
looked askance at Lebedev’s (and the Academy of Sciences’) effort to expand 
into the field of commercial and industrial computing where it was dominant. 
A period of sharp bureaucratic infighting ensued in the mid 1960s, from which 
Minradioprom emerged victorious. 

Minradioprom, which had no new designs to replace the MINSK and 
URAL machines, saw in IBM’s 1965 announcement of its new System/360 an 
opportunity to counter what it perceived to be Lebedev’s threat to its 
preeminence in ADP. In the second half of the decade, Minradioprom secured 
top-level political support for its RIAD project which aimed to “reverse 
engineer” the IBM System/360 family of upwardly compatible computers. 
The late 1960s also saw another industrial ministry, the Ministry of 
Instrument Making, Automation Equipment, and Control Systems (Min- 
pribor), begin a determined effort to occupy a larger piece of the computer 
field. With its ASVT systems, modeled after the PDP-8, Minpribor began a 
policy of emulating Digital Equipment Corporation’s technology in much the 
same manner that Minradioprom was emulating IBM’s. 

These were difficult times for the Academy of Sciences. In the early 
Brezhnev years, the Academy was stripped of its central role as chief computer 
designer and was forced to give up many of its research and production 
facilities. By the end of the decade, Minradioprom and Minpribor had 
consolidated their positions not only as the nation’s computer manufacturers 
but also as the leading centers of computer design. Not surprisingly, perhaps, 
they showed an increasing preference for their own designs relative to those 
emanating from the Academy of Sciences. 

Although the Academy of Sciences was forced to concede ADP to 
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Minradioprom and industrial process control to Minpribor, its research and 
development in scientific computing continued. Lebedev’s group began work 
on a successor to the BESM-6, a high-capacity scientific computer capable of 
as much as 100 MIPS. Efforts to design a machine, called the EL‘BRUS, were 
under way by the early 1970s. 

In 1965, the Council of Ministers established the State Committee for 
Science and Technology (GKNT) as a central coordinator of technological 
development policy for the entire country. In practice, the GKNT proved 
weak in comparison to the powerful industrial ministries and was restricted to 
monitoring plan assignments, although statutes allowed it a much more active 
role. During the 1970s, the Academy of Sciences was starved for resources and 
effectively removed as a major player. In the wake of the GKNT’s failure to 
manage and promote technological development and of the Academy’s 
emasculation, the power and responsibility for computer design fell almost 
completely to the manufacturing ministries. Minradioprom controlled the 
CMEA (Council for Mutual Economic Assistance) effort to develop main- 
frame computers based on IBM technology, and Minpribor did likewise for 
CMEA’s program to develop a standard line of minicomputers based on DEC 
designs. The Soviet computer industry was now established on the profoundly 
conservative course of technological followership. Without effective leader- 
ship from the GKNT, and lacking any mechanism to spur it, indigenous 
computer development made little progress in the 1970s. 

3. Official Plans for the 1980s 

The technological stagnation of the 1970s led to a widening gap between 
Soviet computer technology and that of the West. This growing gap, when it 
was finally perceived by the Soviet political leadership, laid the groundwork 
for a comeback by the Academy of Sciences. In late 1984, indications mounted 
that a new “computer plan” was being developed in the Academy under the 
direction of Academician E. P. Velikhov.6 This plan became official policy as 
the reins of power passed from Chernenko to Gorbachev in 1985. 

On January 4, 1985, Praoda announced that the Politburo had “considered 
and basically approved a state-wide program to establish and develop the 
production and effective utilization of computer technology and automated 
systems up to the year 2000.” Raising economic productivity and efficiency by 
accelerating scientific and technical progress, particularly in machine building 
and electronics, was said to be the over-arching objective of this new program. 

Samarskii (1984~ 27; Yasmann (1985). 3. 
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Gorbachev, reporting to the Central Committee in June, 1985, put the 
matter in the following words: 

Machine building plays the dominant, key role in carrying out the scientific and 
technological revolution.. . . Microelectronics, computer technology, instrument 
making and the entire informatics industry are the catalyst of progress. They 
require accelerated development.’ 

The new informatics program, which has not been publicly disseminated, 
called for acceleration of production, improved quality, and the introduction 
of new models of computer equipment.’ Applications of informatics tech- 
nology, especially computers and microprocessors, and automation were to 
lead to a “comprehensive intensification of the national economy.” Other 
major provisions of the plan were the following: 

0 Minradioprom and Minpribor should continue development and pro- 
duction of mainframe and minicomputers along the RIAD and SM lines 
that emulate IBM, DEC, and Hewlett-Packard designs. 

0 Computer output should increase by 200-230% from 1986 to 1990.9 
0 Computers already in service should be used more efficiently. 
0 Greater attention should be paid to minicomputer and microprocessor 

development for applications in specialized fields such as CAD, robotics, 
flexible manufacturing systems (FMS), scientific research, process con- 
trol, etc. 

0 A major effort should be launched by the Academy of Sciences as 
well as by the manufacturing ministries to develop high performance 
“supercompu ters.”I0 

0 A new course entitled “The Fundamentals of Computer Science and 
Informatics” would become mandatory in the last two years of all Soviet 
high schools. 

0 A total of 1.1 million personal computers should be produced in the 
period, with about half directed toward education.” 

Under Gorbachev, information technology has moved toward center stage. 
Both the Soviet political and scientific leadership clearly realize that the nation 
lags far behind world levels in the development and application of computers 

’ Pmuda, June 12, 1985, 2. 
‘See  Vinokurov and Zuev (1985). 

Smirnitskii (1986), 10. 
lo Marples (1985). I-footnotes Radio Moscow, January 20, 1985. 
I ’  Ershov (1986). 2. 
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and communications technologies. They realize, further, that these tech- 
nologies are the key to progress across a broad spectrum of civilian and 
military purposes. The decade of the 1980s has become one in which the 
Soviets are struggling to stop the lag from widening and to create the con- 
ditions for closing it in the decades to come. 

4. Hardware Development in the 1980s 

The decade of the 1980s has been one of great activity in the Soviet 
computer industry. So far, it has also been one of serious disappointment for 
Soviet computer policy makers and users. On the one hand, the Soviet civilian 
computer manufacturing industry has expanded both in terms of the number 
of its principle actors and in terms of the range of equipment produced. The 
results achieved, on the other hand, continue to be disappointing both quan- 
titatively and qualitatively. 

4.1 The Major Hardware Manufacturers 

At the end of the 1970s, only two Soviet industrial ministries, Minradio- 
prom and Minpribor, were in the business of manufacturing general-purpose 
digital computers for civilian use. Computer components were the domain of 
the Ministry of the Electronics Industry (Minelektronprom). Both Minradio- 
prom and Minelektronprom were (and are) “VPK ministries,” i.e., were 
specifically designated members of the “military-industrial complex.” In 
addition to radar and other radio-electronic equipment, Minradioprom 
supplied mainframe computers to both civilian and military users. Minelek- 
tronprom supplied electronic components for civilian and military purposes 
and also supplied the military with a variety of “ELEKTRONIKA” general- 
purpose and specialized digital computing systems. 

Minradioprom and Minpribor remain important suppliers of civilian com- 
puting equipment in the 1980s and have been joined by Minelektronprom 
which has made its ELEKTRONIKA microcomputer systems available for 
general civilian users. More recently, the Ministry of Communications Equip- 
ment (Minpromsviazi) and several other producers have announced smaller 
systems. The following discussion of Soviet computer hardware is organized 
by major manufacturer. 

4.1 . I .  

Minradioprom is the veteran Soviet computer ministry. On the scene early 
with its URAL and MINSK series, it solidified its position as the Soviet 

The Ministry of Radio Technology (Minradioprom) 
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Union’s producer of commercial data processing equipment in the 1970s with 
its RIAD or “ES” systems of IBM-compatible mainframe computers. Like its 
American model, Minradioprom was slow to embrace personal computers but 
has finally done so. What follows is an account of recent Minradioprom 
machines. 

The RIAD or “Unified Series” of IBM-Compatible Mainframes. The 
“RIAD” family of computers is not well known outside the Soviet bloc, 
although probably more copies of RIAD are installed in the world than of any 
other mainframe computer family except for those of the IBM Corporation. 
Also known as the “Unified Series’’ (abbreviated “ES).), these machines have 
been the backbone of general-purpose computing east of the Elbe since the 
early 1 9 7 0 ~ ’ ~  

Essentially, the RIAD machines are functional equivalents and technolog- 
ical derivatives of IBM’s System/360, System/370, and Model 303x com- 
puters. By 1988, three “generations” of RIAD computers had appeared and a 
fourth was said to be on the drawing boards. Each of these has had a 
generational “lifetime” of about seven years. 

RIAD represented the first attempt by Minradioprom, and the Soviet 
Union, at wholesale technological importation in the computer field. The 
ministry’s earlier computer families, e.g., the URAL and MINSK series, were 
indigenous designs. With its wholesale copying of American computer 
architecture, the RIAD marked a dramatic turnabout in Soviet computer 
policy, one that led not only to the production of a family of IBM-compatible 
computers but also to the attenuation of efforts to develop indigenous 
computer technology in the USSR. It launched the nation upon a path of 
technological followership that, for all practical purposes, it has trod ever 
since. The principal reasons for this fateful policy shift were the following: 

0 Economic and political decisionmakers were dissatisfied with the results 
of earlier indigenous efforts. The URAL and MINSK machines were 
slow, unreliable, inflexible, with deficient peripherals generally and 
pathetically poor disk drives in particular. Small main memory and slow 
processor speeds dictated the use of machine language rather than 
higher-order languages, and applications software was limited in quan- 
tity and quality. 

0 Bureaucratic infighting between the Academy of Sciences and Minradio- 
prom over primary responsibility for computer development in the USSR 
produced a victory for the latter. 

0 Soviet political leaders wished the USSR and its East European partners 
to be more independent of Western computer suppliers. 

See Davis and Goodman (1978) for an account of the early RIAD computers. 
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0 Standardization of computer designs across the entire CMEA market 
area seemed to promise economies of scale and specialization. 

0 It  seemed reasonable to focus scarce scientific and engineering resources 
on a coherent set of objectives rather than permitting them to be diffused 
and largely dissipated over a multitude of smaller projects. 

0 It appeared that technology transfer from the West could best be 
accomplished by concentrating on designs that had achieved widespread 
acceptance among users worldwide, not least of all in East Germany. 

0 The large inventory of software written for IBM mainframes seemed 
available at little cost. 

What follows is a review of the three generations of Soviet RIAD computers 
with emphasis on those designed and/or manufactured in the 1980s. 

RIAD-1: 1970-1977. RIAD-1, the first generation of the ES computers, was 
designed by a group of engineers at Minradioprom’s Scientific Research 
Center for Electronic Computer Technology (NITsEVT) in Moscow. Alek- 
sandr Maksimovich Larionov, NITsEVT’s director, and Viktor Vladimiro- 
vich Przhiialkovskii, its deputy director, were the senior members of the 
RIAD design team. After Larionov’s death in the late 1970s, Przhiialkovskii 
became Director of NITsEVT and Chief Designer of the RIAD computers, 
positions that he continues to hold. 

Seven models of RIAD-1 computer systems were planned. These and some 
of their planned specifications are displayed in Table I. As it turned out, only 

TABLE I 

RIAD-I COMPUTERS AS ORIGINALLY SPECIFIED 

Input/Output Channels 

Multiplex Selector 
Operations Main ~ 

per second memory Rate Rate 
Model Country (ooos) (Kb) (Kb/sec) Number (Kb/sec) 

ES-1010 Hungary 10 8 160 1 240 
ES-1021 Czech. 20 16-64 35-220 2 250 
ES-1020 USSR, BuI. 10-20 64-256 25 2 300 
ES-1030 USSR, POI. 60-100 128-512 40 3 800 
ES-1040 GDR 320-400 128-1024 50-200 6 1200 
ES-1050 USSR 500 128-1024 100-150 6 1300 
ES-1060* USSR 1300-1500 256-2048 100-150 6 1300 

* Note: The ES-1060 was shifted into the RIAD-2 era. 
Source: Larionov et al. (1973), 3. 
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six systems passed the requisite CMEA tests and went into series production in 
1972 and 1973. 

The ES-1010, ES-1020, ES-1021, ES-1030, and ES-1040 appeared in 1972. 
The ES-1050 appeared in 1973. These six systems made their formal debut at a 
Moscow exhibition during May and June of 1973. They were displayed 
together with some 100 peripheral and other RIAD-1 devices. Of these, three 
of the computers and about 40 of the peripherals were of Soviet design and 
manufact~re.’~ Design difficulties plagued what was to have been the most 
powerful of the RIAD-1 computers, the Soviet ES-1060, and when this system 
finally surfaced in 1978 its design had been so modified that it is properly listed 
among the RIAD-2 computers. 

RIAD-2: 1978-1983. In 1970, IBM announced the System/370. This new 
computer family provided upward software compatibility with the System 360 
and offered new features such as cache memory and virtual storage. 
Minradioprom computer designers identified several trends that they con- 
sidered significant for their own program. Among them were the following: the 
rapid development of LSI (Large Scale Integration) which provided greater 
functionality and speed; fast and increasingly cheap semiconductor memory; 
magnetic disk storage devices with very great capacity and rapid data 
transmission rates; very fast cache memory; new input/output devices; virtual 
memory; rapidly improving performance/cost ratios; new or greater capa- 
bilities in the areas of large data base processing, multiprocessing, and 
teleprocessing; and architectural continuity designed to protect investments in 
existing software.I4 

As the RIAD-1 computers were close approximations to the IBM 
System/360, so the RIAD-2 systems closely resembled machines of the 
System/370. Eleven RIAD-2 computers are listed in Table 11.’’ Included also 
are two “carryovers” from the RIAD-1 era. These were the ES-1033 and the 
ES-1060 whose gestation was so protracted that they were born into the next 
generation of RIAD computers. 

From the beginning, the RIAD objective was to achieve compatibility with 
IBM at the level of logical architecture, software, and peripheral interfaces. As 
time has passed and the Soviet computer designers have accumulated 
experience and confidence, they have increasingly departed from IBM in 
matters of design and performance. 

” Larionov (1976). 
l4 This summary of points made in 1976 by A. M. Larionov, Riad’s chief designer. See Larionov 

( 1976). 
’’ Soviet sources are inconsistent in placing specific computers into the three Riad “gen- 

erations.”The classification here generally follows the most recent Soviet source used in this study, 
i.e., Artamonov (1988). 
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TABLE I1 

RIAD-2 COMPUTERS 

Input/Output Channels 

Multiplex Selector 
Operations Main ___ 
per second memory Rate Rate 

Model Country (000s) (Kb) (Kb/sec) Number (Kb/sec) 

ES-1012 
ES-1015 
ES-1022 
ES-1025 
ES-1033 
ES-1035 
ES-1045 
ES-1055 
ES-1060 
ES- 1061 
ES-1065 

Hungary 
Hungary 
Bul., USSR 
Czech. 
USSR 
USSR 
USSR 
GDR 
USSR 
USSR 
USSR 

36 
16 
80 

40-60 
150- 200 
40-160 

530-860 
435 

1300 
1500 
5500 

64 
128 

128-5 I2 
128-256 
256-51 2 
256- 51 2 

4096 
2048 

8192 
16384 

256-2048 

20 

50 
24 
40 
40 
40 
40 

110 
110 

15 

2 
1 
4 
4 
4 
5 
6 
6 

15 

500 
800 
800 
740 
1500 
I500 
3000 
1250 
3000 

Sources: Judy (1986); Lomov (1987); Artamonov (1988). 

RIAD-3 Mainframes of the 1980s. In 1978 and 1979, IBM introduced a 
series of computers that were architecturally and functionally in the 
System/370 family but which bore new model designations. These were the 
4300 Series and the 3030 Series. A significant attribute of these series is their 
adherence to the IBM 360-370 logical architecture whose memory addressing 
convention limits the amount of main memory to 16 megabytes. The RIAD-3 
computers are subject to the same constraint. 

Initial planning for the third generation of RIAD computers began in the 
mid 1970s, even before RIAD-2 was announced. In 1976 and 1977, a set of 
design objectives was set forth by the Council of Chief Designers of the RIAD 
Computers and was adopted by the Intergovernmental Commission for 
Computer Technology.'6 

The chief technical objectives of RIAD-3 were the following: to maintain 
compatibility with existing software and peripherals; to improve performance 
in terms of throughput capacity, input/output speed, memory capacity, and 
number of attachable terminals; to make greater use of LSI logic chips which, 
in turn, was to lead to reduced physical dimensions, lower power require- 
ments, improved reliability, and higher speed; to employ more LSI memory 

l6 See JS ( I  984). 
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chips-up to 4 Kb for high speed, special purpose storage and 64 Kb or 
larger for main memories; to introduce new memory technology for very large 
bulk storage; to make use of functionally oriented co-processors to con- 
trol subsystems and peripherals, e.g., data flow, input/output; to use more 
problem-oriented processors and co-processors, e.g., symbolic processors, 
matrix processors, set processors, and other math processors; to improve 
RIAD designs of multiprocessor systems as well as network structures for 
remote and distributed data processing systems; to design and produce 
improved hardware and software for large data base management; and 
generally to promote greater flexibility and modularity in both hardware and 
software design. 

Beyond these technical objectives for RIAD-3, Minradioprom sought the 
following results: improved price/performance ratios relative to RIAD-2; 
increased networking capability; greater use of data base management 
systems and other problem-oriented software; better implementation and 
usage of computers for improved economic payoff. 

The development of RIAD-3 systems was planned to be in two stages. In the 
first stage, the primary focus was to be on ( i )  improving the component base of 
the systems by further development and use of new semiconductor tech- 
nologies, ( i i )  development of specialized processors and software for them, and 
(iii) the transfer of selected operating system functions to hardware. This first 
stage of RIAD-3 development was explicitly defined as one of enhancing the 
performance of systems constructed according to RIAD-2 architecture. ” 

The new RIAD-3 systems were evolutionary improvements upon the 
preceding generation. RIAD-3 computers have maintained architectural, 
software, and peripheral compatibility with RIAD-2 while incorporating 
some technological improvements in microelectronics and design. In the 
period 1983-1988, production began on more than a dozen new RIAD 
computers, half of them being of Soviet manufacture. Those Soviet systems 
are listed in Table 111. 

The ES-1007, introduced in 1988, is the first in a new class of small RIAD 
computers intended for stand-alone operation or as terminals in distributed 
data-processing systems. Individual copies of the machine were being dis- 
played in mid 1988 but serial production appeared not yet to have begun. 
Though relatively small and probably intended to be roughly equivalent to 
IBM’s PC/370, the ES-1007 physically was more the size of an IBM System 34. 

The ES-1036 is a new Minradioprom computer in the line of the ES-1020, 
ES-1022, and ES-1035. It offers virtual storage and dynamic microprogram- 
ming said to provide for application-oriented tailoring of system architec- 
ture to support user programs. It supports virtual machine system (VMS) 

l 7  See JS (1984). 



TABLE 111 

SELECTED C H m n w s n n  OF SOVIET RIAD-3 COMPUTERS 

Model ES-1007 ES-1036 ES- 1046 ES-1061 ES-1065 ES-1066 

Generation 
Year of Appearance 
In Serial Production? 
Main Processor 

Operating speed (k ops. sec.) 
Selected performance times (psec) 

Fixed point add 
Floating point addisub. 
Floating point multiply 
Fixed point divide 

Number of instructions 
Special & Auxilliary Processors. 
Primary Memory 

Capacity (Mbytes) 
Cycle time (psec)  

Length of accessed word (bytes) 
I/O Channels 

Maximum channel capacity, (kbyteisec.) 
Multiplexor channels 

Maximum number 
Data rate (kbyte/sec.) 

Maximum number 
Data rate (kbyteisec.) 

Typical Operating System 
Modes of Operating" 

Programming Languages*** 

Selector channels 

RIAD-3 

Doubtful 

100 

1987-88 

S 

I 

I 

1 

B. VM 

AS. F. 
PLI, c 

RIAD-3 

YeS 
1984 

400 

0.9 
4.81 

10.1 
14.3 

220 
FL, S 

2-4 

8-128 

1 
50 

4 
1.500 

0 s  ES 
B. MP. VS. 

VM, RT 
AS, F, F4, 

PLI. C, RPC 

RIAD-3 

Presumably 

750.300 

1986? 

0.6 
I .69 
4.06 
3.8 
183 

M, S 

8 
.7 

8-128 

2 
160 

4 
3.000 

0 s  ES 
B, MP, VM, 

RT 
AS, F4, A, 

PLI, C, RPG 

RIAD-2 

Yes 
1983 

1500 

183 

8 
.7 

8-128 

lO,S00 

2 
426 

6 
1.250 

0 s  ES 6.0 
B, MP. VM, 

RT 
ASMC, F, C. 

PLI, RPG 

RIAD-3 

Presumably 

1600.2000 

1985? 

183 
S 

16 
.85 

8-128 

30,000 

4 

15 
3,000 

0 s  ES 6.0 
B, MP, VM, 

RT 
ASMG, F, C. 

PLI, RPG 

RIAD-3 

Possibly 
1987-88 

5000,200 

0.16 
0.32 
4.6 
1.6 

M, T, MK, S 

8-16 
0.68 

8-128 

18,000 

12 universal 

12 universal 

OS7 ES 
B, MP, VS, 

VM. RT 
AS, F, PLI. 

C. A 

Keys to Abbreviations: 
* FL-Floating point; S-Service; M-Matrix; T-Text; MK-Macro Conveyor 
** B-Batch; MP-Multiprogramming; VS-Virtual storage; VM-Virtual machine; RT-Real time 
*** AS-ASSEMBLER; F-FORTRAN; F4-FORTRAN IV; PLI-PL/I; C-COBOL; RPG-RPG; A-ALGOL 
Sources: Artamonov (1988); Elektronno (1988); Judy (1986); Kezling (1986). 
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operations under different operating systems. It, like other larger RIAD-3 
machines, is available in multi-machine configurations. The machine went 
into serial production at the Minsk computer plant in 1984.18 

The ES-1046 is the latest in a line of Minradioprom machines that 
previously have included the ES-1030, ES-1033, and ES-1045 computers. Like 
its predecessors, it was designed by the Ministry’s Erevan Scientific Research 
Institute of Mathematical Machines. It passed its international RIAD tests in 
1984 and serial production had begun by 1985 at the Kazan computer plant. 
The chief designer was A. Kuchukian, a Lenin Prize laureate.” The ES-1046 is 
said to have greatly improved diagnostic and fault location capabilities that 
can locate 99% of all failures to within two or three exchangeable components. 
A full system checkout requires five minutes or less. The ES-1046 is said to be 
available in 1 1 basic configurations including dual-processor and dual- 
machine variants. It employs a service processor, a matrix processor, and a 
machine graphics device. The performance/price ratio for the ES-1046 is said 
to be twice as favorable as that for the ES-1045, its immediate predecessor in 
the Armenian subfamily of Minradioprom computers. 

The ES-1061 is the successor to the ES-1060 computer. Although Artamo- 
nov (1988) designates it a RIAD-2 machine, it is discussed here because it 
appeared first in this decade, contemporaneously with the RIAD-3 generation. 
Design work is said to have begun in about 1980 by a team from Min- 
radioprom’s Moscow NITsEVT and its Minsk Ordzhonikidze Computer 
Association. The design team was headed by V. V. Przhiialkovskii, the General 
Designer of the RIAD computers. Serial production began in 1983. I t  was to 
be offered for export in  1984.20 Reliability is said to be 150% of that of the 

The ES-1065 is a high-performance Soviet computer that, like several other 
top of the line Soviet systems such as the ES-1050 and ES-1060, has been a 
long time aborning. The machine was originally intended to enter produc- 
tion by 1977 as the most powerful of the RIAD-2 computers. In early 1984, 
the ES-1065 was still in prototype and the Minsk computer factory was plan- 
ning to begin production only in that year.21 The original specifications called 

ES- 1060. 

I’ Information on the ES-1036 is from Artamonov (1988). 192-195; Dujnic and Fundarek 
(1983); Loeschner and Kasper (1984); Zamorin et a/. (1984); and Souetskaia Belorussiia (1984). 

Information on the ES-1046 is from Artamonov (1988). 192-195; Dujnic and Fundarek 
(1983); Zamorin et al. (1984); Kuchukian et a/. (1985); Selivanov (1987); Souetskaia Litua 
(1985); and Musaelian (1985). 

2o Information about the ES-1061 is from Artamonov (1988), 192-195; Dujnic and Fundarek 
(1983); Szarnitasrechnika (1984). Souerskaia Belorussiia. April 3. 1983, 1 and January 8, 1984, I ;  and 
EIory Informirue! (1983). 

I’ Larionov (1977). 
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for it to be a 4.5 MIPS machine. Later information indicates that its speed is 
no greater than 2 MIPS.” 

The ES-1066 is another machine designed by the Armenian group at 
Minradioprom’s Scientific Research Institute of Mathematical Machines in 
Ere~an . ’~  Its maximum speed is rated at 12.5 MIPS, and it is said to perform 
2 MIPS in data processing tasks and up to 5.5 MIPS in scientific comput- 
ing. The ES-1066 is driven by the ES-2366 CPU, which is highly buffered and 
pipelined with five-level interleaving. With a cycle time of 80 nanoseconds, 
this is the fastest single processor that the Soviets had revealed by mid 1988. 
It makes extensive use of specialized microprocessors and microprogram 
control units. Input and output, for example, are controlled by the ES-2666 
1 / 0  processor which supports up to 20 megabytes per second of data flow. 

The ES-1066 is the first RIAD to be equipped with the ES-5080 disk drives 
that offer reliability said to be much improved in comparison to previous 
Soviet RIAD mainframes. From its specifications, the ES-1066 appears to be a 
high-performance machine. Overall system performance is likely to be limited 
by the shortage or unavailability of large-capacity disk drives and other 
peripheral devices. Final judgement on its quality and operational perfor- 
mance must be suspended until user reports become available. As with most 
larger RIAD models, serial production of the ES-1066 posed production 
difficulties. Volume production was underway in 1987, about two years behind 
schedule. 

RIAD-4. In late 1984, preliminary development work on the next generation 
of RIAD computers was said to be in progress. Some of the goals of this 
development effort were stated to be the following: maintenance of software 
compatibility with previous RIAD systems; more advanced architecture 
permitting greater expansion and efficiency; faster processor operating speeds; 
greater real main storage capacity of the CPUs; greater external storage 
capacity and faster data rates; improved ability to build local and extended 
networks; improved 1 / 0  devices; greater user friendliness; improved operat- 
ing systems that will increase throughput as well as provide more features and 
functions; and better diagnostics, reliability, and main ta inabi l i t~ .~~ 

The next generation of RIAD computers is said to incorporate a new 
multiprocessor architecture based on problem-oriented and functionally 

’* Information about the ES-1065 is from Artamonov (1988). 192-195; Novak (1983). 
’’ Information about the ES-1066 is from Artamonov (1988). 192-195; Lomov (1987); 

Selivanov (1987); Zamorin et al. (1984); and Souetskaia Litoa (1985). 
*4 Jungnickel(lY84). The author, Dr. Hang-Georg Jungnickel, was Chief Designer Engineer for 

ES computers at the Robotron combine, which is the manufacturer of Riad systems in the GDR. 
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oriented processors. The problem-oriented processors are for matrix opera- 
tions, symbolic processing, and support of problem-oriented languages. The 
functionally oriented processors include input/output processors, telecommu- 
nication and set processors (which are to optimize processing of sets on 
external memories). The individual processors are to be connected by a high- 
speed bus. 

Other aspects of the new systems are said to include large-capacity main 
memories (potentially up to 2048 megabytes) built of 64 K b  and larger 
memory chips. The various specialized processors will be served by dedicated 
storage of up to 256 kilobytes. External memory is to be controlled by 
independent control processors which will also serve as virtual storage 
control. Mention is made of external memory devices consisting of several 
100-megabyte units on cylindrical magnetic “layers” that may be a variety of 
drum storage. New operating systems, compatible with existing ones, are said 
to be under development to support the transition to the multiprocessor 
systems. 

Without more information, it is difficult to divine the specific features of the 
RIAD-4 generation of computers. From the hints provided, however, it 
appears likely that new systems will display many characteristics of the IBM 
308x Series. The references to “a more advanced architecture,” “multipro- 
cessor systems,” and “greater real main storage capacity” point strongly in 
that direction. 

Minradioprom computer designers and their East European colleagues 
have accumulated nearly 20 years of experience in the design, development, 
and production of RIAD computers. That experience inevitably has devel- 
oped a degree of expertise that was absent at the beginning. Increasingly, the 
RIAD designers are departing from a strict adherence to IBM designs. 

While preserving upward software compatibility with previous RIAD (and 
IBM) systems, and remaining within the IBM “mainstream,” Minradioprom 
is emulating other IBM-compatible manufacturers such as Amdahl, NAS, 
Fujitsu, and Hitachi. In other words, they are trying to “add value” to the basic 
IBM design, where “value” is to be understood in terms of the ministry’s 
perceived needs and priorities. 

The question remains as to when the next set of RIAD computers can be 
expected to arise from the drawing board. Since 1972, a new group of RIAD 
computers has appeared at approximately seven-year intervals. Thus, the 
interval between RIAD-1 (1972-1973) and the RIAD-2 (1978-1981) com- 
puters was six to eight years. Likewise, the interval between the RIAD-2s and 
the RIAD-3s (1984-1988) was six or seven years. A seven to eleven year 
technological lag of RIAD behind IBM has also been observed. 

If the previous pattern of time lags behind IBM still held, more powerful 
RIAD-3 computers, which could resemble the IBM 3080 Series, should have 
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appeared by 1986 and 3090-like RIAD-4s should appear by about 1990. The 
fact that RIAD-3 computers comparable to the IBM 3030 models entered 
serial production only in the 1984 to 1988 timeframe suggests that Minradio- 
prom is experiencing greater difficulty with the higher performance systems. It 
now seems likely that the RIAD-4 machines will be delayed until the 13th Five 
Year Plan, i.e., sometime in the early 1 9 9 0 ~ . ~ ~  

One hint of Minradioprom plans was given in 1983 by a senior official who 
spoke of a future RIAD computer dubbed the ES-1087.26 This machine, with 
a MIPS rated two and one half times greater than that of the ES-1065, was 
to be in production by 1990. Such a machine would have a capacity not too 
dissimilar from that of an IBM 3081D which appeared in 1981. 

Another tidbit of information was provided in an early 1988 reference to 
the ES-1068. This new Soviet “computing complex” is said to be capable of 
600 MOPS when equipped with “special matrix processors designed to ac- 
complish specific tasks.” The principle ES-1068 architecture is said to be well 
known to world computer science but the Soviet implementation is claimed 
as a first. This, plus the indication that the ES-1068 is intended for “such 
complex tasks as geological prospecting for major mineral deposits and con- 
structing models of ecological processes,” leads us to conjecture that the 
machine employs a massively parallel architecture of the MIMD (Multiple 
Instruction, Multiple Data) type.” The ES-1068 may be Minradioprom’s re- 
sponse to Minpribor’s rather successful PS-xO00 series of massively parallel 
computers which also are used for geological work. 

A summary chart of operational characteristics intended for future RIADs 
is presented in Table IV. 

Toward a Fifth Generation RIAD.  A few clues to Minradioprom’s thinking 
about a RIAD-5 have emerged.28 The first premise appears to be that 
program compatibility with previous RIAD software continues to be a sine 
qua non. The second is that improvements in reliability, service, usability, and 
peripheral assortment are more important to Soviet users than the gains that 
might be realized from greater architectural sophistication. That, of course, 
does not preclude the use of better and less costly microcircuitry, micropro- 
gramming, specialized processors, etc. 

*’ This conjecture is lent credence by a Hungarian source in which the expectation is expressed 
that the ES-1034, a Riad-3 computer, will remain in supply throughout the 1986-1990 period. 
See Nanassy (1985). 
’‘ Novak (1983). The author is quoting M. E. Rakovskii, the Director of CMEA’s Intergovern- 

mental Committee for Computer Technology. 
”See Marchuk (1986). 99-108. 

In an article by the RIAD Chief Designer, Przhiialkovskii (1987). 
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TABLE IV 

BASIC PERFORMANCE TARGETS OF FUTURE RlAD COMPUTERS. 

Time period 
Characteristic I98 5 - 90 1990-95 

Degree of IC integration, 
(number of logical elements) 500-1000 5000 

Processor speed, MIPS 10 100 
Machine cycle time, ns 30-50 3-5 

Fetch time from main memory, ns 150 20 

Fetch time from buffer memory, ms 18 3-5 

Number of ICs in CPU 600 50 

Main memory chip size, Kbits 64 512 

Fast buffer memory size, Kbytes 64 I024 

Source: Maliarskii and Terekhov (1987). 

A major thrust of future RIAD development is toward better user interfaces, 
an interesting direction since “user friendliness” has never been a strong point 
of Soviet mainframes. A second thrust is said to be toward integrated networks 
combining systems from PCs to supercomputers. It appears, in short, that 
Przhiialkovskii and his fellow Minradioprom designers continue their incli- 
nation to follow Western and Japanese leads in creating future generations 
of RIAD computers. 

Measuring the IBM us. RIAD-3 Lag. From the beginning, RIAD designers 
have followed the lead of IBM. It is fitting to provide a general assessment of 
RIAD’s performance relative to that of IBM. 

With the introduction of its 308x Seriescomputers in 1981, IBM moved to a 
new architecture which permits vastly greater main memory as well as more 
processing power.29 No Soviet computer with 3080 Series (much less 3090 
Series) architecture was known to have been announced or shipped by mid 
1988. The ES-1066 is the first Minradioprom RIAD computer to display 
characteristics of the IBM 3080 Series. 

29 The address portion of the instruction format common to the IBM 360-370-3030-4300 
computers is 24 bits in size. Such an instruction can address a memory location up to 16,777,216 
which is 16 megabytes. The IBM 3080 Series of computers employs what IBM calls its Extended 
Architecture (XA) with 32 bit addressing. With this, the computer can address locations up 10 

2,147,483,648 which is 2 gigabytes. Another feature of the 3080 and 3090series of IBM computers 
is their use of multiprocessors packaged as integral central processing units. 
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TABLE V 

MATCHING SOVIET RIAD COMPUTERS WITH IBM COUNTERPARTS 

Year RIAD 
Year Closest IBM IBM Lag in 

Model Country shipped counterpart shipped years 

RIAD-1 
ES- 1020 
ES- I030 
ES- I050 
RIAD-2 
ES-1022 
ES-1033 
ES-1035 
ES-1045 
ES-1060 
ES-1061 
RIAD-3 
ES-1036 
ES- I046 
ES- I065 
ES-1066 

USSR 
USSR 
USSR 

USSR 
USSR 
USSR 
USSR 
USSR 
USSR 

USSR 
USSR 
USSR 
USSR 

1972 
1972 
1973 

1975 
1976 
1977 
1982? 
1977 
1984 

1984 
1986? 
1985? 
1987 

IBM 360/30 
IBM 360/30 
IBM 360/65 

IBM 360/44 
IBM 360/50 
IBM 370/135 
IBM 370/148 
IBM 370/165 
IBM 370/168 

IBM 370/138 
IBM 4341? 
IBM 3033N? 
IBM 3033U? 

1965 
1965 
1965 

1966 
1965 
1972 
1977 
1971 
1973 

1976 
1979 
1980 
1978 

7 
7 
8 

Sources: Artamonov (1988); Data Decisions (1983); Judy (1986); Phister (1979). 

Unlike the RIAD-1 machines, the RIAD-2 and RIAD-3 computers are 
not close clones of IBM originals. One-to-one matching is not possible with 
the later models. We have tried, nevertheless, to make some comparisons 
and Table V shows a matching of recent Minradioprom RIAD computers 
with IBM machines displaying similar architectural and performance 
characteristics. 

By definition, the imitator lags behind the imitatee. The discovery, therefore, 
that RIAD lagged temporarily behind IBM in producing computers with 
comparable CPU and memory capabilities provokes small surprise. The 
interesting question is: How great is the Minradioprom mainframe lag and 
how has it changed with the passage of time? 

Soviet RIAD-1 computers lagged behind their IBM System/360 counter- 
parts by seven or eight years; the average lag was 7.3 years. RIAD-2 computers 
lagged behind similar IBM System/370 systems by from five to eleven years 
with an average of 9.4 years. The four Soviet RIAD-3 computers so far 
released have appeared from five to nine years after the IBM systems with 
which they have been matched in this study; the average RIAD-3 lag has been 
7.25 years. 
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Minradioprom’s RIAD project is an effort to  produce IBM-compatible 
computers. How does the RIAD effort compare to Western and Japanese plug 
compatible manufacturers, the so-called “ P C M S ” ? ~ ~  

Taken as a group, the Western and Japanese PCMs offer an impressive 
array of computers. In the mid 1980s, the PCMs were offering more than 54 
computer models that were compatible with the IBM System/370 and the 
4300,3030, and 3080 Series machines. This compared with 21 offered by IBM 
itself and 11 RIAD computers announced by all the CMEA countries taken 
together. 

As a group, the PCMs have lagged very little behind IBM in bringing their 
products to market. In contrast to an average RIAD-3 lag behind IBM of 
more than seven years, the PCMs lagged an average of only 0.44 years behind 
IBM. Furthermore, the alacrity with which the PCMs have brought forth their 
clones has increased with time. Only a few PCM versions of System/370 
machines were still for sale in 1985 but their average lag behind IBM was 4.33 
years. The average lag for the 303x look-alikes was only 0.73 years. For the 
4200 Series, it was 0.23 years, and for the 308x, the PCM competition actually 
beat IBM to market by an average of 0.05 years. 

Not only were the PCMs able virtually to eliminate the time lag behind 
IBM, their computers were, on the average, 0.48 MIPS more powerful than the 
IBM computers with which they were designed to compete. Some examples 
illustrate the point. Amdahl/Fujitsu’s “imitation” of the IBM 3032 not only 
beat IBM to market by a year but was 1.5 MIPS more powerful when it got 
there. NAS/Hitachi’s product arrived two years earlier and 1.25 MIPS more 
powerful than the IBM 30835. The PCMs led IBM also in a number of 
important areas of technology, e.g., in the early use of very large scale 
integrated (VLSI) circuitry. 

The major PCMs have maintained a blistering pace of new product 
introduction and technological innovation. In many cases, they have un- 
doubtedly forced IBM to bring new computers to market earlier than it would 
have preferred. Compared with this example of competitive markets at work, 
the performance of CMEA’s RIAD effort is unimpressive. The RIAD-3 
average lag of over seven years behind IBM was greater than the average lag 
of any of the major PCMs. As a manufacturer of plug compatible compu- 
ters, the Soviet-East European RIAD consortium brings up the rear. 

That the RIAD lag behind IBM has remained essentially invariant during 
the course of nearly two decades is rather surprising. Several factors might 
have caused the Soviets to pick up the pace. For example, information about 
Western computer technology in general and IBM’s designs and intentions in 

’O Prominent among the PCMs are Amdahl, National Advanced Systems, Nixdorf, Hitachi, 
and Fujitsu. For more on the PCMs’ performance, see Judy (1986), Appendix B. 
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particular surely must come faster to RIAD engineers as the Soviet industrial 
intelligence apparatus has m a t ~ r e d . ~ ’  RIAD engineers have accumulated 
20 years of experience in building IBM-compatible computers. Has their 
expertise not increased correspondingly? 

I t  would seem that, while the engineering and design sides probably have 
improved over the years, the industrial basis of computer production has 
failed to improve correspondingly. The ponderous Soviet planning and 
industrial establishment has moved too slowly to support high-tech manu- 
facturing. Many of the old problems of the economic system remain or even 
worsened with the passage of time; among them are those of fractured 
responsibility for R&D and production, monopolistic ministries, organiza- 
tional infighting, bureaucratic bumbling, inappropriate success indicators, 
disincentives for innovation, inattention to quality control standards, and 
sluggish industrial supply. 

Evaluating the R I A D  Performance. In the space of two decades, the Soviet 
Minradioprom and its CMEA partners have created the capability to design 
and manufacture IBM compatible mainframes. Starting from a very modest 
technological base, the RIAD consortium by 1985 had brought three 
generations of computers to market. 

Every RIAD generation has improved substantially on its predecessor. This 
is true of both individual models and of the family as a whole. While the 
RIADs have not gained technologically on either IBM or the PCMs, 
Minradioprom computer engineers have proven themselves capable of 
designing powerful mainframe computers. Furthermore, the RIAD designers 
have apparently accomplished many of the objectives that were set before 
them at each generation. Despite considerable improvement over the years, 
however, the Soviet RIAD computers appear not to have developed strong 
loyalties among their users. Indeed, even Soviet users prefer RIADs manu- 
factured in East Germany to the domestic products. 

Much of the users’ dissatisfaction with the Soviet RIADs can be traced 
to Minradioprom and its suppliers, particularly Minelektronprom. Soviet 
manufacturing weaknesses have adversely affected the design and production 
of basic components and of peripherals, particularly of disk storage devices. 
Minradioprom still uses 64 Kb memory chips, for example, at a time when 
1 Mb chips are in widespread use in the United States and Japan. The RIAD 
computers continue to employ old bit-slice processor chips. Until the early 
1980s, RIAD central processors were using Minelektronprom’s K589 series 

31 The “industrial intelligence apparatus” is understood here to include everything from 
espionage, to imports in defiance of COCOM restrictions, to the processing of unclassified 
western technical literature. 
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chip and now they use the K1800 series. These and other families of Soviet 
chips are described below in Section 4.3. 

Other persisting problems of the RIAD mainframes have been unsatis- 
factory reliability, inappropriate configurations for user purposes, shortages 
of spare parts and supplies, software inadequacies, generally poor levels of 
user support, high cost, and insufficient levels of output. 

These problems, which are not confined to Minradioprom, must be solved 
before the Soviet Union can be said to have developed a satisfactory main- 
frame computer industry. 

Personal Computers from Minradioprom. 

Like IBM, Minradioprom was slow to climb aboard the PC bandwagon. 
Admittedly, that bandwagon began to roll much later in the Soviet Union 
than in the United States and Minradioprom may have had to contend with 
certain negative official attitudes toward PCs until 1985. But it also seems 
likely that Minradioprom engineers and managers were inveterate “main- 
framers” just as were many engineers and managers in large American com- 
puter companies before Philip Estridge sprung the product of his PC “skunk 
works” in Boca Raton upon the computer world. In any case, Minradioprom 
waited until 1982 to begin designing personal computers. 

AGAT, An Apple4 Clone. 

The AGAT was the Soviet Union’s first personal computer and, true to 
Minradioprom tradition, was the clone of an American original, in this case 
the Apple-IL3’ Since the AGAT was intended primarily for schools, it was 
not unreasonable that Apple was taken as the model since more educational 
software was available for the Apple family than for any other brand of per- 
sonal  computer^.^' Design work on the AGAT began in 1982 and early 
models were in use by 1983. The machine entered serial production at  the 
Lianozovskii Electromechanical Factory in 1984. 

Whereas Jobs and Wozniak were able to use the “off the shelf” Motorola 
6502 chip for the Apple-11, Minradioprom found itself constrained to build up 
the AGAT’s 8-bit CPU using Minelektronprom’s K588 CMOS bit-sliced 
processor. This, combined with slow disc access, are probably what make the 
AGAT run up to 30% slower than the Apple-II.34 In addition, the machine 
provided CP/M compatibility via an Intel 8080-compatible Minelek- 

’’ Information on the AGAT comes primarily from Artamonov (1988), 207; loffe (1984); 
Savel’ev (1987a). 120-124; Injormatika i Ohrazooanie, 1987: 6, inside cover; and from the senior 
author’s personal observations. 
’’ Ershov (1987). 
34 For some run-time comparisons performed by an American visitor to the USSR, see Bores 

(1984). 135, passim 
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tronprom K580 coprocessor. The AGAT was configured with 42 Kb of ROM 
and 64 Kb (expandable to 256 Kb) of RAM. External storage could be on one 
or two 258 Kb floppy disk drives (ES-5088 or ES-5089) or audio tape cassettes. 
The RGB TV monitor provided either 40 x 24 or 80 x 24 character display as 
well as three bit-mapped color graphics modes; an audio generator supplied 
sound. Input-output was by two programmable parallel and one RS-232C 
serial ports. 

AGAT DOS, the operating system provided by Minradioprom, was strictly 
analogous to Apple-DOS as was most of the rest of the machine’s basic 
software endowment. BASIC-AGAT was the counterpart of Apple BASIC. A 
version of Applesoft apparently was housed in ROM. The AGAT’s text editor, 
file manager, and graphics editor all had their Apple counterparts. 

Fortunately for students using the AGAT, another line of software for 
the machine was developed by the Computing Center of the Siberian Division 
of the USSR Academy of Sciences. This line, called “SCHOOLGIRL” 
:SHKOL’NITSA) ,  included a much-improved DOS, a LOGO-like pro- 
gramming language called “RAPIR,” and a graphics package called 
“SH PAGA.” 

The AGAT’s advantage over other Soviet PCs for educational purposes is 
said to lie in its color graphics capability that makes possible interesting 
instructional software. According to Soviet users, the AGAT’s main disadvan- 
tage lies not in its sluggishness but, rather, in its extremely poor reliability. Its 
floppy disk drives and keyboard are said to be particularly prone to failure. 
According to one user, drive failures occur with “catastrophic frequency and 
often with irreversible consequences.” Disks that read on one drive may be 
unreadable on another. Machines are constantly in for repair and, even so, 
minor failures (e.g., individual keys inoperable, one color unavailable) must 
simply be o ~ e r l o o k e d . ~ ~  

Because of its dubious quality, the AGAT has been the butt of much serious 
criticism from Soviet officials as well as computer users. Rumors and reports 
of its death, i.e, the discontinuation of its production, have been recurrent. The 
most recent of these was a report that a state commission had decided to 
withdraw the AGAT from production in early 1987 in order to replace it with 
the KORVET.36 But the AGAT seems unwilling to die.37 Hundreds, perhaps 
thousands, of them are installed in Soviet schools. Some of the Soviet Union’s 
best educational software operates best on the AGAT and, of course, the 
international library of Apple educational software continues to grow. I t  
would not be surprising, therefore, to see an improved version of the AGAT 

” Basin (1988); Yasmann, (1987). 
36 Molodezh’ Estonii, June 3, 1987, as cited in Yasmann (1987). 
’’ A journal article published early in 1988 indicated that the AGAT was still in serial 

production. See Petrov (1988). 
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make its appearance even though it has some formidable enemies in Soviet 
official computerdom. 

ES-l84x,  IBM PC/XT Clones With the ES-1840 and ES-1841, Minradio- 
prom returned to the familiar ground of copying IBM  original^.^' The “ES” 
model designation was rather surprising since it had always before been 
reserved for RIAD mainframes. The explanation appears to lie in the fact that 
Minradioprom, following the IBM lead, is touting these PC clones as 
professional workstations that can be connected to the ministry’s RIAD 
mainframes. Ministry officials also may harbor hopes that their designs can be 
made the CMEA standard. If that were to occur, it would make a travesty of 
CMEA computer collaboration since many better PC clones are made by 
other countries in Eastern Europe and also by other ministries in the USSR. 

The ES- 184x machines are manufactured by Minradioprom’s Minsk 
Computer Works and are less-than-perfect copies of the IBM originals. They 
differ, first of all, in that their motherboard layout differs substantially from 
that of the IBM machines. PC-compatible graphics and other boards will not 
fit the ES-184x expansion slots. No PC communications packages will work 
on them because their 1 / 0  port is not RS-232-C compatible. 

The ES-184x machines differ also in that they do not use the Intel 8088 or its 
clone for its CPU. Rather, they employ the Soviet K 18 10VM86 chip which is a 
4 megahertz Minelektronprom copy of Intel’s 8086 microprocessor. The 
machines are configured with 256 Kb (expandable to 640 Kb) of RAM, a 
Cyrillic and Latin character keyboard with 92 keys including 10 that are 
programmable, a 80 x 25 monochromatic display, and “quasi” RS-232 and 
Centronics ports. 

The ES-1840, announced in 1986, offers two 320 Kb floppy disk drives and 
differs from the IBM PC in that the drives are bulkier and are housed 
separately from the main unit. Furthermore, the disks are not perfectly 
compatible with the IBM format. The ES-1841, which appeared in 1987, is 
an IBM-PC/XT semi-compatible machine equipped with a Bulgarian 10 
megabyte Winchester disk. A mouse is available but is implemented differently 
than on the IBM-PC and many programs intended for the latter do  not work 
on the ES-1841. Other peripherals include a color monitor and a plotter. 
Although one of the present authors saw several ES-1840 systems on display 
and in operation during his travels in the USSR during the summer of 1988, he 
never saw a ES-1041 or any of the other peripherals described. The systems 
displayed normally were equipped with Epson or Robotron (East German) 
printers. 

Information on the ES-1840 and ES-1841 comes from Pykhtin (1986) and marketing 
brochures supplied by Minradioprom, and personal observations of the senior author. 
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Like the machine itself, the ES-184x software supplied by Minradioprom is 
copied or closely derived from American originals. The standard ES-184x 
operating system is M86, a Soviet version of Digital Research’s CP/M-86, 
which, according to Minradioprom, will support WORDSTAR, 
SUPERCALC, D-BASE I1 and 111, SYMPHONY, and other popular 
American software packages. Also available is ALFA-DOS, a Soviet version 
of MS-DOS v. 3.2. Programming languages include ASM86 (a Soviet ver- 
sion of Digital Research’s assembly language), as well as BASIC M86 and 
PASCAL M86 which are Soviet versions of those popular languages. 
Applications software packages for the ES-184x include ABAK (a Soviet 
version of the SUPERCALC spreadsheet), SLOG (a WYSIWYG Russian 
and Latin character version of the WORDSTAR wordprocessor), and 
DELOGRAF (a business graphics package probably patterned after an 
American original). 

Users of the ES-184x dispute Minradioprom’s claims for software com- 
patibility with the IBM-PC. They point out that the hardware differences 
make the ES-184x incompatible not only with true IBM compatibles but also 
with other Soviet “PC compatibles” like Minpribor’s ISKRA-1030 and 
Minpromsviazi’s NEIRON series.39 

PK-80xx;  C P / M  Compatible PCs. The PK-8001, PK-80lOand the PK-8020 
are members of a new Minradioprom family of eight-bit computers based on 
Minelektronprom’s KR580VM80A microprocessor, a 2.5 megahertz imita- 
tion of Intel’s 8080A MikroDOS, a Soviet version of CP/M-80 is 
the standard operating system for the PK-80xx machines. 

The PK-8001 is configured as a small personal computer with main 
memory of 16 to 64 kilobytes. Standard external memory is on audio cassette 
although provision is also made for 8”, 5.25“, and 3” disk drives. Soviet 
authors compare this machine to Radio Shack’s TRS-80 and put its speed at 
625 thousand operations (register-to-register) per second or about 25% slower 
than the IBM PC/XT. 

The PK-8010 is normally equipped with 64 Kb of RAM, 24 Kb of ROM, 
48 Kb of dedicated graphics memory, black and white monitor (512 x 
256 pixels) and is intended primarily as a student’s workstation in a KORVET 
classroom network. The PK-2020 may be configured with either monochro- 
matic and/or color monitor, one or two 800 Kb floppy disk drives, dot ma- 
trix printer, and an audio cassette tape storage device. It is intended to serve 

’’ Shirokov (1988). 
Information about the PK-8001 is from Velikhov et a/. (1986). Information on the PK-8010 

and PK-8020 is from Sulim et al. (1986), 74; Velikhov (1987a), 28; Driga (1986), 66-68; and 
Informatika i Ohrazovanie, (1987) (2). passim. 
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as the teacher’s workstation in a KORVET classroom network. Main mem- 
ory is said to be expandable to 256 Kb. The detachable keyboard, which 
accepts input in both Cyrillic and Latin characters, is augmented by five 
programmable function keys and a numeric keypad that doubles as cursor 
control. 

KORVET:  A Classroom Network. The KORVET is a classroom con- 
figuration of up to twelve PK-8010 student computer workstations networked 
together with one PK-8020 teacher’s work~tat ion.~~ In network mode, the 
KORVET’s operating system presumably operates a Soviet modification of 
MP/M-80. Standard programming languages are said to include a Soviet 
version of BASIC compatible with Microsoft’s MSX BASIC, PASCAL, and 
RAPIR. 

On the face of it, an 8-bit CP/M machine would seem an unlikely choice for 
the Soviets as one of their main educational computers. In the past, the Soviets 
have placed heavy weight on the quantity and quality of software that they 
could “borrow” when they were deciding which American computer designs 
to emulate. But in this case, very little Western educational software will run 
under CP/M. The Apple 11, Commodore 64, and TRS-80, all with proprietary 
operating systems, were the 8-bit computers of choice for American schools in 
the early 1980s. In the pre-IBM PC era, the CP/M machines held sway only 
in business applications. Even in that field, they were quickly eclipsed by 
PC-DOS/MS-DOS machines after the IBM PC was announced in 1981. 
Why, then, the choice of 8-bit CP/M machines for Soviet schools? 

The history and tribulations of the PS-8Oxx and the KORVET classroom 
network cast light on how that decision was made and also starkly illustrate 
some of the fundamental problems of the Soviet computer industry.43 The 
computer was conceived in 1985 in a laboratory of Moscow State University’s 
(MSU) Institute of Nuclear Physics. Lacking an appropriate computer for 
their experimental work in low-temperature plasma physics, Professor 
Alexander T. Rakhimov and a young associate, Nikolai Roi, designed and 
built their own machine. As it happened, their “dean” at MSU was the head of 
the Department of Physics and Plasma Physics who was none other than 
Academician Evgenii Pavlovich Velikhov, soon to become Vice President of 
the Academy of Sciences and head of its Department of Informatics, 
Computer Technology and Automation as well as chief scientific advisor to 
Mikhail Gorbachev. 

Velikhov was sufficiently impressed with his colleagues’ handiwork to 

41 Information for the KORVET comes from the same sources as that for the PK-8Oxx 

42 This KORVET case is based on the senior author’s interviews and Grif (1988). 
machines described earlier. 
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convene a meeting of computer specialists and industrialists at  the Presidium 
of the Academy of Sciences for the purpose of demonstrating the new 
computer. At that meeting, the unanimous opinion was that the KORVET 
should be mass produced. Another demonstration was scheduled, this one at 
the Council of Ministers building, to be attended by top industrial leaders 
including some ministers. Again, the response was enthusiastic and a decree 
went forth from the Central Committee of the Communist Party and the 
Council of Ministers calling for mass production of the machine which was, 
by this time, named the KORVET. Production was planned to be in the 
following numbers. 

Year Planned Production 

1987 10,000 
1988 36,000 
1989 84,000 
1990 120,000 
I992 250,000 

The responsibility for preparing final documentation and prototypes 
was assigned to the Scientific Research Institute of Calculating Machines 
(“NIISchetmash”) while Minradioprom’s Baku factory “Radiostroenie” was 
designated the producer. NIISchetmash said that it would take three (sic!) 
years to complete the working documentation, an interesting indication of the 
normal pace of design work in the Soviet computer industry. In the end, 
however, they were able to complete the design and produce a prototype 
school computer laboratory in one year. The KORVET was approved by a 
state certification board in January, 1986 and its mass production was 
recommended. The committee stated that the KORVET design satisfied the 
requirements for educational computing and was technically superior to other 
Soviet computers designed for this purpose. 

At about the same time, a competing design for a school computer came 
before the state certification board for approval. This machine, the UKNTs, 
was to be produced by Minelektronprom and initially was not approved by 
the certification board. More than 10 specialized integrated circuits were 
required for the UKNTs, and the KORVET designers charge that Minelek- 
tronprom, which is the Soviet Union’s monopoly producer of integrated 
circuits and other electronic componentry, gave total priority to its “own 
baby” and failed to meet commitments to Minradioprom. 

According to Professor Rakhimov, a top Minelektronprom official explic- 
itly invited the MSU designers to abandon Minradioprom and join forces 



278 RICHARD W. JUDY AND ROBERT W. CLOUGH 

with his own ministry. When Rakhimov refused to do this, citing the exist- 
ing decision to manufacture the KORVET in Baku, his Minelektronprom 
interlocutor cited the interministerial competition and predicted that UKNTs 
would live and the KORVET would die. 

As it turned out, Minradioprom’s Baku factory has been plagued by 
inadequate quantity, inappropriate assortment, and low quality of compo- 
nents from Minelektronprom. All parties associated with the KORVET are 
convinced that their effort has been victimized by Mineletronprom’s favorit- 
ism toward its own design, the UKNTs. 

Early hopes that serial production of the KORVET would begin early in 
1987 proved to be sanguine. Minradioprom was to begin serial production in 
the fourth quarter of the year, but only a few systems were produced. Output 
in 1988 is well below target and many otherwise completed machines are said 
to be waiting at the factory for monitors that Minelektronprom has failed to 

Concern about the longer-run feasibility of mass producing the KORVET 
arises from the fact that the Baku Radiostroenie plant relies almost exclusively 
on manual labor in its production. What equipment they have is said to be 
mainly homemade. Entreaties to the planning authorities and Minradioprom 
have failed to elicit the equipment necessary to ramp production to the 
planned levels. The idea of purchasing a Japanese turnkey computer 
manufacturing factory has attracted favorable attention. A television factory 
in Lvov now produces a million television sets per year in such a Japanese 
turnkey plant. For computers, however, not only foreign exchange short- 
ages but also COCOM (Coordinating Committee for Multilateral Export 
Controls) restrictions stand in the way. 

The KORVET case illustrates the following weaknesses of the Soviet 
computer industry: 

supply. 

1. Computer design, especially PC design, is frequently a haphazard matter: 
The KORVET arose almost accidentally from a physics laboratory at 
MSU. 

2. The three functions of initial design, working documentation and 
prototyping, and manufacturing are disjointed. Three totally different 
organizations with three different sets of objectives have been involved in 
the KORVET. 

3. The oligopolistic structure of Soviet industry is a powerful brake on 
progress in computer technology. Minelektronprom’s interest in and 
favoritism toward its own computers conflicts with its position as the 
USSR’s single supplier of computer components. 

4. No satisfactory alternative to market competition exists in the Soviet 
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economy to identify meritorious computer designs and to mobilize 
resources for their production. 

5. Shortages of components and manufacturing facilities impede the 
expansion of Soviet computer production. 

Future Directions f o r  Minradioprom PCs. Minradioprom has provided 
clear indication of its dreams of becoming a major Soviet PC producer.43 
The ministry’s strategic orientation is primarily toward the professional 
workstation market, especially where networking or other connections to 
mainframes are desired, and secondarily toward the education market. The 
truly “personal” computer user hardly enters the ministry’s present plans 
for the future. 

The IBM PC/XT semi-compatible ES-184x machines are the extent of 
Minradioprom’s present and rather meager set of professional workstations, a 
set the ministry calls the “first series”(hereafter “MRPC-1”) of its PC offerings. 
The general specifications for Minradioprom’s “second series” (MRPC-2) call 
for a set of machines to be built around a 32-bit processor analogous to the 
Intel 80286 or 80386. There is no Soviet counterpart to either of these chips 
and none is said to be on the horizon. State acceptance tests for the first 
MRPC-2 machine, the ES-1842, were said to be in preparation in early 1 98tL4 
Minradioprom may use an East German 80 x 86 clone which is thought to 
be under development. Alternatively, Far Eastern 80x86 clones may be 
imported in quantity. Minradioprom plans call for the MRPC-2 to execute the 
RIAD instruction set either by emulation or by coprocessor. Main memory 
would consist of one or two megabytes of RAM. Disk storage would be on 
500 Kb floppy disks and hard disks with capacities of 12.76, 25.5, and 
40 megabytes. 

The MRPC-2 machines are intended to support a host of operating systems 
including CP/M-86, MS/DOS, VM/PS, UNIX, and a synthetic system 
CCP/M-86 said to combine the functions of CP/M-86 and MS/DOS. 
Programming languages are to include those available under MS/DOS plus 
those supported on the RIAD mainframes, e.g., ADA, FORTH, C, and 
PROLOG. Application packages would include a word processor (probably 
related to WORDSTAR), DBASE 11, and SUPERCALC. 

Minradioprom’s business plan calls for the MRPC-2 to sell in the range of 
8-10 thousand rubles ($13,000-17,000) and for annual output to be in the 
“hundreds of thousands.” The plan also calls for the design and production of 
a range of PC peripherals. 

.a3 This section is based on the senior author’s interviews and Lopato et al. (1986). 
44 Shirokov (1988). 
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The ES-1840 and ES-1841 are clearly inferior to the IBM-PC/XT of 1981 
vintage. Tomorrow’s Minradioprom ES-1842 probably will be inferior to 
yesterday’s IBM-AT. The ministry is nowhere close to designing a computer 
comparable to IBM’s PS/2 whose Intel 80386-based Model 80, as Shirokov 
(1988) ruefully put it, “surpasses our most productive computer for scientific 
and technical computations-the BESM-6.” The thought that American PCs 
will be using the Intel-80486 chip in the early 1990s greatly depresses Soviet 
computer users struggling to obtain and then use machines that are inferior to 
Intel 8088-based PCs. 

Minradioprom’s dreams of becoming a major supplier of PCs depend 
critically on its ability to master the techniques of designing and then mass 
producing high-quality, reliable, electronic consumer products, something 
it has not demonstrated up to now. They also depend on vital factors over 
which the ministry has little or no control, mainly an adequate supply of 
components. 

4.7.2. The Ministry of lnstrument Making, Automation Equipment, 
and Control Systems (Minpribor) 

In 1974, the Soviet Union and its partners in the RIAD program agreed to 
start a complementary program to develop minicomputers within CMEA, the 
so-called SM (Sistemaia Malaia, or small system) series. They created a 
Council for General System Design of Minicomputers, with working sub- 
groups for management information system and computer-assisted design.45 

The CMEA countries agreed to develop the SM computer family as an 
extension of Minpribor’s existing ASVT (Aggregate System of Computer 
Technology) computers, such as the M-6000 and M-7000, which were pat- 
terned after the PDP-8 and PDP-10 machines. As with RIAD and ASVT, 
the SM line copied existing Western models, in this case the Hewlett Packard 
HP-2116 and the Digital Equipment Corporation’s PDP-11 minicomputer 
families.& 

The SM machines were intended to fill the applications gap where RIAD 
machines were simply too big or too expensive, especially in process control. 
The original intent was to start testing initial SM models in 1977.47 Soviet 
computer designer Boris Naumov, who had designed the ASVT computers, 
headed up the SM project. 

” Rakovskii (1979). The Soviet abbreviation corresponding to ADP and MIS is “ASU,” which 

46 Goodman et al. (1984). 
‘’ Naumov (1977). 

means “Automated Control Systems,” and for CAD it is “SAPR.” 
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The SM program initially was a minicomputer program. As the USSR 
became able to produce more powerful integrated circuits, the “SM” 
designation appeared on a number of much smaller systems, still preserving 
HP or DEC compatibility, that the Soviets properly call “microcomputers.” In 
the 1980s, the “SM” designation has also been applied to a new series of 
Minpribor “personal” computers powered by Minelektronprom clones of 
Intel 8080 and 8086 microprocessors. 

Table VI provides an overview of the SM line of minicomputers. This 
review does not cover those machines identified as being produced in East 
European countries, even though they may use Soviet components. 

Phase One: 1974-1977; Planning the SM-I. The first phase of SM 
development laid out the basic designs for the first generation of SM 
minicomputers (“SM-I”) and peripherals, and selected the countries re- 
sponsiblefor each aspect of the p r~gram.~’  This phase was largely preparatory 
in nature, in that no SM machine was produced. During this period, however, 
Minpribor did produce the M400 computer, which operated at 0.1 MOPS, 
had 64 Kb RAM, and was outfitted with a 5 Mb disk memory unit. 

The CMEA member countries reached an agreement to produce four 
central processors, the SM-1 P, SM-2P, SM-3P, and SM4P,  which would 
form the heart of four models of SM-I computers. The first two were based 
on Hewlett Packard designs. The latter two were to be upwardly compatible, 
third-generation 16-bit processors, based on the DEC PDP-11 line of 
minicomputers. 

Agreement was also reached regarding the applications that the SM 
program would focus on in the development of the minicomputers. These 
included: control systems for continuous and continuous-discrete technolog- 
ical processes and production; complex scientific experiment control; net- 
works with large minicomputers for data processing in non-industrial 
applications; and automated design. 

In June and July of 1977, Bulgaria, Hungary, GDR, Cuba, Poland, 
Rumania, USSR, and Czechoslovakia attended the first international tests 
for SM computers.49 Unfortunately, no computers were yet ready for inspec- 
tion. The CMEA commission approved two central processors: the SM-1 P 
(also called SM-2101) and the SM-3P (also called SM-2103). Two internal 
memory units were approved: the SM-3100 and SM-3101 (latter produced in 
Poland). In addition, a number of peripheral units received CMEA blessings. 

Sources for the information on SM-I include: Ashastin (1980), 8 I ;  Kabelevskii (1986). 31; and 
Lavreniuk el al. (1979). 

49 Lavreniuk et ul. (1979), 122. 



TABLE VIA 

SELECTED CHARACTERISTICS OF MtNPRIBoR SM-I MINICOMPUTERS 

Model SM-1 SM-1M SM-2 SM-3 SM-4 SM-2M 

Generation 
Year of First Appearanw 
Year Serial Production Ended 
Main Processor 

Soviet model(S) number of CPU 

CMEA model nurnber(s) of CPU 
Chip model used in CPU 
Processor cycle time 
Word Length (bits) 
Byte size 
Number of addressable registers 
Data types 

Operating speed 
Selected performance times (fisec) 

Register to register 

SM-I 
1978 
1987 

A- I3 1- 10 
SM-P 
SM-2101 

16 

4 
fixed (8, 16 & 

32 bits) 
floating 

(32 bits) 
400 KOPS 

SM-I + SM-I SM-I + SM-I 
1981? 1978 1983 1978 
???? ??r! nn m? 

A- 13 I- I4 A-131-11 A-131-15 SM-3P 
SM-2P 
SM2102 SM-2M SM-2103 

16 16 16 16 

4 4 8 
fixed@, 16& fixed(l6& fixed (16 bits) 

floating (32 bits) floating (32 bits) 

450 KOPS 480 KOPS 220 KOPS 

32 bits) 32 bits) floating (48 bits) 

5 

SM-I 
1978 
1987 

S M l P  

SM-2104 

16 

8 
fixed (8 & 

32 bits) 
floating (32 bits) 

700 KOPS 

2.1 



Fixed point add 
Fixed point multiply 
Floating point add 
Floating point multiply 

Compatibility 

Price of CPU (thousand rubles) 
Number of processors in system 
Primary Memory 

Maximum capacity (8-bit bytes) 
Access time (microseconds) 
Length of accessed word (bits) 

Throughput capacity 
I/O Channels 

Standard Operating Systems 

Modes of Operating* 

Programming Languages** 
Price range for a system (000 rubles) 

2.5 5 
36.6 20 

33 40 
110 9 

HP-3000 HP-3000? 
M-6000 
M-7000, SM-2 

5 
1 1 

64K 128K 
1200 
18 

250 K b 4 Mb 
DOSRV 

B, RT 

Mn, F, A, B 
7.1-67.9 

2.2 
10 

18-40 
23 

HP-3000 
M-6000 
M-7000, SM-I 

8.7 
1 o r 2  

256K 
1200 

250 Kb 
DOSRV, OSRV 

B, MP, RT 

Mn, F, A 
27 - 136.2 

2.1 
10 
15 
52 

H P-3000? 
SM-1, SM-2 
SM 1210, PS3000 

8.0 
1 o r 2  

256K 
1200 

2 Mb 
ASPO, ROS 
(multi-processor) 
B, MP, RT, 

Multiprocessor 
F, A, B 

20- 150 

PDP-I 1 PDP-I 1 
SM-4, SM 1420 SM-3, SM-1420 
SM-1600, SM-1300 SM-1300 

3 4.1 
1 

256K 248K 
1200 1200 

800 Kb 800 Kb 
DOS SM, 0 s  SM FOBOS, OSRV 

RAFOS 
B, MP, RT B, MP, RT 

MA,F ,K,P ,B  Mn,F ,K ,P ,B  
46-160 30.7-62.15 

Keys to Abbreviations 
* B-Batch; MP-Multiprogramming; VS-Virtual storage; RT-Real time 
** AS-ASSEMBLER; F-FORTRAN; PLI-PL/I; C-C language, K-COBOL; RPG-RPG; A-ALGOL, P-PASCAL, Mn-Symbolic 
code, MA-MACROASSEMBLER 
Sources: Artamonov (1988); Kezling (1986); Khatskevich and Protsenko (1988); Ostrovskii (1988); Prokhorov (1987); Prokhorov (1988a.b); Signaevskii 
(1988); Zonis (1988). 



TABLE VIB 

SELECTED C w c m s n c s  OF MINPRIEOR SM-I1 & SM-111 MINICOMPUTERS 

Model 
Alias 

SM- 12 10 
SM-53/50 SM-1410 SM-1420 SM-1600 SM-1700 

Generation 
Year of First Appearance 
Year Serial Production Ended 
Main Processor 

Soviet mode@) number of CPU 
CMEA model number(s) of CPU 
Chip model used in CPU 
Processor cycle time 
Word Length (bits) 
Byte sue 
Number of addressable registers 
Bytes per operation code 
Bytes per instruction 
Maximum operands per instruction 

Number of instructions 
Number of address modes 
Data types 

Operating speed 
Selected performance times (psec) 

Register to register 
Fixed point add 
Fixed point multiply 
Floating point add 
Floating point multiply 

SM-I1 
1986 

16 
8 

37 

2 o r 4  

4 
fixed (16 & 

32 bits) 
floating (32 & 

64 bits) 
logical 

3.3 MOPS 

0.9 
1.8 
3.0 
2.5 

SM-I1 SM-I1 
198? 1983 
1983? 

SM-1204 SM-2420 

16 16 

9 

152 
12 

fixed (8, 16 & 
32 bits) 

floating (32 & 
64 bits) 

logical 

244 KOPS 1-8 MOPS 

1 1 
2.8 
8.6 

1 1  
17 

SM-I1 SM-111 
1983 1987 

SM-1700 ALP 
SM- 1600.2620 

K 18MVSl 
360 ns 270 ns 

16 32 
8 

8 16 
l o r 2  

2,4,6 1 to 17 
6 

107 304 

fixed (8,16 & 

floating (32 bits), 

integer (8-128 bits) 
32 bits) floating (32-129 bits) 

decimal (to 32 digits) 
logical decimal character string (to 

64Kb) 
bit field (to 32 bits) 
2.8 MOPS 

2.5 
1.3 
9.2 

15 
33 

1.2 



Maximim virtual memory addressable 256 Mbytes 
Page size 

Compatibility M7000, SM-2M 
PS3OOO 

Price of CPU (thousand rubles) 

Special & Auxilliary Processors* 
Number of processors in system l o r 2  

Primary Memory 
Maximum capacity (8-bit bytes) 
Access time (microseconds) 0.54 

4 Mbytes 

1/0 Channels 
Type of data bus (interface) IUS 
Maximum number of peripherals 

Typical hard disk storage capacity (Mb) 
Standard Operating Systems 

Modes of Operating** 

Programming Languages*** 

Price range for a system (OOO rubles) 

B, MP, RT, 

F, K, P, G 
MA 

Multiprocessor 

PDP- 1 1 
SM-4, MIR-2, 

MIR-3 

SM-2410 
MIR 

512K 

OSh 

4.8 
RAFOS 

59 

PDP- 1 1 
S, -3, SM-4 
SM-1600, SM-1300 

4 

3,940K 

OSh 
20 

B, MP 

Mn, AS, P, B 

63-155 

PDP-I 1 
SM-3.SM-4 
SM-1420. M5000 

6 

SM-2 104.0506 
M-5000 
compatible 

1 Mbyte 
0.72 

OSh 

42 
DOS SM, OSRV 
FOBOS 

B. R T  
DOS SM-1600 

Mn, F, K, RPG, 
PL 1 

4 gigabytes 
4096 bits 
VAX-780 
SM-3, SM-4, 

SM- 1420, 
SM-1600 

FL 

1-5 Mbytes 
0.45 

OSh 

242 Mbytes 
MOS VP 
DEMOS 

B, MP, RT, VM 

F, C, K, P, PLl, B 
BLISS-32 

Keys to Abbreviations 
* FL-Floating point; S-Service; M-Matrix; T-Text; MK-Macro Conveyor 
** B-Batch; MP-Multiprogramming; VS-Virtual storage; RT-Real time 
*** AS-ASSEMBLER; F-FORTRAN; PLI-PL/I; C-C language, K-COBOL; RPG-RPG; A-ALGOL, P-PASCAL, Mn-Symbolic 
code, MA-MACROASSEMBLER 
Sources: Artamonov ( 1988); Kezling (1986); Khatskevich and Protsenko (1988); Ostrovskii (1988); Prokhorov (1987); Prokhorov (1988a,b); Signaevskii 
(1988); Zonis (1988). 
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Phase Two: 1978-1 982. Production of SM-I; Introduction of 
Micros. The actual production of SM-I computers began in this phase.50 
So did the first design and production of SM microcomputers. Soviet 
pronouncements identified a series of goals for this period, including the 
increased production of higher-quality and more flexible computers, a wider 
range of computer applications, improved upward compatibility, and con- 
tinued development of peripheral components. The SM-I machines were 
based on printed circuit boards with small or medium scale integration. 
Kabalevskii (1986) reports that from 1977 to 1980, more than 100 different 
SM devices were designed, tested, and produced. In addition, 16 operating 
systems and 14 application packages were produced in the same period. 

In 1979, the SM members held the Second International Meeting of the 
CMEA SM Commission to introduce the following SM-I  computer^.^' 

SM-I. The SM-1 minicomputer is mainly used in technological process 
control (ASUTP), both in industrial and laboratory experiments. It can 
substitute for the earlier M-6000 machine, and is program-compatible with the 
M-7000, SM-2, and SM-1210. The latter two are discussed below. Operating 
with up to 64 Kb  internal memory, the SM-1 can perform at 0.39 MOPS 
in register-to-register addition operations. As usual, the speed is quickly re- 
duced during other operations. Fixed-point multiplication is performed at 
0.025 MOPS, and division at 0.015 MOPS. The SM-1 reportedly can be 
equipped with an array of peripheral equipment, including external disk 
memory from 860 Kb to 5 Mb. One available tape drive can store up to 
100 Mb of data. 

The SM-1 computer’s operating system is DOS RV, which supports 
MNEMOCODE, a symbolic programming language, as well as FORTRAN, 
ALGOL, MACRO, and BASIC. 

SM-2. Used in automatic process control systems, equipment testing, 
communication links, and engineering calculations, the SM-2 is fully com- 
patible with the earlier M-7000, and program compatible with the M-6000, 
SM-1, SM-2M, SM-1210 and PS-3000. Utilizing the SM-2P processor, which 
follows the H P  line discussed above, the SM-2 can perform 0.45 MOPS of 
fixed-point addition, 0.1 MOPS fixed-point multiplication, between 0.025 and 
0.055 MOPS of floating-point addition, and 0.043 MOPS of floating-point 
multiplication. The computers internal memory can range between 64 Kb and 
256 Kb. 

50 For more information on the production of SM-I computers see Artamonov (1988) and 

’’ Riabov (1981). 
Kezling (1986). 
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The SM-2 employs the DOS RV and 0s RV operating systems, which 
can handle a symbolic program language, MNEMOCODE, as well as 
FORTRAN and ALGOL. 

S M - I  M .  Sometimes referred to as the “second generation” of the SM-1, the 
SM-IM employs a slightly improved processor and has a larger operating 
memory (128 Kb) and program memory than its predecessor. It is fully 
compatible with the SM-1 and SM-2 computers, and program compatible 
with the M-6000 and M-7000 as well. The SM-1M can perform 0.2 MOPS of 
fixed-point addition, 0.05 fixed-point multiplication, 0.025 floating-point 
addition, and 0.1 1 MOPS floating-point multiplication. Some configurations 
of this machine utilize the SM-5211 cassette tape device for external memory. 

S M - 2 M .  Just as the SM-1M is an improvement of the SM-1, the SM-2M 
is a “second generation” of the SM-2. Continuing along the HP path, the 
SM-2M uses two central processors in applications such as process control 
in energy and metallurgy, as well as ADP in small firms. With an internal 
memory that can range between 64 Kb and 256 Kb, the SM-2M can perform 
fixed-point addition at 0.48 MOPS, fixed-point multiplication at 0.1 MOPS, 
floating-point addition between 0.025 and 0.055 MOPS, and floating-point 
multiplication at 0.043 MOPS. 

The SM-2M uses either the ASP0 or ROS operating systems, and the 
program languages FORTRAN, ALGOL, and BASIC. 

S M - 3 .  The first of Minpribor’s DEC PDP-11 line of computers to appear in 
the late 1970s was the SM-3. Intended for monitoring scientific experiments, 
equipment testing and controlling, and various calculation duties, the SM-3 
was also employed in multi-machine systems with RIAD computers, serving 
as a remote terminal, peripheral processor, input-output processor, and in 
other network capacities. The computer was shipped in eight standard 
configurations, depending upon final application. 

Operating at an average 0.126 MOPS, the SM-3 could also attain 
0.2 MOPS in the faster register-to-register operations. The machine’s internal 
memory could range from 16 Kb to 56 Kb, and was program compatible with 
the SM-4, SM-1420, SM-1600, and SM-1300. It operated under the DOS SM 
and 0s SM operating systems, and could use the program languages 
MACROASSEMBLER, FORTRAN, COBOL, PASCAL, and BASIC. A 
later version of this computer, the SM-3-20, was serially produced beginning 
in 1980. 

A distinguishing feature of the SM-3 and SM-4 (i.e., the DEC-like) families 
of minicomputers is their use of a standardized data bus, the Obshchaia Shina 
(“OSh”) which is the functional equivalent of DEC‘s UNIBUS. Like 
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UNIBUS, the OSh is a parallel bus consisting of 56 data lines and is designed 
to promote compatibility across a wide range of computers and peripheral 
devices. 

SM-4. Minpribor’s SM-4 has developed into the workhorse of Soviet 
industrial, research, and design applications, and boasts the largest installed 
base of all Soviet minicomputers. Intended for use as an automated design 
workstation, technological process controller, or scientific experiment man- 
ager, i t  was first announced in 1978, and entered production at Minpribor’s 
Kiev Elektronmash complex in 1980. Naumov once reported that the SM-4 
was four times faster than the SM-3, and twice as expensive. The available 
scattered evidence generally supports Naumov’s assertion. 

The SM-4 computers have at least 64 Kb and no more than 256 Kb of 
internal memory. They operate at an average 0.244 MOPS (Gibson-] test), 
but can reach 0.7 MOPS in register-to-register operations, though there is 
some discrepancy in official Soviet statistics. The SM-4 computers are pro- 
gram compatible with the SM-3, SM-1420, and SM-1300 computers. They 
run the FOBOS, 0s RV, and RAFOS operating systems. They can accom- 
modate the following program languages: MNEMOCODE, FORTRAN,  
COBOL, PASCAL, and BASIC. 

Minpribor produces the SM-4 computer in at least seven different configu- 
ration subfamilies each of which bears its own identification number ranging 
from SM-1401 to SM-1407. To add even more confusion, the SM-1403 is also 
referred to as the SM 52/11, and the SM-1404 is alternately known as the 
SM 51/13. The general characteristics and distinctions of these subfamilies 
follow immediately below. 

The SM-1401 has at least eight common configurations, which differ mainly 
by the size of internal and external memory. The SM-1401s operate under the 
FOBOS operating system. 

The SM-1402 comes in at least two configurations, with the only distinction 
being the number of internal units used to achieve 64 Kb of memory. These 
use the DOS operating system. 

The SM-1403 (also known as the SM-52/11) is shipped in at  least eight 
different configurations that differ by the type of external memory and printer 
devices installed with the computer. These machines operate under 0s RV. 

The SM-1404 (also known as the SM-51/13) is a version of the SM-4 
computer that comes in two different configurations, and each has two 
processors, which sets the SM-1404 apart from other members of the SM-4 
family. I t  also has two transistor internal memory devices and can access up  
to 29 Mb on attached fixed disk units. Like the SM-1403, i t  operates under 
0s RV. 
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The SM-1405 computer has been identified in at least five different 
configurations which vary somewhat by the type and size of internal memory, 
but mostly by the communications devices employed. Noted applications 
include automated systems of scientific experiments and process control 
systems, and it utilizes both the FOBOS and 0s RV operating systems. 

The SM-1406 is configured two ways and used mainly for database 
processing. It operates under 0s RV and DIAMS. 

The SM-1407 has been encountered in three configurations, both intended 
for automated workstation applications and employing the 0s RV operating 
system. 

The year 1979 marked the appearance of the first SM microcomputer 
systems, the SM-50 family.52 The model numbering system for this set of SM 
machines was more elaborate and sometimes more confusing than for the first. 
In general, most machines of this period bear a 50 series number. The SM-50 
class computer is a microcomputer system used for numeric control, scien- 
tific measuring, and network terminals. The SM-51 class marks a further 
development of the SM-1 and aimed for compatibility with the earlier 
machines. The SM-52 includes multiprocessor systems that can be used in 
conjunction with RIAD computers. Multiprocessor and multimachine com- 
puters fall under the SM-53 line, and the SM-54 involves specialized 
processors for matrix operations, speech synthesis, seismic studies, etc. In 
addition, a host of peripheral devices were designed and produced. 

Phase Three: 1983-1986. Production of SM-11; Plans for SM-Ill. In 
1983, Minpribor began production of the SM-1420 and SM-1600 minicom- 
puters. These represent a continuation of the 16-bit, PDP-I 1-compatible, 
SM-4 computer line and the beginning of SM-11. 

The ministry’s general pronouncements regarding the progress and pros- 
pects of the SM program at this time continue the usual exhortations for 
improved quality. Hard disk memory devices were singled out for particular 
emphasis, as was the need for improvements in servicing the installed com- 
puter base.53 Soviet analysts and scientists emphasized that greater speeds 
and memory storage were needed for improved CAD and scientific research 
applications. LSI circuits were to be In the late 1970s, the Digital 
Equipment Corporation had begun to ship its very successful 32-bit VAX/780 
computers. It was not accidental, therefore, that this period marked the 

” Naumov (1980). 
s3 Zavartseva and lvanova (1986), 44 
54 Prokhorov (1987), 8. 
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beginning of Minpribor’s attempts to develop VAX-like 32-bit machines 
compatible with the SM-4 m i n i c ~ m p u t e r . ~ ~  

Minpribor’s SM-I1 computers included the following: 

SM-1210 (SM-S3/50). Appearing in the mid 1980s as a continuation of the 
HP-like SM line, the SM-1210 employs two central processors and can 
operate in either dual-processor mode or dual-machine mode, meaning that 
the processors can work in tandem with the same memory, or divide the 
memory between them and operate separately. The second processor is the 
input/output processor from the SM-50/60 computer. The SM-1210 is used 
in management information systems and process control applications. The 
speed of the machine is difficult to assess, since published Soviet sources 
give different numbers. For example, fixed-point addition is rated at either 
3.3 MOPS or 1.1 MOPS, a substantial discrepancy that is repeated for var- 
ious operations. In any case, this machine appears to rate above the earlier 
SM-1 and SM-2 models. The SM-1210 can utilize between 2 Mb and 4 Mb 
of internal memory. 

The SM-1210 is program compatible with the M-7000, SM-ZM, and PS- 
3000. I t  uses the 0s SM 1210 operating system, and supports FORTRAN, 
COBOL, PASCAL, BASIC, and MACROASSEMBLER. 

SM-1410. Used in automated systems of scientific experiments and for 
numeric program control, the SM-1410 comes in three configurations, with 
the third employing a special language processor. Operating at an average 
0.24 MOPS but capable of 1 MOPS in register to register operations, the 
SM-1410 can be installed with 64 to 512 Kb of memory. 

SM-1420 (SM 51/20). In 1983, the Kiev Elektronmash plant began serial 
production of the SM-1420 which marks a further development of the SM-4 
line of computers. Appearing in at least 12 different configurations designed 
for different applications, this computer is used in data processing, scientific 
experiment control, scientific and economic calculations, and networks. I t  is 
both input-output compatible and program compatible with the SM-3 and 
SM-4 computers, and program compatible with the SM-1600 and SM-1300. 

The machine can access between 248 Kb and nearly 2 Mb of internal 
memory, and usually has 4 Mb of external memory. It is clocked at 1 MOPS 
during register-to-register fixed-point addition, but with a “special algorithm” 
it reportedly can achieve 8 MOPS. The SM-1420 runs under three different 
operating systems: 0s RV 2.0, RAFOS, and ROS RV. The following pro- 

’’ Zavarlseva and lvanova (1986). 
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gram languages are available: MNEMOCODE, ASSEMBLER, PASCAL, 
and BASIC. 

SM-1600. The SM-1600 is used for statistical and planning purposes, trade 
management applications, as well as banking, transport, agriculture and small 
industrial enterprises. In a rather strange design that apparently seeks to take 
advantage of software written for the earlier generation M-5000 computer, 
this machine employs two processors. The first is the same one used in the SM- 
1420, ensuring SM-4 compatibility. The second processor actually comes from 
the M-5000 computer line which is compatible with the PDP-I 1’s forerunner, 
the PDP-8. 

Operating at 0.045 MOPS during addition operations, the SM-1600 can 
utilize between 256 Kb and 1 Mb of operating memory. Typical installations 
employ three disk drives of 14 Mb each, and one tape drive with a 10.24 Mb 
capacity. 

Phase Four: 1987 and After. Production of SM-Ill. The VAX- 
compatible SM-1700 marks the advent of SM-111 and the development of 
more powerful Minpribor minicomputers that break the barrier of memory 
limitations through virtual memory machines that can address up to four 
gigabytes of data. Often referred to in the Soviet literature as the first model 
of the “highly productive” 32-bit Soviet machines, the SM-1700 entered 
production in September 1987 at the Sigma Production Association in 
Vilnius. The announced plans were to produce “several scores.”56 This 
machine is intended for CAD, flexible manufacturing systems, planning 
calculations, scientific research applications, and automatic process control 
systems. According to one source, the SM- 1700 can perform 2.8 MOPS during 
“short operations,” but only 0.3 MOPS using the Whetstone  benchmark^.^' 

The Soviets managed to retain compatibility with earlier machines by giving 
the SM-I 700 the ability to emulate the earlier 16-bit processors’command set. 
Thus, the new VAX-compatible SM-1700 can still run the vast library of 
software created for the PDP-11, SM-3, SM-4, SM-1420 and SM-1600 
computers. In addition, the SM-1700 retains the same hardware interface as 
the earlier models, so it can use the SM family peripherals and read the same 
data files. 

The SM-1700 is typically outfitted with two disk drives (SM-5504) that can 
handle 121 Mb each, a tape drive unit that stores 40 Mb, as well as a host of 
smaller external memory devices. 

’’ Moscow Radio, September 23, 1987, as reported in FBIS-SOV-87-186, 54, September 9, 

’’ Prokhorov (l988a), 7. 
1987. 
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TABLE VII 

MATCHING MINPRIBOR SM COMPUTERS WITH HP AND DEC COUNTERPARTS 

Year SM 
Year Closest US .  us.  lag in 

Model Country shipped counterpart shipped years 

SM-I 
SM-3 USSR 1978 DECPDPI 1/20 I970 8 
SM-4 USSR 1978 DECPDPI 1/20 I970 8 

SM-1410 USSR 1983? DECPDPI 1/45 1972 8 +  
SM-1420 USSR 1983 DECPDPll/45 1972 I I  

SM-1700 USSR 1987 DECVAXI 1/780 1978 9 

SM-II 

SM-Ill 

Sources: Artamanov (1988); Kezling (1986); Phister (1979). 

Comparing SM Systems With DEC and H P  Originals. One way of evaluating 
Soviet success or failure in computing is to compare Soviet with Western 
achievements. While this assuredly is not the only standard that could be 
applied, or even the best one, it has the advantage of being meaningful to 
Western readers. It has the additional advantage of being feasible inasmuch as 
it relies neither on dubious Soviet measures of effectiveness nor on ad hoc 
reportage of scattered cases. Even so, direct comparisons are not always easy 
to make because Minpribor computer designers have less slavishly followed 
Western designs than their mainframe colleagues at Minradioprom. At the 
risk, therefore, that some apples may be set alongside some oranges, the 
following comparisons are offered. (Also, see Table VII.) 

In the SM-I “generation” of machines, the SM-3 is roughly equivalent to the 
DEC PDP 11/20. Both operated at about 0.2 MOPS, and both employed 
about the same size operating memory. The DEC machine first entered 
production in 1970, and the Soviet computer in 1978. 

The SM-I1 “generation” involves a slightly more complicated comparison, 
but themeasured result isabout thesame. Both theSM-1410and theSM-1420 
are compared with the PDP 11/45. All of the machines operate at approx- 
imately the same speed and are used for similar tasks, but the SM-1420 has 
larger internal memory capabilities. The SM-1410 apparently was introduced 
in 1983 along with the SM-1420, which would place it approximately 11 years 
behind its DEC counterpart. 

The SM-111 generation marked the advent of VAX-compatible Soviet 
computers. The SM-1700 is roughly comparable with the VAX 11/780, which 
appeared in the late 1970s. The SM-1700’s appearance in 1987 places it 
approximately eight years behind DEC. 
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This comparison of Minpribor SM minicomputers with their DEC coun- 
terparts in each “generation” of the SM line finds that Minpribor lagged 
about eight years in the late 1970s, and today lags by about the same interval 
or slightly more. Unfortunately, it has not been possible to make comparisons 
of performance, but all evidence suggests that SM computers substantially 
underperform the “comparable” DEC and HP machines. 

The differences between the SM machines and their American counterparts 
are particularly notable at the component level. Whereas 32-bit single chip 
processors are commonplace at DEC and HP, Minpribor continues to rely 
on Minelektronprom’s bit-slice chips such as the 4-bit K1804VS1.58 

Minpribor Microcomputers. In the 1980s, Minpribor has brought out 
a variety of microcomputers under both the SM and the ISKRA labels. 
Generally, the SM machines are intended for technical and scientific 
applications while the ISKRA machines are more likely to be professional 
workstations for planners, accountants, etc. Basic data on most of them are 
provided in Table VIII and Table IX. Additional remarks about the most 
important machines are described below. 

The SM-1300 is a microcomputer version of Minpribor’s SM-4 (DEC) line 
and said to be roughly equivalent to the PDP 11/03 or PDP 11/04. It uses the 
8-bit KR1802 bit-sliced ALU and is software compatible with the SM-4 and 
SM-1420. The basic box weighs less than 16 Ibs and can be configured with 
peripherals in multiple ways including as a CAD workstation and LAN 
server.59 

The SM-1800 family, which appeared in 1981, was one of the first 
Minpribor microcomputers. Its purpose was to replace Minpribor’s old SM-I 
and even older M40 and M60 machines in laboratory, process control, and 
data preparation applications. Based on Minelektronprom’s KR580 copy of 
Intel’s 8080 8-bit microprocessor, the SM-I 800 comprises more than 40 
modules. Submodels abound. For example, the SM-1801 is a bare-bones 
processor box, the SM-1802 is equipped with laboratory control devices, the 
SM-I 803 is for industrial process control and is shipped in at least nine major 
configurations, the SM- 1804 is designed for operation in adverse environ- 
ments, etc. Prices range from 20 to 34.6 thousand rubles ($33K to $58K).60 

Ostrovskii (1988). 
’’ Information on the SM-1300 is from Kezling (1986), 513-517; EIorg (1986), 6; Kuznetsov 

et a/. (1988). 78. 
6o Information on theSM-1800isfrom ProkhorovandSmirnov(1986),9;Shkamarda(1986),6; 

Prokhorov and Landau (1984). 28; Giglavyi et a/. (1984). 33; Kezling( l986), 541-558; Kuleshova 
(1987). 88; Rukavishnikov (1988); Oprishko et a/. (l987), 40; Ivanova (l987), 40; Grevtsev (1988). 
41. 



TABLE VIlI 

MINPRIBOR SM-LINE MICROCOMPUTERS 

Minpribor name SM 50160 
also known as SM-1300 SM-1625 SM-1634 SM-1800 SM-18 10 

Year First Produced 
Chip 

foreign analog 
Speed (KOPS) 

reg-reg 
Word length 
RAM (Kbytes) 
ROM (Kbytes) 
Max. Addressable 

Space (Kbytes) 
Number of Commands 
Operating Systems 

Program Languages 

Compatibility 

Type of Data Bus 
Applications 

KR 1802 

400-500 
16 

64- 256 

256 

0s RV, RAFOS, 
SM-3, SM-4 set 

DlAMS 

Usual SM set. 

SM-4 family 

OSh 
ARM, SAP 
LAN server 

KR580? 
Intel 8080 

100-500 
8 
64 
4 

64 

SM 

I4 1 
Process, lab, 

& network 
control 

K589 
Intel 3000 

20-170 
16 

16-128 
8-16 

DOS ASP0 

ALGOL, F-11, 
F-IV, B, AS 

SM-1, SM-2 
PS-x000, 

SM-1210 

Terminal, 
Process 
control 

1981 
KR5801K80A 
Intel 8080 

125-500 
8 
64 

2-10 

64 
78 

DOS 1800, 
MOS RV, 
0 s  1800 

F, PL/M, B 
C (subset) 
Mi (subset) 
CP/M software 

I4 1 
Professional 

Workstation 

1986 
KM1810VM86 
Intel 8086 

2500 
16 

256 

4 Mbytes 
135 

DOS-16, ADOS, 
DOS 1810 

All MS-DOS 
languages 

IBM-PC 

I4 1 

Workstation 
Professional 

- 
Keys to Abbreviations 
Program Languages: As-ASSEMBLER; B-BASIC;C-C; F-FORTRAN; F-11-FORTRAN 11; F-IV-FORTRAN IV; I-IAMB; 
Ma- MACROASSEMBLER; Mi- MIBOL; P- PASCAL 
Sources: Abramovich et al. (1985); Artamanov (1988); Elorg (1986); Giglavyi er al. (1984); Iaroshevskaia (1986); Kezling (1986); Prokhorov 
and Landau (1984); Prokhorov and Smirnov (1986); Savel’ev (1987a); Shkamarda (1986). 



TABLE IX 

MINPRIBOR ISKRA-SERIES MICROCOMPUTERS 

Minpribor name ISKRA 226 ISKRA 555 ISKRA 2106 ISKRA 1030 

Year First Produced 1981 1987 
Chip Dual KR5801K80A KRS891K02 KR5801K8OA KM1810VM86 

foreign analog Intel 8080 Intel 3000 Intel 8080 Intel 8086 
Speed (KOPS) 

Word length 16 16 16 16 
RAM (Kbytes) 128 16-48 4-16 256 
ROM (Kbytes) 16-24 20-28 8-16 
Number of Commands 95 
Operating Systems 0s ISKRA, DOS 0s ISKRA 0s ISKRA ADOS 
Program Languages As, B, F 1 I B, Ma, P, C, I 
Compatibility Wang 2200 Iskra Iskra MS DOS 

SM (data) 
Applications Ec. planning ARM, Ec. planning ARM, Ec. planning ARM. Professional 

reg-reg 600 650 250-400 lo00 

Science lab ASU ASU Workstation 
control. ASU, 
ASU TP  

Keys to Abbreviations 
Program Languages: As-ASSEMBLER; B-BASIC; C-C; F-FORTRAN; F-II-FORTRAN 11; F-IV-FORTRAN IV; 
I-IAMB; Ma-MACROASSEMBLER; Mi-MIBOL; P-PASCAL 
Sources: Abramovich et a/ .  (1985); Artamanov (1988); Elorg (1986); Giglavyi et al. (1984); Iaroshevskaia (1986); Kezling (1986); 
Prokhorov and Landau (1984); Prokhorov and Smirnov (1986); Savel’ev (1987a); Shkamarda (1986). 
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The SM-1800’s main operating system is DOS-1800, an adaption of CP/M. 
In addition to familiar programming languages running under CP/M, a 
Russian version of WORDSTAR named TEXT is available. 

Old-fashioned Minpribor printed circuit board fabrication has made for 
substandard quality product. Nevertheless, Minpribor has produced fairly 
large numbers of the SM-1800 and various versions of the machine have 
found relatively widespread application in Soviet industry. Users complain 
about chronic shortages of peripherals necessary for proper configurations. 

The SM-1810 is an updated, 16-bit, version of the SM-1800. It uses 
Minelektronprom’s KM1810 processsor which is a clone of the Intel 8086 
chip. It is said to be an order of magnitude faster than its predecessor. 
Production began in 1986. An “industrial version” is produced as the SM- 
18 14? 

The ISKRA 1030 may be a second Minpribor IBM-PC compatible or it  
may be another brand name for the SM-1800. In any case, it is made by the 
Kursk Schetmash factory and is targeted at the traditional users of ISKRA 
computers and bookkeeping machines, particularly planning agencies and 
central ministries. Like the SM-1800, this machine also uses the K1810VM86 
microprocessor. Ministry sources say that it is to be shipped in three basic 
configurations. The ISKRA 1030.1 1, which is the base model, is a dual floppy, 
256 Kb machine. Another model, the ISKRA 1031 is presumably equipped 
with a hard disk. The operating system is ADOS which is said to be MS-DOS 
compatible.62 

The ISKRA 226 is a WANG-2200 work-alike. The first half dozen WANG- 
2200 machines produced were exported to the Soviet Union in 1972 and 1973 
and many more followed them during the remainder of the decade. In total, 
about 2000 were shipped to the USSR and Eastern Europe and they became 
very popular as planners’ workstations. The tightening of U.S. and COCOM 
export restrictions in the wake of the Afghanistan invasion not only ended 
WANG’s exports but deprived Gosplan and other central planning agencies 
of their supplier.” 

Minpribor’s “Schetmash” factory in Kursk had been producing a variety of 
ISKRA bookkeeping machines in the 1970s. On the basis of that experience, 

6’ Information on the SM-1810 is from Prokhorov and Smirnov (1986), 9; Kuleshova (1987), 

62 laroshevskaia (1986), 23. 
63 Information on the ISKRA 226 is from Artamonov (1988). 207; Nikitin and Ostrovskii 

(1988); Abramovich et a/. (1985), 35; Poom et a/. (1986); Sasov (1986). 53; Krilov et al. (1985), 43; 
and the senior author’s observations. 

88; Elorg (1986), 13; Korneichuk et al. (1986). 11. 
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Minpribor designers reverse engineered the WANG-2200 as the ISKRA 226, 
which entered serial production in 1981. The first copies of the new machine 
went to the Academy of Sciences and Gosplan and by 1985 more than 800 
ministries and departments were using it. The ISKRA 226.7 is shipped with a 
variety of Soviet, Bulgarian, and East German peripherals in at least seven 
main configurations. Their prices vary between 11 and 25 thousand rubles 
($18000-$42OOO). Most of the software has been developed by Gosplan. So 
pleased were the authorities with Minpribor’s work that Academician 
Velikhov nominated the machine’s designers for the 1985 State Prize. 

4.1.3. The Ministry of the Electronics Industry 
(Minelektronprom) 

Minelektronprom is the monopoly producer of electronic components in 
the Soviet Union. It is a “VPK” ministry, i.e., it is an officially designated 
member of the “military-industrial complex.” A long-time producer of 
military computing systems, Minelektronprom has become a major supplier 
of civilian computers in the 1980s. It produces a huge array of computing 
devices, most of them bearing the “ELEKTRONIKA” brand name, and only 
the most important are surveyed here.64 

ELEKTRONKA Minicomputers. Minelektronprom offers a family of 
PDP-11 compatible, 16-bit minicomputer systems that are hardware and 
software compatible. They include: the ELEKTRONIKA 100-16 at the 
bottom end, the ELEKTRONIKA 100-25 in the middle range, and the 
ELEKTRONIKA 79 at the top end. Basic information on each is given in 
Table X. 

These ELEKTRONIKA minicomputers are software compatible with 
Minpribor’s SM-3 and SM-4 families, and may be configured with SM 
peripherals. They also share the OSh data bus as well as SM systems and 
applications ~0ftwat-e.~’ 

The ELEKTRONIKA 100-16 can accommodate a limited range of periph- 
erals. Its memory ranges from 8 to 56 Kb in blocks of 16 Kb ferrite core mem- 
ory. The ELEKTRONIKA 100-25 offers greater storage-up to 248 Kb, 
which Soviet sources claim give it the ability to work in multiprogram mode. 
A wider selection of peripherals is available and its multiplexor can handle up 

*The two best sources that we have encountered on Minelektronprom computers are 

’’ For information on the ELEKTRONIKA minicomputers, see Savel’ev (1987b), 114; 
Glushkova and lvanov (1986) and Tolstykh er a/. (1987). 

lakubaitis (19XS), 183; Goodman (1984); Kezling (1986), 629-635; and Verner er a/. (1986), 7. 
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TABLE X 

BASIC OPERATING CHARACTERISTICS OF THE ELEKTRONIKA MINICOMPUTERS 

Model Model Model 
Characteristic 100-16 100-25 79 

Word Size 
Max Main Memory (Kbytes) 
Data types 
Precision, float, bits 
Number of Commands 
Speed/ MOPS 
General Purpose 

Registers 
Process Work Regime 

Price (rubles) 

16 
56 

fixed 
32 
73 

0.25 

8 
User 

I6 
248 

fixed/float 
32 & 64 

89 
0.8 

8 

Supervisor 
User & 

16 
4088 (2) 

fixed/float 

I37 
3 

16 
User, 

Supervisor, 
& Internal 

12,000 

Source: Tolstykh el a/.  (1987); Veitsman (1988). 

to 16 terminals. Recent Soviet sources of the late 1980s state that it is being 
used in CAD and R&D applications. The ELEKTRONIKA 79 command set 
includes 56 additional commands of a floating-point processor and it has a 
high-speed buffer of 2 Kb capacity. It supports up to eight external memory 
devices. 

No production data are available on these ELEKTRONIKA minicom- 
puters, but frequent references to them in the Soviet literature indicate that 
they are relatively abundant. The indications are that the ELEKTRONIKA 
minis originated in the 1970s as a line of military computers that are now 
seeing such civilian applications as data processing, data base management, 
automatic control systems, and scientific research. They are produced at  the 
Electronic Computer and Control Machines Plant (VUM) in Kiev. 

ELEK TRONIKA Microcomputers. Minelektronprom has produced a 
wide assortment of military and civilian microcomputers. Table XI provides 
technical details on many of these, and the most important are discussed 
below. 

The ELEKTRONIKA 60furnily. The ELEKTRONIKA 60 and its descen- 
dants are probably the most numerous family of computers in the Soviet 
Union. These are 16-bit machines, mutually compatible and software compat- 
ible with the ELEKTRONIKA 100/25 and with Minpribor’s SM-3, SM-4 



TABLE XI 

MINELEKTRONPROM MICRWOMPUTERS 

Elektronika name 60-1 60-1 60-1 80- 1 85 
also known as 60 60M MS-1211.01 MS-1211.02 MS-1212 MS- 12 13 MS 0585 

Year Produced 
Chip 

aka 

1987 (?) 
K1804 K1811 
M5 

K581 K581 
MI M2 

K1811 
M6 
MS 1601 

K1811 
M6 
MS 1601 

K181 I 
M6 
MS 1601 

Speed (KOPS) 
reg-reg 

Word length 
RAM (Kbytes) 
ROM (Kbytes) 
Max. Addressable 

Space (Kbytes) 
Number of 

Commands 
Operating 

Systems 

250 
16 16 
8 8 

4 

500 
16 

500 
16 

128 
48 

600 
16 

256 
48 

800 600 
16 16 

248 512 
48 48 

64 64 256 256-1000 4 Mbytes 256-4096 4 Mbytes 

81 ' 

RAFOS PLOS, FODOS, 
TMOS 

138 
PLOS, FODOS, 

TMOS 

138 
PLOS, FODOS, 

TMOS 

138 
PLOS, FODOS, 

TMOS 

95 138 
FODOS, MDOS PROS, FODOS, 

DEMOS, MOS-80, 
MIKRO-80, SP-80 

TMOS 

F, P, B, K, MA, M2 AS, F, B 

SM SM 
MA, M2 

Program 
Languages 
Compatibility 

AS, F, B MA. F 

SM SM SM SM SM 

(continues) 



TABLE XI (Continued) 

Elektronika name 
also known as 

K1-20 S5-41 
MS-2702 S5-2IM MS12102.1 

DVK-2M DVK-3M2 
BK-0010 NTs-80-20/~ NTs-80-201~ 

DVK-4 
NTs-80-20/~ T3-29M 

Year Produced 
Chip 

aka 
Speed (KOPS) 

reg-reg 
Word length 
RAM (Kbytes) 
ROM (Kbytes) 
Max. Addressable 

Space (Kbytes) 
Number of Commands 
Operating Systems 

Program Languages 
Compatibility 

KR580 K586 Kl8OlVMl 

500 206 500 
8 16 16 
1 0.5 2 
8 6 16 

64 64 64 

78 256 64 
Resident DS-81 Resident 

As 
NotSM NotSM SM 

DOS 

K 1801 VM 1 
MS 1201.01 

500 
16 
32 
32 
64 

64 

Fk, B 
SM 

1981-4 
K1801VMI 
MS 1201.01 

500 
16 
56 
8 

64 

64 
OSDVK 

M, B, F, P, M2 
SM 

1984- 
K 1801VM2 
MS 1201.02 

lo00 
16 

64-248 
8 

64-4096 

64 or 72 
OSDVK 

AS, B, F, P 
SM 

1986- 
K I801 VM3 

1200 
16 

64-248 
? 

64-4096 

64 or 72 
OSDV 

M, B, F, P, M2 
SM 

1983/4 
K589 

500 
16 

128-25 
64 

2048 

139 
Resident 

AS, B 
H P  98xx 

Keys to Abbreviations: 
Operating Systems: PLOS-Punched-Tape Op Sys; FODOS-Background Disk Op  Sys; TMOS-Test Monitoring O p  Sys; DEMOS-OS UNIX 
2.9 Bell Labs 
Programming Languages: As- ASSEMBLER; F-FORTRAN; B-BASIC; K-COBOL; M-MACRO; P-PASCAL; M2-MODULA-2; 

Sources: Elorg (1986); Glushkova and Ivanov (1986); Khatskevich and Protsenko (1988); Kokorin et al. (1986); Lopatin et al. (1985); Murenko et a/. 
(1986); Popov et a/. (1984); Tolstykh et a/ .  (1987). 

Fk-FOKAL 
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families of minicomputers. It represents, obviously, yet another Soviet deriva- 
tive of DEC's PDP-11.66 

The ELEKTRONIKA 60 appeared first around 1980, probably as the 
outgrowth of an effort to supply the Soviet military with small-scale com- 
puters. This machine has found widespread employment in control devices 
of all sorts, computer-controlled machine tools, etc. Despite its limited ca- 
pacity (250 KOPS, 8 Kb RAM, 4 Kb  ROM), the ELEKTRONIKA 60 has 
been fitted with peripherals and asked, in the 1980s, to play roles ranging from 
that of network terminal to CAD workstation. Modestly enhanced versions, 
such as the multi-board ELEKTRONIKA 60M, ELEKTRONIKA 60-1, 
ELEKTRONIKA 85, and MS-121X machines are currently produced and 
widely used in Soviet science and industry. Single-board members of the 
family include the ELEKTRONIKA-41, ELEKTRONIKA NTs 80-01D 
(alias MS1201.0X). These machines use the NMOS K581, K1801, and K1811 
chips. 

An important group of ELEKTRONIKA 60 descendants is the modular 
DVK (Dialogouii Vychislitel'nyi Kornpleks, which translates as Interactive 
Computer Complex). The DVK-1, DVK-2 (1983) and DVK-2M (1984) are 
table-top systems intended primarily for classroom use. Both consist of an 
ELEKTRONIKA NTs 80-OlD computer using the K1801VM 1 processor 
configured with 56 Kb RAM and character monitor. The DVK-1 consists of 
nothing else and is intended as a student workstation. The DVK-2 and DVK- 
2M are also equipped with a 5 12 Kb floppy disk and printer to serve as teacher 
workstations in classroom networks. The DVK-4 (1985) and DVK (1986) are 
equipped with from 64 Kb to 4 Mb of RAM, 440 Kb or 800 Kb floppy disk 
drives, monochromatic graphics monitor, and graphics plotter. The DVK 
(1987) offers a color graphics monitor. 

Minelektronprom claims considerable versatility for its DVK machines. 
For example, K580VM80A and K1801VM86 processor boards are said to be 
available for the DVK machines which would, theoretically, provide software 
compatibility with the ES 1840, ISKRA 1030.1 1 and other CP/M or CP/M-86 
machines. No reports of using such coprocessors have been encountered in the 
literature. A UNIX operating system was reported under development in 
1986. Reliability is a major problem for the DVK systems. Although the mean 
time before failure is claimed to be 3000 hours for all DVK systems, reports 
from the field indicate that it is far less. One Karangada computer instructor, 
responsible for teaching high school teachers the elements of computing, 

66 Information on the ELEKTRONIKA 60family comes from Glushkova and lvanov (1986); 
Kokorin et a / .  (1986); Tolstykh et a / .  (1987); Kezling (1986); Grigor'ev (1987), 23; Legavko and 
Vasilenko (1988); Savinov and Gritsyk (1988). 33; and Lopatin et al. (1985). 
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recently complained bitterly that her institution’s DVK-2M crashed daily and 
caused her much embarrassment before the teacher  trainee^.^' 

Another member of this family is the ELEKTRONIKA BK-0010 which 
Minelektronprom bills as the Soviet Union’s “first home computer.” This little 
machine is essentially identical to the DVK-1 described above and fulfills 
the same role in classroom computer networks. Output began in 1985 at 
Minelektronprom’s “Eksiton” factory in Pavlovskii Posak. Some 20,000 
reportedly were produced in 1987 and an equal number were to be produced in 
1988. Priced at 650 rubles (about $loo0 at the official exchange rate or $135 
at the black market rate), some 194 units were sold at the Ministry’s 
ELEKTRONIKA retail store in Moscow in 1985. In 1986, sales were planned 
to be 2000 units.68 

A visit to the ELEKTRONIKA store in the summer of 1988 found the 
BK-0010 on display, but would-be customers were barred from touching 
it. No sales personnel were available and no machines were available for 
purchase. Customers were invited to enter their names on a waiting list but 
no indication was given of how long the waiting period might be. The 
same ELEKTRONIKA store was quoting a four-year wait for videocassette 
recorders. 

The vast majority of BK-0010 machines are going to classroom computer 
laboratories. From 10 to 15 BK-0010s serve as student workstations net- 
worked to a teacher’s DVK-2M. This configuration, termed the “KUVT-86,” 
was Minelektronprom’s 1987 response to the Soviet school system’s cry for 
educational computers. But it is so inadequate and performs so poorly in 
practice that it bodes to give computing a bad reputation with Soviet high 
school students.69 

The most recent version of this educational system, the one intended to 
compete with Minradioprom’s KORVET, is called the “UKNTs” and made at 
the Elektronmash factory in Mo~cow.’~ This system differs in certain minor 
respects from the earlier versions. It features the dual processor DVK-3 (alias 
ELEKTRONIKA NTs80-O1D) at the teacher’s desk. The first, dubbed the 
“central machine,” has 64 Kb of RAM and a K1801VM2 processor said to be 
capable of 800 register-to-register operations per second and operates as 
server to a 57,600 baud ring network connecting student workstations. The 
teacher’s second machine, called the “peripheral machine,” is like the first 
except with only 32 Kb RAM and is intended to control peripherals such as the 
keyboard, bit-mapped monitor, tape cassette recorder, sound generator, 

67 Koisina (1988). 
68 Shekhovtsev (1988), 126; and Gorelov (1988). 
69 See, for example, Denisenko (1986) and Koisina (1988). 
’O Information on the ELEKTRONIKA UKNTs is from Driga (1986) and Polosin er al. (1986). 
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printer, and 400 Kb or 800 Kb floppy disk drives. Student workstations look 
very similar to’the BK-0010. 

Other E E K  7RONI K A  microcomputers. Minelektronprom manufactures a 
variety of other small computers intended mainly as imbedded automatic 
controllers. Examples of these are the ELEKTRONIKA S5 machines. The S5- 
21 controller uses the K586 chip, which has no known foreign analog and is 
incompatible with other known Soviet computers. It is a 16-bit machine with 
small (0.5 Kb RAM and 6 Kb ROM) memory. The slightly larger S5-41 uses 
the ELEKTRONIKA 60 instruction set. 

The ministry also makes the ELEKTRONIKA K series of computers. 
These are small KR58O-based systems (8080 work-alikes) with very small 
memory which are used in equipment controllers, testing devices, checkout 
equipment, etc. The most recent of these that we have encountered is the 
ELEKTRONIKA K1-20 (alias MX2702). 

The story of the ELEKTRONIKA-60 and its descendants strikingly 
illustrates a fundamental characteristic of Minelektronprom’s approach to 
computer technology. That approach is one of tiny, incremental changes in 
existing products accompanied by name changes and price increases. Whether 
we look at the basic components produced by Minelektronprom or its 
computer systems, an identical picture of extreme technological conserva- 
tism emerges. It is remarkable that the ministry has been able to preserve 
such a fundamentally unresponsive posture in the face of users’ entreaties 
and complaints, of prestigious commissions’ proddings, and even of the 
Politburo’s decrees. 

“Home Brew” and Other Soviet Microcomputers. A variety of other 
microcomputers have appeared in the 1980s. Most of these are based on 
Minelektronprom’s KR580 or KM1810 copies of Intel’s 8080 and 8086 
microprocessors. The development of these machines indicates that many 
organizations and individuals in the USSR have the technical ability to “home 
brew” computers using off-the-shelf components. On the other hand, it also 
indicates that many users and would-be users find their needs unmet by the 
computers supplied through normal channels and feel it necessary to develop 
their own equipment. Soviet research laboratories, in particular, seem to have 
been forced to develop micros for themselves. Alternatively, some “home 
brewers” may have worked for the fun of it. Table XI1 gives an overview of 
some of the machines identified in Soviet computer periodicals. There are 
some interesting stories behind many of these machines. 

NElRON 79.66. This IBM PC/XT compatible is manufactured by the 
Ministry of the Communications Equipment Industry (Minpromsviazi) and 



TABLE XI1 

OTHER MICROCOMPUTERS 

Name IRISHA OKEAN 240 NEIRON 19.66 MIKROSHA KVANT KRISTA 

Year First Produced 
Chip 

foreign analog 
Speed (KOPS) 

reg-reg 
Word length 
RAM (Kbytes) 
ROM (Kbytes) 
Max. Addressable 

Space (Kbytes) 
Operating Systems 

Program Languages 
Compatibility 

Applications 

Price (rubles) 

KR580VM86 
Intel 8080 

8 
48-128 
4-64 

0s 1800 
0 s  lrisha 
CP/M 3.0 
B, F, P, C, Ma 

(software) 
Education, 

ASNI 

SM-1800 

lo00 

K580VM80 

600 
8 

128 
16 

0s 240 

F 
CP/M 80 

Field Research 

K1810VM86 
Intel 8086 

lo00 
16 

256-1 Mbyte 

1 Mbyte 
Neiron DOS 1 
Neiron DOS2 

P, A. B 
MS DOS 
CP/M 86 
Professional 

Work Station 

1986 
KR580VM80A 
Intel 8080 

8 
32 + 
2+ 

B, A 
Krista 

School. Home 

1987 
KR581 K580VM 80A 

16 8 
256-4 Mbyte 32 + 

2+ 

RAFOS 

Mikrosha Elektronika 60 

Automated Design, 
ASUTP, Smart 
Terminal 

510 



Name NEVA 501 ISTRA PK-11 SURA UMPK-48 UMPK-80 LVOV-01 

Year First Produced 
Chip 

foreign analog 
Speed (KOPS) 

reg-reg 
Word length 
RAM (Kbytes) 
ROM (Kbytes) 
Max. Addressable 

Space (Kbytes) 
Operating Systems 

Program Languages 
Compatibility 

Applications 

Price (rubles) 

K580 KR580 and 
Intel 8080 K R 18 lOVM 86 

400 
8 8 &  16 

32 I256 
64 

Internal ROM 

Bookkeeping 

1986-7 
KM 1801VM2 

256 
128 

BOS 
RAFOS/PK 

B 

Elektronika 60 
SM-4 

1987-8 
K580VM80A 
Intel 8080 

8 
64+ 
16+ 

B 
None Known 

995 

1984-5 1987-8 
K M 18 16VE48 K R5801K80 K580VM80A 

8 8 8 
64-256 2 64 

2 16 

B 
None Known 

Lab, Education, 

750 
Home 

Keys to Abbreviations: 
Program Languages: As-ASSEMBLER: B-BASIC; C-C; F-FORTRAN; F-11-FORTRAN 11; F-IV-FORTRAN IV; I-IAMB; Ma- 
MACROASSEMBLER: Mi-MIBOL; P-PASCAL 
Sources: Artamonov (1988); Baryshnikov et al. (1985,1986a. 1986b); Elorg (1986); Gorelov (1988); Kushnir et a/. (1986); Nauka (1988b); Pogorelyi et a / .  
(1986): Romanov et al. (1986): Tilinin (1986): Tilinin et al. (1986); VDNKh; Vigdorchuk et al. (1987a.b); Vorob’ev et a!. (1987) 
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is not a “home brew” machine.” Like Minradioprom’s ES-1841 and 
Minpribor’s ISKRA-1031, it uses Minelektronprom’s K 1810VM86 copy of 
Intel’s 8086. The machine is normally configured with 256 Kb of RAM and 
dual 360 Kb floppy drives. A hard disk controller is available for users lucky 
enough to locate the 5 MB hard disk. 

The NEIRON 19.66 supports two operating systems; NEIRON-DOSl is 
analogous to MS-DOS and NEIRON-DOS2 corresponds to CP/M-86. 
These operating systems appear to have been developed (copied) separately 
from similar software offered by Minradioprom and Minpribor. The manu- 
facturer supplies several productivity software packages with the NEIRON 
19.66. They include a word processor, spreadsheet, a relational data base 
manager, and a file manager operating under DOSl. The first three of these 
appear to be copies of WORDSTAR, SUPERCALC, and DBASE 11. 

/REHA.  The IRISHA is a “home brew” machine and a classic example of 
researchers and educators developing and using informal connections in the 
Soviet system to meet their needs for an adequate personal computer.’* 
Developed by three members of the Chemistry department of Moscow State 
University (MSU) and with software supplied by the Moscow Institute of 
Informatics Problems, this machine uses the Soviet 8080 look-alike chip with 
up to 128 Kb memory to provide a basic educational computer. It first 
appeared in 1986 and is priced at loo0 rubles. 

There are essentially two versions of the IRISHA, one with some form of 
external memory (tape recorder or floppy disk) and one diskless setup 
intended for network environments commonly found in Soviet classrooms. 
The IRISHA runs the 0s 1800 operating system and, therefore, can run 
software written for the SM-1800 personal computer from Minpribor. 

The IRISHA development story also gives interesting insight into the 
process by which these machines are introduced for use. Although serial 
production had yet to begin by 1986, considerable numbers of the IRISHA 
were already installed and running in the Moldavian educational system. I t  
appears that the Central Committee of the Moldavian Communist Party, 
working with the designers from MSU and officials from the Academy of 
Sciences, managed to get enough of the machines produced with adequate 
software to supply some schools in the Moldavian Republic. As of 1986, 

71 Information on the NEIRON 19.66 comes from a marketing brochure published by 
Minpromsviazi, Personalhaia mikro-EVA4 N E I R O N  19.66; Pogorelyi et al. (1986); and the 
senior author’s observations. 

72 Information on the IRISHA comes from Baryshnikov er a/. (1985); Baryshnikov et a/. 
(1986a.b.c); Korneichuk and Rastorugev (1986); Romanov er a/. (1985); and Romanov et a/. 
(1986). 
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programmers were beginning to develop software in the Moldavian language 
for educational applications. One of the reasons cited for this republic’s use of 
the IRISHA educational computer is said to be its relatively low cost. 

OKEAN 240. The OKEAN 240 is another result of the centralized system’s 
inability to supply necessary machines, thus leaving the user to meet his own 
demands.’j In this case, the user is the Moscow Institute of Oceanography 
of the Academy of Sciences, which required a rugged and transportable 
microcomputer that could withstand the rigors of field and ocean research 
environments and would require minimal power. Based on the 8080 look-alike 
chip and with 128 Kb memory available, the OKEAN 240 reportedly 
performs 600 KOPS and uses an operating system named 0s 240 that is 
compatible with CP/M and allows the user to attach nonstandard peripherals, 
presumably some types of scientific measuring equipment. One author 
specifically notes the machine’s ability to run Microsoft FORTRAN-80. 

4.2 The Academy of Sciences and Soviet “Supercomputers” 

The Academy of Sciences was predominant in the field of computer design 
in the USSR until the mid 1960s when it went into decline. By the mid 1970s, 
the Academy was completely overshadowed by the computer producing 
ministries, and the policy of technological followership was firmly ensconced. 
Leadership of Lebedev’s design group in the IPMCE passed to B. S. Burtsev 
after Lebedev’s death in 1974. The Academy was short of funds and personnel. 
Morale was low and much of the momentum for indigenous computer 
development was lost. 

In the 1980s, the Academy has regained some of its former luster although 
the power of the industrial ministries remains intact. The foci of computer 
design work inside the Academy in this decade, a few microcomputers such as 
the KORVET and OKEAN notwithstanding, has been on high-performance 
machines. The Soviet Union has lagged badly behind the United States, Japan, 
and others in the design and production of supercomputers. 

Soviet scientists have finally made their political superiors aware that their 
nation’s supercomputer gap has become a serious drag on other fields of basic 
and applied research. The Western policy of denying this technology to the 
Soviets has caused serious pain in certain technological fields, most noticeably 
in CAD. By 1985, Gorbachev and other top political leaders appeared to have 
grasped the importance of this issue. 

’3 Information on the OKEAN 240 comes from Tilinin (1986); Tilinin et al. (1986); and Tilinin 
et a!. ( 1987). 
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The 15-year plan for the development of the computer industry in the 
USSR, referred to earlier in this paper, features a section on the design and 
construction of supercomputers. In addition, the Soviet Union has prodded 
the members of the CMEA to produce a “coordinated” plan to begin serial 
production of a one billion floating-point operations per second (GFLOPS) 
machine by 1990 and a 10 GFLOPS machine by 1995. 

4.2.1. EL’BRUS 

In the early 1970s, Lebedev began to design a computer that would be 
capable of 100 MOPS, a machine that he named EL‘BRUS. After he took 
over the IPMCE, Burtsev continued this effort.74 From the beginning, 
the important design objectives were to achieve maximum integration of 
hardware and software design, high reliability, and very high performance. 
The first of this series, the EL’BRUS-1 was produced in 1978, and the 
improved EL’BRUS-2 appeared first in 1983. The architecture of the two 
machines is the same, and the superior performance of the EL‘BRUS-2 is 
derived mainly from improved componentry. 

The EL’BRUS is a modular, multi-processor, stack-based computer. I t  may 
employ as many as 10 central processors each with its associative stack 
memory. Basic performance data of each processor are as follows: 

Fixed-point addition 520 ns. 
Floating-point addition 780 ns. 
Multiplication of 32-bit number 780 ns. 
Multiplication of 64-bit number 1300 ns. 
Logical operations 520 ns. 
Million operations per second 1.5 

Soviet scientists accustomed to programming the familiar BESM-6 were 
not particularly enthralled with the EL‘BRUS-1. To attract them and to 
permit BESM-6 software to run on the new machine, the EL’BRUS-1 
designers arranged for a special BESM-6 processor to be optionally sub- 
stituted for one of the 10 regular processors. That special processor is rated 
at 3 MOPS. The ELBRUS-2 may not provide for the BESM-6 proces- 
sor. Depending on its configuration, the EL‘BRUS-1 is rated at from 1.5 
to 13 MOPS; the EL’BRUS-2 is usually rated at from 10 to 100 MOPS 

l4 Information on the EL‘BRUS is from Burtsev (1985); Mishchenko et ul. (1985); Artamonov 
(1988); and Wolcott and Goodman (1988). 
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although Artamonov claims that it is capable of up to 200 fixed-point 
operations. 

The EL’BRUS-1 main memory is interleaved among from four to 32 
modules of 16K 72-bit words. Memory cycle time is 1.2 microseconds. The 
EL’BRUS-2 can accommodate twice as much memory capacity. Both models 
may have up to four 1/0 processors each with four high-speed channel 
(4 million bytes/second) connections to as many as 64 ES-1066 disk drives 
(100 Mb each) or magnetic drum storage units. Only four of these devices 
may be simultaneously accessed by each 1 /0  controller. In addition, each 
controller may connect with as many as 256 (16 at a time) 1/0 and storage 
devices at slower speeds (one million bytes/second). 

The EL‘BRUS machines may be configured with up to 16 data transmission 
processors, each capable of handling 160 telecommunication lines for a total 
of 2560. They are normally configured with RIAD peripherals. 

The EL’BRUS operating system is unique in that several standard 
programming languages are accommodated, including FORTRAN-IV, PL/ 1, 
PASCAL, and SIMULA-67. These machines are similar in design and rated 
capacity to the Burroughs B-7800 which first appeared in 1979. 

The EL’BRUS machines are respectable computers, at least on paper, 
although users have voiced the usual complaints about unsatisfactory reli- 
ability and poor peripherals. In addition, very few of the machines have 
been produced and that makes it very difficult for scientists to gain access to 
them. Development work on this line of computers continues in IPMCE and, 
in early 1988, Academician Velikhov reported that prototypes of an 
EL‘BRUS-3-1 supercomputer capable of more than one billion operations per 
second were under con~ t ruc t ion .~~  

4.2.2. The PS-2000 and PS-3000 

The PS-2OOO and PS-3OOO are two separate multi-processor computers 
that appeared in 1982. The design group included representatives from the 
Moscow Institute of Control Problems, the Ministry of Geology, and 
Minpribor which now manufactures the machines.76 

The PS-2000 is configured with from eight to 64 8-bit processors. When fully 
equipped, it is said to be capable of up to 200 million fixed-point and 66.2 
million floating-point operations per second. That makes it the fastest Soviet 
computer in serial production. Software for this machine is very limited, 
consisting only of a symbolic programming language and macro generator. It 

’’ Velikhov (1988). 
76 Information on the PS-xO00 machines is from Artamonov (1988); Mishchenko et a/. (1985); 

and Wolcott and Goodman (1988). 
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has been manufactured in relatively small numbers and found applications in 
geophysics .as well as elsewhere where image processing is important. 

The PS-3OO0, which is software compatible with the PS-2OOO, may be 
equipped with up to four 32-bit scalar processors and two vector processors. 
Each vector processor is connected to two scalar processors. It has eight 
megabytes of main memory and is rated at up to eight million fixed-point 
scalar operations and 20 million fixed-point vector operations per second. 
The vector processor is said to be capable of adding 12 million additions of 
32-bit floating-point numbers per second. Software for PS-3OOO includes 
FORTRAN-11, FORTRAN-IV, ALGOL-60, and BASIC. Virtual memory, 
multiprogramming, and real-time processing are supported. 

4.2.3. The MARS 

A major, integrated effort to design and build a supercomputer in the 1980s 
was mounted by a design group called “START.”77 This effort brought the 
talents of IMPCE, the computer centers of Academies of Sciences in Moscow, 
Novosibirsk, and Tallinn together with those of Minpribor. The group’s 
headquarters were at Akademgorodok in Novosibirsk and its purpose was to 
design and build the prototype of a supercomputer called “MARS (Modular 
Asynchronous Expandable System). 

One sub-project of the MARS effort was the design of a “mini-MARS” 
processor. The mini-MARS employs a modular, highly parallel, architec- 
ture. It is to be capable of 20 million floating-point operations per second 
(MFLOPS) with 48-bit words. Although the START group was formed only 
in March, 1985, the ideas behind it have been brewing with Lebedev’s disciples 
since the late 1970s. Velikhov reported in early 1988 that the MARS design had 
been completed but that serial production had not yet begun. The START 
group has also been responsible for MARS software development. 

4.2.4. Other New Academic Computer Designs 

As in the United States, although in fewer numbers, various academic 
institutions in the USSR are designing computer systems reportedly capable 
of various levels of high performan~e.~~ For example, the Glushkov Institute 
of Cybernetics in Kiev reportedly has tested a prototype of a machine capable 

77 Information on the MARS computer is from Kotov and Marchuk (1985); and Vyshnevskii 

Information on these computers is from Marchuk (1987); Velikhov (1987a); Velikhov (1988); 
(1985). 

and personal interviews of the senior author. 
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of up to 135 MOPS. This computer is said to employ a unique, “macro- 
pipeline,” massively parallel architecture. This machine reportedly has passed 
its state inspections and been approved for serial production. Many research 
organizations have ordered this machine but it is slated to be produced in very 
limited quantities. 

In Leningrad, the Institute of Informatics and Automation of the Academy 
of Sciences developed a multi-processor system with speed to 100 MOPS. This 
machine also is said to have passed state inspection and been approved for 
serial production. The Keldysh Institute of Applied Mathematics in Moscow 
has cooperated with Minradioprom and Minpribor to build and operate a 
system said to be capable of 125 MFLOPS. 

In 1988, Minelektronprom was slated to begin production of a new 32-bit 
microprocessor, the ELEKTRONIKA-32. The New Institute of Automatic 
Design reportedly has designed a new system based on this microprocessor. 

Velikhov reported that the Institute of Cosmological Research together 
with certain Bulgarian scientists have created a parallel computer using 10 
processors with “dynamic architecture and high productivity.” He also said 
that this new machine, which is being manufactured in Bulgaria, “already 
enjoys p~pularity.”’~ 

In 1986, a state commission accepted the design of a supercomputer for 
“serial production.” This machine, designed by the Academy’s Institute of 
Cybernetics Problems and Minelektronprom, is said to be capable of 100 mil- 
lion operations per second. This may be the machine Velikhov called “a vector 
pipelined supercomputer with two levels of external memory” and may 
already be in limited production.80 

Little is known about most of these various designs and prototypes. The 
reported association of various computer-producing ministries in these design 
efforts may raise the probability that some will find their way to volume 
production. It seems probable that many are destined to remain one-of-a-kind 
models. Velikhov (1988) complained that the volume of production on all 
Soviet high performance computers was manifestly inadequate. 

One development in peripherals seems noteworthy. The Siberian Division 
of the Academy of Sciences together with Minelektronprom reportedly has 
built the prototype of a compact Winchester drive with 100 megabyte 
capacity. 

It is clear from this brief survey that the Academy of Sciences is again very 
much involved in the design of high-productivity computer systems. The effort 
to develop and produce supercomputers is limited by several factors. 

’9 Velikhov (1988), 25. 
fhid. 
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Prominent among them are 

0 A shortage of CAD suitable for computer design. 
0 COCOM and other trade restrictions on technology imports. 
0 An underdeveloped technology base in component manufacturing. 
0 A semi-centralized, bureaucratic decisionmaking structure and oligopol- 

istic industrial structure. 
0 A tradition of poor cooperation among production ministries and R&D 

organizations. 
0 A legacy of isolation of the Soviet computer science community from the 

larger world community. 
0 A management system that fails to reward superior performance of 

design and production groups, as well as to punish substandard 
performance. 

Added to these seven factors is an eighth, namely that supercomputing was 
not a priority item with the Soviet leadership, at least not until 1985. The 
priority level has been raised in the Gorbachev regime, and computer-savvy 
leaders have been installed in top scientific leadership positions. Ambitious 
targets have been set for 1990 and 1995. Considerable progress is now being 
claimed, but many of the familiar ills still plague Soviet efforts to accelerate 
developments in this area. 

4.3 Components-A Survey of Important 
Integrated Circuits 

The Soviet Union’s development of microchips and microprocessors 
reveals no significant exceptions to the overall pattern already seen through- 
out the country’s entire computer development program. Much of the 
component base is copied from Western manufacturers, and internal or- 
ganizational problems restrict the Soviet Union’s efforts to develop their own 
technological base. Yet the desire to establish an indigenous ability to design 
and produce state-of-the-art micro-circuitry is complicated by the Soviet’s 
belief that a country that finds itself technologically behind can catch up 
quickly by simply skipping developmental stages. I t  is almost as if the Soviet 
Union intended to design and produce industrial lathes capable of tolerances 
measured in millimeters, with an industrial base capable of only centimeter- 
level precision. They need the new machines, but the old ones cannot make 
them. 

Soviet microchip and microprocessor technology finds itself in just such a 
chicken-and-egg dilemma. They want to produce 1 Mb memory chips, but 
have yet to ramp production of 256 Kb chips. (Their East German partners 
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reportedly are now beginning 1 Mb production, however.) They would like to 
achieve the West’s I micron capability in integrated circuitry, but have trouble 
at the 3 micron level. Velikhov, the head of computing for the Academy of 
Sciences, states the problem this way: 

The capabilities of the organizations that design and manufacture the required 
technical equipment are not up to the task of the accelerated development of our 
microelectronics or the necessary rates of modernization. Quantitatively, we 
produce about 10% of the output of analogous equipment in the West. 
Qualitatively, we lag significantly behind foreign producers. But given that we 
have little equipment, we are unable to  design new generations of ICs. As a result, 
in both logical design and “memory”-the most fundamental work-we lag by 
two generations. At present, we have a dearth of 64 K b  memory media while 
abroad, they are beginning to sell megabyte media more than ten times 
cheaper.” 

The following brief survey of Soviet microprocessors and memory chips 
will reveal how much they have relied on technology followership. During the 
remainder of this century, the only way for the Soviet Union to catch up to 
current Western state-of-the-art standards would be to import Western 
designs and manufacturing machinery. The likelihood of that, even with more 
perestroika and glasnost’, remains slim. Thus, Soviet development in the near 
term seems dependent on how much they can garner from their East German 
partners. 

4.3.1. Soviet Microprocessor Chips 

Any review of Soviet capabilities in microprocessor technology must begin 
with a note about the availability of source materials. First and foremost, the 
Soviet Union does not publish production figures of these components. 
Because Minelektronprom, the monopoly producer of Soviet micropro- 
cessors, is a VPK ministry, its production activities are difficult to track down 
precisely. Despite this lack of production information, however, the numerous 
journals and books that are available do indicate the sources, uses, and 
capabilities of Soviet microprocessors. 

Table XI11 outlines the main processors identified with applications in 
Soviet computing. The list is not an exhaustive treatment of all Soviet 
processors. It does reveal a traditional, and continued, reliance on bit-slice 
technology, which undoubtedly is a reflection of Soviet manufacturing 
capabilities. It also reveals limited design capabilities that, undoubtedly, stem 

Velikhov (1987b). 23. 



TABLE XI11 

SAMPLE LIST OF Sovm MICROPROCFSORS 

Chip Series K589 K 1802 K1804 K1800 K587 K588 K536 K583 K584 

Processor Chip 
Foreign Analog 
Manuf. Tech. 
Chip Type 
Word Length (bits) 
Cycle Time (msec) 
Clock Speed (MHz) 
Production Began 
Applications 

K589IK02 KR1802VS1* 
Intel 3000 NK 
TrLS  TTLS 
Bit-slice Bit-slice 

2 8 
0.1 0.15 
6 8 

late 1970s 
ES, SM, SM-1300, ES 

ISKRA 555, 
T3-29MK 

KR 1804VS 1 
AM 2900 
TTLS 
Bit-slice 

4 
0.12 

8 
early 1980s 
Elek 80-1, 

SM, ES 

K 1800VSI. 
MI0800 
ECL 
Bit-slice 

4 
0.04 
36 

early 1980s 
ES 

Chip Series K581 K586 K l 8 l l  

K587IK2 KR588VS2* 
NK NK 
CMOS CMOS 
Bit-slice Bit-slice 

4 16 

0.5 1 
2 2-5 

NTs series AGAT, 
PKlOxx, 
NTs series 

K1801 

NK 
PMOS 
Bit-slice 

8 
10 

mid 1970s 
S5 micros 

K583IK3 
NK 
IIL 
Bit-slice 

8 
1 
1 

ES 

KR584IKIA 
SBP O400 
IIL 
Bit-slice 

4 
2 

0.5 
late 1970s 
Calculators 

K580 K1810 

Processor Chip KR581VEl K586IK1 KN181 lVMI* K 1 801 VM 1 KR5801K80A K 18 10VM8 
Foreign Analog LS1-11/2 NK NK NK Intel 8080 Intel 8086 

Manuf. Tech. NMOS NMOS NMOS NMOS NMOS NMOS 
Chip Type Multichip Multichip Multichip Single Single Single 

TI602 



Word Length (bits) 16 16 16 16 

Clock Speed (MHz) 2.5-3.3 8 
Production Began late 1970s 
Applications ELEK. 60, S5-21 ELEK 60-1 S5-41, 

Cycle Time (msec) 0.4 0.5 2 

60M, KVANT, BK-0010, 
SM DVK series, 

NTs series 

8 16 
2 1 

4-5 
mid 1980s 

SM-1800, ES- 1840, 
1979 

OKEAN 240, NEIRON, 
KORVET, SM-1810, 
et al PK-11, ISTRA 

ISKRA 255 

Keys to Abbreviations: 
*-Arithmetic-Logic Unit 
NK-None Known or Cited in Soviet Sources 
Chip Type: Multichip-Multichip Microprocessor 

Single- Singlechip Microprocessor 
Manuf. Tech.: CMOS-Complementary Metal-oxide Semiconductors 

ECL-Emitter-Coupled Logic 
IIL-Integrated Injection Logic 
NMOS-nchannel Metal-oxide Semiconductor 
PMOS-pchannel Metal-oxide Semiconductor 
TTLS-Transistor-Transitor Logic with Schottky 

Sources: Dshkhunian et al. (1984); Faizulaev and Tarabrina (1986); Govorun et al. (1986); Grishin and Ugol’kov (1985); 
Heuertz (1983, 1984); Iakubovskii et al. (1984); Ivanov et al. (1986); Khvoshch et al. (1985); 
Kobylinskii et al. (1986); Korneichuk and Rastorguev (1986); Kuleshova (1987); Lopatin et al. (1985); 
Luk’ianov (1985); Malashevich (1984); Nesterov et al. (1986); Presnukhin (1986a,b); 
Proleiko (1984); Shaknov (1984); Solov’ev (1985); Stapleton (1985). 
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from a lack of CAD. It is not without reason that the Soviets decided to copy 
the Intel 8080 and Intel 8086 microprocessor chips. In addition, it is not 
surprising to note the absence of an 80286 or 80386 analog. That level of 
design and manufacturing ability remains out of reach. As one Soviet author 
writes,"At this time there is no domestic analog to [the 802863 microprocessor 
and it is not visible 'on the horizon.' ' '82 

4.3.2. Soviet Memory Chips 

It is difficult to compare Soviet memory chips to present Western chips 
because the West continues to develop so quickly. Suffice it to say that at this 
point the West is producing 1 Mb dynamic random access memory (DRAM) 
chips and is about to begin production of 4 Mb DRAM chips. The Soviet 

TABLE XIV 

SOVIET MEMORY CHIPS 

Type 
KR188RU2A 
564RU2 
505RU4 
I32RU4 
KR565RU2A 
KR185RU5 
500RU415 
KR537RU2A 
KR541 RU 1 A 
K R 54 1 R U3 
KR132RU6A. B 

Static RAMS 

Man. tech. 
CMOS 
CMOS 
PMOS 
nMOS 
nMOS 
TTL 
ECL 
CMOS 
IIL 
IIL 
nMOS 

Capacity 
(bits) 

256 
256 
256 

1024 
1024 
I024 
1024 
4096 
4096 

16384 
16384 

Access 
time (ns) 

500 
650 
850 
25 

450 
330 

30 
300 
120 
100 

? 

Dynamic RAMS 

Capacity Access 
Type Man. tech. (bits) time (ns) 

K R 507R U 1 PMOS I024 400 
KR565RUIA nMOS 4096 150-200 
K565RU3A nMOS I6384 150-200 
K565RU5B nMOS 64K '? 

Sources: Baranov et al. (1986); lakubovskii et a/. (1984); Solov'ev 
( I  985). 

Shirokov (1988). 43. 
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Union, on the other hand, can competently produce 16K chips, only recently 
began volume production of 64K chips, and, while it has prototypes, has yet to 
produce 256K chips in quantity. In short, there is no contest in this area.83 
Table XIV gives a sample of current Soviet memory chips. 

4.3.3. General-Purpose lntegrated Circuits 

The Soviet Union’s decision to copy Western component designs is revealed 
most starkly by a quick survey of general-purpose integrated circuits. For 
each type of manufacturing process, Soviet computer engineers copied a 
specific Western series. In transistor-transistor logic, the SN54/74 series 
served, and serves, as the model. The MC10000 series of ICs provided the 
Soviets with the model for Emitter-Coupled Logic chips. And finally, in the 
CMOS area, the RCA CD4000 series served as the example to copy. 

5. Perestroika and Soviet Computing 

The fragmented, isolated, and ill-managed Soviet computer development 
effort not only proved incapable of keeping pace with Western developments, 
but also failed to fulfill its own goals. It was evident to Western analysts many 
years ago that the bureaucratic structure of Soviet science and technology 
severely restricted technological development. The question now is whether 
the Soviet leadership recognizes the same, and is able to do anything about 
it. A first glance at the effects of perestroika, or economic restructuring, on the 
computer industry would give much hope for improvement. A deeper view, 
however, reveals that much of what perestroika has achieved so far amounts 
simply to bureaucratic reshuffling. Soviet insistence on centrally managed 
development, coupled with their inability to do  it, continues to impede the 
development of the Soviet computer industry to the end of the 1980s. 

5.1 The Reemergence of the Academy of Sciences 

Essentially shut out from general developments in Soviet computing since 
the mid 1960s, the Academy of Sciences undertook a significant organi- 
zational restructuring in its computer development program in 1983, in- 
cluding the establishment of a new Department of Informatics, Computer 
Technology and Automation (OIVTA) as well as a series of new research 
institutes. The developer of the SM minicomputer line and advocate of the 

83 Information on Soviet memory chips is from lakubovskii el al. (1984); Solov’ev (1985), 240- 
241; and Baranov (1986). 357-358. 



318 RICHARD W. JUDY AND ROBERT W. CLOUGH 

Academy’s reemergence into computer developments, B. N. Naumov, stated, 
“In order not to repeat these mistakes [of leaving the Academy out of 
computers], the newly created Department of Informatics, Computer Tech- 
nology, and Automation of the USSR Academy of Sciences should take upon 
itself the leading role in the design and implementation of a unified scientific- 
technological policy in this area.”84 

The Academy is now involved in a full range of computer development 
programs, including the EL’BRUS supercomputer, mini- and microcom- 
puters, and computer chip manufacturing processes. One Western analyst 
notes that this reorganization “. . . means that the control over a substantial 
portion of the research-production process in the computer field now passes 
from industry to the A~ademy.”’~ While it is quite clear Velikhov and 
colleagues have brought the Academy back into the computer field, whether it 
is the leader is yet to be seen. 

5.2 A New “Tsar” for Soviet Computing? 

Our skepticism is based on additional administrative restructuring that 
occurred after the Academy reorganization supposedly placed it a t  the head of 
technological development. Created March 21, 1986 by the Presidium of the 
Supreme Soviet, the USSR State Committee for Computer Technology and 
Informatics (GKVTI) is supposed to coordinate the creation, production, 
utilization, and servicing of computer technology. The new committee 
chairman, Nikolai Vasil’evich Gorshkov, who was appointed April 7, 1 986,86 
stated that the “new committee effectively is the lead organization of the 
powerful interdepartmental scientific technological complex (MNTK) for the 
development, production, and implementation of the means of computer 
technology.”” Despite the resolution’s and Gorshkov’s statements, however, 
it remains doubtful as to whether the GKVTI is or will be the coordinating 
entity of the Soviet computer industry. 

The first indication of resistance to GKVTI coordination is simply the 
amount of time from the formation of the committee, March 1986, to the 
ratification of the Council of Ministers’ statute in April 1987. In an April 1986 
interview, Gorshkov stated that “we must . , . work out and determine the 
organizational documents in a three-month term.”” The fact that it took 
more than a year indicates that considerable resistance was encountered. 

84 Naumov (1984). 
Kassel(1986), ui. 
Prauda, April 8, 1986. 

Ibid 
13’ Ekonomicheskaia Gazera, (18), 1986. 
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The Council of Ministers statute assigns a great deal of responsibility to the 
GKVTI, and at least on paper, considerable power.89 But those institutional 
powers conflict with the interests of existing organs, especially the powerful 
manufacturing ministries. In the area of planning, the GKVTI is responsible 
for determining the basic directions, priorities, future demands, etc., for 
computer technology in the Soviet Union. The GKVTI, according to the 
statute, prepares proposals for annual and five-year plans. It remains unclear 
how this fits into other reports that Velikhov drafted the long-term computer 
development plan from his base at the Academy of Sciences. 

The Academy-Industry confusion and conflict is also apparent in the 
leadership of the GKVTI. Gorshkov, the Committee’s chairman, is a trained 
engineer and served in Minradioprom management since 1964. He was a 
Deputy Minister for Minradioprom beginning in 1974.90 Given this back- 
ground and the existing feud, it appears that the GKVTI might tend to 
represent industrial interests in the turf wars. 

On paper, the GKVTI is a powerful organ. The statute gives arbitration 
rights to the GKVTI for settling interdepartmental quarrels, and it allows the 
GKVTI to set out “binding” resolutions on ministries, departments, enter- 
prises, institutions, and organizations “within its jurisdiction.” The GKVTI 
“can create, reorganize, and abolish enterprises, institutions, and organiza- 
tions within its competency.” But some of the inconsistencies noted above, 
along with the historical record of past failed attempts to do similar things, 
leaves significant doubts as to whether the GKVTI is the bureaucratic entity 
that will coordinate Soviet computer development. Much as the GKNT 
remained a rather feeble centralizing and coordinating body for all of Soviet 
science and technology, the new GKVTI appears to suffer from the same 
maladies. 

5.3 Bureaucratic Shuffling Continues 

The situation becomes even more confused with the introduction of a 
new bureaucratic entity in Soviet technological development, the MNTK. 
MNTKs are designed to provide administrative flexibility and a connection 
between research, development, and production by including appropriate 
academic institutes, scientific-production associations, enterprises, and minis- 
tries in consortiums to tackle specific problems. Since 1985, more than 20 
MNTKs have been formed to coordinate efforts in developing personal 
computers, robots, biogenetics, fiber optics, cotton harvesters, etc. As with the 
GKVTI, MNTKs are afforded a fair amount of power on paper, but in 

B9 Sobranie Postanovlenii Pravitel ‘stva SSSR Pervyi Otdel, 596-603. 
yo Kassel(1986). 26. 
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practice have been unable to improve the situation. Naumov, Director of the 
MNTK for personal computers, noted in a letter to the editor in Pravda, 

I t  is approximately two-and-a-half years sincc the decision to create intersector 
scientific and technical complexes was adopted, but there is still no economic 
mechanism for their work, and an experimental and experimental-production 
base has not been created.”’ 

Thus, this most recent attempt to improve upon the centralized management 
of technological development fails to improve the research-design-production 
connections. 

One of the most novel administrative entities to appear in Soviet teclino- 
logical development is the Temporary Scientific Collective (TSC). Restricted 
to a life of three years by Council of Minister statute, this type of organiza- 
tion is intended to solve a specific problem in a short time, and then dissolve 
itself when other priorities come to the fore. As of March 1987, approxi- 
mately 10 TSCs were in operation. 

Created in 1985, the START Collective was one of the first to be organized 
and served a s  a test case for the entire concept. Its role in developing the 
MARS computer was described in Section 4.2.3, above. Now out of existence, 
i t  employed a total of 155 people, including researchers from the computer 
center. the Cybcrnetics Institute of the Estonian Academy of Sciences, and 
specialists from the Severodonetsk lmpuls Scientific Production Association 
of Minpribor. 

Yet, even this most flexible organizational entity has encountered problems. 
As with the MNTKs, the inter-departmental nature of the TSC lcavcs i t  
bureaucratically “orphaned.” Supplies are difficult to acquire. Office space is 
hard to find. Even housing for staff can be a major headache. The director of 
START, V. E. Kotov, admits breaking administrative statutes by hiring 
managerial staff under phony job descriptions in  order to get the necessary 
work done. Although collectives have the right to hire short-term workers, 
they often lack the funds to do  so. Thus, the TSC collides with the very 
problems it is designed to overcome. 

5.4 Calls for More of the Same 

The organizational problems within the Soviet computer industry were 
recently discussed by the Supreme Soviet Standing Commission on Science 
and Technology, the Soviet equivalent of a parliamentary committee on 

‘)I Prcwdtr. May 4, 1988, 3. 
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science policy.’2 The committee discussed delays in both plant development 
and serial production of computers, the inability to achieve world standards, 
the continued production of non-compatible PCs, and the poor level of 
computer training. A TASS report on the committee meeting stated, 

The calamity is that our  planningorgans cannot part at all from gross indicators. 
Financially, our plans for electronics are being fulfilled, in a manner of speaking, 
but in terms of the range of goods, it  is a total catastrophe.’-’ 

The committee then cited organizational problems as the cause of this “total 
catastrophe.” First and foremost, they note that the GKVTI lacks the financial 
levers with which to manage the computer industry. The ministries continue to 
hold the purse strings, leaving these new bureaucratic entities stranded unless 
they can attach themselves to a ministry. The Supreme Soviet committee’s 
response to the problem, however, is to t ry  more of the same centralized effort 
that has failed for the last 20 years. The report states, 

Obviously, i t  is expedient to examine the issue of setting up a national economic 
complex that will unite the sectors and implement a unified scientific and 
technical p ~ l i c y . ” ~  

They recognize a problem, but always come back to the same solution, a 
new and improved centralized effort. When will they learn? 

Summary 

The Soviet policy of copying Western hardware design, combined with 
international isolation and an industrial structure that retards domestic de- 
velopment, production, and support, effectively doomed Soviet computer- 
dom to an expanding lag behind the West during the 1980s. The strategy of 
technological followership, by itself, did not cause the problem. After all, many 
other countries successfully rode the high-tech wave of the 1980s while pur- 
suing such a strategy. Their success, however, was due to their integration 
into the world economy and the necessity of their producers to compete in 
open markets. Isolated from the stimulation of such competition, Soviet 
computer development wallowed in a “hot house” domestic economy that 
purposely shunned competition in favor of centralized bureaucratic control. 

’)’ See lvakhnov (1988). 
Deputies See ‘Critical’ Science, Technology Lag. Moscow Radio, August 15, 1988. as 9 3  

reported by FBIS-SOV-88-158.63. 
y4 Ihitl. 
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In summary, there is both good news and bad news for the Soviet com- 
puter user of the late 1980s. The bad news is that available hardware and 
software continues to fall farther behind what their Western counterparts are 
using at every level, from supercomputers to microcomputers. The good news 
is that the Soviet’s scientific and political leadership now openly recognizes 
the problem and vows to resolve it. But it seems doubtful that the attempted 
solutions, which so far have been limited to industrial reorganization and 
bureaucratic reshuffling, will be sufficient to slow the rate at which they are 
falling behind, much less actually begin to close the gap. Unfortunately, for 
the Soviet computing community, the headlines for the 1990s will probably 
read: Soviet computer industry continues to lag; Soviet leadership continues 
to do something about it. 
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evolution, 17-18 
label set, 26 
network model, 31 
security levels, 18 
simple security property, 18 
strict integrity, 25-26 
System Z and tranquility, 21-23 
transition rules, 20-21 
trusted subjects, 24 
type enforcement, 26-27 

Berkeley system, automated protocol design, 
173-175 

BESM, 253-254 
BESM-6 processor, 308 
Biba's integrity model, 24-25 
BLP machine, 18 
Bochrnann's protocol derivation algorithm, 136 

C 

Calculus of Communicating Systems, 100, 

CCS model, 100, 102-103, 131-132 
102-103, 131-132 
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alternating bit protocol, 102-103 
timed, 146 
transformation from CSP, 132 

CFSM model 
deadlock detection, 162 
alternating bit protocol, 90-91 
mapping set, 161, 164 
multiple, 160 
Okumura’s model. 156-159 
parallel model, 164 
protocol conversion, 160-165 
Protocol Converter, 161-165 
regeneration of mapping, 161 
removal of mapping, 162 
timed, 145 
tmsition firing, 161 

piece groupings, 57 
players, rating of, 233,237 
programmers. chess skill of, 238-239 

debugging, 240-241 
endgame play and databases, 231-232 
future improvements, 246-247 
languages used by, 239-240 
opening books, 231 
participants in computer chess 

championships, 244-245 
ratings, 238-239 
relation between computer speed and program 

search techniques, 198,231 
alpha-beta algorithm, 206-210 
backed-up scores. 201 
depth-first minimax search, 201-206 
iterative deepening, 222 
killer heuristic, 211 

move generation, 2lO-211 
parallel search techniques, 226-228 
principal continuation, 211 
pruning techniques, 211-212 

Chess 

Chess programs 

smngth, 237-238 

minimax algorithm, 199-201 

m h  t m ,  199-201 
~ p e ~ i a l - p ~ r p ~ s e  hardwa~, 228-229 
thinking on opponent’s time, 230-231 
time-control algorithms. 230 
transposition tables, see Transposition 

variable depth quiescence searches, 212 
windows, 222-226 

tables 

testing, 240 
tournament play, 232-236 
weaknesses, 247 

Choi’s sequence method, 135 
CIL, 110 
Classification constraints, 29 
Clear, 93 
Communicating Sequential processes, 100-101, 

Communication protocols, see Pmtocol 
Communication sequences generator, 129 
Communication service, 126 
Communication Service Implementation 

Language, 110 
Compatibility, 21 
Component-based synthesis, 136 
Composability, 37-39 
Computercommunication networks, 80 
Conceptual Structures Representation 

Language, 181 
Concrete model, 12-13 
Conformance testing, 166-170 

logical architecture, 169-170 
test suite, 168-169 

Conformity analysis, 128-130 
axiomatic approach, UO-I31 

103 

purpose, 128 
steps, I32-l33 

Constrained data items, 26-27 
Conversion seed, 157-158 
Covert channel, 2,32 

analysis, 32-36 
CPlM 

compatible PCs, PK-~OXX, 275-276 
Soviet computing, KORVET, 276-279 

CRAY BLITZ, 219,227,230 
CSP-based language, 129 
CSPmodel, 100-101, 103 

algebraic manipulations, 131 
alternating bit protocol, 100-101 
axiomatic approach, l30-131 
conformity analysis, 129-130 
timed, 146 
transformation system to CCS, 132 

CSRL, 181 

D 

Database management systems 



SUBJECT INDEX 343 

classification constraint, 29 
key fields, 27 
location information, 29 
models 

I. P. Sharp model, 28 
multilevel security, 27-30 
Naval DBMS model, 28-29 

polyinstantiation, 30 
relation, 27-28 
view, 29 

Deadlock, detection, 162 
state errors, 124-125 

DEC, compared with SM counterparts, 

DEEP THOUGHT 0.02,212,229 

Depth-first minimax search, 201-206 

292-293 

sample of play, 241-244 

data structures, 201-203 
EVAL, 203-204 
flowchart, 202 
GENERATE, 203 
RE!TTORE, 204 
UPDATE, 204 
UPDATEPRINC, 204,206 
updating principal continuation, 204,206 

Dequeue, 93 
Discretionary security property, 19 
Dominance, 4 
D-search, versus PROVAT in reception error 

detection, 121-123 
Duplicate acceptance problem, 141 
W K  machines, 301-302 

E 

Ecological analysis 
goal, 67 
humancomputer interaction, 65-68 

EFSM model, 167-168 
ELBRUS, 308-309 
ELEKTRONIKA 60,298, 301-303 
ELEKTRONIKA BK-0010.302 
ELEKTRONIKA K, 303 
ELEKTRONIKA microcomputers, 298-303 
ELEKTRONIKA minicomputers, 297-298 
ELEKTRONIKA S5.303 
Empty, 93 
Empty medium abstraction, 111-113 
Encoder/Decoder, 170 

Error-recovery transformation, 141-143 
ES-1036,262,264 
ES-1046,264 
ES-1061,264 
ES-1065,264-265 
ES-1066,265 
Es-iax, 274-275, m-280 
Establish-refine, 181 
Estelle, 107-108 

ETG model, 178-179 

Event separability, 37 
Extended finite-state machine model, 105-107 
Extended State Transmission Language, 107-108 
Extended Transmission Grammar model, 

External equivalency, 157 

ESTL, 107-108 

alternating bit protocol. 107-108 

107-108 

F 

Fair progress state exploration, 115 
FAPL, 109, 167 
Fetch, 93 
Finite-state automata, 89-92, 171 
Finite State Machine analyzer, 115 
Finite State Machine model, see FSM model 
Floyd-Hoare technique, 98-99 
Formal grammars, 92-95 
Format and Protocol Language, 109, 167 
Forward pruning, 211-212 
Four-stage approach, multilevel security, 6-7 
Frame-oriented transmission technique, 90 
FSA model, 89-92, 171 

advantage, 112-113 
alternating bit protocol, 111-112 
validation techniques used by, 111 

analyzer, 115 
global constraint, 139, 141 
local constraint, 139, 140-141 
sequence method, 135 
synchronizing protocol pair, 143 

FSM model 

Full. 93 

G 

GENERATE, 203,210 
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GKVTI, 318-319 
Global state graph, alternating bit protocol. 

GOMS model, 58-59 
Gouda's Synthesis Algorithm, 135 

112-113 

H 

Half gateway, 165 
Hash code, 219-221 
Hash function, 217,221 
Hashing error, 219 
HITECH, 229 

HP, compared with SM counterparts, 292-293 
Human-computer interaction, 47-49 

sample of play, 241-244 

artifacts, 63-65 
assessment of symbolic conventions, 51-52 
case-study task analysis, 66 
cognitive description, 55-61 

breadth versus depth, 56-58 
design by deduction, 58-61 
"experts have chunks," 57-58 
frictionless contact, 56 
GOMS model, 58-59 
OOTO prescription, 55, 59-60 
menu selection, 59 
point-mass mechanics, 56 
programming, 57 

constraints of direct-contrast laboratory 

contrasting natural language with menus, 54 
direct empirical contrast, 49-53 
ecology of computing, 68-72 

current perplexity, 71-72 
science and invention, 69-71 

dilemma, 52 
paradigm, 55 

methods, 50-51 

evaluation studies, 49-55 

implicit division of labor, 61 
laboratory studies, 50 
lack of theory, 53-55 
monitoring use patterns, 66-67 
paradigms for psychology, 61 
product-development ideas, 68 
race between function and usability, 68 
research goals, 48 
simulations, 64-65 
software design process, 65-66 

structured programming, 54 
task-artifact cycle, 66 
theories, 63-64 
usability data, 67 
usability-innervated invention, 61-68 

ecological analysis, 65-68 
new basis for organizational dynamics, 69 
psychology as mother of invention, 62-65 
role, 68 

use of indentation, 51 
use of toy-scale problem domains, 53 
user-interface metaphors, 62 

Human factors evaluation, constraints, 52 
Hybrid models 

abstract machines, 105-107 
CIL, 110 
ESTL and LOTOS, 107-109 
FAPL, 109 
SDL, 109 
selection/resolution model, 109 

1 

IBM-compatible mainframes, "Unified Series," 

IBM PC&betaXT clones, ES-184~. 274-275 
IBM system, automated protocol design, 171 
Image protocol, 159, 172 
Information flow models, 31-41 

abstract machines, 32 
covert channel, 32 
delays, 36 
mandatory access-control system, 41 
non-interference, 33-36 
philosophy, 32 
restrictiveness, 36-41 
set of traces, 37 

see MAD 

Information flow policy, 4-524-25 
Input totality, 37 
Institute of Precise Mechanics and Computer 

Integrated circuits, general-purpose, Soviet, 317 
Integrated Services Digital Network, 83 
Integrated Time Transmission Grammar, see 

Intelligent tutoring systems, 63 
Intelligent user-interface, 180 

International Computer Chess Association, 246 

Engineering, 253-254 

ITTG model 

classification hierarchy, 181-182 
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International Organization for Standardization, 

Invention, relationship with science, 69-71 
83-84 

IRISHA, 306-307 
ISKRA 226,296-297 
ISKRA 1030,296 
IS0 transport service, U9, 140 

error-recoverable protocol, 141-142 
Iteratively deepening search, 222 

flowchart, 223-224 
ITTG model, 149-155 

alternating bit protocol, 153-155 
channels, 151-152 
entities, 150-151 
timeout handler, 152 

K 

Kakuda’s component-based synthesis, 136 
KBBKN, 232 
KBPV system. 179-183, 184 

structure, 180 
validation algorithms, 181 

Killer heuristic, 211 
Knowledge-based protocol validation system, 

see KBPV system 
KORVET, n6-279 

production, 277 
KQPKO, 232 
KRPKR, 232 
KUVT-86.302 

L 

Label-based policy, 4-6 
dominance relation on labels, 4 
information flow policy, 4-5 
property, 5-6 

Lam and Calvert’s model, 159-160 
Language for Temporal Ordering Specification, 

Leakage channels, 2 

Low-water mark policy, 25 

108-109 

LOIOS, 108-109 

M 

Machine language, transposition tables, 217 

MAC system models, 41-42 
Mapping 

from model to specification terms, 14-17 
validation, 15 

MARS, 310 
Maximal progress state exploration, 115 
Memory chips, Soviet, 316-317 
Merlin’s submodule construction method, I36 
MESM, 253 
Microcomputers 

ELEKTRONIKA, 298-303 
ISKRA-series, 295-296 
Minpribor, 293-297 
SM-line, 293-294 

Microprocessor chips, Soviet, 313-316 
Minelektronprom, 297-307 
Minicomputers, ELEKTRONIKA, 297-298 
Mini-MARS, 310 
Minimax algorithm, 199-201; see also Depth- 

first minimax search 
Ministry of Instrument Making, Automation 

Equipment, and Control Systems, see 
Minpribor 

Ministry of Radio Technology, see 
Minradioprom 

Minpribor, 254-255.280-281 
ISKRA-series microcomputers, 295-296 
microcomputers, 293-297 
see also SM 

personal computers, 272 

see also RIAD 

Minradioprom, 253-255,257-280 

future directions. 279-280 

MINSK, 253-254 
MNTKs, 319-320 
Multifunction protocol, 173 
Multilevel access-control system, 11 
Multilevel security 

access-control models, 2-3 
database management system models, n-30 
discretionary policy, 2 
example of security flaw discovery, 8-10 
formal top-level specifications, 8 
label assignments, 2 
label-based policy, 4-6 
model-to-specification correspondence, 10-17 

axioms and valid interpretations, 12 
concrete models and transition rules, 12-13 
mappings, 14-17 
models as logical systems, 12-14 
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secure system definition, 10-11 
transition rule example, 13-14 

network models, 30-31 
non-interference, 34 
reference monitor, 3-4 
restrictiveness, 39-41 
successive refinement approach, 6-8 
unwinding application, 35-36 
see also Bell-Lahdula model; Information 

flow models 

N 

Naval DBMS model, 28-29 
NEIRON 19.66,303,306 
Network architecture, 83-88 

layering and abstraction, 85-88 
OSI Reference Model, 83-85 
pmtocol and service specifications, 88 

Network models, multilevel security, 30-31 
Nondiscretionary accesscontrol models, 2 
Noncmpty, 93 
Non-interference, 33-36 

definitions, 33-34 
multilevel security, 34 
unwinding, 34-35 

application to multilevel security, 35-36 
(N)-pmtocol specification, 137-138 

(N)-Service Access Points, 127-128 
(N)-SAR, 127-128 

0 

OMAN 240,307 
Okumura's model, 156-159 
Open Systems Interconnection Reference 

Model, see OSI Reference Model 
Book, 7-8 

OSI Reference Model, 83-85 
abstraction, 87-88 
atchite-ctural model, lZ7 

conformance testing, 168 
layers, 84-87 
network architecture based on, 84 
service specification, 129 

debugging package, 240-241 

ar~hitecture, 87 

OSTRICH, 226-227 

Bochmann's protocol derivation algorithm, 

Choi's sequence method, U5 
comparison and discussion, 137 
error-recovery transformation, 141-143 
future work, 143-144 

l37 

P 

PANWRA system, 175-176 
Parallel search techniques, 226-228 
PDIL. 99 

Perestroika, Soviet computing and, 317-321 
Personal computer, Soviet production, 252 

PEASANT, 231-232 

Minradioprom, 2?2 

Petri nets model, 95-96 
future directions, 279-280 

alternating bit protocol, 96-97 
automated protocol synthesizer, 173-174 
timed, 145 

Pipelining, 26-27 

Point-mass mechanics, 56 
Polling model, 156-157 
Polyinstantiation, 30 
Pop, 93 
Principal variation splitting algorithm, 227 
Prinoth's protocol construction algorithm, 136 
Priority queue, 93 
Probabilistic Transmission Grammar, 120 
Production rule 

channel, 152 
entity, 151 
timeout handler, 152 

abstract data types, 104 
abstract programs, 97-99 
advantages, 104 
CSP and CCS, 100-103 
protocol specifications. 104 
temporal logic techniques, 103-104 

PK-~OXX, 275-276 

Pmgnunming language models, 96-I04 

Projection approach, 114 
PROSPEC system, 171-173 
Pmtocol 

analysis. 81 
axiomatic approach, DO-131 
complementation, 166 
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conformity analysis, 128-130 
correctness properties, 110 
decomposition, 114 
definition, 80 
expressions, 95 
functional properties, 126 
interworking, 165-166 
layered design, architectural model, 127 
layered structure, 85-86 
multifunction, 173 
multiphase, 173 
optimization issue, 143 
overlap, 166 
projection, 159 
service concept, 126-128 
skeletons, 98-99 
syntactic properties, 126 
transformational approach, 131-133 

Protocol consttuction algorithm, 136 
Protocol conversion, 81, 155-166 

CFSM model, 160-163 
future work, 165-166 
half gateway, 165 
Lam and Calvert’s model, 159-160 
Okumura’s model, 156-159 
synchronization messages, 165 
using state-transition model, 160 

Protocol derivation algorithm, l36, 139-141 
Protocol Description and Implementation 

Language, 99 
Protocol engineering, 80-83 

automated design, 171-183 
BBNlNIST system, 176-178 
Berkeley system, 173-175 
IBM system, 171 
KBPV system, 178-183 
PANDORA system, 175-176 
PROSPEC system, 171-173 
TTG/ETG system, 178-179 

automated implementation, 166-168 
conformance testing, 166-170 
definition, 81 
design mles, l34-135 
domain, 81-82 
timed models, 145-148 
time factors, 145 

formal models, 88-110 
hybrid models, 105-110 
programming language models, 96 

h t o c o l  specification. 88, 129, l37 

state-transition models, 89-96 
programming language models, 104 

Bochmann’s protocol derivation algorithm, 

Choi’s sequence method, l35 
comparison and discussion, 137 
error-recovery transformation, 141-143 
future work, 143-144 
Gouda’s synthesis algorithm, l35 
Kakuda’s component-based synthesis, 136 
Merlin’s submodule construction method, 136 
model, 138-140 
no service specification required, 134-136 
Prinoth’s protocol construction algorithm, 136 
protocol derivation algorithm, 140-141 
Ramamoorthy’s automated protocol 

service specification required, 136 
Sidhu’s protocol design rules, l35 
Zafiropulo’s reception production rules, 134 
Zhang’s protocol synthesis algorithm, 135 

Protocol synthesis, 81, 133-143 

l37 

synthesizer, 135 

Protocol synthesis algorithm, 135 
Protocol validation, UO, 126 

detection of deadlock state errors, 124-125 
error first search, 118 
Finite State Machine. analyzer, 115 
performance in locating design errors, 121 
projection approach, 114 

reachability analysis, Ill-W 
relief strategies, 114-117 
X.21 testing, 121-125 
see also PROVAT strategy 

PROVAT Strategy, 117-120 

PROtocol VAlidation Testing, see PROVAT 
strategy 

PROVAT strategy, 117-120, 120-126 
advantage, 126 
heuristics, 118-120 
reception error detection, 121-123 

PS-2000,309 
PS-3oO0, 309-310 
Psychology 

as mother of invention, 62-65 
paradigms for, 61 

user-interface metaphors, 62 

validation tool, ’181 

usability, 55 

PTG, 120 

PVSA, 221-228 



348 SUBJECT INDEX 

Q 
Queue, 93 

R 

Ramamoorthy's automated protocol synthesizer, 

Random-walk state exploration, 116-117 
Reachability analysis, Ill-113, 178-179 
Reachability analysis algorithm, TTG model, 

Real-Time Asynchronous Grammars, 95 
Reception production rules, 134-135 
Reduced implementation sequences, 116 
Reference monitor, 3-4, 11 
Relief strategy, 114-117 

techniques, 114 
Restrictiveness, 36-41, 43 

composability. 37-39 
multilevel security, 39-41 
nondeterministic systems, 36-37 

compared to Western and Japanese PCMs, 

fifth generation, 267-268 
manufacturing weaknesses, 271 
matching with IBM counterparts, 269 
performance 

135 

149 

MAD. 258-259 

270 

evaluation, 271-272 
targets of future computers, 268 

RIAD-1,259-260 
lag behind IBM, 269 

lag behind IBM, 269 

characteristics, 263 
development, 262 
lag behind IBM, 268-271 
technical objectives, 261-262 

RIAD-2,260-261 

RIAD3,261-265 

RIAD-4.265-267 
RTAG model, 95 

S 

Scatter search, 116 
SCHOOLGIRL, 273 
Science, relationship with invention, 69-71 

SDL, 109 
Search tree, 199-201 
Secure system, abstract definition, 10-11 
Security, nondiscretionary policy, 1-3 
Selection/Resolution model, 109 
Selective repeat procedure, 104 
Semantics equivalency, 158 
Service concept, 126-128 
Service primitive, 128 
Service specification, 88, 126-127 

Sharp (1.P.) model, 28 
Sidhu's protocol design rules, 134-135 
Simple security property, 18 
Simulations, human-computer interaction, 

Sink-srate problem, 141 

OSI Reference Model, 129 

64-65 

SM, 280-281 
compared with HP and DEC counterparts, 

microcomputers, 293-294 
292-293 

SM-I, 286 
SM-lM, 287 
SM-2,286-287 
SM-2M, 287 
SM-3,287-288 
SM-4.288-289 
SM-50,289 
SM-1210, 290 
SM-UOO, 293 
SM-1410, 290 
SM-1420,290-291 
SM-1700,291 
SM-1800,293,296 
SM-11600,291 
SM-I, 292 

characteristics, 282-283 
planning, 281 
production, 286-289 

characteristics, 284-285 
production, 289-291 

characteristics, 284-285 
production, 291-293 

SM-11, 292 

SM-111, 292 

SNA, 167 
SNet model, 30-31 
software 

design process, human-computer interaction, 
65-66 
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kernel protection, 24 
laboratory studies, 50 

Soviet computing, 251-252 
Academy of Sciences, 307-312, 317-318 
administrative restructuring, 318-319 
AGAT, 272-n4 
before 1980,253-255 
bureaucratic shuffling, 319-320 
components, 312-317 

general-purpose integrated circuits, 317 
memory chips, 316-317 
microprocessor chips, 313-316 

DEC, lag behind, 293 

ELEKTRONIKA microcomputers. 298-303 
ELEKTRONIKA minicomputers, 297-298 

EL'BRUS, 308-309 

ES-IIU~, n4-275 
GKVTI. 318-319 
informatics program, 256 
Institute of Precise Mechanics and Computer 

Engineering, 253-254 
IRISHA, 306-307 
ISKRA-series microcomputers. 295-296 

MARS, 310 
Minpribor, see Minpribor 
Minradioprom, see Minradioprom 

NEIRON 19.66, 303, 306 
official plans for the 1980s, 255-257 
OKEAN 240,307 
perestroika and, 317-321 
personal computer 

future directions, 279-280 
production, 252 

KORVET, 276-279 

MNTKs, 319-320 

PK-~OXX, 275-276 
PS-2000,309 
PS-3O00, 309-310 
MAD, see RIAD 
SM, see SM 
supercomputers, 307,310-312 
Supreme Soviet Standing Commission on 

technological followership, 258-259 
weaknesses, 278-279 

Science and Technology, 320-321 

Soviet programs, chess, 232-233 
Specification 

sequence-oriented, 129 
state-oriented, 129 

Specification and Description Language, 109 

State explosion problem, 92 
State invariants, 13 
State perturbation, 111 
State space explosion, ID-114 
State-transition machine, 129 
State-transition model 

automata, 10-11 
finite-state automata, 89-92 
formal grammars, 92-95 
graph, I73 
Petri nets, 95-96 
use in protocol, conversion, 160 

Bell-Lahdula model, 25-26 
Strict integrity, 42 

Strict integrity policy, 25 
Subject memory, 3-4 
Submodule Construction Method, 136 
Successive refinement approach, multilevel 

Supercomputers 
security, 6-8 

limitations, Soviet computing, 312 
Soviet computing, 307, 310-312 

Synchronization messages, 165 
Synthesis algorithm, 135-136 
Systems Network Architecture, 167 
System Z,22 

T 

Task-artifact cycle, 66 
Temporal logic techniques, 103-104 
Test Driver, 170 
Test Responder, 169 
Test suite, 168 
TG model, 92-94, 181 

alternating bit protocol, 93-95 
incorporation of PROVAT, 120-121 
relation between, 149-150 
terminal actions, 92-93 
terminal symbols, 92 

Time-control algorithms, 230 
Timed models 

forms of time specifications, 146 
model in large, 147 
time association with model components, 

time extension, 149 
Time specification, TTG model, 148-149 
Tool box idea, 179-180 

147-148 
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Trace. 116 
Tranquility principle, 21,22 
Transactions, access modes and, 4 
Transformational approach, l31-l33 
Transformation procedures, 26-27 
Transition axioms, 13 
Transition choice rule, 115 
Transition rules, 12-14 

"hnsmission, frame-oriented technique, 90-91 
Transmission Grammar model, see Tci model 
Transposition tables, 212-222 

alpha-beta algorithm, 214 
clash, 219 
CRAY BLITZ, 219 
effects on five-ply tree, 217-218 
entries, 217,220 
flowchart of alpha-beta algorithm using, 

hash code, 219-221 
hash function, 217,221 
hashing error, 219 
machine language, 217 
piece-square table, 220-221 
tree motad at initial game position, 212-213 

Bell-LaPadula model, 20-21 

216-217 

tree search, 214-215 
Tree protocol validation, U6 
Trusted subjects, 24,42 
TTG model, 148-149, 178-179 
TTG' model, 149 
Vpe enforcement, Bell-Lahdula model, 26-27 

Untimed model, 144-145 
Unwinding, application to multilevel security, 

Unwinding theorem, 34-35 

Usability, psychology, 55 

35-36 

URAL, 253-254 

V 

Valid interpretation of model, 12 
Variable depth quiescence searches, 212 
Violin, acoustic analysis, 70-71 

W 

WAYCOOL, 226-227 
Windows. 222-226 

cutoff, 223,225 
iteratively deepening search, 223-224 
strategies, 223-224 
two-pass alpha-beta search, 223-224.226 

X 

X.21, 91-92 
interface, 121 
testing, protocol validation, 121-125 

U 
2 

LJKNTs, 277-278,3M 
"Unified Series" of IBM-compatible main- 

frames, see RIAD 
Zafiropulo's reception production rules, 134 
Zhang's protocol synthesis algorithm, I35 
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